Synthesis and Anticonvulsant Activities of α -Acetamido-N-benzylacetamide Derivatives Containing an Electron-Deficient α -Heteroaromatic Substituent

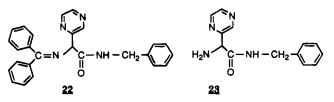
Patrick Bardel, Antoinette Bolanos, and Harold Kohn*

Department of Chemistry, University of Houston, Houston, Texas 77204-5641

Received August 17, 1994[®]

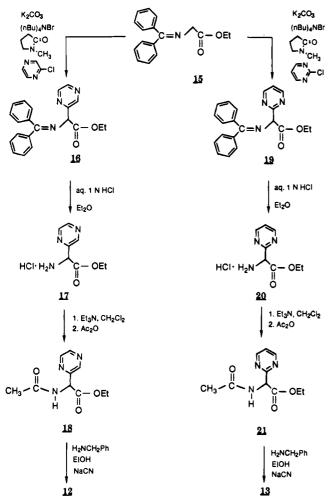
Recent studies have demonstrated that $C(\alpha)$ -substituted α -acetamido-N-benzylacetamides displayed excellent anticonvulsant activities in mice. Analysis of the structure-activity relationship for this series of compounds has shown that placement of small, electron-rich aromatic and heteroaromatic groups at the $C(\alpha)$ site led to pronounced protection against MESinduced seizures. In this note, synthetic protocols are reported for the preparation of three novel nonnaturally occurring electron-deficient $C(\alpha)$ -aza aromatic α -acetamido-N-benzylacetamides (i.e., pyrid-2-yl (11), pyrazin-2-yl (12), pyrimid-2-yl (13)). Expedient syntheses for 12 and 13 were developed using a phase-transfer, nucleophilic aromatic substitution process. All three adducts exhibited potencies comparable to or greater than phenytoin in the MES test (mice, ip). These findings required us to modify in part the previously proposed structureactivity relationship for this class of anticonvulsants.

Recently, we have reported on the potent anticonvulsant activities of selectively $C(\alpha)$ -substituted functionalized amino acid derivatives 1.1^{-7} Evaluation of the optimal R^2 -substituent in 1 (Table 1) revealed that the placement of a small, electron-rich heteroaromatic ring^{5,7} at the $C(\alpha)$ position, as well as the incorporation of a heteroatom two atoms removed from this carbon site.⁵⁻⁷ led to compounds (i.e., **2**, **3**) providing excellent protection against MES-induced seizures in mice. In this note, we describe the pharmacological activities of the three six-membered *electron-deficient* aza aromatic analogues, 11-13. Synthetic strategies are provided for these novel nonnaturally occurring amino acid derivatives. Significantly, the pronounced activities observed for 11-13 required us to modify in part the previously proposed structure-activity relationship for this class of anticonvulsants.


Chemistry

Preparation of the pyrid-2-yl derivative 11 was accomplished in 15% yield by treatment of α -acetamido- α -bromo-N-benzylacetamide⁶ (14) with 2-pyridyllithium⁸ (2.1 equiv). Attempts to increase the yield for this transformation by varying the mole ratios of the reactants, inversing the order of addition of the reactants,

© 1994 American Chemical Society


and substituting lithium (2-pyridyl)cyanocuprate⁹ for 2-pyridyllithium were unsuccessful.

The low yields observed for the synthesis of 11 suggested that an alternative protocol be used for the preparation of the C(α)-pyrazin-2-yl (12) and C(α)pyrimid-2-yl (13) adducts. O'Donnell and co-workers have described a general synthesis of $C(\alpha)$ -alkylsubstituted amino acids from glycine derivatives using a phase-transfer, nucleophilic aliphatic substitution reaction.¹⁰ The corresponding nucleophilic aromatic substitution process has not been reported. Adopting this methodology, commercially available ethyl N-(diphenylmethylene)glycinate (15) was treated with solid potassium carbonate, tetra-n-butylammonium bromide, and either 2-chloropyrazine or 2-chloropyrimidine in 1-methyl-2-pyrrolidinone to afford the $C(\alpha)$ -pyrazin-2yl (16) and C(α)-pyrimid-2-yl (19) derivatives, respectively (Scheme 1). Subsequent hydrolysis of 16 and 19 with aqueous 1 N HCl furnished 17 and 20, respectively, in quantitative yield. Compounds 17 and 20 were acetylated with acetic anhydride and triethylamine in CH₂Cl₂ at room temperature to give 18 and 21, respectively, and then converted to the desired compounds 12 and 13, respectively, with benzylamine in EtOH using NaCN as a catalyst.¹¹ The four-step conversion of ethyl N-(diphenylmethylene)glycinate (15) to $C(\alpha)$ -pyrazin-2yl (12) and C(α)-pyrimid-2-yl (13) proceeded in 33% and 12% overall yield, respectively. We are unaware of other reports describing the syntheses of these novel $C(\alpha)$ -diazinyl amino acid derivatives. Efforts to improve the overall synthetic yield for 12 by first converting 16 to the benzylamide 22 and then deprotecting the amine to give 23, followed by acetylation, furnished 12 in 12% overall yield. Attempts to use this phase-transfer method to prepare the pyrid-2-yl derivative 11 were unsuccessful. Treatment of 15 with 2-bromopyridine at 150 $^{\circ}$ C (3 d) led to the recovery of the starting glycinate.

[®] Abstract published in Advance ACS Abstracts, November 15, 1994.

