
J. Med. Chem. 1994, 37, 973-980 973 

A Nonlinear Map of Substituent Constants for Selecting Test Series and Deriving 
Structure-Activity Relationships. 1. Aromatic Series 

Daniel Domine,*** James Devillers,*-* and Maurice Chastrette* 

CTIS, 21 rue de la Banniere, 69003 Lyon, and Laboratoire de Chimie Organique Physique, U.R.A. CNRS 463, 
Universite Lyon-I, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne CEDEX, France 

Received August 23,1993* 

A nonlinear mapping (NLM) analysis was performed on a set of 166 aromatic substituents described 
by six variables encoding hydrophobic (ir), steric (MR), and electronic effects (HBA, HBD, F, and 
R). NLM allowed to easily summarize the main information contained in the original data table. 
By means of collections of graphs, it was possible to relate the structure of the substituents to their 
ir, MR, HBA, HBD, F, and R values. The proposed approach provides a useful and easy tool for 
the selection of test series and for deriving structure-activity relationships. 

Introduction 

For a chemical to engender a biological response when 
administered to a living organism, a number of processes 
must occur. Briefly, these deal with dissolution in body 
fluids, transport to a site of action, binding to a receptor, 
and initiation of a biological action. It is well known that 
these processes are governed by the physicochemical 
properties of the molecules.1-3 In quantitative structure-
activity relationship (QSAR) studies, to relate the phys
icochemical properties of aromatics and aliphatics to a 
biological activity, many parameters describing the hy
drophobic, steric, and electronic effects of their substit
uents have been derived.2-6 Among them, the most widely 
used are the r contribution of Hansen which depicts the 
lipophilic character of the substituents,7 the Hammett a 
constants which are used to account for electronic pro
cesses,5-8 the Swain and Lupton F and R parameters derived 
from the a constants which separate the inductive and 
resonance effects of the substituents,9 and the molar 
refractivity (MR) used to describe the steric bulk of 
substituents.10 For a comprehensive account of the 
parameters used in QSAR studies, one should refer to 
valuable previously published reviews.2-11 The above 
substituent constants have been widely used, and others 
are still being developed. As a result, numerous data 
compilations of substituent constants have been 
elaborated.1-3-12-14 

In drug design, it is essential to select test series with 
high information content in order to reduce the costs in 
research by maximizing the information content obtained 
from each molecular probe in a set of congeners.15 A lot 
of works have been directed toward this aim, and many 
authors have proposed different methods. Historically, 
the first selection strategy was presented by Craig16 who 
proposed use of 2-D plots with uncorrected physico-
chemical properties (e.g., T VS <r) in order to select 
substituents covering a broad spectrum of physicochemical 
properties. In 1972, Topliss17 proposed the so-called 
"decision tree" which consists in a stepwise synthesis of 
compounds taking into account the physicochemical 
properties supposed to influence the activity and the ease 
for synthesis. In 1973, Hansen et al.18 introduced mul
tivariate data analysis for solving this problem and used 
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hierarchical cluster analysis (HCA) to derive ideal test 
series. In 1974, Darvas19 published a procedure based on 
the simplex method, which has been successfully applied 
by Guilliom et al.20 In 1975, Wootton et al.21 introduced 
the multidimensional mapping (MM). The name of the 
method may be misleading since no map is produced. It 
consists in a "blind" walk in the n-dimensional space 
defined by the n physicochemical parameters chosen. This 
method was successfully applied to the selection of test 
series22 and improved in 1983.23 Goodford et al.22 used 
nonlinear mapping (NLM) to visualize their results, and 
it appeared that the selected substituents were widely 
spread on the map. Streich et al.24 combined the method 
of Wootton et al.21 with principal components analysis 
(PCA) to obtain the so-called PCMM method. With 
PCMM, like with MM, synthetic chemists may feel 
unhappy with the thought that something even better may 
be hidden in this black box and that not enough room is 
left for the chemical intuition. Indeed, these methods do 
not offer a global vision of all the possible substituents 
and directly propose a series of substituents. 

