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A new technique for using receptor surface models in quantitative structure-activity 
relationship (QSAR) analysis is described. Receptor surface models provide compact, quantita­
tive descriptors which capture three-dimensional information about putative receptor/ligand 
interactions. Receptor surface models can be constructed quickly, which allows the construction 
of multiple plausible models; a variable selection technique such as genetic function approx­
i m a t i o n (GFA) can then be used to suggest which receptor surface models provide the most 
valuable descriptors for QSAR. Advantages of this approach are shown by applying it against 
two previously-published and well-studied QSAR data sets. Our results indicate tha t the 
approach can model data as effectively as established 3D-QSAR techniques. 

1. Background: QSAR Modeling 

Quantitative structure-activity relationship (QSAR) 
modeling is an area of research pioneered by Hansch 
and Fujita;1 QSAR attempts to model the "activity" of 
a series of compounds using measured or computed 
properties of the compounds. More recently, QSAR has 
been extended by including in the analysis three-
dimensional information about the series, either through 
grid-based data such as the comparative molecular field 
analysis (CoMFA) approach,2 or by three-dimensional 
shape descriptors, as illustrated by the molecular shape 
analysis (MSA) approach.3 While the original Hansch 
work used multiple linear regression (MLR) to combine 
different descriptors in the data set, MLR has proven 
difficult or impossible to use for data sets that contained 
large numbers of descriptors. Subsequent work has 
demonstrated the ability of partial least-squares (PLS) 
regression to build models of data sets containing large 
numbers of descriptors.45 For data sets containing large 
numbers of descriptors, in which the necessary informa­
tion is localized in a relatively few descriptors, genetic 
function approximation (GFA) analysis6 is a recent 
innovation that uses a genetic algorithm7 to find an 
appropriate subset of descriptors, which are fitted in 
turn with MLR. 

Many regression techniques develop a single model 
or a relatively small number of models. In contrast, the 
genetic function approximation algorithm develops a 
population of many models. The population of models 
is evolved by repeatedly performing the genetic cross­
over operation to recombine the terms of the better-
performing models. Upon completion, one typically 
selects the model from the population with the best 
score. However, it is sometimes preferable to inspect 
many different models and select one or more models 
based on the appropriateness of the descriptors by 
applying chemical intuition, in addition to using the 
scores. 

Of particular interest is the ability of GFA to discover 
nonlinear QSARs. Many techniques are dependent on 
the existence of linear relationships between descriptors 
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in the data set and the activities. Even if a linear 
relationship is not apparent between some descriptor 
and the activity, some subrange of the descriptor may 
still have a significant linear relationship with the 
activity, even if the remainder of the range is uninfor-
mative. Linear modeling methods such as least-squares 
regression, stepwise regression, or partial least-squares 
regression will not discover these relationships or utilize 
such descriptors effectively. 

GFA allows the discovery and use of nonlinear 
descriptors by using spline-based terms. If nonlinear 
relationships are suspected, the GFA process can be set 
to include splines. The splines used are truncated power 
splines and are denoted with angle brackets, where 
<a — f[x)> is equal to zero if the value of (a — fix)) is 
negative, otherwise it is equal to the value of (a - fix)). 
For example, <-9.852 - interact5* is zero when interact 
> -9.852, and equal to (-9.852 - interact) otherwise. 
The constant a is called the knot of the spline. When a 
spline term is created, the knot is set using the value 
of the descriptor in a random data sample. Because a 
spline term contains an extra constant, the scoring 
function (which takes into account the size of the model) 
counts splines the same as two linear terms. Therefore, 
splines are only included in the model if they reduce 
the training error more than two linear terms. This 
scoring helps eliminate bias toward splines when we 
mix spline and linear terms in the GFA process. (A 
more detailed description of the GFA algorithm can be 
found elsewhere.)6 

2. Background: Receptor Surface Modeling 

It is common in a QSAR analysis to have measured 
binding affinities for a set of compounds to a particular 
protein but not to have knowledge of the three-
dimensional structure of the protein active site. A 
number of methods, called receptor mapping techniques, 
attempt to provide insight about the active site and to 
characterize receptor binding requirements. Often re­
ceptor mapping techniques are used to generate a 
hypothetical model of the actual receptor site. This is 
known as a receptor site model.8'11 In this paper we 
describe a specific type of receptor site model, called a 
receptor surface model (RSM). A compound is energy 
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minimized within the context of a receptor surface 
model to generate three-dimensional descriptors for use 
in QSAR analysis. (The method used for generating 
receptor surface models and descriptors has been de­
scribed elsewhere.)9 

Three-dimensional energetics descriptors can be cal­
culated from either receptor surface model/ligand in­
teractions or, alternatively, from actual protein/ligand 
interactions (if the protein is known), as advocated by 
Hopfinger.1213 These three-dimensional descriptors 
may be used alone or in combination with two-dimen­
sional descriptors in QSAE analysis. 

A receptor surface model is generated using some 
subset of the most active structures. The rationale 
underlying these models is that the most active struc­
tures tend to explore the best spatial and electronic 
interactions with the receptor, while the least active do 
not and tend to have unfavorable steric or electronic 
interactions. This is also the basis of the active ana­
logue approach.14 

As currently generated, receptor surface models are 
exemplars of the common features present in the most 
active compounds. This can be contrasted with methods 
which are interpolative, correlating differences in the 
parameters between the most and least active with 
activity.15 By using only a subset of the most active 
models, the issues of conformational selection and 
alignment are reduced. Further, while it is possible to 
use interpolative methods in the generation of the 
receptor model, we found the exemplar approach to be 
simpler yet still effective when used with a series of 
closely related analogues. 

Once chosen for the construction of the receptor 
surface model, the compounds must be aligned, prefer­
ably in conformations that reflect the active, "bound" 
conformations. The alignment may be achieved using 
any of a number of published methods.16-22 

Receptor surface models are best constructed from a 
set of the most active analogues that are chosen to cover 
the variety of steric and electrostatic variations likely 
to appear in the test data. One approach is to visually 
inspect the training set and manually select a structur­
ally diverse subset of the most active structures. Yet 
another approach is to automatically build a set of 
different receptor surface models from different combi­
nations of the most active analogues, and then use a 
variable-selection technique such as GFA to discover the 
receptor surface model whose descriptors yield the best 
QSARs of the full training set. Our studies suggest that 
the selection of the actives is an important consider­
ation, though models constructed with nonoptimal sets 
of compounds nearly always show some amount of 
predictiveness. 

Once the desired receptor surface model has been 
constructed, all the structures in the training and test 
sets can be evaluated against the model. The evaluation 
consists of computing several energetic descriptors that 
are based upon the interactions between ligand and 
model. For this work, four descriptors are generated. 