Scheme 1. Synthesis of Compounds 12 and 13

Pharmacological Evaluation

The racemic aza aromatic amino acid derivatives 11-13 were tested for anticonvulsant activity using the procedures described by Krall and co-workers,¹² and these results were compared to the findings previously reported for 2-10.^{5,7} All compounds were administered intraperitoneally (ip) to mice. Table 1 lists the ED₅₀ values required to prevent tonic extension of the hind limbs in mice in the MES test by 2-13. Included in this table are the median neurologically impairing dose (TD₅₀) values using either the rotorod¹³ or horizontal screen¹⁴ test. In those cases when no activity was observed below 100 mg/kg in the MES test, the TD₅₀'s were not determined. The protective index (PI = TD₅₀) ED₅₀) for 2-13, where appropriate, is also provided in Table 1.

The ED₅₀ values in the MES test for 11-13 (ED₅₀ = 8.1-14.8 mg/kg) were comparable to those for phenytoin¹⁵ (ED₅₀ = 9.5 mg/kg).¹⁶ Significantly, the MES ED₅₀ values for 11-13 were also similar to those observed for 2 and 3, indicating that placement of an *electron-deficient* aromatic ring at the C(α) site did not lead to a reduction of activity. Previously, we have suggested that improved activity would result with the incorporation of an *electron-rich* aromatic group at the C(α) site (i.e., 2 (ED₅₀ = 10.3 mg/kg), 3 (ED₅₀ = 16.1 mg/kg), 4 (ED₅₀ = 44.8 mg/kg)).^{5,7} We have also presented evidence that placement of a substituted heteroatom two atoms removed from the C(α) site provided enhanced protection against MES-induced

seizures (i.e., 4 (ED₅₀ = 44.8 mg/kg) vs 5 (ED₅₀ = 87.8 mg/kg)).⁵⁻⁷ In agreement with this latter trend, 13 was more potent than either 11 or 12. Our findings that 11–13 all displayed excellent activity in the MES test indicated that of these two structural determinants the latter was the more important factor for anticonvulsant activity. Consistent with this theory was the notable protection observed for the C(α)-heteroatom adducts 24 (ED₅₀ = 6.2 mg/kg) and 25 (ED₅₀ = 31.4 mg/kg) in the MES test.⁶

The pronounced activities of 12 and 13 contrasted with the results reported for 7 and 8.⁷ These two C(α)imidazole adducts exhibited no protection in the MES test at 100 mg/kg, while the corresponding oxazol-2-yl (6) (ED₅₀ = 10.4 mg/kg) and thiazol-2-yl (9) (ED₅₀ = 12.1 mg/kg) derivatives provided significant protection against MES-induced seizures.⁷ We have attributed the difference in activities of 6-9 to the basicities of diazoles 7 and 8.⁷ The activities observed for the two weakly basic diazines 12 and 13¹⁷ were consistent with this notion.

Conclusions

Three $C(\alpha)$ electron-deficient α -acetamido-N-benzylacetamides (11–13) have been prepared and evaluated. Expedient syntheses are reported for the novel $C(\alpha)$ pyrazin-2-yl and $C(\alpha)$ -pyrimid-2-yl derivatives. All three $C(\alpha)$ -aza aromatic functionalized amino acid derivatives displayed activity comparable to phenytoin in mice.

Experimental Section

Chemistry. General Methods. Melting points were determined with a Thomas-Hoover melting point apparatus and are uncorrected. Infrared spectra (IR) were run on Perkin-Elmer 1330 and 283 spectrometers and calibrated against the 1601 cm⁻¹ band of polystyrene. Absorption values are expressed in wavenumbers (cm⁻¹). Proton (¹H NMR) and carbon (¹³C NMR) nuclear magnetic resonance spectra were taken on Nicolet NT-300 and General Electric QE-300 NMR instruments. Chemical shifts (δ) are in parts per million (ppm) relative to Me₄Si, and coupling constants (J values) are in hertz. All mass spectra were taken by Dr. M. Moini at the University of Texas at Austin on a Finnegan MAT TSQ-70 instrument. The N-(diphenylmethylene)glycinate (15) and BBr₃ were purchased from Aldrich Chemical Co. (Milwaukee, WI). Thin-layer chromatography was performed on precoated silica gel GHLF microscope slides $(2.5 \times 10 \text{ cm}; \text{Analtech No}.)$ 21521

Synthesis of a-Acetamido-a-bromo-N-benzylaceta**mide** (14). To a stirred solution of α -acetamido- α -ethoxy-Nbenzylacetamide¹⁸ (2.00 g, 8 mmol) in dry CH₂Cl₂ (200 mL) was introduced a solution of BBr₃ (16 mL, 16 mmol, 1.0 M in $CH_2Cl_2)$ by means of a syringe under a N_2 atmosphere. The N_2 line was removed, and the reaction mixture was sealed. The yellow solution was stirred at room temperature (20 h) and then concentrated in vacuo to give a yellow solid. The solid was successively triturated with distilled Et₂O (3 \times 50 mL) and ethanol-free CHCl₃ (neutral Al) $(2 \times 50 \text{ mL})$ and dried under high vacuum (0.1 Torr, 48 h) to give 1.94 g (85%) of 14: mp 162–163 °C; ¹H NMR (acetone-d₆) δ 2.04 (s, C(O)CH₃), 4.38 (d, J = 15.0 Hz, CHH'), 4.49 (d, J = 15.0 Hz, CHH'), 6.66 (s, CH), 7.23-7.39 (m, 5 PhH), the two NH protons are believed to be beneath the aromatic signals; ${}^{13}C$ NMR (acetone- d_6) 23.03 $(C(O)CH_3),\,43.57\,(CH_2),\,55.90\,(CH),\,127.99\,(C_4{'}),\,128.29\,(2C_2{'}),\,128.29\,(2$ or $2C_3$ '), 129.24 ($2C_2$ ' or $2C_3$ '), 139.33 (C_1 '), 166.05 (C(O)CH₃), 169.93 (C(O)NH) ppm; MS, CI(-) (rel intensity) 204 (100), 163 (100); M_r (+CI) 285.02368 [M + 1]⁺ (calcd for C₁₁H₁₄BrN₂O₂ 285.02386).

