Synthesis of Substituted 1-Norbornylamines with Antiviral Activity A. García Martinez,*,† E. Teso Vilar,† A. García Fraile,† S. de la Moya Cerero,† M. E. Rodríguez Herrero,† P. Martinez Ruiz,† L. R. Subramanian,* and A. García Gancedo Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, E-28040 Madrid, Spain, Departamento de Química Orgánica y Biología, Facultad de Ciencias, UNED. Ciudad Universitaria, 28040 Madrid, Spain, Institut für Organische Chemie, Lehrstuhl für Organische Chemie II, Universitat Tübingen, Auf der Morgenstelle 18. D-7400 Tübingen, Germany, and Centro de Investigaciones Biológicas (CSIC), c/Velázquez 144, 28006 Madrid, Spain Received March 9, 1995® The reaction of (\pm)-camphor (7) with triflic anhydride (Tf₂O) yields the bridgehead triflate 8. The Nametkin rearrangement of 8 to 3 was realized by treatment with triflic acid (TfOH). The solvolysis of the bridgehead triflates 3 and 8 in acetonitrile affords the N-acetyl-1-norbornylamines 4 and 9. The Pd(0)-catalyzed hydrogenation of 4 and 9 gives the amides 5 and 10. The corresponding 1-norbornylamines 2 and 13 and the N-ethyl derivatives 1, 6, 11, and 12 were obtained by basic hydrolysis or reduction with LiAlH₄, respectively, of the amides 4, 5, 9, and 10. The antiviral activity of the hydrochlorides of some of the obtained 1-norbornylamines was evaluated against influenza A, herpes simplex 2, and African swine fever virus. Particularly noticeable is the activity of the hydrochlorides of 1 and 11 against influenza A virus (SI (selectivity index) = 1000). #### Introduction 1-Adamantylamine (amantadine) and related compounds such as (α-methyl-1-adamantyl)methylamine (rimantadine) were shown to have prophylactic and therapeutic activity in infections of influenza A viruses.¹ A high activity is also present in 1-apocamphylamine derivatives.² However, progress in the promising field of the 1-norbornylamines is limited by their difficult synthesis.² b.³ We report here on a facile synthesis of substituted 1-norbornylamines and on the antiviral activity of some of them. #### Chemistry The reaction of (\pm) -camphor (7) (Scheme 1) with triflic anhydride (Tf₂O), using 2,6-di-tert-butyl-4-methylpyridine (DTBMP) as base, takes place under Wagner–Meerwein rearrangement, yielding 4-(triflyloxy)camphene (8).⁴ Treatment of 8 with triflic acid (TfOH) in CH₂Cl₂ at 0 °C effects a Nametkin rearrangement to give 1-(triflyloxy)camphene (3).^{5,6} The solvolysis of the bridgehead triflates 3 and 8 in acetonitrile affords the N-acetylamines 4 and 9. The highest yields were obtained in the presence of 2% in volume) of water. It is noteworthy that this variation of the Ritter reaction takes place through very unstable bridgehead carbocations. As byproducts (ca. 10%), the corresponding 1-norbornanoles were formed by S-O cleavage. The amides **4** and **9** were hydrogenated in absolute ether over palladium on activated charcoal (5% Pd) to give a mixture of endo/exo-N-acetyl(2,2,3-trimethyl-1-norbornyl)amine and endo/exo-N-acetyl(2,3,3-trimethyl-1-norbornyl)amine (**5** and **10**), respectively, in