To solve this problem, Dove et al.25 introduced the notion 
of mapping by the use of spectral mapping and stressed 
its advantages. With this method, a good test series with 
high data variance and low collinearity was always obtained 
if substituents distant from each other were selected in 
such a way that the whole space is systematically covered. 
This could simply be done by inspection of the map by 
eye. Since it was possible to obtain different test series 
on the same map, synthetic feasibility could always 
adequately be taken into account. However, they also 
underlined that in some cases the information content of 
the map could be too low. Their example only carried 
65 % of the information. In the same way, Alunni et al.26 

used PCA to derive clusters of substituents. They 
underlined four classes that were alkyls, donors, acceptors, 
and halogens. Although this method is interesting since 
it makes use of a graphical representation of the results, 
it suffers from the same problem as the method of Dove 
etal.26 Furthermore, the first factorial plane (i.e., defined 
by the first two principal components) and the four classes 
may not be precise enough in terms of chemical information 
for the selection of representative test series. A similar 
approach was also used by van de Waterbeemd et al.21 

who derived five chemical classes from 59 substituents. It 
must be noted that the above list of techniques only reflects 
the main axes of research in the field. Due to the 
importance of the problem, other attempts have been made 
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to derive new approaches or modify some existing 
techniques.15,28-32 For a comprehensive review, one should 
refer to a paper of Pleiss and Unger33 dedicated to this 
topic and containing 245 bibliographical references. 
However, it must be pointed out that, from a practical 
point of view, none of these approaches are completely 
satisfactory. 

In order to solve this problem, we propose the use of an 
original graphical approach based on the nonlinear map
ping method. Briefly, NLM was designed by Sammon34 

and introduced in chemistry by Kowalski and Bender.35-36 

It is aimed at representing the points of an n-dimensional 
space in a lower d-dimensionalspace, preserving interpoint 
distances. As recently underlined,37,38 NLM is well suited 
for structure-property and structure-activity relationship 
(SPR and SAR) studies since it allows to summarize the 
information contained in large data tables. Furthermore, 
the maps derived can be interpreted in terms of SAR by 
plotting various relevant qualitative and quantitative 
information on them.38 Under these conditions, this study 
is aimed at providing a method allowing the selection of 
test series in order to easily derive SAR from a nonlinear 
map of substituent constants. 

Nonlinear Mapping 

On the basis of a concept similar to the classical 
multidimensional scaling ( M D S ) , 3 9 J 4 1 NLM was designed 
by Sammon34 to represent a set of points defined in an 
n-dimensional space by a human-perceivable configuration 
of the data in a lower d-dimensional space (d = 2 or 3). 
NLM tries to preserve distances between points in the 
display space as similar as possible to the actual distances 
in the original space. The procedure for performing this 
transformation can be summarized as follows, (i) Inter-
point distances in the original space are computed, (ii) 
An initial configuration (generally random) of the points 
in the display space is chosen, (iii) A mapping error (£) 
is calculated from the distances in the two spaces, (iv) 
Coordinates of points in the display space are iteratively 
modified by means of a nonlinear procedure so as to 
minimize the mapping error. The algorithm terminates 
when no significant decrease in the mapping error is 
obtained over the course of several iterations.38,42,43 

In the Sammon's algorithm used in this study, the 
minimization process is the steepest descent procedure, 
which is performed as follows. Suppose the interpoint 
distances d;;(m) between points i and j at the mth 
configuration described by the Euclidean distance as shown 
below: 

d 

dijim) = [Y{xik(m) - xjk(m))2]1/2 

and the corresponding error E(m) as defined by Sammon,34 

1 *[d*-d i ; . (m)] 2 
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then the steepest descent procedure proceeds as shown 
below. The coordinates in the (m + l)th configuration 
are given by: 

xoa(m + 1) = xDJm) - (MF-AD0(m)) 

where 

dE(m) \d?E(m)\ 
p"( ^dx^miW^R 

and MF is a magic factor empirically determined as 0.3 
or O.4.34 

This process is carried out iteratively until a threshold 
fixed by the user is attained (i.e., minimal error or minimal 
difference between the error at step m - 1 and step m in 
the iteration process). Precautions must be taken to 
prevent any two points in the d-dimensional space from 
becoming identical to avoid problems in the calculation 
of the partial derivatives. Points in the n-dimensional 
space must also be different. 