The first descriptors is the nonbonded energy of 
interaction between the ligand and the receptor surface 
model. This term is the sum of the nonbonded van der 
Waals and electrostatic energies, and is denoted 
•^interaction* 

The second descriptor is the intramolecular strain 
energy (enthalpy) of the ligand inside the receptor 
surface model. Here, an energy minimization is per­
formed in which the conformation of the ligand is 
optimized to adopt a minimum energy configuration 
with respect to the receptor model. This is analogous 
to minimizing a structure within an actual receptor by 
fixing all receptor atom positions, allowing for freedom 
in the ligand. This descriptor is denoted Einside-

Another energy minimization is performed to calcu­
late a third descriptor. The bound conformation struc­
ture (from descriptor i?inSide) is minimized again in the 
absence of the receptor surface model influence and the 
internal strain energy that is induced by the receptor 
model is calculated. The descriptor for non-receptor-
bound energy is called Relaxed- Since this minimization 
will put the structure in the closest energy minima 
relative to the receptor-bound conformation, Relaxed is 
always less than or equal to .Emside-

The final descriptor, called 2?strain> is the difference 
between .Emside and Relaxed- This descriptor corresponds 
to a (5 strain energy between a bound conformation and 
its closest relaxed unbound conformation. It does not 
indicate anything about the A strain between the bound 
conformation energy and the global energy minimum. 
If a conformational search has produced a global energy-
minimum energy (£gi0bai) a descriptor corresponding to 
•Emside — ^global could be used in addition to, or in place 
01) ^s t ra in-

These descriptors are representing components of the 
binding energies of ligands in the putative receptor site; 
they may be useful for QSAR modeling in cases where 
the activity is correlated with the ligand binding ener­
gies. This correlation is frequently (though not always) 
found. 

This paper will illustrate the utility of these descrip­
tors in QSAR and demonstrate them to be a compact 
and effective representation of three-dimensional ligand 
interaction information. 

3. Analysis of the Corticosteroid-Globulin 
Binding Data Set 

We applied the receptor surface modeling-QSAR 
combination to a standard data set consisting of steroid 
binding data. This data set has been previously studied 
using several different techniques, including CoMFA2 

and Compass.23 The data set consists of 31 steroids 
assayed for binding affinity to the transport protein, 
corticosteroid binding globulin (CBG). These steroids 
are shown in Figure 1. The training set consisted of 
the first 21 molecules in the series and was used to 
generate a QSAR model. This model was then used to 
predict the affinity of the remaining 10 molecules. 

This data set has relatively little conformational 
flexibility and is relatively simple to align, although Jain 
et al. suggest that the importance of conformational 
flexibility may be underestimated.23 The reduced role 
of conformation and alignment in this data set allows 
better examination of the effects of energetics separate 
from the complications induced by issues of multiple 
conformations and alignments. 

To build a QSAR model from the 21 compound 
training set (compounds 1—21), an initial receptor 
surface model was constructed from the six most active 
steroids (compounds 6, 7,10,11,19, and 20). We chose 
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Figure 1. The 31 steroids used for the corticosteroid training and test sets. The first 21 compounds were used for training and 
the remaining 10 for testing. 

the top six because they covered the range of structural 
variation seen in the active compounds. A low-energy 
conformation for each molecule was generated by mini­
mizing from standard steroid conformations. The six 
most active molecules were then aligned to minimize 
backbone ring system and side chain RMS differences. 
A receptor surface model was then constructed around 
the six aligned compounds. This model is shown at the 
top of Figure 2. 

This initial receptor surface model completely sur­
rounds the aligned molecules; it is a closed receptor 

surface model.9 The model is sterically overconstrained; 
previously unseen steric variation in a test compound 
is assumed to be detrimental. While this may or may 
not be the case with respect to the actual binding 
of the molecule to a receptor site, we argue it is 
reasonable for the model to initially assume such 
variations are detrimental, since there is no way to 
validate their utility given the information in the 
training set. Receptor surface models are conservative 
in this sense and tend to underpredict the activity of 
novel steric variants. 
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Figure 2. The top model is a closed receptor surface model 
generated from the six most active compounds in the corti­
costeroid data set. The bottom model is an open receptor 
surface model. A test molecule (compound 23) has been 
minimized within the model, and the VDW interaction energy 
has been mapped onto the surface. Purple denotes regions of 
favorable VDW interaction, and green denotes regions of 
unfavorable VDW interactions. The visualization of interac­
tion energy focuses attention onto the acetoxy group on C-21, 
which assumes a highly-strained geometry to fit into the 
model. The open model shows no such strain; the opening in 
the region around C-21 allows the acetoxy group to extend 
outside of the model and eliminates the severe strain seen with 
this molecule in the closed model. This shows how the receptor 
surface model can first assist the user in pinpointing regions 
of poor interaction and then allow the editing of the model to 
incorporate the user's estimation of critical and noncritical 
regions. 

The chemist, however, may wish to allow variation 
in specific regions; for example, to represent solvent 
openings in a receptor site, to represent the lack of 
knowledge about specific regions of the receptor site, or 
to allow scientifically justified steric variation suggested 
by a novel test molecule. For any of these reasons, the 
receptor surface model can be made open by removing 
regions of the surface. Portions of the test molecules 
can then extend through these openings, and upon 
evaluation will not be considered detrimental. (Further 
discussion of open and closed receptor surface models 
can be found in ref 9.) 

We illustrate opening the receptor surface model with 
the corticosteroid data set in Figure 2. Compound 7 and 
23 are identical except that compound 23 has an acetoxy 
group in place of an hydroxy group on C-21. Both 
compounds have similar activity. Two possible expla­
nations for this similarity in activity follow. First, the 
acetoxy group may be hydrolyzed at physiological pH 

CBG = 3.476 -0.223 * E,,.,.,^ 
N:21 
r2: 0.702 
Regression-only CV-r2: 0.646 
Test set r2 (including 23): 0.006 
Test set r2 (excluding 23): 0.696 

Figure 3. The QSAR model generated with the energetic 
descriptors from the closed receptor surface model for the 
corticosteroid binding data set. The model rated best con­
tained only a single linear term of ̂ interact. The model predicts 
poorly against the test set, primarily due to compound 23, 
whose activity is significantly underestimated. This is re­
flected in the test set r2, which is poor when compound 23 is 
included but good when it is excluded. 

