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Introduction. Aspartic acid proteases are a widely 
distributed family of enzymes that play important roles 
in fungi, plants, vertebrates, and retroviruses.1 The 
aspartic acid proteases (characterized by having two 
aspartic acid residues in the active site) catalyze the 
hydrolysis of amide bonds with specificity for peptide 
bonds located between large hydrophobic residues. A 
number of aspartic acid proteases are important phar­
maceutical targets, including renin,2 cathepsin D,3 the 
human immunodeficiency virus (HIV) protease,4,5 hu­
man t-cell leukemia virus type 1 (HTLV-1) protease,6 

and Candida albicans aspartic acid protease.7 

Potent inhibitors of these enzymes can be readily 
accessed by the incorporation of an isostere that mimics 
the geometry of the tetrahedral intermediate in place 
of the scissile bond of the peptide substrate.2b,s Unfor­
tunately, these inhibitors have limited therapeutic 
utility, due to the poor oral availability and/or short-
circulating half-lives that result from their peptidic 
nature. For this reason, there has been a great deal of 
work toward the development of aspartic acid protease 
inhibitors that display nonpeptide functionality about 
the isostere of the tetrahedral intermediate.2,4 In order 
to generate a therapeutically useful inhibitor the com­
pound must have both high affinity and favorable 
pharmokinetic properties. The combination of these two 
requirements render an a priori design of inhibitor 
structure based on the peptide substrate very challeng­
ing. Therefore, the identification of potent and bioavail-
able inhibitors has required the time-consuming syn­
thesis and evaluation of a large number of different 
nonpeptidic compounds. 

Herein we report a general and high-yielding solid-
phase method for the rapid display of nonpeptide 
functionality about molecules incorporating the (hy-
droxyethyl)amine and (hydroxyethyl)urea isosteres.9 Of 
the possible isosteres upon which to construct a library 
of potential nonpeptide inhibitors, the (hydroxyethyl)-
amine and (hydroxyethyl)urea isosteres were selected 
for two reasons. First, several orally available HIV-l 
protease inhibitors that incorporate these isosteres have 
been identified (Figure l),4 including compounds that 
are currently in clinical trials for the treatment of HIV 
infection. Second, we believed that solid-phase methods 
could be developed to display a wide range of diverse 
functionality about these isosteres. 

Initially we chose to display functionality from scaf­
fold l,10 which provides access to known HIV-l protease 
inhibitors. The scaffold was first coupled to dihydro-
pyran functionalized polystyrene support by employing 
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Figure 1. 
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pyridinium p-toluenesulfonate in 1,2-dichloroethane 
(Scheme l).11 The reaction progress was qualitatively 
monitored by IR by following the appearance of the 
azide stretch. The exact loading level of the resin was 
based on the mass balance of recovered alcohol 1, which 
was obtained by subjecting a portion of the resin 2 to 
cleavage by 95:5 trifluoroacetic acid (TFA)/water.12 

The synthesis was initiated by displacement of the 
primary tosyl alcohol with either functionalized or 
unfunctionalized primary or secondary amines, includ­
ing amines found in known HIV-l protease inhibitors 
(Scheme 2 , 3 a - h and 4i). After coupling of the primary 
amines, the resulting secondary amine products 3a—g 
can be converted to ureas by reaction with isocyanates 
(4a—f) or by stepwise treatment with triphosgene fol­
lowed by amine addition (4g).13,14 The ability to employ 
either a preformed isocyanate or the stepwise procedure 
to synthesize the ureas provides ready incorporation of 
functionality from both commercially available isocy­
anates and the even larger pool of commercially avail­
able amines. Notably, substituted ureas have been 
employed successfully at this site in a number of 
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aspartic acid protease inhibitors.4h i r ' In addition, acyl 
chlorides can be employed to provide amides; for ex­
ample, the piperazine derivative 3h was acylated with 
butyryl chloride to provide 4h (Scheme 2). 

The synthesis about the Pi site of the inhibitor was 
initiated by reduction of the azide using thiophenol/ 
EtsN/SnCk (4:5:1) as described by Bartra and co­
workers (Scheme 3).16 The reduction was relatively 
rapid (<4 h a t room temperature), and the reaction 
progress was easily monitored by IR by following the 
disappearance of the azide stretch. Although a number 
of alternative methods are available for reducing azides 
to amines, most of these methods are heterogeneous in 
nature, are slow, and/or require protic solvents that do 
not effectively solvate the polystyrene resin. 

The resulting primary amine (5) can then be acylated 
to provide carbamate or amide products that can be 
further derivatized. For example, the coupling of 5a 
with N-Fmoc-AsnlTrtt-OH under PyBOP/HOBt coupling 
conditions17 was followed by removal of the Fmoc 
protecting group with 207i piperidine in DMF to provide 

6a (Scheme 3). Subsequently, the free amine was 
coupled with the pentafluorophenyl ester of quinaldic 
acid.18'19 The concomitant removal of the trityl protect­
ing group and the cleavage of the material from the solid 
support with 95:5 TFA/water for 20 min12 provided the 
HIV-1 protease inhibitor 7a (Figure 2), developed by 
Monsanto,41' in 85% overall yield for the six-step process. 
To demonstrate the versatility of the method, com­
pounds 7b and 7c were prepared by incorporating the 
sterically hindered amino acid, valine, and the func-
tionalized amino acid, tyrosine, in place of asparagine 
in 83% and 74% overall yields, respectively. Alterna­
tively, reaction of amines 5 d - i with the activated 
N-succinimidyl carbonate of 3(S)-hydroxytetrahydrofu-
ran provides carbamates 7 d - i . 2 " The tetrahydrofuran 
urethane has been shown to bind tightly to the S2 region 
of HIV-1 protease.40-21 Cleavage of the material from 
the solid support with 95:5 TF A/water for 20 min12 

provided analytically pure derivatives 7 d - i after chro­
matography in 47-86% overall yield based on the initial 
loading of alcohol 1. 
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F i g u r e 2. (Hydroxyethyl)amine and (hydroxyethyl)urea derivatives synthesized on solid support . Yields of analytically pure 
mater ia l after chromatography were determined from mass balance and were based upon the initial loading of alcohol 1. Elemental 
analyses were all within ±0 .4% of theoretical value. 

In summary, we have been able to obtain good yields 
(47—86%) of molecules incorporating the (hydroxyethyl)-
amine and (hydroxyethyl)urea isosteres after four to six 
chemical transformations on solid support. In addition, 
we have been able to incorporate many of the functional 
groups and structures that are present in known inhibi­
tors of HIV-1 protease and renin, thereby demonstrating 
the generality of the synthesis sequence. Employing the 
described synthesis method, the simultaneous synthesis 
of a library of potential aspartic acid protease inhibitors 
is in progress, as is the evaluation of the library against 
a number of aspartic acid protease targets.22 
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