which the endo isomer predominates (endo/exo = 74/26 for **5** and 76/24 for **10**) as analyzed by ¹H-NMR and capillary gas chromatography (GC). Abstract published in Advance ACS Abstracts, August 1, 1995. Under the reaction conditions indicated in the literature 16 (60% KOH in 80% aqueous ethanol, 24 h, reflux) for the hydrolysis of N-acetyl-1-norbornylamine, there is no reaction in the cases of 4, 5, 9, and 10; however, the hydrolysis does take place in di(ethylene glycol) (DEG) containing 30% KOH at 180 °C (24 h), yielding the amines 2 and 13. The reduction of the amides 4, 5, 9, and 10 was achieved by reaction with LiAlH₄ to give the N-ethylamines 1, 6, 11, and 12, respectively. ## In Vitro Antiviral Activity The hydrochlorides of the amines 1, 2, 6, and 11-13 were tested for their activity against influenza A, herpes simplex virus type 2 (HSV-2), and African swine fever virus in Vero cells. The results are shown in Tables 1-3 Most compounds have a rather low in vitro therapeutic index (SI) against HSV-2 and African swine fever virus. However, compounds 1 and 11 were found to be very interesting against influenza A virus, showing one of the highest SI values known (SI = 1000) for anti-influenza agents. The anti-influenza activity seems to be favored by the presence of a *gem*-dimethyl group at the C-2 (or C-7)² position of the 1-norbornylamine framework. The *N*-ethyl derivatives are more active than the corresponding amino compounds (see 2 and 6). Further work on the antiviral activity of homochiral 1-norbornylamines is in progress. ### Conclusions We have succeeded in the synthesis of substituted 1-norbornylamines starting from the readily available (\pm) -camphor (7). Some of these compounds show a very high and promising activity against influenza A virus. ## **Experimental Section** The ⁴H- and ⁴³C-NMR spectra were recorded on a Bruker AC 250 spectrometer with tetramethylsilane as an internal standard. Mass spectra (MS) were recorded using electron ^o Universidad Complutense. UNED. [§] Universitat Tübingen. Centro de Investigaciones Biológicas. #### Scheme 1a ^a (A) CH₃CN/Et₃N/H₂O, 180 °C, 48 h (72-76%); (B) LiAlH₄/Et₂O, 20 °C, 48 h (ca. 80%); (C) H₂/Pd(C)/Et₂O, room temperature, 3 atm, 48 h (98%); (D) 30% KOH/DEG, 180 °C, 24 h (ca. 95%). **Table 1.** Biological Data against Influenza A^a | compound | $\mathrm{MIC}_{50}^{b} (\mu\mathrm{g/mL})$ | $\mathrm{MTC}_{50}{}^{c} \left(\mu\mathrm{g/mL}\right)$ | SI^d | |----------------|---------------------------------------------|---------------------------------------------------------|-----------------| | 1 | 0.1 | 100 | 1000 | | 2 | 5 | 50 | 10 | | 6 | < 10 | 100 | >10 | | 11 | 0.1 | 100 | 1000 | | 1 2 | 5 | 200 | 40 | | 13 | 1 | 100 | 10 | | amantadine•HCl | 0.5 | 300 | 600 | "Test made with MDCK cells from dog kidney. b Minimum inhibitory concentration required to effect a 50% reduction in virus yield. c Minimum toxic concentration affecting 50% of the cells. d Selectivity index: Ratio of MTC50 to MIC50. Table 2. Biological Data against African Swine Fever Virus^a | compound | $\mathrm{MIC}_{50}{}^{b} \left(\mu\mathrm{g/mL}\right)$ | ${ m MTC}_{50}{}^c (\mu { m g/mL})$ | SI^d | |----------|---------------------------------------------------------|--------------------------------------|-----------------| | 1 | 30 | 400 | 13 | | 2 | 25 | 200 | 8 | | 6 | 25 | 300 | 12 | | 11 | 30 | 300 | 10 | | 12 | 100 | 300 | 3 | | 13 | 30 | 300 | 10 | ^a Test made with monkey kidney cells. ^b See footnotes to Table 1. ^c See footnotes to Table 1. ^d See footnotes to Table 1. ionization (EI) on a Varian MAT-711 spectrometer. Infrared (IR) spectra were taken using a Perkin-Elmer 257 spectrometer. (±)-Camphor was purchased from commercial suppliers and used without further purification. Reaction solvents were distilled from an appropriate drying agent before use. **Table 3.** Biological Data against HSV- 2^{α} | compound | $\mathrm{MIC}_{50}^{b} (\mu\mathrm{g/mL})$ | ${ m MTC}_{50}{}^c (\mu { m g/mL})$ | SI^d | |------------|---------------------------------------------|--------------------------------------|-----------------| | 1 | 100 | 400 | 4 | | 2 | 25 | 200 | 8 | | 6^e | 25 | 300 | 12 | | 11^e | 75 | 300 | 4 | | 1 2 | 300 | 300 | 1 | | 13 | 50 | 300 | 6 | ^a Test made with monkey kidney cells. ^b See footnotes to Table 1. ^c See footnotes to Table 1. ^d See footnotes to Table 1. ^e Total inhibition of virus growth at 200 µg/mL. 1- and 4-(Triflyloxy)camphene (3 and 8). These compounds were prepared according to published methods⁴⁻⁶ from (\pm) -camphor. N-Acetyl-1- and N-Acetyl-4-camphenylamine (4 and 9). General Procedure. A solution of the bridgehead triflate 3 or 8 (3.50 mmol) and triethylamine (1.80 g, 18 mmol) in CH₃-CN/H₂O (98:2, v/v) (10 mL) was heated in a sealed tube at 180 °C for 48 h. The tube was then cooled and opened, and the solution was basified with saturated NaHCO $_{\!3}$ (100 mL). The mixture was extracted with dichloromethane (3 \times 50 mL), washed with saturated NaCl (5 \times 20 mL) and water (20 mL), and dried (MgSO₄). After removal of the solvent, the residue was analyzed by GC (OV-101, 25 m, 120 °C), showing the presence of ca. 75% of 4 or 9 and ca. 10% of the corresponding bridgehead alcohol.4 Pure 4 and 9 were isolated by elution chromatography (silica gel, first CH₂Cl₂ and then Et₂O). N-Acetyl-1-camphenylamine (4): yield 0.48 g (72%); mp 124-126 °C; IR 3300 (NH), 1650 (C=O), 1540 (NH), 1360 (CH₃-CO), 870 (=CH₂) cm⁻¹; MS (EI, 100 eV) m/z (relative intensity) 193 (M*, 63), 178 (M* + 15, 64), 150 (M* + 43, 81), 136 (100), 108 (78), 43 (81); 14-NMR (250 MHz, CDCl₃) δ 5.55 (bs, 1H, NH), 4.76 (s, 1H, =CH), 4.56 (s, 1H, =CH), 2.59 (bs, 1H), 1.98 (s, 3H, CH₃CO), 1.95 - 1.80 (m, 4H), 1.35 - 1.25 (m, 2H), 1.18 (s, 3H, CH₃), 1.05 (s, 3H, CH₃); 13C-NMR (62 MHz, CDCl₃) δ 169.84 (CO), 163.78 (C-3), 100.48 (=CH₂), 67.18 (C-1), 45.14 (C-2), 43.57 (C-4), 40.31 (C-7), 29.52 (C-5), 27.80 (C-6), 26.25 (CH₃), 24.22 (CH₃CO), 23.86 (CH₃). Anal. (C₁₂H₁₈NO) C. H. N *N*-Acetyl-4-camphenylamine (9): yield 0.51 g (76%): mp 60~62 °C; IR 3300 (NH), 1665 (C=O), 1500 (NH), 1340 (CH₃-CO), 870 (=CH₂) cm⁻¹; MS (EI, 100 