Design and Synthesis of 2-Naphthoate Esters as Selective Dopamine D₄ Antagonists

Izzy Boyfield, Thomas H. Brown, Martyn C. Coldwell, David G. Cooper, Michael S. Hadley,* Jim J. Hagan, Maureen A. Healy, Amanda Johns, Ron J. King, Derek N. Middlemiss, David J. Nash, Graham J. Riley, Emma E. Scott, Stephen A. Smith, and Geoffrey Stemp

> SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, U.K.

> > Received January 5, 1996

Existing drugs for the treatment of schizophrenia have poor side-effect profiles, in particular causing major movement disorders known as extrapyramidal side effects (EPS).1 Schizophrenia has been associated with up-regulation of the dopaminergic system, and existing drugs are believed to exert their antipsychotic effects via blockade of D2-like receptors.2 Recent advances in the molecular biology of dopamine receptors have allowed these D2-like receptors to be classified as D_2 , D_3 , and D_4 .³⁻⁵ On the basis of studies of receptor distribution, it has been proposed that the EPS caused by existing drugs are due to the blockade of D₂ receptors in the striatum. Studies based on the distribution of mRNA suggest that D4 receptors are preferentially located in cortical and other areas of the brain associated with antipsychotic activity and have low density in the striatum.^{5,6} A selective D₄ antagonist thus has the potential to be an effective antipsychotic agent lacking the EPS of current therapy.

Two further pieces of evidence have also driven the search for selective D_4 antagonists. The atypical antipsychotic agent clozapine has been shown to be approximately 10-fold selective⁵ for D_4 over D_2 receptors. Clozapine has higher efficacy than other antipsychotic agents and low propensity to cause EPS, and it has therefore been proposed that the D_4 selectivity of clozapine may contribute to its highly beneficial profile. In addition, it has been reported that D_4 receptor levels are elevated in schizophrenia, $^{7.8}$ although the evidence for this has been questioned.

There is therefore a clear need for a selective D_4 antagonist to explore the potential of such a compound in the treatment of schizophrenia. The only compound reported to date with high selectivity is NGD 94-1, but no structure has been revealed. This Communication describes the discovery of the first compound with ≥ 1000 -fold selectivity for the D_4 over the D_2 receptor.

Compounds were screened on human cloned D_4 and D_2 (long) receptors¹¹ using [³H]nemonapride and [¹²⁵I]-iodosulpride, respectively, as the radioligands, and results are reported as pK_i values.¹² From a program of rapid parallel synthesis based on known dopaminergic structural motifs, the ester 1 and naphthamide 2 emerged as leads with pK_i values of 7.6 and 8.4 at D_4 receptors and selectivities of 80 and 10, respectively, against D_2 receptors.

On the basis of these leads, a series of 3-methoxy-2-naphthyl derivatives was prepared. Esters **3** and **4** and amide **5** were obtained from 3-methoxynaphthalene-2-carboxylic acid **11** *via* conversion to the acid chloride

followed by reaction with the appropriate alcohol or amine **12** (Scheme 1). Ester **6** was obtained from

Scheme 1

3-methoxy-2-naphthol **13** by coupling with acid **14**. Reduction of **11** with LAH followed by treatment with SOCl₂ gave chloride **15** which reacted with the anion derived from alcohol **12** (X = O, n = 2) to give ether **7** (Scheme 2). Coupling of **13** with alcohol **16** under

Scheme 2

Mitsunobu conditions gave **8**. Conversion of **11** to the Weinreb amide followed by reaction with MeLi gave **17**, which was condensed with pyridine-4-carboxaldehyde.

Scheme 3

Table 1. Dopamine Receptor Affinity of 3-Methoxy-2-naphthyl Esters, Amides, Ethers, and Ketones

compd ^a	X	n	mp ^o C	D_4^d	D_2^d	Selectivitye
3		1	115-118 ^c	7.7	5.0	500
4	___________________	2	182-183 ^c	8.3	5.5	630
5		2	128-130 ^c	7.7	6.9	6
	~°~~					
6		2	100-102 ^b	8.2	5.1	1260
7	^ ₀ ^	2	122-125 ^c	7.5	6.0	30
8	\o\\\\\	2	111-112 ^b	7.6	5.8	60
9		2	206-208 ^c	7.5	6.4	12
10		2	99-102b	6.7	5.9	6

^a All new compounds received satisfactory analytical and/or spectroscopic data (see Supporting Information for full details of their preparation. ^b Free base. ^c HCl salt. ^d pK_i values represent the means of at least two determinations. For compounds **4** and **6** values are the means of four determinations. ^e Selectivity for D_4 compared to D_2 .

Subsequent reductions and benzylation gave ketone **9** (Scheme 3). Alkene **21** was prepared as a mixture of isomers from reaction of phosphonium salt **19** and aldehyde **20**. Oxidation of **21** to the epoxide with mCPBA, followed by rearrangement, deprotection, and benzylation, gave ketone **10**.

