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Mammalian nonpancreatic secretory phospholipase A2 
(PLA2) splits the 2-acyl bond in 1,2-diacylphosphatides.1 

This enzyme has been found in high concentrations in the 
synovial fluid of patients with rheumatoid arthritis,2 and 
it has been suggested that inhibitors of this enzyme may 
have therapeutic value. The three-dimensional structure 
of human synovial fluid PLA2 (HSF-PLA2) is known both 
in its native form3 and in a complex with the transition-
state analogue (TSA) L-l-O-octyl-2-heptylphosphonyl-sra-
glycero-3-phosphoethanolamine,41. The present work is 
a part of our program to develop PLA2 inhibitors and 
describes the successful rational modifications introduced 
into 1 aimed at enhancing its affinity toward HSF-PLA2, 
based on the combined use of biochemical information, 
molecular graphics analysis,5 molecular orbital6 and mo
lecular mechanics calculations,7 and the GRID8 and LUDP 
programs. 

Hydrocarbon chain length is a critical factor for the 
activity of potential PLA2 inhibitors. Studies with phos
pholipid analogues demonstrated that 10 carbons are 
required in the sn-2 acyl chain for optimum binding to 
cobra venom PLA2,10 whereas the optimal length for the 
sn-1 alkyl chain is four carbons in the case of porcine 
pancreatic PLA2.11 These findings can be rationalized in 
terms of the observed number of contacts between the 
phospholipid analogs and the enzyme in known PLA2-
inhibitor complexes.12 Analysis of the HSF-PLA2 struc
ture with the GRID program suggests similar structure-
activity relationships13 (Figure 1). 

The capacity of TSAs to bind with high affinity has 
been shown by Gelb et al. who introduced a phosphonate 
group into compound l . u In contrast, the substitution of 
acyl by sulfonyl, which is extensively used as a TSA of an 
ester group undergoing hydrolysis, has been reported by 
de Haas et al.15 not to improve inhibitory properties. 
Despite this discouraging data, we decided to introduce 
the sulfonamide group on the basis of the following 
rationale: Yu and Dennis16* showed that the pJfa of the 
catalytically active His-48 is 6.1. Therefore, this residue 
is predominantly unprotonated under physiological con
ditions. Thus, in order for a TSA to function effectively 
at physiological pH, the bioisostere of the ester should be 
chosen so that, in addition to possessing tetrahedral 
features to resemble the transition state, it has a proton 
available to form a hydrogen bond to the N5 atom of His-
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48, as this hydrogen bond has been shown to provide 1.5 
kcal/mol of binding energy.168 Monosubstituted sulfona
mides have a range of pKa values that fulfills this 
requirement at physiological pH.16b Moreover, the sul
fonamide group may release some strain energy in the 
molecule. The C-O-P-C dihedral angle of the meth-
ylphosphonate moiety of 1 in the complex is 121.2°, giving 
rise to a strain energy of 0.6 to 0.9 kcal/mol17 (Figure 2). 
In contrast, the C-N-S-C dihedral angle of the N-me-
thylmethanesulfonamide group has a global energy min
imum at 120.0° 18 (Figure 2). These data indicate that 
sulfonamide-based inhibitors could be at least as effective 
as the phosphonate-based ones. Accordingly, 2-((decyl-
sulf onyl)amino)- 1-octylphosphoglycol 2,19 which fulfills the 
chain length features described above and has a sulfona
mide group, is an effective inhibitor of HSF-PLA2 activity 
with an Xi(50) = 0.02620 in a mixed vesicle model. In this 
model, compound 1 inhibited the enzyme with an Xj(50) 
value of 0.025. Therefore, sulfonamide-based TSAs are 
effective PLA2 inhibitors. A molecular model accounting 
for the interaction of compound 2 with HSF-PLA2 was 
built.21 In this model, carbons 8-10 of the sn-2 acyl chain 
fit in a hydrophobic pocket within the hydrophobic 
channel22 surrounded by residues Ala-18, Ala-19, Leu-2, 
Val-3, Phe-5, and His-6. There are no large conformational 
differences between this complex and the X-ray structure 
of HSF-PLA2+1 (rms (Ca) = 0.53 A; rms (all non-hydrogen 
atoms) = 3.1 A). 