eV) m/z (relative intensity) 193 (M°, 49), 178 (M° − 15, 25), 150 (M° − 43, 97), 136 (60), 108 (100), 43 (60); ¹H-NMR (250 MHz, CDCl₃) δ 6.20 (bs, 1H, NH), 4.75 (s, 1H, =CH), 4.55 (s, 1H, =CH), 2.13−1.34 (m, 7H), 1.91 (s, 3H, CH₃CO), 1.00 (s, 6H, 2CH₃); ¹³C-NMR (62 MHz, CDCl₃) δ 169.60 (CO), 163.63 (C-3), 97.79 (=CH₂), 66.70 (C-4), 45.19 (C-1), 42.22 (C-2), 40.60 (C-7), 32.71 (C-5), 29.43 (CH₃), 26.13 (CH₃), 24.25 (CH₃CO), 24.12 (C-6). Anal. (C₁₂H₁₆-NO) C. H. N. endo- and exo-N-Acetyl(2,2,3-trimethyl-1-norbornyl)amine (5) and endo- and exo-N-Acetyl(2,3,3-trimethyl-1-norbornyl)amine (10). General Procedure. The substrate 4 or 9 (1.03 mmol) was hydrogenated with 0.04 g of palladium on activated charcoal (5% Pd) in absolute ether (50 mL) at 25 °C and 3 atm of pressure of hydrogen for 48 h in a glass bottle being shaken at about 120 strokes per minute. After filtration and elimination of the ether, the reaction mixture was analyzed by GC (OV-101, 25 m, 120 °C). The configuration of the products was elucidated by ¹H- and ¹³C-NMR¹¹ from the mixture of endo and exo compounds. endo/exo-N-Acetyl(2,2,3-trimethyl-1-norbornyl)amine (5): yield 0.20 g (98%) as a mixture of endo/exo isomers (74/ 26); IR 332() (NH), 1690 (C=O), 1500 (NH), 1360 (CH₃CO) cm⁻¹: MS (El. 100 eV) m/z (relative intensity) 195 (M⁺, 3). $180 \, (\mathrm{M}^{+} - 15, \, 2), \, 166 \, (\mathrm{M}^{+} - 29, \, 3), \, 152 \, (\mathrm{M}^{+} - 43, \, 2), \, 124$ (100), 82 (72); HRMS (EI, 100 eV) M⁻ found 195.1623, calcd 195.1623. endo-5: ¹H-NMR (250 MHz, CDCl₃) δ 5.57 bs. 1H, NH), 2.20-1.20 (m, 8H), 1.96 (s, 3H, CH₃CO), 0.91 (s, 3H, CH_3), 0.87 (s. 3H, CH_3), 0.84 (d. 3H, J = 6 Hz. endo- CH_3); ¹³C-NMR (62 MHz, CDCl₃) δ 169.73 (CO), 67.97 (C-1), 45.32 (C-1) 4), 40.74 (C-7), 40.16 (C-2, C-3), 29.10 (C-6), 28.89 (CH₃), 24.48 (CH₃CO), 21.35 (C-5), 19.31 (CH₃), 11.97 (endo-CH₃). exo-5: ⁴H-NMR (250 MHz, CDCl₃) & 5.57 (bs. 1H, NH), 2.20+1.20 m, 8H), 1.96 (s, 3H, CH₃CO), 1.05 (s, 3H, CH₃), 0.88 (s, 3H, CH₃), 0.84 (d, 3H, J = 6 Hz, exo-CH₃); ¹³C-NMR (62 MHz, $CDCl_3 (\delta \ 169.88 \ (CO), \ 68.00 \ (C-1), \ 48.92 \ (C-4), \ 42.87 \ (C-3),$ 42.37 (C-2), 38.64 (C-7), 30.20 (C-6), 28.80 (C-5), 26.18 (CH₃). 24.44 (CH₃CO), 21.32 (CH₃), 16.66 (exo-CH₃) endo/exo-N-Acetyl(2,3,3-trimethyl-1-norbornyl)amine (10): yield 0.20 g (98%) as a mixture of *endo/exo* isomers (76/ 24); IR 3300 (NH), 1650 (C=O), 1550 (NH), 1350 (CH₃CO) cm⁻¹; MS (EI, 100 eV) m/z (relative intensity) 195 (M⁺, 2), $180\,(M^+ - 15, 5),\, 166\,(M^- - 29, 3),\, 152\,(M^- - 43, 2),\, 138\,(10),\,$ 124 (100), 82 (91), 43 (14); HRMS (EI, 100 eV) M" found 195.1623, calcd (195.1623). endo-10: ¹H-NMR (250 MHz, CDCl₃) δ 5.70 (bs. 1H, NH), 2.25=1.40 (m. 8H), 1.94 (s. 3H. CH_3CO), 0.99 (s, 3H, CH_3), 0.80 (s, 3H, CH_3), 0.78 (d, 3H, J =7 Hz, endo-CH₃); ¹³C-NMR (62 MHz, CDCl₃) δ 169.68 (CO). 65.67 (C-1), 46.24 (C-2), 45.93 (C-4), 39.92 (C-7), 37.08 (C-3). 