The affinities of compounds $\mathbf{3}\mathbf{-10}$ for D_4 and D_2 receptors are shown in Table 1.

The pyrrolidinyl naphthoate $\bf 3$ gave an encouraging improvement in selectivity compared to ester $\bf 1$. Expansion of the pyrrolidine ring to piperidine $\bf 4$ further improved D₄ affinity and maintained the high selectivity of $\bf 3$. However, replacement of the ester moiety by related functionalities both reduced D₄ affinity and increased D₂ affinity, resulting in marked reductions in selectivity. Only by reversal of the ester linkage of $\bf 4$ to give $\bf 6$ was high D₄ affinity and selectivity maintained.

The affinity order at D_4 receptors was esters **4**, **6** > amide **5**, ethers **7**, **8**, ketone **9** > ketone **10**, whereas at D_2 receptors the affinity order was amide **5** > ketone **9** > ethers **7**, **8**, ketone **10** > esters **4**, **6**. It is interesting to note that only the esters **4** and **6**, which possess two electronegative areas capable of accepting hydrogen bonds, show both high D_4 affinity and selectivity. The almost complete loss of selectivity with amide **5**, despite the retention of relatively high D_4 affinity, is remarkable and may be due to the formation of an intramolecular hydrogen bond between the amide NH and 3-methoxyl group, which has been shown to be a key feature in benzamide dopamine antagonists.¹³

In conclusion, naphthoate esters with high D_4 affinity and selectivity have been described. To our knowledge compound ${\bf 6}$ is the first compound to be reported in the literature with >1000-fold selectivity over its affinity

for the D₂ receptor.¹⁴ Functional studies in vitro have shown that 4 and 6 are antagonists at the D₄ receptor. 15 These compounds therefore represent tools for the in vitro determination of the distribution and function of dopamine D₄ receptors in the brain.

Acknowledgment. We thank Christopher Harmer and Jason Martin for their enthusiastic technical assistance.

Supporting Information Available: Experimental details for the preparation of relevant compounds (4 pages). Ordering information is given on any current masthead page.

References

- Marder, S. R.; Wirshing, W. C.; Van Putten, T. Drug Treatment of Schizophrenia. Schizophr. Res. 1991, 4, 81–90.
 Seeman, P. Dopamine Receptors and the Dopamine Hypothesis
- of Schizophrenia. Synapse 1987, 1, 133–152.
 Grandy, D. K.; Marchionni, M. A.; Makam, H.; Stofko, R. E.; Alfano, M.; Frothingham, L.; Fischer, J. B.; Burke-Howie, K. J.; Bunzow, J. R.; Server, A. C.; Civelli, O. Cloning of the cDNA and Gene for a Human D₂ Dopamine Receptor. Proc. Nat. Acad. Sci. U.S.A. 1989, 86, 9762–9766.
 Sokoloff P. Gires B. Markton M. B. Barkham, A. C.; Civelli, O. Charles and Gene for a Human D₂ Dopamine Receptor. Proc. Nat. Acad. Sokoloff P. Gires B. Markton M. B. Barkham, A. C.; Civelli, O. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Gires B. Markton M. B. Barkham, A. C.; Civelli, O. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Gires B. Markton M. B. Barkham, A. C.; Civelli, O. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Gires B. Markton M. B. Barkham, A. C.; Civelli, O. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Gires B. Markton M. B. Barkham, A. C.; Civelli, O. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Gires B. Markton M. B. Barkham, A. C.; Civelli, O. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Gires B. Markton M. B. Barkham, A. C.; Civelli, O. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Gires B. Markton M. B. Barkham, A. C.; Civelli, O. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Gires B. Markton M. B. Barkham, A. C.; Civelli, O. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Gires B. Markton M. B. Barkham, A. C.; Civelli, O. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Gires B. Markton M. B. Barkham, A. C.; Civelli, O. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Gires B. Markton M. B. Barkham, A. C. C.; Civelli, O. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Gires B. Markton M. C. C. Civelli, O. C. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Charles and General Receptor. Proc. Nat. Acad. Sokoloff P. Charles and General Receptor. Proc
- Sokoloff, P.; Giros, B.; Martres, M.-P.; Bouthenet, M.-L.; Schwartz, J.-C. Molecular Cloning and Characterisation of a Novel Dopamine Receptor D₃ as a Target for Neuroleptics. Nature 1990, 347,
- Van Tol, H. H. M.; Bunzow, J. R.; Guan, H.-C.; Sunahara, R. K.; Seeman, P.; Niznik, H. B.; Civelli, O. Cloning of the Gene for a Human Dopamine D4 Receptor with high affinity for the Antipsychotic Clozapine. *Nature* **1991**, *350*, 610–614.
- Matsumoto, M.; Hidaka, K.; Tada, S.; Tasaki, Y.; Yamaguchi, T. Full Length cDNA Cloning and Distribution of Human Dopamine D₄ Receptor. Mol. Brain Res. 1995, 29, 157-62.
- Seeman, P.; Guan, H.-C.; Van Tol, H. M. Dopamine D_4 Receptors Elevated in Schizophrenia. *Nature* **1993**, *365*, 441–
- Murray, A. M.; Hyde T. M.; Knable, M. B. Distribution of Putative D₄ Dopamine Receptors in Postmortem Striatum from Patients with Schizophrenia. J. Neurosci. 1995, 15, 2186–2191.
- Reynolds, G. P.; Mason, S. L. Are Striatal Dopamine D₄ Receptors Increased in Schizophrenia? J. Neurochem. 1994, 63, 1576-
- Tallman, J. F. NGD 94-1: Preclinical Profile of a Specific Dopamine-4 (D₄) Receptor Antagonist. American College of Neuropsychopharmacology 33rd Annual Meeting, San Juan, Puerto Rico, December 12–16, 1994.
- (11) Human cloned dopamine $D_{4.4}$ receptors were expressed in HEK 293 cells; see: McHale, M.; Coldwell, M. C.; Herrity, N.; Boyfield, I.; Winn, F. M.; Ball, S.; Cook, T.; Robinson, J. H.; Gloger, I.S. Expression and Functional Characterisation of a Synthetic