CBG = 3.498 -0.236 * EMmct 

N:21 
r2: 0.664 
Regression-only CV-r2: 0.628 
Test set r2: 0.652 

Figure 4. The QSAR model generated with the energetic 
descriptors from the open receptor surface model for the 
corticosteroid binding data set. The model rated best con­
tained only a single linear term of Emuma- While the r2 may 
appear only moderate against the training set, the nearly 
equivalent value for r2 when applied to the test set is strongly 
suggestive of a predictive model. 

before binding, yielding compound 17. A closed receptor 
mode predicts this compound correctly. Second, the 
acetoxy group may not be hydrolyzed and is accom­
modated in the receptor active site (or is exposed to 
solvent). We can handle the second case and allow the 
acetoxy group to reside outside of the receptor surface 
by operating the surface at C-21. Such editing is not 
required for CoMFA and Compass since they do not 
make the same sterically conservative assumption that 
is used during the construction of the receptor surface 
model; however, this can be dangerous, since there is 
no a priori penalty for novel steric variants. For the 
receptor surface model, such variants are penalized 
unless the user makes the direct decision to allow the 
variant by opening the model. (Of course, the user must 
be careful to apply the opened model only against 
compounds where the steric variation in the opening is 
deemed reasonable.) 

After building the closed and open receptor surface 
models, energetic descriptors for all 31 compounds in 
the training and test sets were generated for each of 
the two receptor surface models. Scatterplots of the 
descriptors versus activity showed no sign of nonlin-
earity, so we decided to use only linear terms in the 
models. 

The best model generated using the descriptors from 
the closed receptor surface model is given in Figure 3, 
along with the number of compounds A ,̂ the correlation 
coefficient squared (r2) over the training set, the regres­
sion-only cross-validated r2, and r2 over the test set, both 
with and without compound 23 . The receptor surface 
model-based descriptors, Sinteract and Strain, the CBG 
activity values, the predictions, and residuals of the 
QSAR are shown in Table 1. The model generated using 
the descriptors from the open receptor surface model is 
given in Figure 4. The value of £int*ract, the CBG activity 
values, and the predictions and residuals of this new 
QSAR model, CoMFA, and Compass are given in Table 
2. Scatterplots of the activity versus prediction for the 
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Table 1. Corticosteroid Data Descriptor for the Closed 
Receptor Surface Model" 

no. 

1 
2 
3 
4 
5 
6* 
7* 
8 
9 

10* 
11* 
12 
13 
14 
15 
16 
17 
18 
19* 
20* 
21 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

& interact 

-16 .6 
-10 .4 

-9 .8 
-8 .4 
- 6 . 1 

-17 .7 
-18 .8 
-18 .0 

-6 .2 
-16 .7 
-17 .7 
-12.2 

-8 .9 
-8 .4 
- 6 . 3 
- 5 . 3 

-11 .2 
-12 .1 
-13 .8 
-14 .9 
-12 .2 

-18 .1 
- 2 . 7 

-13 .9 
-15 .7 
-11 .6 
-14 .6 
-13 .7 
-13.401 
-16 .1 
-11 .6 

•C* strain 

10.4 
10.8 

1.8 
0.0 
6.5 
0.0 
0.0 
2.9 
1.5 
0.0 
0.0 
2.4 
7.3 

10.3 
6.8 

11.4 
1.9 
1.4 
0.0 
0.0 
0.0 

0.0 
132.4 

2.0 
7.0 
0.0 
8.0 
0.8 
0.0 

11.4 
20.6 

CBG 

6.279 
5.000 
5.000 
5.763 
5.613 
7.881 
7.881 
6.892 
5.000 
7.653 
7.881 
5.919 
5.000 
5.000 
5.000 
5.225 
5.225 
5.000 
7.380 
7.740 
6.724 

7.512 
7.553 
6.779 
7.200 
6.114 
6.247 
7.120 
6.817 
7.688 
5.797 

RSMclosed 

predicted 

6.995 
5.862 
5.711 
5.342 
4.764 
7.324 
7.619 
7.413 
4.795 
7.096 
7.363 
6.296 
5.511 
5.399 
4.825 
4.570 
6.025 
6.274 
6.650 
6.913 
6.297 

7.505 
4.083 
6.575 
6.975 
6.060 
6.720 
6.520 
6.461 
7.070 
6.049 

residual 

0.716 
0.862 
0.711 

-0.420 
-0.848 
-0.556 
-0 .261 

0.521 
-0.204 
-0.556 
-0.517 

0.377 
0.511 
0.399 

-0.174 
-0.654 

0.800 
1.2745 

-0.729 
-0.826 
-0.426 

-0.007 
-3.469 
-0 .203 
-0.224 
-0.053 

0.473 
-0.599 
-0.355 
-0.617 

0.252 

° This table contains the indexes ̂ interact and Strain for the closed 
receptor surface model, the corticosteroid binding affinity CBG, 
and the predictions and residuals. The training set was comprised 
of compounds 1—21; the test set was comprised of compounds 22-
31. The compounds with the asterisk (*) after their index were 
used in the construction of the receptor surface model. 

test compounds derived using the open receptor surface 
QSAR model, CoMFA, and Compass are shown in 
Figure 5. 

The experiment described indicates the superior 
performance of the open receptor model as a source of 
descriptors for QSAR model generation. This improve­
ment came about because we were able to use qualita­
tive knowledge (from other studies and visualization) 
in designing the opening, followed by use of these 
quantitative descriptors to build QSAR models. This 
illustrates one of the important strengths of receptor 
surface model-based QSAR modeling: the ability to 
move between qualitative and quantitative descriptions, 
combining insights gained from each in building the 

final QSAR model. In this particular case, the visual­
ization of the strain around C-21, combined with chemi­
cal knowledge about the offending acetoxy group, guided 
the construction of the C-21 opening in the receptor 
surface model. This opening then led to a quantitative 
improvement in the predictivity of the resulting QSAR 
model. 

Receptor surface models can give results that are 
quantitatively different from other 3D-QSAR methods. 
For example, previous studies using CoMFA2 or Com­
pass23 substantially overestimate the activity of com­
pound 31 (see Table 1). Compound 31 is a fluorine 
derivative of compound 30 but is about 100 times less 
active. CoMFA predicts the compound to be 10 times 
more active than it is. Compass predicts this compound 
to be the most active of the 10 test molecules, when in 
fact it is the least active. The receptor surface model-
derived QSAR correctly predicts that compound 31 is 
the least active. This is because the evaluation proce­
dure has an empirical solvation correction term that 
penalizes polar groups placed in hydrophobic regions 
(see ref 9). The polar fluorine atom is positioned in a 
region that is predicted to be hydrophobic based upon 
the examination of the six most active compounds. 
Purely statistical techniques such as CoMFA do not 
directly use higher-level chemical knowledge when 
building their models. The receptor surface model 
allows such knowledge to be incorporated as part of the 
evaluation of energetics. 

Further, the ability to minimize the test molecule 
within the receptor surface model allows other subtle 
chemical relationships to be handled. For example, 
starting with compound 31, one can compare the effect 
of the fluorine on atom C-9 against the addition of a 
methyl group on atom C-2. The small fluorine atom on 
C-9 introduces about the same strain as does the 
addition of a larger methyl group to atom C-2. Since 
the evaluation procedure minimizes a molecule inside 
the surface, the methyl group can be reasonably accom­
modated in the surface by sliding the A ring laterally 
away from the surface and the concomitant small 
adjustment of angles and bonds in the remaining rings. 