Synthesis of α -Acetamido-N-benzyl- α -(pyrid-2-yl)acetamide (11). A cooled (-100 °C) THF solution of 2-pyridyllithium⁸ (60 mL, 8.0 mmol) was added dropwise to a cooled

Table 1. Physical and Pharmacological Data in Mice for $C(\alpha)$ -Heteroaromatic α -Acetamido-N-benzylacetamides^a

ů

R²

0

		Сн₃Ё́NH—с॑—(а Н	Ёмнсн₂-		
no.	$\overline{\mathbf{R}^2}$	mp^b	MES ^c ED ₅₀	$\mathrm{tox}^d \mathrm{TD}_{50}$	PIe
2 f e	$\langle \rangle$	178-179	10.3 (9.1–11.6)	~40	> 3.9
3 ^{f.e}		174-175	16.1 (13.2–19.9)	>30, <100	-
4 f e	H √_s	167-169	44.8 (38.9–51.4)	>30, <100	_
5 ^f e	s	198–199	87.8 (69.9–150)	>100	-
6 ^{<i>h</i>,<i>i</i>}	√ ^N ^N ^N ^N ^N ^N ^N ^N	164-166	10.4 (9.2–11.6)	38.6^{j} (33.8-46.0)	3.7
7 ^{g,h}	K N	228-230	>100	k	-
8 ^{g,h}	K N	188–191 (d)	>100	k	_
9 ^{<i>h</i>,<i>i</i>}	⟨¬N→	166-167	12.1 (9.5 -14.5)	69.1^{j} (61.6–78.6)	5.7
$10^{g,l}$		202-203	32.1 (27.5-40.2)	>40	-
11^{i}		145-147	10.8 (9.1-12.1)	>25, <100 ^j	-
12^i	× ×	185–187	$14.8 \\ (12.5 - 17.2)$	58.2^{j} (46.3–72.5)	3.9
13 ^{<i>i</i>}		174-176	8.1 (5.5 -11.5)	56.7^{j} (48.5–64.9)	7.0
	phenytoin ^m		9.5 (8.1–10.4)	65.5^{i} (52.5-72.1)	6.9
	$phenobarbital^m$		$\begin{array}{c} (0.1 & 10.4) \\ 21.8 \\ (15.0 - 22.5) \end{array}$	69.0^{i} (62.8-72.9)	3.2
	$valproate^m$		(13.0 22.3) 272 (247–338)	$(02.3 \ 12.9)$ 426^{j} (369-450)	1.6

^a The compounds were administered intraperitoneally. ED_{50} and TD_{50} values are in mg/kg. Numbers in parentheses are 95% confidence intervals. A dose-response curve was generated for all compounds that displayed sufficient activity. The dose-effect data for these compounds were obtained at 0.5 h ("time of peak effect") except for compounds **9**, 11, and 13, which were obtained at 0.25 h. ^b Melting points (°C) are uncorrected. ^c MES = maximal electroshock seizure test. ^d tox TD_{50} = neurologic toxicity determined from horizontal screen unless otherwise note. ^e PI = protective index (TD_{50}/ED_{50}). ^f Reference 5. ^d The compounds were tested at the Eli Lilly Co. (Indianapolis, IN). ^h Reference 7. ⁱ The compounds were tested through the auspices of the National Institute of Neurological and Communicative Disorders and Stroke at the National Institutes of Health. ^j TD₅₀ value determined from the rotorod test. ^k Not determined. ⁱ Reference 2. ^m Reference 15.

(-100 °C) THF solution (100 mL) of compound 14 (0.90 g, 3.9 mmol). The reaction mixture was stirred at -100 °C (2 h), and then the reaction was quenched with a saturated aqueous solution of NH₄Cl (40 mL) at -78 °C. The mixture was warmed to 0 °C, during which time a saturated aqueous solution of Na₂CO₃ was added dropwise until the precipitate dissolved. The aqueous layer was extracted with CH_2Cl_2 (3 \times 100 mL). The organic layers were combined, dried (Na₂SO₄), concentrated under vacuum, and then further purified by flash column chromatography on SiO₂ using 5% MeOH/CHCl₃ as the eluant to afford 340 mg (15%) of 11. The product was recrystallized from chloroform/hexanes: mp 146-147 °C; R_f 0.40 (5% CH₃OH/CHCl₃); ¹H NMR (DMSO- d_6) δ 1.94 (s, C(O)- CH_3 , 4.27 (d, J = 6.0 Hz, CH_2), 5.58 (d, J = 8.1 Hz, CH), 7.17– 7.34 (m, 5 PhH and C₅H), 7.45 (d, J = 7.2 Hz, C₃H), 7.76-7.82 (m, C₄H), 8.51–8.54 (m, C₆H and NH), 8.76 (t, J = 6.0Hz, NH); ¹³C NMR (DMSO-d₆) 22.57 (C(O)CH₃), 44.57 (CH₂), $60.22 (CH), 122.65 (C_5), 123.54 (C_3), 127.51 (C_4'), 128.20 (2C_2')$

or $2C_3'$), 129.37 ($2C_2'$ or $2C_3'$), 138.62 (C_1' or C_4), 139.53 (C_1' or C_4), 150.11 (C_6), 157.10 (C_2), 171.29 ($C(O)CH_3$), 172.10 (C(O)NH) ppm. Anal. ($C_{16}H_{17}N_3O_2$) C, H, N.