Additional information on the practical aspects of the 
NLM method and a review of its uses in QSAR studies can 
be found in a previous paper.38 

Experimental Section 
A nonlinear mapping analysis38 was performed on a set of 166 

aromatic substituents14 described by six substituent constants 
encoding their hydrophobic, steric, and electronic effects. These 
parameters were respectively the ir constant, the molar refractivity 
(MR), the H-bonding acceptor (HBA) and donor (HBD) abilities, 
and the inductive and resonance parameters of Swain and Lupton9 

F and R. Data used in this study can be found in Hansch and 
Leo.u All inductive and resonance field constants F and R were 
recalculated from the <rm and <rp constants of Hammett9 with 
equations of Swain and Lupton,9 and corrections were made when 
values obtained were different from those reported in the 
compilation of substituent constants.14 It is obvious that 
quantitative values for the H-bonding abilities44,46 would have 
been better, but available data were still too scarce to handle all 
the substituents of our data set. For the NLM analysis, n, MR, 
F, and R were centered (i.e., zero mean) and reduced (i.e., unit 
variance). For HBA and HBD, the l's were replaced by a value 
yielding a unit variance. Note that, due to the fact that 
calculations were performed on the distance matrix, the results 
were not affected by the centering. It was only performed to 
improve the visualization of the data when they were reported 
on the map. The results obtained were interpreted in terms of 
SPR and SAR by plotting various qualitative and quantitative 
information on the nonlinear map derived as recently des
cribed.38'46"49 The map was interpreted taking care of its statistical 
significance, viz., inspecting the total mapping error and the 
goodness of fit of each point.38 The NLM analysis was performed 
with the STATQSAR package60 and the graphical analysis with 
GraphMu.61 

Results and Discussion 

Figure 1.1 shows the nonlinear map of the 166 aromatic 
substituents described by six substituent constants. It is 
noteworthy that is was impossible with PCA on stan
dardized data (i.e., unit variance and zero mean) to 
summarize on a sole plane the information contained in 
the original data matrix. Indeed, the first two factors only 
explained 58 % of the total variance. At the opposite, with 
a low mapping error of 6.4e - 2 obtained with NLM, we 
can advance that the main information contained in the 
original data matrix is summarized on the nonlinear 
m a p 34,38 p o r interpreting the nonlinear map, it is nec
essary to inspect each individual on the map and compare 
its location to parent substituents and its neighbors. 
Therefore, it is necessary to have an estimation of the 
individual goodness of fit for all substituents. Indeed, 
even if the mapping error is low, the error carried by some 
points can still be important. For this purpose, the 
individual mapping error38 of each point has been plotted 
on Figure 1.1 by means of squares proportional to the 
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Figure 1. (1.1) Nonlinear map of the 166 aromatic substituents described by six substituent constants (ir, HBA, HBD, MR, F, and 
R). (1.2) Plot of the individual mapping errors on each substituent of the nonlinear map. Squares are proportional in size to the 
magnitude of the errors. 1, Br; 2, CI; 3, F; 4, S02F; 5, SF6; 6,1; 7,102; 8, NO; 9, N02; 10, NNN; 11, H; 12, OH; 13, SH; 14, B(OH)2; 
15, NH2; 16, NHOH; 17, S02NH2; 18, NHNH2; 19, 5-Cl-l-tetrazolyl; 20, N=CC12; 21, CF8; 22, OCF3; 23, S02CF3; 24, SCF8; 25, CN; 
26, NCS; 27, SCN; 28, C02-; 29,1-tetrazolyl; 30, NHCN; 31, CHO; 32, C02H; 33, CH2Br; 34, CHzCl; 35, CH2I; 36, NHCHO; 37, CONH2; 
38, CH=NOH; 39, CH3; 40, NHCONH2; 41, NHC=S(NH2); 42, OCH3; 43, CH8OH; 44, SOCH3; 45, S02CH3; 46, OS02CH3; 47, SCH8; 
48, SeCH3; 49, NHCH3; 50, NHS02CH3; 51, CF2CF3; 52, C=CH; 53, NHCOCF3; 54, CH2CN;.55, CH=CHN02 (trans); 56, CH=CH2; 
57, NHC=0(CH2C1); 58, COCH3; 59, SCOCH3; 60, OCOCH3; 61, C02CH3; 62, NHCOCH3; 63, NHCO2CH3; 64, C=0(NHCH3); 65, 
CH=NOCH3; 66, NHC=S(CH3); 67, CH=NNHC=S(NH2); 68, CH2CH3; 69, CH=NNHCONHNH2; 70, CH2OCH3; 71, 0CH2CH3; 
72, SOC2H6; 73, SC2H6; 74, SeC2H6; 75, NHC2H6; 76, S02C2H6; 77, N(CH3)2; 78, NHS02C2H6; 79, P(CH3)2; 80, PO(OCH3)s; 81, C(OH)-
(CF3)2; 82, CH=€HCN; 83, cyclopropyl; 84, COC2H6; 85, SCOC2H6; 86, CO2C2H5; 87, OCOC2H6; 88, C^CHjCOzH; 89, NHCO2C2H5; 
90, CONHC2H6; 91, NHCOC2Hs; 92, CH=NOC2H6; 93, NHC=S(C2HB); 94, CH(CH3)2; 95, C3H7; 96, NHC=S(NHC2H6); 97, OCH(CH3)2; 
98, OC3H7; 99, CH2OC2H6; 100, SOC3H7; 101, S02C3H7; 102, SC3H7; 103, SeC3H7; 104, NHC3H7; 105, NHS02CsH7; 106, N(CH3)8