31.87 (CH₃), 24.72 (C-6), 24.32 (C-5), 24.12 (CH₃CO), 21.62 (CH₃), 8.03 (endo-CH₃). **exo-10**: ¹H-NMR (250 MHz, CDCl₃) δ 6.10 (bs. 1H, NH), 2.25-1.40 (m, 8H), 1.95 (s, 3H, CH₃CO), 0.99 (s, 3H, CH₃), 0.90 (s, 3H, CH₃), 0.73 (d, 3H, J = 7 Hz. exo-CH₃% ¹³C-NMR (62 MHz, CDCl₃ t δ 169.88 (CO), 65.84 (C-1), 48.12 (C-4), 46.03 (C-2), 40.47 (C-3), 39.65 (C-7), 34.51 (C-6, 27.79 (CH₃), 25.16 (C-5), 24.93 (CH₃), 23.42 (CH₃CO), 12.37 N-Ethyl-1- and N-Ethyl-4-camphenylamine (1 and 12). endo/exo-N-Ethyl(2,2,3-trimethyl-1-norbornyl)amine (6) and exo/endo-N-Ethyl(2,3,3-trimethyl-1-norbornyl)amine (11). General Procedure. The corresponding N-acetyl derivative (1.03 mmol) in absolute ether (5 mL) was added through a dropping funnel to lithium aluminum hydride (0.12 g, 3.10 mmol) in absolute ether (20 mL) at 25 °C. After stirring at room temperature for 48 h, the mixture was poured into 100~mL of ice- water and extracted with dichloromethane (3 \times 30 mL). The amines were extracted with 10% aqueous HCl (3 \times 30 mL). The aqueous solution was basified with 30% aqueous NaOH, and the mixture was extracted with dichloromethane (3 \times 30 mL), washed with saturated NaCl (2 \times 20 mL) and water (20 mL), and dried (KOH). After evaporation of the solvent, the N-ethylamines were purified by crystallization of their hydrochlorides from MeOH/Et₂O. **N-Ethyl-1-camphenylamine** (1): yield 0.14 g (76%): IR 3350 (NH), 1660 (C=C), 1150 (CN), 880 (=CH₂) cm⁻¹; MS (E1, 100 eV) m/s (relative intensity) 179 (M⁺, 62), 164 (M⁺ = 15, 93), 150 (M⁺ = 29, 100), 136 (M⁺ = 43, 48), 122 (M⁺ = 57, 25), 110 (65); HRMS (EI, 100 eV) M⁺ found 179,1672, calcd 179,1674; ¹H-NMR (250 MHz, CDCl₃) δ 4.50 (s, 1H), 4.35 (s, 1H), 2.62 (dq. J = 8 Hz, J = 3 Hz, 2H, CH₂N), 2.40 (m, 1H), 2.20=1.60 (m, 7H), 1.08 (t, J = 8 Hz, 3H, CH₂CH₃), 1.10 (s) 3H, CH₃ ϵ , 1.02 (s) 3H, CH₄ ϵ , ¹³C-NMR (62 MHz, CDCl₃) 166.46 (C-3), 99,66 (=CH₂), 70,44 (C-1), 44.54 (C-4), 40.39 (C-7), 38.94 (CH₃CH₃), 37.68 (C-2), 30.06 (C-6), 26.73 (C-5), 26.65 (CH₃), 25.92 (CH₃), 16.48 (CH₂CH₃). **N-Ethyl-4-camphenylamine** (12): yield 0.14 g (76%); IR 3350 (NH), 1660 (C=C), 1140 (CN), 890 (=CH₂ (cm⁻¹; MS+EI, 100 eV (m/z) (relative intensity) (179 (M⁺, 50), 164 (M⁺ = 15, 80), 150 (M⁺ = 29, 100), 136 (M⁺ = 43, 33), 122 (M⁺ = 57, 23), 110 (60); HRMS (EI, 100 eV (M⁺ found 179.1672, calcd 179.1674; ¹H-NMR (250 MHz, CDCl₃+ δ -4.72, (s, 1H. =CH+, 4.65 (s, 1H. =CH+, 2.65 (m, 2H, CH₂N), 1.83=-1.20 (m, 8H+, 1.14 (t, 3H, J = 6 Hz, CH₂CH₃), 1.10 (s, 3H, CH₃), 1.03 (s, 3H, CH₃), ¹³C-NMR (62 MHz, CDCl₃+ δ -164.82 (C-3), 97.66 (=CH₂), 70.76 (C-4), 44.98 (C-1), 42.11 (C-2), 39.88 (C-7), 38.45 (C-5), 33.54 (CH₂CH₃), 29.04 (CH₂), 26.04 (CH₃), 24.47 (C-6), 45.85 (CH₂CH₃). endo/exo-N-Ethyl(2,2,3-trimethyl-1-norbornyl)amine (6): yield 0.14 g (76%) as a mixture of endo/exo isomers (74/26); iR 3300 (NH), 1460, 1140 (CN) cm 1; MS (EI, 100 eV) m z (relative intensity) 181 (M $_{\odot}$, 0.4), 166 (M $_{\odot}$ = 15, 2), 152 (M $29, 3), 138 \, (M^{\circ} - 43, 11), 124 \, (M^{\circ} - 57, 19), 110 \, (20), 82 \, (100);$ HRMS (EI, 100 eV) M = 15 found 166.1593, calcd 166.1596. endo-6: ¹H-NMR (250 MHz, CDCl₃) δ 2.75 (m, 1H, CH₂N), 2.59 $(m, 1H, CH_2N), 1.80 (bs, 1H), 1.70-1.38 (m, 8H), 1.09 (t. 3H)$ $J = 6 \text{ Hz}, \text{CH}_2\text{C}H_3$, 0.90 (s. 3H, CH₃), 0.84 (s. 3H, CH₄), 0.82 (d, 3H, J = 7 Hz, endo-CH₃); ¹⁸C-NMR (62 MHz, CDCl₃) δ 70.69 (C-1), 46.43 (C-4), 40.44 (C-7), 40.11 (C-3), 38.92 (CH_2CH_3) . 