Synthesis of Ethyl a-(Pyrazin-2-yl)-N-(diphenylmethylene)glycinate (16). A heterogeneous mixture containing 15 (10.00 g, 37.5 mmol), 2-chloropyrazine (8.58 g, 74.9 mmol), tetra-*n*-butylammonium bromide (12.07 g, 37.5 mmol), K₂CO₃ (9.00 g, 112.4 mmol), and 1-methyl-2-pyrrolidinone (70 mL) was heated at 100 °C (3 d). The mixture was diluted with acetone (100 mL) and filtered through Celite. The solvents were removed *in vacuo*, and the residue was purified by flash column chromatography on SiO₂ using 33% ethyl acetate/ hexanes as the eluant to give 10.00 g (77%) of 16 as an oil: R_f 0.38 (33% ethyl acetate/hexanes); IR (neat) 3061, 2984, 1738, 1659, 1448, 1398, 1277, 1022, 702 cm⁻¹; ¹H NMR (CDCl₃) δ 1.17 (t, J = 7.2 Hz, OCH₂CH₃), 4.14 (q, J = 7.2 Hz, OCH₂-CH₃), 5.43 (s, CH), 7.14–7.44 (m, 10 PhH), 8.45 (s, C₅H or C₆H), 8.46 (s, C₅H or C₆H), 8.97 (s, C₃H); ¹³C NMR (CDCl₃) 13.81 (OCH₂CH₃), 61.39 (OCH₂CH₃), 70.06 (CH), 127.44, 127.87, 128.12, 128.48, 128.86, 130.62, 135.46, 138.78 (2C₆H₅), 143.40 (C₅ and C₆), 144.88 (C₃), 154.18 (C₂), 169.32 (C(O)OCH₂-CH₃ or C(N)), 172.14 (C(O)OCH₂CH₃ or C(N)) ppm; MS, CI-(+) (rel intensity) 346 (M⁺ + 1, 100), 272 (75); M_r (+CI) 346.15563 [M⁺ + 1] (calcd for C₂₁H₂₀N₃O₂ 346.15555). Anal. (C₂₁H₁₉N₃O₂:0.4H₂O) C, H, N.

Synthesis of Ethyl a-(Pyrimid-2-yl)-N-(diphenylmethylene)glycinate (19). Using the preceding procedure (100 °C, 2 d) and 15 (10.00 g, 37.5 mmol), 2-chloropyrimidine (3.53 g, 74.9 mmol), tetra-n-butylammonium bromide (12.07 g, 37.5 mmol), K₂CO₃ (9.00 g, 112.4 mmol), and 1-methyl-2-pyrrolidinone (70 mL) gave 3.30 g (26%) of 19 as an oil: $R_f 0.40$ (50%) ethyl acetate/hexanes); IR (KBr) 3053, 2991, 1735, 1652, 1449, 1397, 1279, 1025, 640 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.09 (t, J = 7.2 Hz, OCH_2CH_3), 4.10 (d, J = 7.2 Hz, OCH_2CH_3), 5.28 (s, CH), 7.18-7.57 (m, 10 PhH and C₅H), 8.81 (d, J = 5.4 Hz, C₄H and C₆H); ¹³C NMR (DMSO-d₆) 13.72 (OCH₂CH₃), 61.04 (OCH_2CH_3) , 119.49 (C_5) , 127.51, 127.59, 128.24, 128.55, 128.87, 130.25, 135.67, 138.94 (2 C₆H₅), 157.14 (C₄ and C₆), 166.83 (C2), 169.22 (C(O)OCH2CH3 or C(N)), 172.00 (C(O)OCH2- $CH_3 \text{ or } C(N)$ ppm; MS, CI(+) (rel intensity) 346 (M⁺ + 1, 100), 272 (62); M_r (+CI) 346.15580 [M⁺ + 1] (calcd for C₂₁H₂₀N₃O₂ 346.15555). Anal. $(C_{21}H_{19}N_3O_2 \cdot 0.4H_2O)$ C, H, N.

Synthesis of Ethyl a-(Pyrazin-2-yl)glycinate Hydrochloride (17). Compound 16 (6.00 g, 17.4 mmol) was dissolved in Et_2O (100 mL), and an aqueous 1 N HCl solution (21 mL, 21.0 mmol) was slowly added, and the mixture was stirred at room temperature (20 h). The layers were separated, and the aqueous layer was washed with Et₂O (3 \times 30 mL). The aqueous layer was kept, and the solvent was removed in vacuo. The residue was triturated with acetone to give 3.20 g (95%) of 17: mp 165-167 °C (dec); IR (KBr) 2990, 2908, 2654, 1748, 1524, 1421, 1252, 1157, 1020, 856 cm⁻¹; ¹H NMR (CD₃-OD) δ 1.10 (t, J = 7.2 Hz, OCH₂CH₃), 4.17 (q, J = 7.2 Hz, OCH_2CH_3 , 5.56 (s, CH), 8.69 (s, C₅H or C₆H), 8.71 (s, C₅H or C_6H), 8.86 (s, C_3H); ¹³C NMR (CD₃OD) 14.23 (OCH₂CH₃), 54.66 (CH), 63.50 (OCH₂CH₃), 145.01 (C₃ or C₅ or C₆), 145.51 (C₃ or C_5 or C_6), 146.21 (C_3 or C_5 or C_6), 147.80 (C_2), 166.92 $\begin{array}{l} (C(O)OCH_2CH_3) \ ppm; \ MS, \ CI(+) \ (rel \ intensity) \ 182 \ (M^+ + 1, 100); \ M_r \ (+CI) \ 182.09279 \ [M^+ \ + \ 1] \ (calcd \ for \ C_8H_{12}N_3O_2) \end{array}$ 182.09295). Anal. (C₈H₁₁N₃O₂) C, H, N.