+; 107, 
Si(CH3)3; 108, CH=C(CN)2; 109,1-pyrryl; 110, 2-thienyl; 111, 3-thienyl; 112, CH=CHCOCH3; 113, CH=CHC02CHa; 114, COC3H7; 
115, SCOC3H7; 116, OCOC3H7; 117, C02C3H7; 118, (CH2)3C02H; 119, CONHC3H7; 120, NHCOC3H7; 121, NHC=0CH(CH3)2; 122, 
NHCO2C3H7; 123, CH=NOC3H7; 124, NHC=S(C3H7); 125, C4H9; 126, C(CH3)3; 127, OC4H9; 128, CHjOCaH,; 129, N(C2H6)2; 130, 
NHC4H9; 131, P(C2H6)2; 132, PO(OC2H6)2; 133, CH2Si(CHa)3; 134, CH=CHCOC2H6; 135, CH=CHC02C2H5; 136; CH=NOC4H9; 137, 
C5Hu; 138, CH2OC4H9; 139, CsHs; 140, N=NC6H6; 141, OC6H6; 142, S02C6H6; 143, OS02C6H6; 144, NHCgHs; 145, NHS02CeH6; 146, 
2,5-di-Me-l-pyrryl; 147, CH=CHC0C3H7; 148, CH=CHC02C3H7; 149, cyclohexyl; 150, 2-benzthiazolyl; 151, COCeHe; 152, C02C6H6; 
153, OCOC6H6; 154, N=CHC6H6; 155, CH=NC6H6; 156, NHCOCeHs; 157, CHjCgHs; 158, CH2OC8H6; 159, C^CC6H6; 160, 
CH=NNHCOC6H6; 161, CH2Si(C2H6)3; 162, CH=CHC6H6 (trans); 163, CH=CHCOC6H5; 164, ferrocenyl; 165, N(C6H6)2; 166, P=0-
(C$H5)2. 

magnitude of the individual errors (Figure 1.2). Figure 
1.2 shows that variations in individual errors are low. 
Therefore, as the total mapping error is also low (i.e., 6.4e 
- 2), it is not necessary to pay particular attention to any 
point when interpreting the map. A rapid glimpse of 
Figure 1.1 allows to stress the atypical locations of 

substituents n° 7 (I02), 28 (CCV), 106 (N(CH3)S
+), 165 

(N(C6H5)2), and 166 (P=0(C6H6)2). The atypical location 
of substituents n° 7,28, and 106 may be attributed to the 
fact that these groups have very low v values.14 Further
more, substituents n° 28 and 106 are the sole groups 
bearing a charge, and substituent n" 7 is the most bulky 
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Figure 2. Plot of the scaled values of the six parameters on each 
substituent of the nonlinear map. Squares (positive values) and 
circles (negative values) are proportional in size to the magnitude 
of the parameters. In Figure 2.2,.3, the dots indicate the 
substituents which do not have the ability to accept and donate 
H-bonds, respectively. 

group of the set. This may also explain the atypical 
locations of substituents n" 165 and 166 which also have 
very high values of MR compared to those of all the other 
substituents. 

