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Molecular descriptors calculated by the VolSurf program have been extensively used to model
pharmacokinetic properties, e.g., passive permeability through the gastrointestinal tract or
through the blood-brain barrier. These descriptors quantify steric, hydrophobic, and hydrogen
bond interactions between model compounds and different environments. Since these interac-
tions are the same as those involved in the ligand-receptor binding, VolSurf descriptors could
potentially be relevant in modeling this process as well. We obtained a significant model (r2 )
0.85, q2 ) 0.75) using VolSurf descriptors derived from the ligand, the protein, and the ligand-
protein complex for a diverse set of 38 structures previously used in the VALIDATE (ref 23)
training set. Furthermore, a statistically significant model (r2 ) 0.94, q2 ) 0.89) was obtained
using the same type of descriptors for a homogeneous set of glycogen phosphorylase inhibitors
(ref 25). Using the VolSurf computational framework, both ligand-receptor binding and the
ligand’s pharmacokinetic behavior can be modeled simultaneously during the preclinical aspects
of drug discovery.

Introduction

One of the major reasons for failure in the late stages
of the drug discovery process (phases II and III of
clinical trials) is the inadequate understanding of the
pharmacokinetic behavior of drugs, and what consti-
tutes a suitable pharmacokinetic profile for candidate
drugs. To overcome these problems, in vitro or in vivo
measurements are performed as early as possible in the
drug discovery process. During the past decade, the
number of synthetically accessible compounds has in-
creased by several orders of magnitude due to combi-
natorial chemistry. As a result, high throughput meth-
ods to evaluate pharmacokinetic properties are needed.
Recently, computational efforts have been made to
obtain models that describe and predict the pharmaco-
kinetic behavior of a compound.1-8 However, to stream-
line the drug discovery cycle, the efforts to predict and
eventually optimize the pharmacokinetic properties
should be coupled with the prediction and optimization
of the binding affinity of the same analogue9,10 (see
Figure 1). Several methods that model the ligand-
receptor interaction and predict the binding affinity of
a compound for a given protein target have been
described.11-17

Traditionally in the drug discovery process, the
potency is optimized first, and the ADMET (administra-
tion, distribution, metabolism, excretion, and toxicology)
properties are studied in later stages (Figure 1A). This
methodology has limited success, as potency optimiza-

tion can yield compounds for which ADMET optimiza-
tion becomes difficult, and often impossible. The effi-
ciency of the drug discovery process is expected to
improve if both aspects are considered at the same time,
i.e., optimizing the chemical structure by considering
both potency and ADMET properties (Figure 1B).
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Figure 1. Drug discovery strategy: (a) first potency optimiza-
tion and then ADME properties; (b) combine optimization of
potency and ADME properties.
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In this paper, we describe a possible integrated
framework9 that uses a common set of descriptors
suitable for modeling both the pharmacokinetic and
binding affinity aspects in drug design. The rationale
behind this integrative approach is that those interac-
tions responsible for passive permeability are the same
as those involved in the ligand-protein binding process,
i.e., steric, hydrophobic, electrostatic, and hydrogen
bonding.11-17 VolSurf descriptors,18-20 based on the
GRID21,22 interaction fields, were previously shown as
suitable for modeling pharmacokinetic properties.7,9,18

VolSurf quantifies the interaction of a compound with
a predefined environment, typically hydrophobic, and
hydrogen bond donor and acceptor. The value of these
volumes and surfaces of interaction provide a descrip-
tion of the potential interaction for the ligand and/or
receptor and the interactions that were not used in
making the complex for the complex ligand-receptor.
To illustrate the applicability of VolSurf as an inte-
grated drug discovery framework, we evaluate the use
of VolSurf descriptors for modeling ligand-receptor
binding affinity for two distinct data sets: a diverse set
of 38 structures, previously used in VALIDATE23 train-
ing set, and a homogeneous set of glycogen phosphory-
lase inhibitors.24,25 A number of articles illustrate the
application of VolSurf in pharmacokinetics.26-28

Materials and Methods

The QSAR analysis performed in this study is based on
VolSurf20 descriptors that quantify the interactions for a given
compound, by evaluating them with three of the available
chemical probes in the GRID program.22 The molecular
interaction fields (MIF) of a water molecule, a sp2 oxygen atom
(which can accept, but not donate hydrogen bonds), and the
DRY probe (representing a hydrophobic interaction) form the
basis for VolSurf descriptors, as published elsewhere.18,19

Two data sets were chosen for this analysis:• The VALI-
DATE data set14,23 contains a diverse set of 38 compounds from
set of proteins (see Table 1). This would illustrate the useful-
ness of VolSurf descriptors for a general-case scoring scheme.