Synthesis of Ethyl α -(Pyrimid-2-yl)glycinate Hydrochloride (20). Using the preceding protocol (room temperature, 3 h) and 19 (3.30 g, 9.6 mmol), Et₂O (50 mL), and aqueous 1 N HCl (10 mL, 10.0 mmol) gave 1.80 g (87%) of 20: mp 156– 158 °C (dec); IR (KBr) 2978, 2864, 2623, 1744, 1570, 1499, 1422, 1373, 1260, 1211, 1055, 854 cm⁻¹; ¹H NMR (CD₃OD) δ 1.25 (t, J = 7.2 Hz, OCH₂CH₃), 4.29 (q, J = 7.2 Hz, OCH₂-CH₃), 5.44 (s, CH), 7.61 (t, J = 4.8 Hz, C₅H), 8.94 (d, J = 4.8Hz, C₄H and C₆H); ¹³C NMR (CD₃OD) 14.26 (OCH₂CH₃), 59.44 (CH), 64.27 (OCH₂CH₃), 123.01 (C₅), 159.46 (C₄ and C₆), 162. 03 (C₂), 167.18 (C(O)OCH₂CH₃) ppm; MS, CI(+) (rel intensity) 182 (M⁺ + 1, 100); M_r (+CI) 182.09275 [M⁺ + 1] (calcd for C₈H₁₂N₃O₂ 182.09295). Anal. (C₈H₁₁N₃O₂) C, H, N.

Synthesis of Ethyl a-Acetamido-a-(pyrazin-2-yl)acetate (18). Compound 17 (3.20 g, 14.7 mmol) was dissolved in CH_2Cl_2 (50 mL), and then Et_3N (2.05 mL, 14.7 mmol) was slowly added and the reaction mixture was stirred at room temperature (30 min). Ac₂O (1.95 g, 19.1 mmol) was added slowly, and the reaction mixture was stirred (20 h). The solution was washed with H_2O (30 mL) and dried (Na₂SO₄), and the solvent was removed to afford 3.10 g (94%) of 18 as an oil: $R_f 0.24$ (EtOAc); IR (neat) 3053, 2987, 1734, 1670, 1525, 1408, 1375, 1157, 988 cm⁻¹; ¹H NMR (CDCl₃) δ 1.21 (t, J = 7.2 Hz, OCH₂CH₃), 2.10 (s, C(O)CH₃), 4.20 (q, J = 7.2 Hz, OCH_2CH_3 , 5.94 (d, J = 7.8 Hz, CH), 7.92 (d, J = 7.8 Hz, NH), 8.54 (s, C_5H or C_6H), 8.58 (s, C_5H or C_6H), 8.84 (s, C_3H); ¹³C NMR (CDCl₃) 13.28 (OCH₂CH₃), 21.95 (C(O)CH₃), 54.89 (CH), $61.42 \; (OCH_2CH_3), \; 143.31 \; (C_3 \; \text{or} \; C_5 \; \text{or} \; C_6), \; 143.61 \; (C_3 \; \text{or} \; C_5 \; \text{or} \; C_6)$ C_6), 144.23 (C_3 or C_5 or C_6), 150.73 (C_2), 168.39 ($C(O)OCH_2$ - CH_3 or $C(O)CH_3$), 169.61 ($C(O)OCH_2CH_3$ or $C(O)CH_3$) ppm; MS, CI(+) (rel intensity) 224 (M⁺ + 1, 100); M_r (+CI) 224.10307 $[M^+ + 1]$ (calcd for $C_{10}H_{14}N_3O_3$ 224.10352). Anal. (C₁₀H₁₃N₃O₃) C, H, N.

Synthesis of Ethyl α-Acetamido-2-(pyrimid-2-yl)acetate (21). Using the preceding procedure and 20 (1.40 g, 6.4 mmol), CH₂Cl₂ (40 mL), Et₃N (0.96 mL, 6.4 mmol), and Ac₂O (0.92 g, 9.0 mmol) furnished 1.20 g (84%) of 21 as an oil: R_f 0.21 (EtOAc); IR (neat) 3048, 2982, 1746, 1661, 1530, 1408, 1275, 1020, 853, 787 cm⁻¹; ¹H NMR (CDCl₃) δ 1.24 (t, J = 7.2 Hz, OCH₂CH₃), 2.12 (s, C(O)CH₃), 4.23 (q, J = 7.2 Hz, OCH₂-CH₃), 5.84 (d, J = 6.9 Hz, CH), 7.22 (d, J = 6.9 Hz, NH), 7.31 (t, J = 4.8 Hz, C₅H), 8.77 (d, J = 4.8 Hz, C₃H and C₆H); ¹³C NMR (CDCl₃) 14.05 (OCH₂CH₃), 23.00 (C(O)CH₃), 59.18 (CH), 62.19 (OCH₂CH₃), 120.42 (C₅), 157.62 (C₄ and C₆), 164.27 (C₂), 169.09 (C(O)CH₃ or C(O)OCH₂CH₃), 169.80 (C(O)CH₃ or C(O)OCH₂CH₃), 210 (88); M_r (+CI) 224.10296 [M⁺ + 1] (calcd for C₁₀H₁₄N₃O₃ 224.10352). Anal. (C₁₀H₁₃N₃O₃·0.35 H₂O) C, H, N