Finally, the chemist, using high-level chemical knowl­
edge, can refine the receptor surface model to accom­
modate unanticipated variation in the test molecules. 
For example, in the closed receptor surface model, there 
is no possibility of accommodating the acetate group in 
compound 23 without strain. This causes a large 
underestimation of activity for this compound with the 
closed model. The open receptor surface model is able 

5.5 6 6.5 7 

CoMFA 

7.5 8 

7.5. 

7. 

6.5. 

6-

5.5-

5. 
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A > 

A / ' 

A 

A 
• 

7.5 8 

COMPASS 

Figure 5. Scatterplots of CBG versus predicted activity for the 10 test compounds using CoMFA, Compass, and the open receptor 
surface QSAR model. The chemical knowledge represented in the open receptor surface model reduces the number of outliers 
compared with either CoMFA or Compass. 
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Table 2. 

no. 
1 
2 
3 
4 
5 
6* 
7* 
8 
9 

10* 
11* 
12 
13 
14 
15 
16 
17 
18 
19* 
20* 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Corticosteroid Data Descriptor 

^interact 

-14.72 
-10.015 
-9.567 
-7.903 
-4.511 

-16.097 
-17.265 
-16.439 

-5.763 
-15.182 
-16.247 
-11.767 

-9.037 
-8.503 
-6.248 
-4.396 

-10.632 
-11.610 
-13.204 
-14.280 
-11.924 
-16.799 
-16.670 
-13.232 
-14.334 
-11.392 
-13.932 
-13.074 
-12.808 
-14.660 
-11.387 

CBG 
6.279 
5.000 
5.000 
5.763 
5.613 
7.881 
7.881 
6.892 
5.000 
7.653 
7.881 
5.919 
5.000 
5.000 
5.000 
5.225 
5.225 
5.000 
7.380 
7.740 
6.724 
7.512 
7.553 
6.779 
7.200 
6.114 
6.247 
7.120 
6.817 
7.688 
5.797 

38, No. 12 

for the Open Receptor Surface Model" 

RSMopen 
predicted 

6.975 
5.864 
5.758 
5.365 
4.563 
7.301 
7.577 
7.382 
4.859 
7.058 
7.336 
6.278 
5.633 
5.507 
4.974 
4.536 
6.010 
6.241 
6.617 
6.871 
6.315 
7.417 
7.646 
6.647 
6.905 
6.164 
6.841 
6.623 
6.550 
6.9475 
6.116 

CoMFA 
predicted 

6.544 
7.540 
6.526 
7.546 
5.955 
7.057 
5.384 
7.009 
7.227 
6.937 

Compass 
predictted 

6.012 
5.156 
5.021 
6.836 
5.118 
7.84 
7.691 
7.771 
4.995 
7.682 
7.614 
6.107 
4.989 
4.851 
4.912 
5.377 
5.525 
5.215 
7.473 
7.248 
6.955 
7.062 
7.729 
6.462 
7.466 
5.994 
6.383 
6.625 
7.403 
7.741 
7.779 

RSMopen 
residual 

0.696 
0.864 
0.758 

-0.397 
-1.049 
-0.579 
-0.303 

0.490 
-0.140 
-0.567 
-0.544 

0.359 
0.633 
0.507 

-0.025 
-0.688 

0.785 
1.241 

-0.762 
-0.868 
-0.408 
-0.094 

0.093 
-0.131 
-0.294 

0.050 
0.594 

-0.496 
-0.266 
-0.740 

0.319 

Hahn and Rogers 

CoMFA 
residual 

-0.968 
-0.013 
-0.253 

0.346 
-0.159 

0.810 
-1.736 

0.192 
-0.461 

1.14 

Compass 
residual 
-0.267 

0.156 
0.021 
1.073 

-0.495 
-0.041 
-0.190 

0.879 
-0.005 

0.029 
-0.267 

0.188 
-0.011 
-0.149 
-0.088 

0.152 
0.300 

-0.215 
0.093 

-0.492 
0.231 

-0.450 
0.176 

-0.317 
0.266 

-0.120 
0.136 

-0.495 
0.586 
0.053 
1.982 

a This table contains the compound index, the energy of interaction of the analogue in the receptor surface model, the predictions for 
the models from receptor surface modeling, CoMFA, and Compass, and the residuals from receptor surface modeling, CoMFA, and Compass. 
(CoMFA predicted and residuals for the training set not available.) 

- V0: Common overlap steric volume against the most-active compound 
- 7t0: Molecular lipophilicity 
- TC4: Water/octanol fragment constant of the 4-substituent 
- Q6: The partial atomic charge on atom 6 
- Q3 45: Sum of partial atomic charges on atoms 3, 4, and 5 

Figure 7. The QSAR descriptors generated by Burke and 
Hopfinger. 

differences in structure, flexibility, and charge from the 
remaining 47 compounds and were not used in their 
study, nor were their -logdCso) estimates reported. 
While we realized such removal of samples can bias the 
resulting QSAR, we wished to compare our work with 
the results of Burke and Hopfinger, and so we used this 
same 47 compound subset in our QSAR study. The 
original compound numbers are retained from the Kruse 
et al. study. 

Linear free energy descriptors were used by Kruse et 
al. to construct their QSARs. Burke and Hopfinger25 

constructed QSARs for this data set; they generated five 
descriptors for each of the compounds. The QSAR 
descriptors generated by Burke and Hopfinger are 
shown in Figure 7. 

Burke and Hopfinger proposed two models. The first 
model contained six terms and a constant and used the 
complete set of 47 compounds. The second model 
contained three terms and a constant and used 45 of 
the compounds (compounds 23 and 39 were identified 
as outliers and removed). The models generated with 
the Burke and Hopfinger descriptors are shown in 
Figure 8. Most critical to the modeling was the descrip­
tor V0, a shape-based descriptor which reflected the 
common steric volume between the most active com­
pound and a given test compound. 

Figure 6. The shared structure of the dopamine /?-hydroxy-
lase inhibitors. 

to accommodate the acetate group and gives a good 
estimation of activity. 