38.91 (C-2), 28.29 (CH₃), 27.49 (C-6), 21.56 (C-5), 19.60 (CH₃). 16.51 (CH₂CH₃), 12.01 (endo-CH₃). **exo-6:** H-NMR (250 MHz. CDCl₃ ε δ 2.75 (m, 1H, CH₂N), 2.59 (m, 1H, CH₂N), 1.80 (bs. 1H), 1.70-1.38 (m, 8H), 1.09 (t, 3H, J = 6 Hz, CH_2CH_3), 1.01 (s, 3H, CH₃), 0.85 (s, 3H, CH₃), 0.82 (d, 3H, J = 7 Hz. exo-CH₃); ${}^{13}\text{C-NMR}$ (62 MHz, CDCl₃) δ 70.40 (C-1), 50.15 (C-4). 42.27 (C-3), 41.69 (C-2), 39.27 (C-7), 38.48 (CH₂CH₃), 30.54 (C-6), 27.17 (C-5), 26.81 (CH₃), 20.58 (CH₃), 16.59 (exo-CH₃). 16.51 (CH₂CH₃) endo/exo-N-Ethyl(2,3,3-trimethyl-1-norbornyl)amine (11): yield $0.15 \text{ g} \cdot 81\%$ as a mixture of endo/exo isomers $\cdot 76$ 24); IR 3300 (NH), 1460, 1140 (CN (cm⁻¹; MS (EI, 100 eV) m / 2 (relative intensity) $181 (M^+, 1), 166 (M^+ - 15, 7), 152 (M^+)$ $29,\,4),\,138\,(M^+=43,\,19),\,124\,(M^+=57,\,7),\,110\,(51),\,82\,(100);$ HRMS (EI, 100 eV) M⁺ = 15 found 166.1593, calcd 166.1596. endo-11: ${}^{1}\text{H-NMR}$ (250 MHz, CDCl₃) δ 2.62 (q, 2H, J = 6 Hz. CH_2N), 1.80+1.15 (m. 9H), 1.12 (t, 3H, J = 6 Hz, CH_2CH_3). 0.94 (s, 3H, CH₃), 0.80 (s, 3H, CH₃), 0.75 (d, 3H, J = 7 Hz. endo-CH₃); ¹³C-NMR (62 MHz, CDCI₃) δ 69.17 (C-1), 46.05 (C 21. 45.99 (C-4), 39.63 (C-7), 37.99 (CH₂CH₃), 37.36 (C-3), 31.97 (CH_3) , 25.32 (C-6), 24.29 (C-5), 21.68 (CH_3) , 15.66 (CH_2CH_3) , 7.68 (endo-CH₃). exo-11: ¹H-NMR (250 MHz, CDCl₃) δ 2.56 $(q, 2H, J = 6 Hz, CH_2N), 1.80-1.15 (m, 9H), 1.09 (t, 3H, J = 6)$ 6 Hz, CH₂CH₂), 0.97 (s, 3H, CH₃), 0.86 (s, 3H, CH₃), 0.78 (d. 3H, J = 7 Hz, exo-CH₃); ¹³C-NMR (62 MHz, CDCl₃) δ 68.61 (C-1), 47.79 (C-2), 46.28 (C-4), 40.30 (C-3), 39.68 (C-7), 38.31 (CH_2CH_3) , 33.23 (C-6), 27.99 (CH_3) , 25.02 (CH_3) , 24.83 (C-5). 15.46 (CH₂CH₃), 11.68 (exo-CH₃). endo/exo-(2,2,3-Trimethyl-1-norbornyl)amine and endo/exo-(2,3,3-Trimethyl-1-norbornyl)amine (2 and 13). General Procedure. A mixture of the corresponding N-acetylamine (5 or 10) (0.20 g. 1.03 mmol/and KOH (0.40 g. 8 mmol/in difethylene glycol) (2 mL) was heated for 24 h in a sealed tube at 180 °C. After cooling, the tube was opened and the mixture poured into water (50 mL). The mixture was extracted with dichloromethane (3 \times 30 mL) and washed with 10% aqueous HCl (3 \times 30 mL). The aqueous solution was washed with dichloromethane (3 \times 30 mL) and basified with 30% aqueous NaOH. The mixture was extracted with dichloromethane (3 \times 30 mL), washed with saturated NaCl (2 \times 10 mL) and water (20 mL), and dried (KOH). After evaporation of the solvent, the amines were purified by crystallization of their hydrochlorides from MeOH/Et₂O. endo/exo-(2,2,3-Trimethyl-1-norbornyl)amine (2): yield 0.15 g (95%) as a mixture of endo/exo isomers (74/26); IR 3250 (NH), 1475, 1600 (NH₂), 1060 (CN) cm⁻¹; MS (EI, 100 eV) m/z relative intensity) 153 (M⁻, 3), 138 (M⁻ – 15, 18), 124 (M⁻ – 29, 32 (110 (M⁻ – 43, 18), 96 (M⁻ – 57, 22), 81 (100), 40 (22); HRMS (EI, 100 eV) M⁻ – 15 found 