Synthesis of a-Acetamido-N-benzyl-a-(pyrazin-2-yl)acetamide (12). A methanolic (33 mL) solution of 18 (2.60 g, 11.7 mmol), benzylamine (1.50 g, 14.0 mmol), and NaCN¹¹ (0.06 g, 1.2 mmol) was heated at reflux (2 d). The solvent was removed in vacuo, and the residue was purified by flash column chromatography on SiO2 using 10% MeOH/CHCl3 as the eluant to give 1.80 g (54%) of 12. The product was recrystallized from EtOAc: mp 185-187 °C; R_f 0.25 (10% MeOH/CHCl₃); IR (KBr) 3052, 1744, 1662, 1518, 1441, 1408, 1375, 1236, 1148 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.94 (s, C(O)- CH_3 , 4.28 (d, J = 5.7 Hz, CH_2), 5.69 (d, J = 7.8 Hz, CH), 7.22-7.30 (m, 5 PhH), 8.58 (d, J = 2.5 Hz, C_5H or C_6H), 8.62 (d, J= 2.5 Hz, C_5H or C_6H), 8.72-8.75 (m, NH and C_3H), 8.91 (t, J = 5.7 Hz, NH); ¹³C NMR (DMSO- d_6) 22.38 (C(O)CH₃), 42.22 (CH_2) , 56.49 (CH), 126.68 (C₄'), 126.98 (2C₂' or 2C₃'), 128.14 (2C₂' or 2C₃'), 138.90 (C₁'), 143.74 (C₃ and C₅ and C₆), 153.19 (C₂), 168.23 (C(O)CH₃ or C(O)NH), 169.41 (C(O)CH₃ or C(O)-NH) ppm; MS, CI(+) (rel intensity) 285 (M⁺ + 1, 46), 108 (100); $M_{\rm r}$ (+CI) 285.13477 [M⁺ + 1] (calcd for C₁₅H₁₇N₄O₂ 285.13515). Anal. $(C_{15}H_{16}N_4O_2)$ C, H, N

Synthesis of a-Acetamido-N-benzyl-a-(pyrimid-2-yl)acetamide (13). Using the previous protocol and methanol (150 mL), 21 (1.20 g, 5.4 mmol), benzylamine (0.69 g, 6.5 mmol), and NaCN (0.06 g, 1.0 mmol) gave 1.00 g (64%) of 13: mp 174-176 °C; R_f 0.25 (10% MeOH/CHCl₃); IR (KBr) 3059, 2953, 1750, 1663, 1543, 1423, 1381, 1240, 702 cm⁻¹; ¹H NMR $(DMSO-d_6) \delta 1.94$ (s, C(O)CH₃), 4.29 (d, J = 5.7 Hz, CH₂), 5.68 (d, J = 8.4 Hz, CH), 7.19–7.28 (m, 5 PhH), 7.44 (t, J = 4.8Hz, C₅H), 8.52 (d, J = 8.4 Hz, NH), 8.80–8.82 (m, C₄H, C₆H and NH); ¹³C NMR (DMSO-d₆) 22.43 (CH₃), 42.14 (CH₂), 59.45 (CH), 120.31 (C₅), 126.56 (C₄'), 126.90 (2C₂' or 2C₃'), 128.05 $(2C_2' \text{ or } 2C_3')$, 139.07 (C_1') , 157.38 $(C_4 \text{ and } C_6)$, 165.75 (C_2) , 168.17 (C(O)CH₃ or C(O)NH), 169.27 (C(O)CH₃ or C(O)NH); MS, CI(+) 285 (M⁺ + 1); M_r (+CI) 285.13577 [M⁺ + 1] (calcd for C₁₅H₁₇N₄O₂ 285.13515). Anal. (C₁₅H₁₆N₄O₂•0.2 H₂O) C, H, N

Synthesis of a-N-(Diphenylmethylene)-N-benzyl-a-(pyrazin-2-yl)acetamide (22). A methanolic (2 mL) solution of 16 (0.50 g, 1.5 mmol), benzylamine (0.60 g, 5.8 mmol), and NaCN (0.01 g, 0.3 mmol) was heated to reflux (2 d). The solvent was removed in vacuo, and the residue was purified by flash column chromatography on SiO₂ using 66% ethyl acetate/hexanes as the eluant to give 0.30 g (20%) of 22 as an oil: Rf 0.39 (66% ethyl acetate/hexanes); IR (neat) 2978, 2874, 1746, 1570, 1504, 1424, 1373, 1213, 1057, 855 cm⁻¹; ¹H NMR $(\text{CDCl}_3) \delta 4.28 \text{ (d, } J = 5.7 \text{ Hz}, \text{ CH}_2\text{)}, 5.31 \text{ (s, CH)}, 6.92-7.67$ (m, 15 PhH), 7.84 (t, J = 5.7 Hz, NH), 8.40 (d, J = 2.4 Hz, C_5H or C_6H), 8.47 (d, J = 2.4 Hz, C_5H or C_6H), 8.53 (s, C_3H); ¹³C NMR (CDCl₃) 43.37 (CH₂), 69.83 (CH), 127.32, 127.46, 127.57, 128.28, 128.72, 128.89, 128.94, 129.34, 131.16, 135.69, 138.21, 138.65 (3 C_6H_5), 143.63 (C_3 or C_5 or C_6), 144.17 (C_3 or $C_5 \text{ or } C_6$), 144.47 ($C_3 \text{ or } C_5 \text{ or } C_6$), 154.79 (C_2), 169.86 (C(N) or C(O)NH), 172.05 (C(N) or C(O)NH) ppm; MS, CI(+) (rel intensity) 407 (M⁺ + 1, 35), 239 (100); M_r (+CI) 407.18636 [M⁺ 1] (calcd for $C_{26}H_{23}N_4O_1$ 407.18719).