4. Analysis of the /?-Hydroxylase Inhibitor Data 
Set 

The dopamine /3-hydroxylase inhibitor data set is a 
set of 47 l-(substituted-benzyl)imidazole-2(3.ff)-thiones 
with associated inhibitory activities described in the 
work of Kruse et al.24 These inhibitors effectively 
reduce blood pressure and are used for treatment of 
cardiovascular disorders related to hypertension. The 
series of analogs are of the general form shown in Figure 
6. We were interested in studying this data set because 
the compounds had been studied using molecule shape 
analysis (MSA) by Burke and Hopfinger.25 The original 
Kruse et al. study contained 52 compounds although 
only 25 were used for QSAR generation. The less active 
compounds had their activity reported as percent inhi­
bition at fixed concentration, and the remaining com­
pounds had their activity reported as —log(ICso) values. 
Burke and Hopfinger chose 47 of the 52 compounds for 
their study, estimating —log(ICso) for the samples 
reported with percent inhibition at fixed concentration. 
Five compounds were considered problematical due to 
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-log(IC») = 52.27 
- 116.9* V_ 
+ 69.1 * V 
+ 2.06*Q3(4)S 

-4.68*Q 6 

+ 0.0465 * 7t0
2 

- 0.578 * n4 

N:47; 
r2: 0.828 

Common overlap steric volume against most-active compound 
Square of Vo 
Sum of partial atomic charges on atoms 3,4, and 5 
The partial atomic charge on atom 6 
Molecular lipophilicity 
Water/octanol fragment constant of the 4-substituent 

-log(IC50) = 52.15 
- 117.5 * V. Common overlap steric volume against most-active compound 
+ 7 0 . 4 * V Square of Vo 
+ 2.32 * Q3>4(5 Sum of partial atomic charges on atoms 3,4, and 5 

N: 45 (samples 23 and 39 removed) 
r2: 0.810 

Figure 8. The two models constructed in the study of Burke and Hopfinger. The first model was constructed using all 47 
compounds in the data set. The second model was constructed using the first model to identify two outliers in the data set, 
removing those outliers, and constructing a new model over the reduced data set. 

Table 3. Dopamine /J-Hydroxylase Inhibitor Data Set with Burke/Hopfinger Descriptors 

no. 

2 
4 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
44 
45 
46 
48 
49 
50 
51 
52 

Q345 

-0 .03 
0.06 

-0 .03 
0.04 
0.05 
0.28 
0.07 
0.10 
0.17 
0.07 
0.16 
0.30 
0.31 
0.01 
0.16 
0.01 
0.19 
0.10 
0.20 
0.20 
0.11 
0.17 
0.12 
0.16 
0.17 
0.42 
0.13 
0.12 
0.16 
0.17 
0.30 
0.50 
0.02 
0.22 
0.19 
0.14 
0.02 
0.15 
0.25 
0.13 
0.19 
0.28 
0.19 
0.30 
0.43 
0.27 
0.50 

Qe 

0.04 
0.07 
0.19 
0.00 
0.02 
0.01 
0.01 
0.04 
0.10 
0.02 
0.01 
0.00 

-0 .01 
0.03 
0.02 
0.03 
0.01 
0.01 

-0 .01 
0.00 
0.04 
0.08 
0.00 
0.01 
0.10 
0.19 
0.02 
0.00 
0.02 
0.03 
0.04 

-0 .06 
0.00 
0.03 
0.00 
0.00 
0.00 
0.02 

-0 .01 
0.03 
0.01 
0.01 
0.02 

-0 .01 
-0 .07 
-0 .03 
-0 .06 

714 

0.00 
0.00 
0.00 
0.00 
0.00 

-0 .02 
0.88 

-0 .02 
-0 .02 

0.00 
0.86 

-0 .02 
-0 .02 

0.00 
-0 .02 

0.00 
-0 .02 
-0 .02 

0.00 
0.00 

-0 .67 
0.71 
0.00 
0.71 

-0 .67 
-0 .67 
-0 .28 

0.00 
-0 .67 

0.14 
-0 .02 
-0 .02 

0.00 
-0 .67 

0.71 
0.71 

-0 .67 
0.00 
0.00 

-0 .67 
0.00 

-0 .67 
-0 .67 
-0 .67 

0.00 
-0 .67 
-0 .67 

TTO2 

19.86 
21.01 
10.02 
14.98 
14.49 

6.79 
16.33 
17.68 
22.21 
14.49 
16.17 
14.44 
11.29 
9.47 

13.88 
6.21 
5.21 
7.45 
9.47 
6.21 

15.16 
28.06 
21.01 
14.98 
19.03 
9.36 
8.59 

21.01 
9.86 

10.90 
14.46 
12.77 
17.98 

5.13 
21.01 
36.77 
11.36 
14.98 
10.9 

6.21 
21.01 

8.33 
10.37 

7.03 
11.86 
14.46 

7.09 

V0 

0.816 
0.842 
0.748 
0.908 
0.896 
0.824 
0.894 
0.855 
0.763 
0.944 
0.917 
0.876 
0.897 
0.883 
0.885 
0.947 
0.883 
0.898 
0.900 
0.986 
0.920 
0.798 
0.908 
0.948 
0.827 
0.951 
0.942 
0.904 
0.964 
0.989 
0.902 
0.900 
0.948 
0.952 
0.951 
0.874 
0.959 
0.986 
0.991 
0.989 
0.993 
0.983 
0.999 
1.000 
0.991 
1.000 
1.000 

substituents 

2,6-Me2 

2,6-Cl2 

2,6-(OME)2 

2-C1 
2-Me 
3,4-(OMe)2 

4-CFs 
3-CF3,4-OMe 
2,6-Cl2,4-OMe 
4-Me 
4-Br 
3-Br,4-OMe 
3-F,4-OMe 
2-OMe 
3-Me,4-OMe 
2-OH 
3-N02,4-OMe 
4-OMe 
3-OMe 
3-OH 
3-CF3,4-OH 
2,4,6-Cl3 

2,5-Cl2 

4-C1 
2,6-Cl2l4-OH 
2,3,5,6-F4,4-OH 
4-N02 

2,3-Cla 
3-Me,4-OH 
4-F 
3,5-Cl2,4-OMe 
3,5-F2,4-OMe 
H 
3-N02,4-OH 
3,4-Cl2 

2,4-Cl2 

3-Br,4-OH 
3-C1 
3-F 
4-OH 
3,5-Cl2 

3,4-(OH)2 

3-C1.4-OH 
3F,4-OH 
3,5-F2 

3,5-Cl2,4-OH 
3,5-F2,4-OH 

-logdCao) 