I. Interpretation of the Nonlinear Map in Terms 
of Structure-Property Relationships. A. Represen
tation of the Data on the Nonlinear Map. Figure 1.1 
could be directly interpreted in terms of SPR, but this 
would require to dart back and forth between the original 
data and the structural features of the substituents. To 
facilitate this work, the values used for the NLM analysis 
(i.e., centered and reduced for it, MR, F and R; reduced 
for HBA and HBD) have been plotted on the nonlinear 
map by means of squares (positive values) and circles 
(negative values) whose sizes are proportional to the 
magnitude of the studied parameters (Figure 2). Briefly, 
the larger the square, the larger the value, and the larger 
the circle, the smaller the value. Figure 2 shows that the 
substituents are distributed and clustered on the nonlinear 
map according to their substituent constants. Indeed, for 
all parameters except MR (Figure 2.4), gradients or clusters 
can be observed. Thus, r values of the substituents 
decrease along an axis running from the bottom left to the 
top right-hand side of Figure 2.1. In the same way, there 
is an obvious clustering of H-bond acceptor and donor 
substituents in Figure 2.2,.3. Last, Figure 2.5,.6 reveals 
that gradients are observable for F and R values. F values 
increase from left to right, and R values increase from the 
top left-hand corner to the bottom right-hand corner. In 
order to underline structure-property relationships for 

Domine et al. 

Figure 3. Plot of the presence or frequency of some functional 
groups or skeleton similarities in the aromatic substituents. 
Squares are proportional in size to the number of groups. The 
absence of a functional group is represented by a dot. 

the 166 substituents under study and demonstrate the 
coherence of the nonlinear map (Figure 1.1) with regards 
to the structure of the substituents, various structural 
information (i.e., presence of functional groups and/or 
skeleton similarities) has been reported on the nonlinear 
map (see Figure 3). 

B. Projection on the Nonlinear Map of the Pres
ence or Frequency of Functional Groups. Figure 3 is 
aimed at giving a full description of the nonlinear map 
(Figure 1.1) in terms of chemical structures. Figure 3.1 
shows that substituents containing primary or secondary 
amine groups cluster at the top of the nonlinear map. 
Comparison with Figure 2 reveals that this is indeed 
associated with HBA and HBD abilities (Figure 2.2,.3) 
but it is also generally associated with low r values (Figure 
2.1). A more precise inspection of these substituents also 
reveals that the amine cluster can be divided into three 
subclusters. The first, located on the left-hand side 
(subcluster I = n° 15, 16, 18, 49, 75,104,130, and 144), 
contains substituents with formula NHR (R = H, OH, 
NH2, alkyl, and phenyl). In the middle are found 
substituents in which the NH group is bound to a C = 0 , 
C=S, CN, CO2, or SO2 group (including their derivatives) 
and to the substitution site (subcluster II = n° 30,36,40, 
41, 50, 53, 57, 62, 63, 66, 78, 89, 91, 93, 96,105,120,121, 
122,124,145, and 156). Subcluster III (n° 17, 37, 64, 67, 
90,119, and 160) consists of the substituents for which the 
amine group is not the group bound to the derivatives 
(e.g., CONHCH3). The only exception is substituent ra° 
69 which is located near subcluster II. Comparison with 
Figure 2 shows that this repartition of the three subclusters 
is due to increased R and F values. 

In Figure 3.2, we have represented the number of CN, 
NO, and NO2. All these substituents are located in the 
same region of the map and therefore have similar 
physicochemical properties. The outlier observed is 
substituent n° 30 (NHCN) which has an amine group and 
therefore clusters with the other substituents containing 
this group (Figure 3.1). Comparison of Figure 3.2 with 
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Figure 2.1-.6 shows that the location of these substituents 
is characterized by relatively large F and R values (Figure 
2.5,.6). This effect is less for the substituents n° 54, 55, 
and 82. 

On Figure 3.3 is represented the presence of tertiary 
amine groups. This map indicates that these substituents 
form two clusters. It is noteworthy that the noncyclic 
ones are found in the same cluster in the left-hand side 
of the map (n° 77,129, and 165), while the cyclic ones (n° 
19, 29,109, and 146) are found in the bottom right-hand 
cluster. Comparison with Figure 2 shows that they 
principally differ by their F and R values. The quaternary 
amine N(CH3)3+ (substituent n° 106) has also been 
represented on Figure 3.3. It appears as an outlier due to 
its very low ir value and high F value. Another difference 
is that it cannot accept H-bonds unlike tertiary amines. 