- Version of the Human D₄ Dopamine Receptor in a Stable Human Cell Line. FEBS Lett. 1994, 345, 147-150. Human cloned dopamine D2 (long) receptors expressed in CHO cells were obtained from the Garvan Institute (Melbourne).
- (12) Binding experiments were carried out as follows. The test compounds (10 concentrations, 0.01 nM to 0.01 mM) were incubated with the D2 (CHO) and D4.4 (HEK293) receptor homogenates at 37 °C for 40 min together with 0.1 nM [125] iodosulpride (2000 Ci/mmol; Amersham, U.K.) (for D₂) and 0.8 nM [3H]YM-09151 (86 Ci/mmol, NEN Research Products, U.K.) (for D_4). The buffer contained 50 mM Tris (pH 7.4 at 37 °C), 120 mM NaCl, 5 mM KCl, 1 mM CaCl₂, 1 mM MgCl₂, and 0.1% (w/ v) bovine serum albumin, and the total volume was 0.5 mL. Nonspecific was defined with 0.1 mM YM-09151. Following incubation, samples were filtered using a Canberra Packard Filtermate and washed four times with ice-cold 50 mM Tris (pH 7.4 at 37 °C). The radioactivity on the filters was measured using a Canberra Packard Topcount. Competition curves were analysed using INFLEXION (Bowen, W. P.; Jerman, J. C. Inflexion: Automated analysis of radio-ligand binding data with Microsoft Excel. Br J. Pharmacol. 1994, 113, 440P).
- (13) Högberg, T. Novel Substituted Salicylamides and Benzamides as Selective D₂-receptor Antagonists. *Drugs Future* **1991**, *16*, 333 - 357
- (14) The binding profile of compound 6 has been determined against the following human cloned receptors; pK_i values are in parentheses: D₃ (5.2); 5HT_{1a} (5.7); 5HT_{2a} (6.6); 5HT_{2c} (6.6).
- Functional studies using cloned D₂ (long) and D_{4.4} receptors were carried out in vitro using a Cytosensor Microphysiometer (Molecular Devices). Cells were seeded into 12 mm Transwell inserts at 300 000 cells/cup in culture medium containing foetal calf serum (FCS). The cells were incubated for 6 h at 37 °C in 5% CO₂, before changing to medium without FCS. After a further 16-18 h, cups were loaded into the sensor chambers of the microphysiometer and the chambers perfused with running medium (bicarbonate-free Dulbecco's modified Eagles medium containing 2 mM glutamine and 44 mM NaCl). For agonist experiments, cells were exposed to increasing concentrations of agonist at half-hour intervals. For antagonist experiments, cells were exposed five times (at half-hour intervals) to a single concentration of quinpirole (30 nM) before addition of the first antagonist concentration. After a 30 min interval, cells were again stimulated with quinpirole (in the continued presence of the antagonist), before the second (higher) antagonist concentration was applied. In all, responses in the presence of five increasing concentrations of antagonist were determined. Peak acidification rate to each agonist concentration was determined and concentration-response curves fitted using RoboFit (Tilford N. S.; Bowen, W. P.; Baxter, G. S. RoboFit: A Versatile Macro-Driven Template for Curve Fitting, Analysis and Presentation in Microsoft Excel. Br. J. Pharmacol. 1995, 115, 160P).

JM960017L