138.1280, calcd 138.1283. endo-2: ¹H-NMR (250 MHz, CDCl₃) ∂ 1.82−1.18 (m, 10H), 0.87 (s, 3H, CH₃), 0.84 (d, 3H, J = 7 Hz, endo-CH₃), 0.74 (s, 3H, CH₃); ¹³C-NMR (62 MHz, CDCl₃) ∂ 66.50 (C-1), 45.51 (C-4), 44.12 (C-7), 40.59 (C-3), 38.21 (C-2), 32.45 (C-6), 28.46 (CH₃), 21.97 (C-5); 18.00 (CH₃), 12.31 (endo-CH₃). exo-2: ¹H-NMR (250 MHz, CDCl₃) ∂ 1.82−1.18 (m, 10H), 0.92 (s, 3H, CH₃), 0.87 (s, 3H, CH₃), 0.83 (d, 3H, J = 7 Hz, exo-CH₃); ¹³C-NMR (62 MHz, CDCl₃) ∂ 66.38 (C-1), 48.95 (C-4), 42.77 (C-3), 41.65 (C-7), 40.59 (C-2), 32.16 (C-6), 29.80 (C-5), 24.97 (CH₃), 20.83 (CH₃), 16.76 (exo-CH₃). endo/exo-(2,3,3-Trimethyl-1-norbornyl)amine (13): yield 0.15 g (95%) as a mixture of endo/exo isomers (76/24); IR 3350 (NH_2) , 1470, 1620 (NH_2) , 1060 (CN) cm⁻¹; MS (EI, 100 eV) m/z relative intensity: $153 \, (M^{+}, 1)$, $138 \, (M^{+} - 15, 13)$, $124 \, (M^{+} - 15, 13)$ 29, 6), $110 (M^2 - 43, 3)$, $96 (M^2 - 57, 4)$, 81 (100), 40 (2); HRMS EI. 100 eV) M⁻ - 15 found 138.1280, calcd 138.1283. endo-13: ${}^{1}\text{H-NMR}$ (250 MHz, CDCl₃) ∂ 1.70–1.10 (m, 10H), 0.96 (s, 3H, CH_3 , 0.80 d, 3H, J = 7 Hz, $endo-CH_3$, 0.79 (s, 3H, CH_3); ¹³C-NMR (62 MHz, CDCl₃) δ 64.94 (C-1), 50.41 (C-2), 46.59 (C-4), 45.06 (C-7), 37.93 (C-3), 31.97 (CH₃), 27.01 (C-6), 25.82 (C-5), 21.68 (CH₃), 7.51 (endo-CH₃), exo-13: ¹H-NMR (250 MHz, $CDCl_3$) $\delta 1.70+1.10$ (m, 10H), 0.97 (s, 3H, CH₃), 0.86 (s, 3H, CH₃ (, 0.83 (d, 3H, J = 7 Hz, exo-CH₃); ¹³C-NMR (62 MHz, CDCl₃(3) 64.45 (C-1), 50.62 (C-2), 47.09 (C-4), 42.34 (C-7), 40.46 (C-3), 37.71 (C-6), 27.88 (CH₃), 25.23 (C-5), 24.61 (CH₃), 11.84 (exo-CH₃). Amine Hydrochlorides. General Procedure. A solution of the amine (1.00 mmol) in ether (50 mL) was saturated with HCl gas at $0-5\,^{\circ}\mathrm{C}$ with stirring. The resulting precipitate was collected by filtration and recrystallized from MeOH/Et₂O. The chromatographic (GLC) purity of the bridgehead amines, prepared by neutralization of the corresponding hydrochlorides, was ≥98%. In the case of dirty injection blocks, decomposition of the amines was observed. Determination of the Antiviral Activity. Vero cells were infected with the virus at a multiplicity of infection of 0.1 PFU (plaque-forming units) per cell. After 1.30 h of adsorption, the cells were incubated to 37 °C in DMEM containing 2% newborn calf serum. The cells were harvested 72 h after infection (100% CPE (cytophatic effects) of virus control), and virus titor was measured by plaque assay. As reference standard was employed amantadine hydrochloride. **Acknowledgment.** We thank the DGICYT (Spain) for financial support of this work (Grant PB90-0070). ## References - (1) For reviews: see: (a) Diana, G. D.; Pancic, F.; Chemotherapy of Virus Diseases. Angew. Chem. 1976, 88, 458; Angew. Chem. Int. Ed. Engl. 1976, 15, 410-416. (b) Galbraith, A. W. Influenza-Recent Developments in Prophylaxis and Treatment. Br. Med. Bull. 1985, 41, 381-385. (c) Swallow, D. L.; Kampfner, G. L. The Laboratory Selection of Antiviral Agents. Br. Med. Bull. 1985, 41, 322-332. (d) De Clercq, E.; Walker, R. T. Antiviral Drug Development. A