Synthesis of α -Amino-N-benzyl- α -(pyrazin-2-yl)acetamide (23). Compound 22 (0.30 g, 0.9 mmol) was dissolved in Et₂O (10 mL), and then an aqueous 1 N HCl solution (1 mL, 1.0 mmol) was slowly added and the mixture was stirred at room temperature (20 h). The layers were separated, and the

aqueous layer was washed with $Et_2O(3 \times 2 mL)$; the aqueous layer was kept, and the solvent was removed in vacuo. The residue was triturated with acetone to give 0.17 g (80%) of the hydrochloride salt, and then CH₂Cl₂ (10 mL) and Et₃N (0.06 g, 0.6 mmol) were added and the reaction mixture was stirred (1 h). The organic phase was washed with H_2O (5 mL), dried (Na₂SO₄), and concentrated in vacuo to give 0.14 g (100%)of 23 as an oil: Rf 0.45 (10% MeOH/CHCl₃); IR (neat) 3426, 3031, 2926, 1657, 1532, 1452, 1238, 1172, 978, 716 cm⁻¹; ¹H NMR (CD₃OD) & 4.40 (s, CH₂), 5.33 (s, CH), 7.21-7.44 (m, 5 PhH), 8.70 (s, C₅H and C₆H), 8.88 (s, C₃H); ¹³C NMR (CD₃-OD) 44.25 (CH₂), 54.14 (CH), 128.13 (C₄'), 128.32 ($2C_2$ ' or $2C_3'$), 129.25, $(2C_2' \text{ or } 2C_3')$, 138.80 (C_1') , 144.99 $(C_3 \text{ or } C_5 \text{ or }$ C₆), 145.62 (C₃ or C₅ or C₇), 146.36 (C₃ or C₅ or C₆), 149.10 (C_2) , 166.25 (C(O)NH) ppm; MS, CI(+) 243 (M⁺ + 1); M_r (+CI) 243.12455 $[M^+ + 1]$ (calcd for $C_{13}H_{15}N_4O_1$ 243.12459).

Synthesis of a-Acetamido-N-benzyl-a-(pyrazin-2-yl)acetamide (12). To a CH₂Cl₂ solution (1 mL) of 23 (0.03 g, 0.1 mmol) was added Ac_2O (0.02 g, 0.17 mmol), and the reaction mixture was stirred at room temperature (20 h). The solvent was removed in vacuo to give 0.03 g (99%) of the desired compound: mp 185–187 °C (mixed melting point with authentic material, 185-187 °C); Rf 0.25 (10% MeOH/CHCl₃); ¹H NMR (DMSO- d_6) δ 1.93 (s, C(O)CH₃), 4.28 (d, J = 5.7 Hz, CH_2), 5.71 (d, J = 7.8 Hz, CH), 7.19–7.31 (m, 5 PhH), 8.59 (d, J = 2.4 Hz, C₅H or C₆H), 8.62 (d, J = 2.4 Hz, C₅H or C₆H), 8.70-8.73 (m, NH and C₃H), 8.91 (t, J = 5.7 Hz, NH).

Pharmacology. The compounds were tested under the auspices of the National Institutes of Health for anticonvulsant activity (phase I evaluation) using male Carworth Farms No. 1 mice. All compounds were given in three dose levels (30, 100, and 300 mg/kg). Maximal electroshock seizures (MES) were then elicited with a 60-cycle alternating current of 50mA intensity (5-7 times that which was necessary to elicit minimal electroshock seizures) delivered for 0.2 s via corneal electrodes. A drop of 0.9% saline was instilled in the eye prior to application of the electrodes so as to prevent the death of the animal. Protection in this test was defined as the abolition of the hind limb tonic extension component of the seizure. The effects of the compounds on forced and spontaneous motor activity were evaluated in mice by the rotorod test (tox). The animal was placed on an 1-in.-diameter knurled plastic rod rotating at 6 rpm after the administration of the drug candidate. Normal mice can remain on a rod rotating at this speed indefinitely. Neurologic toxicity was defined as the failure of the animal to remain on the rod for 1 min. The MES test was conducted with a single animal, while four mice were utilized for the toxicology test. The dose-effect behavior (phase II quantitative evaluation) was evaluated by using the previously described procedures by the administration of varying dose levels of each compound, treating normally eight mice at each dose.

Acknowledgment. We thank James P. Stables and the Anticonvulsant Screening Project (ASP) of the National Institute of Neurological and Communication Disorders and Stroke at the National Institutes of Health for kindly performing the pharmacological studies. Funds for this project were provided in part by the State of Texas Advanced Technology Program.