3.00 
3.15 
3.30 
3.45 
3.47 
3.47 
3.70 
3.76 
3.81 
3.83 
3.94 
4.08 
4.13 
4.13 
4.16 
3.24 
3.45 
3.69 
3.80 
3.83 
3.92 
3.99 
4.01 
4.02 
4.12 
4.21 
4.28 
4.28 
4.31 
4.33 
4.33 
4.44 
4.48 
4.51 
4.55 
4.77 
4.92 
4.92 
5.25 
5.59 
5.62 
5.66 
5.70 
5.82 
5.92 
6.17 
7.13 

predicted 

3.51 
3.55 
2.96 
3.81 
3.63 
3.67 
3.28 
3.63 
4.18 
4.15 
3.65 
4.13 
4.17 
3.19 
3.77 
3.64 
3.46 
3.47 
3.87 
4.82 
4.28 
3.81 
4.26 
4.05 
3.96 
4.32 
4.14 
4.23 
4.81 
4.81 
4.10 
4.89 
4.36 
4.48 
4.48 
4.41 
4.60 
5.03 
5.28 
4.98 
5.57 
5.36 
5.54 
5.78 
5.98 
6.15 
6.42 

residual 

0.51 
0.40 

-0 .34 
0.36 
0.16 
0.20 

-0 .42 
-0 .13 

0.37 
0.32 

-0 .29 
0.05 
0.04 

-0 .94 
-0 .39 

0.40 
0.01 

-0 .22 
0.07 
0.99 
0.36 

-0 .18 
0.25 
0.03 

-0 .16 
0.11 

-0 .14 
-0 .05 

0.50 
0.48 

-0 .23 
0.45 

-0 .12 
-0 .03 
-0 .07 
-0 .36 
-0 .32 

0.11 
0.03 

-0 .61 
-0 .05 
-0 .30 
-0 .16 
-0 .04 

0.06 
-0 .02 
-0 .71 

The descriptors generated by Burke and Hopfinger, 
the activities of the compounds, and the predictions 
using their first model are shown in Table 3. 

The energetic descriptors calculated by a receptor 
surface model were tested for their ability to represent 

three-dimensional information critical to the estimation 
of activity, and hence their ability to serve as compo­
nents of QSAR models in situations where three-
dimensional effects must be considered. 

A receptor surface model was constructed from a 
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Descriptor Use vs. Number of Crossovers 
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Figure 9. A graph of descriptor use versus the number of crossover operations for the seven most used descriptors in the multiple 
receptor surface data set. The descriptors are of the form Name-XX-FY, where XX is the starting compound for the series (XX-
52), and Y is the tolerance (1 = 0.1 A, 2 = 0.2 A). It is clear from this graph that the descriptors generated from the receptor 
surface model of the three most active compounds at a tolerance of 0.1 A is the preferred model. 

subset of the most active compounds, their associated 
activities, and a steric "tolerance". (This tolerance is 
the distance from the van der Waals surface of the 
overlapped molecules that the receptor surface is con­
structed.) The question arises as to the appropriate 
number of compounds and the appropriate tolerance to 
use in constructing a model. In the previous experi­
ment, we used intuition to select the set of actives to 
use in model construction. In this study, we used GFA 
to select among models constructed with various pa­
rameters. 

Twelve receptor surface models were created that 
combined six activity ranges and two tolerances. The 
activity ranges contained either the most active com­
pound (52), the three most active (50-52), the five most 
active (48-52), the eight most active (44-52), the 25 
most active (28-52), or all the compounds (2-52). In 
each case, the compounds used to generate the models 
were first aligned to the most active compound (52). The 
conformation chosen for most active compound was the 
same as the conformation of the shape reference com­
pound in the Burke and Hopfinger study. The toler­
ances were either 0.1 A out from the combined van der 
Waals surface or 0.2 A out. 

After creation of the models, each compound in the 
data set was evaluated against each of the models to 
calculate the four receptor surface-based descriptors. 
The descriptors from the multiple receptor models were 
placed into one table for a total of 48 receptor surface 
descriptors. 

The GFA algorithm was applied to this data set, 
allowing both linear and nonlinear terms. In this case, 
we were not interested in the specific QSAR models 
discovered but in the relative number of times each of 
the receptor surface based descriptors were used in the 
population. This gives an indication of which receptor 
surface model provides the highest quality descriptors 
for QSAR modeling. In effect, the receptor surface 
models were taking part in a competition to see which 
could provide the most useful descriptors for QSAR 
model building. 

The frequency of use of the eight most used descrip­
tors versus the number of crossovers is displayed in 
Figure 9. 

3.762 -log(IC50)p.QSAR 

+ 0.296><-10.203 ElB 'interact •* 

+ 0.089 * <26.855 - E ^ u ^ 
N:47 
,2-

Regression-only CV-r2: 
Fully CV-r2: 

0.808 
0.788 
0.669 

Figure 10. The number of data samples N, the correlation 
coefficient r2, the regression-only cross-validated r2, and the 
fully cross-validated r2 for the top model derived using GFA 
with the Hopfinger descriptors augmented with the receptor 
surface model descriptors. Only the descriptors derived from 
the receptor surface model were chosen for use in the top-rated 
model. The r2 scores show this model to be as good over the 
full 47-compound data set as the Burke and Hopfinger model 
was over the 45-compound reduced data set. 

The most useful descriptors are derived from the 
receptor surface model constructed from the three most 
active compounds (i.e., 50-52) at a tolerance of 0.1 A. 
The graph shows them being rapidly discovered and 
used in nearly every model by the end of the evolution. 
From this evidence, we selected this receptor surface 
model constructed from the three most active com­
pounds for a more formal and thorough analysis of the 
data set. 

(An intriguing possibility suggested by the graph in 
Figure 9 is that different descriptors may be best 
derived from different receptor surface models. In this 
case, it appears that receptor surface models generated 
from relatively few active molecules give the best 
interaction energies, but models generated from many 
active molecules give the best strain energies. More 
study would be needed to determine whether this is a 
true effect or merely a statistical artifact.) 

We analyzed the dopamine ^-hydroxylase inhibitors 
with GFA using linear polynomials and linear splines. 
The data set contained four-receptor surface descriptors 
generated from the receptor surface model of the three 
most active compounds at a steric tolerance of 0.1 A. 
These receptor surface descriptors were combined with 
the Burke and Hopfinger QSAR descriptors shown in 
Figure 7. The population of QSAR models was evolved 
for 5000 generations. The best QSAR model, as rated 
by the GFA's lack-of-fit score, is shown in Figure 10. 
The receptor surface descriptors and the predictions of 
this model are shown in Table 4. This model explains 
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Table 4. Receptor Surface Descriptors and Prediction using Top Model 
no. 