Figure 3.4 reveals that the substituents containing the 
group CH=NX with X = N or 0 form three clusters on 
the nonlinear map. Cluster I (n° 38, 67, 69, and 160) 
contains the considered group bound to amido or thio-
amido groups (except n° 38: alcohol). Cluster II (n° 19 
and 29) consists of the tetrazolyl substituents. Cluster III 
(n° 65, 92, 123, and 136) contains the considered group 
bound to an alkoxy group. Examination of Figure 2.2,.3 
reveals that cluster I differs from clusters II and III by the 
fact that the former can accept and donate H-bonds while 
the latter group can only accept H-bonds. For cluster III, 
it is noteworthy that a gradient linked to the number of 
carbon atoms in the alkyl chain of the alkoxy group running 
through substituents n° 65, 92, 123, and 136 can be 
observed (nb C in Figure 3.4). 

Figure 3.5 shows that substituents containing SO, SO2, 
or SO3 groups are preferentially located in the right-hand 
side of the cloud of points displayed on the map, indicating 
that their x values are generally low (Figure 2.1) and that 
they have the ability to accept H-bonds (Figure 2.2). Two 
clusters can be easily identified among these substituents. 
The first, at the top of the figure, contains the substituents 
with the general formula NHSO2R with R = alkyl or phenyl 
(n° 50,78,105, and 145). A closer inspection of this cluster 
reveals that a gradient linked to the number of carbon 
atoms of the group R can be drawn. Indeed, running from 
left to right, we find a methyl (n° 50), an ethyl (n° 78), a 
propyl (n° 105), and, last, a phenyl (re0 145) group bound 
to the NHSO2 group. The second cluster consists of the 
same type of series for SOR, SO2R, and SO3R (Figure 3.5) 
plus the two fluorinated substituents (n° 4 and 23). They 
differ from the elements of the first cluster by higher F 
and R values (Figure 2.5,.6) and higher ir values (Figure 
2.1) for the substituents n° 4 and 23. Another fundamental 
difference is that the elements of the first cluster can accept 
and donate H-bonds while those of the second cluster can 
only accept H-bonds (Figure 2.2,.3). Between these two 
clusters, SO2NH2 (substituent n° 17) occupies an inter
mediate location with HBA and HBD abilities but rather 
high values for F and R and a low value of ir. 

Figure 3.6 shows that the substituents containing an -S-
group are found at the bottom of the cloud of points on 
the map. The thiol group (n° 13) has also been represented 
on this figure and appears as an outlier above the -S-
substituents. This is due to its HBD ability (Figure 2.3) 
and, also, its rather low ir value (Figure 2.1). A finer 
examination of this figure shows that it is possible to 
separate this cluster into three subclusters. Indeed, on 
the left-hand side are found the substituents with the 

general formula -SR, R being an alkyl group (n° 47, 73, 
and 102) and the thienyl substituents (n° 110 and 111), 
among which an axis representing the number of carbon 
atoms can be drawn from the top to the bottom of the 
subcluster. On the right-hand side are found the thioethers 
bound to a carbonyl or cyano group (n° 27, 59, 85, and 
115) which tend to have higher F and R values (Figure 
2.5,.6) and have the ability to accept H-bonds (Figure 2.2). 
The substituents are distributed according to the number 
of carbon atoms they contain. In the middle, at the bottom 
of the figure, are found two atypical substituents (n° 24 
and 150) which possess particular properties. 

On Figure 3.7 has been plotted the presence of C = 0 or 
C = S groups. These substituents form two clusters which 
are related to their association to groups giving or not 
giving H-bonds. Indeed, the top cluster is characterized 
by HBA and HBD abilities (Figure 2.2,.3), while the 
substituents of the cluster located below only have the 
ability to accept H-bonds. The difference also lies in the 
lower ir values of the substituents belonging to the former 
cluster (Figure 2.1). 

A more detailed inspection of this figure could reveal 
gradients depending on the number of carbon atoms for 
each chemical family running in the vertical direction to 
the bottom of the map. Thus, for example, if we consider 
the esters with the general formula CO2R with R = CH3 
(n° 61), C2H5 (»° 86), C3H7 (n° 117), and C6H6 <n° 152), 
it can be seen in Figure 1.1 that they are distributed along 
an axis linked to the number of carbon atoms they contain. 