Supplementary Material Available: ¹H and ¹³C NMR spectra of compounds 14, 22, and 23 (6 pages). Ordering information is given on any current masthead page.

References

- (1) Cortes, S.; Liao, Z.-K.; Watson, D.; Kohn, H. Effect of Structural Modification of the Hydantoin Ring on Anticonvulsant Activity. J. Med. Chem. 1985, 28, 601–606.
- Conley, J. D.; Kohn, H. Functionalized DL-Amino Acid Derivatives. Potent Agents for the Treatment of Epilepsy. J. Med. Chem. 1987, 30, 567-574.
- Kohn, H.; Conley, J. D. New Antiepileptic Agents. Chem. Br. (3)1988, 24, 231-233.
- Kohn, H.; Conley, J. D.; Leander, J. D. Marked Stereospecificity in a New Class of Anticonvulsants. Brain Res. 1988, 457, 371-375.
- Kohn, H.; Sawhney, K. N.; LeGall, P.; Conley, J. D.; Robertson, (5)D. W.; Leander, J. D. Preparation and Anticonvulsant Activity of a Series of Functionalized a-Aromatic and a-Heteroaromatic
- Amino Acids. J. Med. Chem. 1990, 33, 919-926. Kohn, H.; Sawhney, K. N.; Le Gall, P.; Robertson, D. W.; (6)Leander, J. D. Preparation and Anticonvulsant Activity of a Series of Functionalized a-Heteroatom-Substituted Amino Acids. J. Med. Chem. 1991, 34, 2444–2452. Kohn, H.; Sawhney, K. N.; Bardel, P.; Robertson, D. W.; Leander,
- (7)J. D. Synthesis and Anticonvulsant Activities of α-Acetamido-N-benzylacetamide Derivatives. J. Med. Chem. **1993**, 36, 3350-3360.
- (8)Parham, W. E.; Piccirilli, R. M. Selective Halogen-Lithium Exchange in 2,5-Dibromobenzenes and 2,5-Dibromopyridine. J. Org. Chem. 1977, 42, 257-260.
- Lipschutz, B. H.; Wilhem, R. S.; Kozlowski, J. A. The Chemistry (9)of Higher Order Organocuprates. Tetrahedron 1984, 40, 5005-5038
- (10) (a) O'Donnell, M. J.; Boniece, J. M.; Earp, S. E. The Synthesis of Amino Acids by Phase-Transfer Reactions. Tetrahedron Lett. 1978, 30, 2641-2644. (b) Ghosez, L.; Antoine, J.-P.; Deffense, E.; Navarro, M.; Libert, V.; O'Donnell, M. J.; Bruder, W. A. Synthesis of Amino Acids. Alkylation of Aldimine and Ketimine Derivatives of Glycine Ethyl Ester Under Various Phase-Transfer Conditions. *Tetrahedron Lett.* **1982**, *23*, 4255–4258. (c) O'Donnell, M. J.; LeClef, B.; Rusterholz, D. B.; Ghosez, L.; Antoine, J.-P.; Navarro, M. α-Methyl Amino Acids by Catalytic Phase-Transfer Alkylations. Tetrahedron Lett. 1982, 23, 4259-4262. (d) O'Donnell, M. J.; Polt, R. L. A Mild and Efficient Route to Schiff Base Derivatives of Amino Acids. J. Org. Chem. **1982**, 47, 2663–2666. (e) O'Donnell, M. J.; Wojciechowski, K.; Ghosez, L.; Navarro, M.; Sainte, F.; Antoine, J.-P. Alkylation of Protected a-Amino Acid Derivatives in the Presence of Potassium Carbon-
- ate. Synthesis 1984, 313-315.
 (11) Högberg, T.; Ström, P.; Ebner, M.; Rämsby, S. Cyanide as an Efficient Catalyst in the Aminolysis of Esters. J. Org. Chem. 1987, 52, 2033-2036.
 (12) Karll, D. S. Stranger, S. Stranger, S. Stranger, S. Stranger, S. Stranger, S. Stranger, S. S. Stranger, S.
- (12) Krall, R. L.; Penry, J. K.; White, B. G.; Kupferberg, H. J.; Swinyard, E. A. Antiepileptic Drug Development. II. Anticonvulsant Drug Screening. Epilepia **1978**, *19*, 409–428. Dunham, N. W.; Miya, T.-S. A Note on a Simple Apparatus for
- (13)Detecting Neurological Deficit in Rats and Mice. J. Am. Pharm. Assoc. 1957, 46, 208-209.
- Assoc. 1957, 46, 208-209.
 (14) Coughenour, L. L.; McLean, R. R.; Parker, R. R. A New Device for the Rapid Measurement of Impaired Motor Function in Mice. *Pharmacol. Biochem. Behav.* 1977, 6, 351-353.
 (15) Porter, R. J.; Cereghino, J. J.; Gladding, G. D.; Hessie, B. J.; Kupferberg, H. J.; Scoville, B.; White, B. G. Antiepileptic Drug Development Program. Cleveland Clin. Q. 1984, 51, 293-305.
- (16) Compounds 11-13 were not active in the subcutaneous Metrazol test at 300 mg/kg.
- Perrin, D. D. Dissociation Constants of Organic Bases in Aqueous (17)Solution; Butterworths: London, 1972.
- (18) LeGall, P.; Sawhney, K. N.; Conley, J. D.; Kohn, H. Synthesis of Functionalized Non-natural Amino Acid Derivatives via Amidoalkylation Transformations. Int. J. Pept. Protein Res. 1988, 32, 279-291.