2 
4 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
44 
45 
46 
48 
49 
50 
51 
52 

substituents 

2,6-Me2 
2,6-Cl2 
2,6-(OME)2 

2-Cl 
2-Me 
3,4-(OMe)2 
4-CF3 
3-CF3,4-OMe 
2,6-Cl2,4-OMe 
4-Me 
4-Br 
3-Br,4-OMe 
3-F,4-OMe 
2-OMe 
3-Me,4-OMe 
2-OH 
3-N02,4-OMe 
4-OMe 
3-OMe 
3-OH 
3-CF3,4-OH 
2,4,6-Cl3 
2,5-Cl2 
4-Cl 
2,6-Cl2,4-OH 
2,3,5,6-F4,4-OH 
4-NO2 
2,3-Cl2 
3-Me,4-OH 
4-F 
3,5-Cl2,4-OMe 
3,5-F2,4-OMe 
H 
3-N02)4-OH 
3,4-Cl2 
2,4-Cl2 
3-Br,4-OH 
3-C1 
3-F 
4-OH 
3,5-Cl2 
3,4-(OH)2 
3-C1.4-OH 
3F,4-OH 
3,5-F2 
3,5-Cl2,4-OH 
3,5-F2,4-OH 

•Cf inside 

177.234 
181.649 
97.672 
45.891 
40.658 
70.863 

112.597 
197.764 
318.513 
22.842 
24.111 
35.949 
25.280 
82.315 
38.115 
63.337 
193.627 
26.854 
33.713 
22.610 
21.838 

284.909 
56.056 
22.502 

258.102 
83.035 
30.354 
49.832 
21.928 
20.979 
43.727 
35.077 
22.737 
87.982 
21.288 
90.716 
19.326 
21.492 
21.165 
21.572 
20.051 
10.527 
18.586 
16.042 
20.013 
16.051 
9.671 

•C'interact 

-2.181 
-2.451 
1.744 

-8.077 
-7.350 
-3.450 

-10.272 
-1.150 
7.321 

-8.290 
-9.851 
-9.144 

-11.496 
-2.707 
-6.980 
-6.185 
-7.456 
-9.535 
-8.829 

-10.866 
-11.141 

2.430 
-7.186 

-10.203 
-1.846 
-10.763 
-12.382 
-8.134 

-11.159 
-11.402 
-11.667 
-13.486 
-9.333 

-11.663 
-12.367 
-7.190 

-12.484 
-11.490 
-12.607 
-10.850 
-13.435 
-12.037 
-12.933 
-13.989 
-15.402 
-14.886 
-16.736 

Erelax 

28.271 
37.168 
49.283 
32.557 
31.403 
30.901 
22.610 
40.604 
38.191 
22.446 
21.916 
20.404 
18.706 
31.395 
22.072 
36.716 
55.189 
22.226 
25.553 
22.610 
21.843 
34.786 
32.140 
21.765 
39.274 
26.832 
24.717 
32.649 
21.931 
20.984 
30.936 
24.495 
22.516 
36.421 
20.710 
32.866 
19.316 
21.498 
21.165 
21.449 
20.055 
10.529 
18.589 
16.041 
20.014 
16.056 
9.674 

& strain 

148.963 
144.48 
48.388 
13.333 
9.25 

39.962 
89.986 
157.160 
280.321 

0.395 
2.194 
15.544 
6.573 

50.920 
16.043 
26.62 
138.437 
4.628 
8.160 

-0.000227 
-0.00498 
250.122 
23.906 
0.736 

218.827 
56.203 
5.636 
17.183 
-0.002 
-0.00531 
12.790 
10.581 
0.220 

51.56 
0.577 

57.849 
0.00976 

-0.00567 
0.000252 
0.122 

-0.00419 
-0.00256 
-0.00262 
0.000872 

-0.00133 
-0.00523 
-0.00282 

-log(IC50) 

3.00 
3.15 
3.30 
3.45 
3.47 
3.47 
3.70 
3.76 
3.81 
3.83 
3.94 
4.08 
4.13 
4.13 
4.16 
3.24 
3.45 
3.69 
3.80 
3.83 
3.92 
3.99 
4.01 
4.02 
4.12 
4.21 
4.28 
4.28 
4.31 
4.33 
4.33 
4.44 
4.48 
4.51 
4.55 
4.77 
4.92 
4.92 
5.25 
5.59 
5.62 
5.66 
5.70 
5.82 
5.92 
6.17 
7.13 

predicted 

3.77 
3.77 
3.77 
3.77 
3.77 
3.77 
3.88 
3.77 
3.77 
4.02 
3.89 
3.77 
4.22 
3.77 
3.77 
3.77 
3.77 
3.77 
3.77 
4.32 
4.47 
3.77 
3.77 
4.15 
3.77 
4.02 
4.46 
3.77 
4.47 
4.63 
4.27 
4.77 
4.03 
4.27 
4.87 
3.77 
5.10 
4.60 
4.95 
4.42 
5.29 
5.87 
5.30 
5.85 
5.83 
6.10 
7.26 

error 

0.77 
0.62 
0.47 
0.32 
0.30 
0.30 
0.18 
0.01 

-0.04 
0.19 

-0.05 
-0.31 
0.09 

-0.36 
-0.39 
0.53 
0.32 
0.08 

-0.03 
0.49 
0.55 

-0.22 
-0.24 
0.13 

-0.35 
-0.19 
0.18 

-0.51 
0.16 
0.30 

-0.06 
0.33 

-0.45 
-0.24 
0.32 

-1.00 
0.18 

-0.32 
-0.30 
-1.17 
-0.33 
0.21 

-0.48 
0.03 

-0.09 
-0.07 
0.13 

the entire training set (no outliers removed) nearly as 
well as either of the models of Burke and Hopfinger and 
contains fewer descriptors. (If we count each spline-
based term as the equivalent of two linear terms, this 
four-term model performs as well as the six-term Burke 
and Hopfinger model.) None of the Burke and Hopfin­
ger descriptors are chosen in the best-rated models, 
including their molecular shape descriptor V0. This 
suggests the information provided by V0 is replacable 
by receptor surface model descriptors. This suggestion 
is confirmed by calculating the correlation coefficient 
r2 between V0 and interact- They are highly correlated, 
with an r2 of 0.78. That interact rather than V0 is chosen 
by the GFA procedure implies that interact contains 
additional useful information in its variance noncorre-
lated with V0. This demonstrates the ability of receptor 
surface model descriptors to provide a compact repre­
sentation of three-dimensional information for QSAR 
modeling of binding data. 

Perhaps surprisingly, even though GFA is parameter­
ized to favor linear terms over spline terms, the best 
model contained only spline terms. Splines are pre­
ferred if the data contains nonlinear relationships. This 
is understandable if we look at a scatterplot of interact 

and inside versus -log(ICso). These scatterplots are 
shown in Figure 11. The dotted lines show the location 
of the spline know, which is where the spline separates 
the linear region from the nonlinear region. The spline 
term in each case has discovered a linear relationship 
between the points to the left of the knot and the 
activity. Samples to the right of the knot cause the 
spline term to return 0.0. The QSAR model uses spline 
terms to expose, for the most active compounds, the 
linear relationship between the descriptors and activity. 
Without splines, these relationships could have been 
obscured or missed entirely. 