Multidisciplinary Approach; NATO ASI Series, Series A: Life Sciences: Plenum: New York, 1988; Vol. 143, p. 41. For the mechanism of the antiviral activity, see: (ef. Stolyarov, Z. Y.; Fedorchuk, A. G.; Prishchepa, L. A. Mechanism Responsible for the Antiviral Activity of Rimantadine. Khim. Pharm. Zh. 1993, 27, 4-8. - (2) (a) Roos, J. T.; Williams, D. R. Synthesis and Evaluation of Several Compounds with Potential Antiviral Activity. J. Inorg. Nucl. Chem. 1977, 39, 1294–1297. (b) May, P. J. (Glaxo Lab.). Borane Derivatives. Ger. Offen. 2410492, 1975. - (3) Nickom, A.; Nishida, T.; Frank, J.; Muneyuki, R. Synthesis of the Bridgehead Ketol, 3,3-Dimethyl-1-hydroxynorbornan-2-one. J. Org. Chem. 1971, 36, 1075-1078. - (4) Martínez, A. G.; Teso, E.; García, A.; Ruano, C.; Soto, J.; Subramanian, L. R.; Hanack, M. Synthese von Brückenkopf-Derivativen: 1. Herstellung von Substituierten Bicyclo-[2.2.1]heptan-1-olen und Zugehörigen Trifluormethansulfonaten. Synthesis of Bridgehead Derivatives. 1. Preparation of Substituted Bicyclo[2.2.1]heptan-1-ols and the Corresponding Trifluoromethanesulfonates.) Synthesis 1987, 321-323. (5) Martínez, A. G.; Teso, E.; Osío, J.; Manrique, J.; Rodríguez, E.; - (5) Martínez, A. G.; Teso, E.; Osío, J.; Manrique, J.; Rodríguez, E.; Hanack, M.; Subramanian, L. R. Enantiospecific Synthesis of 3-Substituted Alkylidenecyclopentanes. *Tetrahedron Lett.* 1992, 33, 607-608. - 6) Martínez, A. G.; Teso, E.; Gómez, M.: Ruano, C. Mechanismus der Reaktion von Trifluormethansulfonsäureanhydrid mit Ketonen: Umsetzung mit Campher. Mechanism of the Reaction of Trifluoromethanesulfonic Anhydride with Ketones—Reaction with Camphor. Chem. Ber. 1985, 118, 1282-1288. - [7] Martínez, A. G.; Alvarez, R. M.; Teso, E.; García, A.; Hanack, M.; Subramanian, L. R. An Improved Modification of Ritter Reaction. *Tetrahedron Lett.* 1989, 30, 581-582. - Reaction. Tetrahedron Lett. 1989, 30, 581-582. (8) (a) Olah, G. A.; Lee, C. S.; Prakash, G. K. S.; Moriarty, R. M.; Rao, M. S. C. Friedel-Crafts Alkylation of Aromatics with 1-Chloronorbornane, 3-Halonoradamantane, and Fluorocubane via Their Reactive sp³-Hybridized Bridgehead Carbocations. J. Am. Chem. Soc. 1993, 115, 10728-10732. (b) Martínez, A. G.; Marín, M. G.; Subramanian, L. R. Solvolisis de derivados cabeza de puente: I: Triflatos de canfenilo-1 y canfenilo-4. (Solvolysis of bridgehead derivatives. I. 1-Camphenyl and 4-camphenyl triflates.) An. Quim. (1968-1979) 1978, 74, 972-974. - (9) Sonoda, T.; Martínez, A. G.; Hanack, M.; Subramanian, L. R. On a new Mechanism of S-O Scission in the Solvolysis of Aryl Triflates. Croat. Chem. Acta 1992, 65, 585-592. - (10) Bartlett, P. D.; Knox, L. H. Bicyclic Structures Prohibiting the Walden Inversion. Replacement Reactions in 1-Substituted 1-Apocamphanes J. Am. Chem. Soc. 1939, 61, 3184-3192. - (11) Brecknell, D. J.; Carman, R. M.: Greenfield, K. L. Halogenated Terpenoids. XXI. Concerning endo-2-Chloro-2,3,3-trimethylbicyclo[2,2,1]heptane (endo-2-Chloro-2,3,3-trimethylnorbornane: endo-3-chlorocamphane). Aust. J. Chem. 1984, 37, 1075—1080. JM950178+