Inspection of Figure 3.8 reveals that the substituents 
containing an -O- group can have very different physi-
cochemical properties according to the functional group 
in which they are involved but, also, their position (i.e., 
bound to the substitution site or not). Note that acids 
and esters have not been represented on this figure. A 
close inspection of Figure 3.8 reveals that four clusters 
can be isolated. First, at the top of the figure are found 
all the substituents containing an OH group (n° 12,14,16, 
38, 43, and 81). They can donate H-bonds (Figure 2.3) 
and have lower ir values (Figure 2.1) except substituent 
n° 81. The three remaining clusters cannot give H-bonds. 
They are, first, on the left-hand side of the map, substit
uents for which the oxygen atom is involved in an ether 
functional group and is bound to the substitution site (n° 
42,71, 97,98,127, and 141). This results in low R values 
(Figure 2.6). The second cluster located in the middle of 
the map consists of the substituents with the general 
formula CH2OR with R = CH3 (ra° 70), C2H5 (n° 99), C3H7 
(n° 128), C4H9 (n° 138), and C6H5 (n° 158). These 
substituents have higher R values (Figure 2.6). The third 
cluster contains the substituents CH=NOR with R = CH3 
(n° 65), C2H6 (n° 92), C3H7 (n° 123), and C4H9 (n° 136). 
For these last two clusters, gradients depending on the 
number of carbon atoms can be observed. Last, on the 
right-hand side of these clusters is found the substituent 
n° 22 (OCF3) which occupies an atypical location, com
pared to the OR substituents, due to its higher F and R 
values. 

Figure 3.9 shows that substituents containing only C 
and H atoms cluster in the bottom left-hand corner of the 
map. Furthermore, a closer inspection of the map reveals 
that a gradient depending on the number of carbon atoms 
can be drawn up. 

It is obvious that all possible groups were not represented 
in Figure 3, but our approach is flexible enough to allow 
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the projection of any other information. For SAR pur
poses, the observation of all the maps allows to determine 
substituents different in nature but having similar prop
erties and, also, the relative influence of the functional 
groups on the properties of the substituents. The nonlinear 
map (Figure 1.1) is coherent in terms of chemical infor
mation, since there are clusters for each functional group 
and gradients are observed inside each cluster. 

II. Selection of Test Series. Since only a tiny fraction 
of the almost infinite number of possibilities can be studied 
in drug modification, we cannot afford redundancy.14 

Testing two congeners that have essentially the same 
physicochemical parameters (i.e., very close to each other 
on Figure 1.1) is most likely to be less valuable than testing 
two with different properties.14 For selecting test series 
with high information content, the use of NLM coupled 
to graphical tools can be very useful since NLM presents 
the same advantages as the linear methods using the 
representation on a plane of the individuals,25-27 but, in 
addition, it is more likely to get more information on the 
map, as has been shown here and in previous papers.38,46 

In this study, the information contained in the large data 
table of 166 substituents is summarized on Figure 1.1. 
Furthermore, Figures 2 and 3 give a full description of the 
map in terms of structural information. Selection of test 
series is performed by a simple inspection of the map by 
eye. In addition to structural information, it is, of course, 
possible to adequately consider all other available infor
mation (e.g., synthetic feasibility or previous knowledge 
on the activity). This can be achieved by means of the 
graphical tools presented in this paper. NLM coupled to 
graphical tools is therefore a very simple and straight
forward representation of the results in line with classical 
chemical thinking, which should be attractive to synthetic 
chemists. Furthermore, the 2-D map gives a full picture 
of the data structure in the starting population which 
cannot be obtained with MM21 and is only partly repre
sented by HCA.14'18 The within-cluster position of sub
stituents is now known, and no a priori decision as in 
other methods (except for the parameter space to be 
considered) is necessary to establish that map. 

The map presented here is restricted to monosubsti-
tutions, but other maps obtained from the compilation of 
the physicochemical parameters for polysubstitutions 
could be easily derived following the procedure presented 
in this paper. 