The result obtained with 2 encouraged us to design new 
modifications. Thus, the modeled complex of HSF-PLA2 
with 2 was used to search with the GRID program23 for 
additional ligand binding sites in the enzyme that could 
be exploited by further modification of 2. Favorable 
aromatic interactions were found within what we have 
termed the "hydrophobic cage", a hydrophobic pocket 
delimited by residues Val-46, Thr-130, Pro-131, Gly-33 
and the disulfide bridge linking Cys-50 and Cys-133 (Figure 

0022-2623/94/1837-0337$04.50/0 © 1994 American Chemical Society 

Departamento.de


338 Journal of Medicinal Chemistry, 1994, Vol. 37, No. 3 Communications to the Editor 

Figure 1. Crystal structure of HSF-PLA2 complexed with the TSA (1). The GRID energy contours for an aromatic carbon probe 
plotted at -2.25 kcal moH delineate sites of favorable interaction with the protein and highlight possible sites of substitution on 2 
to improve its binding affinity. These surround the inhibitor but also show a region where the inhibitor could be extended. The van 
der Waals surface shows the shape of the "additional cage" surrounding these GRID contours. The two calcium ions are also shown 
with van der Waals surfaces. 
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Figure 2. Energy dependence on rotation around dihedrals, (a) C-O-P-C in methyl methanephosphonate. (b) C-N-S-C in 
A/-methylmethanesulfonamide. 

1). This pocket, created by a seven-residue C-terminal 
extension of the enzyme, is one of the features distin
guishing group I and group II PLA2S24 and is, therefore, 
a target for incorporating pharmacological selectivity into 
the inhibitors. In addition, the OH group of 2 is located 
close to this hydrophobic cage (Figure 1), providing a 
convenient anchor for further substitution. The LUDI 
program was then employed25 in order to identify possible 
substituents. It suggested a number of possible fragments, 
some of which formed hydrogen bonds with the enzyme. 

A representative selection of these is given in Table 1. 
Compound 32 6 (LM-1228), the O-benzyl ether derivative 
of 2, was the most readily available candidate compound 
fulfilling both the GRID and the LUDI suggestions. The 
complex was modeled27 (Figure 3), and the ability of 3 to 
inhibit HSF-PLA2 activity was tested,20 yielding Xj(50) 
values of 0.0036. The porcine pancreas enzyme is a type 
I PLA224 which lacks the heptapeptide C-terminal exten
sion forming the hydrophobic cage (GRID contour map 
not shown). Therefore, in the absence of this additional 
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Figure 3. The energy-minimized structure of the HSF-PLA2 + 3 complex. HSF-PLA2 is shown in blue, and inhibitor 3 is shown 
colored by atom type. Calcium ions are shown in orange with van der Waals surfaces. 

Table 1. Substituent Fragments Suggested by the LUDI 
Program To Fit in the "Hydrophobic Cage" 

formula 

'"X>" 
R = /n-CH2OH 
R = p-C(NH)NH2 

R = H 
R = p-OH 
R = H 
R = p-OH 
R = p-OCH3 

A)„ 

R = CH2OH 
R = CH(CH3>2 

R = CH3 

n 

0 
0 

1 
1 
2 
2 
2 

2 
2 
4 

H-bonds with 
HSF-PLA2 

Gly-33 (-CO-) 
His-28 (-CO-) 
Gly-33 (-CO-) 
Thr-130 (-CO-) 
Pro-131 (-CO-) 

Gly-33 (-CO-) 

Pro-131 (-CO-) 
Lys-53 (-NH3) 

Gly-33 (-CO-) 

interaction, the difference in the inhibitory behavior of 
compounds 2 and 3 observed for HSF-PLA2 was not 
expected for porcine pancreatic PLA2. Experiments 
showed that both compounds have comparable inhibitory 
effects against porcine pancreatic PLA2. PLA2 activities 
were measured as described earlier20 at a constant mole 
fraction of inhibitor of 0.05. Compounds 2 and 3 give rise 
respectively to 66% and 96% inhibition with the HSF 
enzyme and 43% and 38% inhibition with the porcine 
pancreatic enzyme. Although not conclusive, these results 
suggest that the increase in potency is due to better 
inhibitor-enzyme complementarity. Compound 3 (LM-
1228) is one of the most potent HSF-PLA2 inhibitors 
described so far, and represents a new and encouraging 
lead compound. 

The present work demonstrates that the design of tight-
binding inhibitors of HSF-PLA2 is possible and provides 
an example of the usefulness of computer-assisted methods 
in improving our understanding of the interactions of 
inhibitors with their receptors. Our results also indicate 
that the combined use of programs GRID and LUDI can 
be a powerful general strategy in drug design. GRID is 
a useful method for discovering additional binding sites 
that can be exploited in order to modify a known inhibitor, 
but it is not always simple to translate the GRID binding 
energies into chemical structures. On the other hand, 
LUDI may not be easy to use if the potential ligand binding 
sites are unknown. Together, these programs enable 
molecular fragments to be positioned in additional binding 
sites, providing valuable ideas on how to modify an existing 
ligand. Forthcoming publications will provide details of 
a series of compounds related to those described here. 
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