There are other techniques available for nonlinear 
studies; see, for example, the review of Sekulic et al.26 

One possibility is the direct introduction of nonlinearity 
into the PLS process ("nonlinear-PLS").27 Minimally, 
the user can visually inspect the scatterplots of the 
descriptors versus activity and create new descriptors 
(such as quadratic terms) from the nonlinear descrip­
tors. Notwithstanding, there are advantages to our 
approach: the nonlinearities are discovered automati­
cally, which may be difficult to do visually as the 
number of descriptors increases; the spline terms are 
easy to interpret, unlike quadratic terms or PLS latent 
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Figure 11. Scatterplots of the descriptors înteract and £inSide versus -log(IC5o). The dotted lines show the location of the knot; 
the spline term in each case has discovered a linear relationship between the points to the left of the knot and the activity. 
Samples to the right of the knot cause the spline term to return 0.0. In this case, the model for activity uses spline terms that 
reflect relationships present for only the most active compounds. 

variables; and the technique allows but does not require 
the construction of nonlinear models, since the spline 
terms are eliminated if they do not significantly increase 
the performance of the model. 

The receptor surface descriptors and the predictions 
of the best model are shown in Table 4. 

The above results confirm that the receptor surface 
models allow us to model the dopamine /3-hydroxylase 
inhibitor training compounds better, but in most cases 
what we are interested in is predictiveness: how well 
can we estimate the activity of compounds outside the 
training set? This is commonly estimated using cross-
validation and, preferably, randomization testing. 

Cross-validation is done by dividing the training set 
into some number of groups, called cross-validation 
groups. Each group is left out in turn, and the remain­
ing groups are used to build a model of activity. The 
samples in the left-out group are then predicted using 
this model. At the end of the process, all samples have 
been predicted. Commonly, each cross-validation group 
may contain only one sample; this is leave-one-out cross-
validation. In any case, the final estimate is usually 
expressed as a cross-validated r2. 

For the dopamine /3-hydroxylase data set, we divided 
the samples into 16 cross-validation groups. Leaving 

out each group in turn, we used PLS on the data set 
containing the 10 two-dimensional QSAR descriptors 
and the four three-dimensional receptor surface model 
based descriptors. As shown in Figure 10, the nonlinear 
GFA analysis of the data gave a cross-validated r2 of 
0.669; the PLS analysis performed much worse, with a 
cross-validated r2 of 0.471. 

The relatively poor result from PLS is due to the 
nonlinearities in the data variables. A linear technique 
such as PLS cannot discover these values automatically; 
GFA was able to discover them and so create superior 
models and a superior cross-validation score. 

Another technique for validating a model-generation 
process is called a randomization test.28 A randomiza­
tion test is a validation test that answers the question: 
what is the probability that the model construction 
process could have found a model that scored this well 
by random chance? 

The test is conducted as follows. After using some 
model-building process on a data set, the Y variable 
(usually activity) is scrambled and the model-construc­
tion process repeated. This new model, generated 
against the data set with randomized activities, is scored 
against the same randomized data set. Repeating this 
process multiple times gives statistical confidence limits 
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Histogram of Scores of Best Randomized Models 
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Figure 12. Histogram of the results from 20 randomization 
tests. The score for the nonrandom model is shown as a dotted 
line. The results show that the QSAR model for the nonran­
domized data is predictive at >95% confidence level. The 
mean for the randomized experiments is 0.525; the standard 
deviation is 0.132. 

about the quality of the model generated by the process 
against the actual (i.e., unscrambled) data. For ex­
ample, if the original model has a better score than nine 
randomized models, you can state that the original 
model is predictive at the 90% confidence level. If it 
scores better after 19 tests, it is predictive at the 95% 
confidence level. If is scores better after 99 tests, it is 
predictive at the 99% confidence level. 

A randomization test was performed on the dopamine 
/3-hydroxylase inhibitor data set by creating 20 separate 
tables with randomized activity data. For each table, 
a receptor model was created from the three "most 
active" compounds in that table. GFA was run against 
each table, and the correlation coefficient of the top 
model in the population was recorded. A histogram of 
the results is shown in Figure 12. 

The randomization test confirms that the receptor 
surface model is indeed predictive and is not the 
fortuitous result of random chance. This test was 
especially important for this experiment, as the receptor 
surface model was constructed using the three most 
active compounds; a leave-one-out cross-validation pro­
cedure will always leave two of the three most active 
molecules available for receptor surface building and so 
leaves some doubt as to the true lack of bias in the 
procedure. However, the randomization testing, com­
bined with the cross-validation tests, strengthen the 
case that the receptor surface modeling process using 
GFA analysis is indeed discovering predictive QSAR 
models. 

5. Experimental Section 
All experiments were conducted on a Silicon Graphics 

Indigo/R4000, running under the IRK 4.0.5 operating system. 
The receptor surface models described in this paper can each 
be generated in less than a minute. The evaluation of each 
compound with a surface model to generate energy descriptors 
requires only a few seconds per structure. 

6. Conclusions 
A new technique is proposed for using receptor surface 

models in QSAR analysis. This approach is effective 
for the analysis of data sets where activity information 
is available but the structure of the receptor site is 
unknown. An important aspect of receptor surface 

models is their ability to visualize putative receptor/ 
ligand interactions in a qualitative and intuitive man­
ner; this can help guide the chemist in the construction 
and refinement of better receptor surface models, lead­
ing to better quality descriptors and more predictive 
QSAR models. 

Receptor surface models provide compact, quantita­
tive descriptors which capture three-dimensional infor­
mation about a putative receptor site. These descriptors 
may be used alone or in combination with more tradi­
tional 2D descriptors. Such combined QSAR models 
may better reflect the combination of mechanisms 
(transport, binding, absorption, etc.) responsible for drug 
activity. 

A receptor surface model allows higher level chemical 
knowledge to be utilized during both model generation 
and model evaluation. An example of this is the ability 
of the receptor surface model utilize knowledge of 
hydrophobic interactions to better predict the activity 
of a fluorinated steroid which has been difficult to 
predict correctly with other methods. 

Receptor surface models and their descriptors are 
generated quickly. Numerous alternate receptor sur­
face models can be constructed with varying combina­
tions of active structures, surface fit tolerances, and 
alignments. A variable selection technique like GFA 
can be used to suggest which receptor surface model or 
models are likely most informative. GFA also facilitates 
the discovery of nonlinear relationships by allowing 
spline models; this makes explicit the location of the 
discontinuity in the relationship between energy-derived 
terms and activity. Such relationships are not easily, 
discovered using linear modeling tools such as PLS. 

Receptor surface models could be applied against 
more flexible data sets, although in this case the 
selection of an appropriate conformation and alignment 
for the training compounds is likely to be critical for 
quality results. 

Our application of receptor surface models against 
previously described data sets indicates that the ap­
proach can model the data as effectively as established 
techniques. This functionality is available as part of 
Molecular Simulations Incorporated's Cerius2 modeling 
environment.29 
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