For comparison, a possible "ideal" test series14 obtained 
from a hierarchical cluster analysis (HCA) has been 
represented on Figure 1.1 (Figure 4). Figure 4 shows that 
the NLM would have been well suited for the selection of 
such a test series since the points selected by the authors14 

are widely spread on our map. Squares represent the test 
series selected and circles previously selected substituents 
not retained due to various constraints.14 On Figure 4, 
the arrows link the substituents not retained to those 
chosen for replacing them. These arrows show that some 
replacements are made between substituents having rather 
different substituent constants. For example, the selection 
of H (n° 11) which was in another cluster to replace 
N(CH3)3+ (n° 106) reveals a gap in the HCA approach. 
Indeed, the replacement of N(CH3)3+ (n° 106) was logical 
since it is an outlier, but the selection of H (ra° 11) may 
not be the best choice since it is located too close to two 
other selected substituents. With HCA, the replacement 
by another substituent in a different cluster is performed 

Figure 4. Representation of a selected test series.14 For captions, 
see text. 

in a blind manner unless we return to the original data 
table. With NLM, it can be made more easily by selecting 
a substituent in the vicinity of the undesirable substituent. 

III. Deriving Structure-Activity Relationships 
from the Nonlinear Map. Our graphical approach is 
particularly suitable in SAR studies since it underlines 
relationships between chemical structures and biological 
responses. To briefly illustrate this point, one example 
dealing with experimental results depicting the activity 
of the aniline mustards action against the solid tumor B-16 
melanoma is presented below.52 These data were retrieved 
from a publication of Panthananickal and co-workers62 

who performed a QSAR analysis on a set of 22 substituted 
di(2-chloroethyl)anilines. For the projection of the bio
logical data on Figure 1.1, we only kept the sixteen 
4-substituted derivatives (Figure 5). For a better visu
alization, data given as log(l/C) were transformed as C in 
mmol kg-1. Therefore, the larger the squares, the smaller 
the activity. Figure 5 shows that the necessary concen
tration for having a 25% increase in the life span of the 
mice increases along an axis running from the top left-
hand corner to the bottom right-hand corner of the map. 
Comparison with Figure 2 confirms the results of Pan
thananickal et al.,52 since it appears that the activity seems 
to depend on both the electronic and lipophilic characters 
of the substituents. Only CN (n° 25) and OCH2CH3 {n° 
71) are poorly fit on the map since a small square is 
observed in a region of the map where a larger square 
would have been expected. Figure 5 shows that our map 
allows to qualitatively predict the activity of a derivative 
and matches the experimental results. Furthermore, we 
can stress that the selection of substituents for this study 
was rational since the selected points are well spread on 
the nonlinear map. The physicochemical information 
contained in this figure summarizes well the actual 
influence of the substituent constants on the biological 
action of drugs. 

The NLM analysis of the large aromatic substituent 
constants data table (166 X 6) shows that it is possible to 
summarize the main information contained in this table. 
The graphical approach used in this study allows to derive 
and represent SPR on the nonlinear map. These collec
tions of graphs provide useful and easy tools for the 
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Figure 5. Plot of the anti tumor activity of 16 aniline mustards.6 2 

Squares are proportional to the concentration (mmol kg-1) 
inducing a 25% increase in the life span of mice. Substi tuent 
numbers are given for easy cross-reference with Figure 1.1. 

selection of substituents for the design of test series. 
Indeed, to ensure a broad spectrum of substituent con
stants, substituents are simply selected in the different 
regions of Figure 1.1. The plot of the data used to derive 
the map and the structural information (Figures 2 and 3) 
gives a full description of the nonlinear map to help in the 
selection of a test series. This method is open, and any 
information susceptible to help in the selection of the test 
series (e.g., synthetic feasibility, previous knowledge on 
the biological activity) can be represented. When sub
stituents very different in nature are located in the same 
region of the map, these may all be assayed in order to test 
if there can be different mechanisms of action or whatever 
specifically linked to the substituents considered. For 
particular cases such as multiple substitutions or larger 
differences in the structures of the chemicals to be studied, 
it may be useful to recalculate a map with the variables 
suspected to influence the activity under study and to 
perform a selection as described in this paper. Last, once 
the biological tests are performed with a test series, the 
nonlinear map can be useful to stress relationships between 
the structures and properties of the substituents and their 
biological activities. Due to the encouraging results 
obtained in this study, future work will be directed toward 
the study of aliphatic substituents. 
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