• The P-glycogen phosphorylase B data set24,25 contains 23
ligands cocrystallized with the same protein (see Table 2). This
illustrates the usefulness of VolSurf descriptors in a typical
drug discovery project, where most compounds interact with
the same target, and in the same binding site.

A. The VALIDATE Data Set. The molecules and corre-
sponding receptors were obtained from the Protein Data
Bank.29 The pKi values30 and the four-letter PDB code are
presented in Table 1. The ligand structure was extracted from
each complex. Three separate GRID-VolSurf calculations were
performed using the receptor, the ligand, and the ligand-
receptor complex, respectively. The protein structures were
converted to GRID format by using the GREAT and GRIN
modules in the GRID package. Ligands were converted using
the VolSurf interface by importing the SYBYL mol2 files. No
further optimizations were performed in the receptor, ligands,
or complexes.

Water molecules may play an important role in the ligand-
receptor interaction.25,26,31,32 To study this possibility, two
analyses were performed on this data set: One including the
water molecules found in the X-ray structure, and the other
excluding these waters. Another factor that needs to be
considered in the protein modeling using GRID is the charge
of the protein/complex after the atom-type assignment. This
was analyzed considering the neutralized and non-neutralized
forms of the proteins, respectively. Thus, four types of MIFs
were calculated (a) with the crystal waters and not neutral-
izing the proteins, (b) with the crystal waters and neutralized
proteins, (c) without the crystal waters but neutralizing the
protein, and (d) excluding the crystal waters and not neutral-
izing the protein.

To find the positions of the counterions for the situations
described under b and d above, the MINIM and FILMAP
programs included in the GRID package22 were used. The atom
types for the protein with the ligand in the crystal position
were assigned using the GRIN program. GRIN also gives an
indication about the overall charge of the protein and, depend-
ing on the sign, either a Na+ probe was used to neutralize a
negatively charged complex, or a Cl- probe was used to
neutralize a positively charged one. The MIF was calculated
for the whole protein, using the ionic probe with a 0.5 Å grid
spacing. The MINIM program was used to locate the position

Table 1. Protein Data Bank Code and pKi Values for the
Validate Data Set. Some PKi Were Modified, Compared with
the Original VALIDATE Publication30

PDB Code pKi PDB Code pKi

1AAQ 7.93 2SIN 11
1ABE 7.01 2TMN 5.89
1ABF 5.42 3SIC 10.2
1APB 5.82 3TMN 5.9
1DBB 9 4ER1 6.62
1DBJ 7.6 4ER4 6.8
1DBM 9.44 4PHV 9.15
1EED 4.79 4TMN 10.17
1HIV 9.15 5SIC 10.2
1HVI 10.5 5TMN 8.04
1SBN 10.3 6ABP 6.36
1TLP 8.55 6TMN 5.05
1TMN 7.3 7ABP 6.46
2DBL 8.7 7ABP 6.46
2ER0 6.38 7HVP 9.62
2ER6 7.22 7TLN 2.12
2ER7 9 8ABP 8
2ER9 7.4 9ABP 8
2PTC 13.3 9HVP 7.63

Table 2. Structures of the Different Ligands and pKi Values
for the Glycogen Phosphorylase Data Set
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of the minima in the interaction field with a charge probe using
0.0 kcal/mol as the energy threshold and without interpolation.
The FILMAP program was used to populate the different
minima with simulated annealing (SA), taking the net complex
charge plus 4 as the number of minima to populate. For
example, if the net charge was 7, we used 11 minima, whereas
a net charge of 3 would give 7 minima during the SA process.
The counterion positions that were outside the ligand-derived
GRID box plus 5 Å, were selected. Those counterion positions
that were inside the GRID box were not considered, since it
was assumed that such charges are important for the ligand-
receptor interaction.

The strategy for the VolSurf calculation is presented in
Figure 2. In the first step, the interaction fields for the H2O,
O, and DRY probes were calculated on the four types of MIFs
(a-d). A GRID box that extended 5 Å beyond the maximum
and minimum atomic coordinates of the ligand was used with
a 0.5 Å spacing for the receptor, the ligand, and the complex.
In the second step, VolSurf descriptors were derived from the
MIFs (see Table 3). These descriptors were analyzed by Partial
Least Squares (PLS) using the GOLPE program with the
autoscaling option before the statistical model was obtained.33

The counterion positions that were outside the ligand-derived
GRID box, plus 5 Å, were selected. Those counterion positions
that were inside the GRID box were not considered, since it

was assumed that such charges are important for the ligand-
receptor interaction.

The strategy for the VolSurf calculation is presented in
Figure 2. In the first step, the interaction fields for the H2O,
O, and DRY probes were calculated on the four types of MIFs
(a-d). A GRID box that extended 5 Å beyond the maximum
and minimum atomic coordinates of the ligand was used with
a 0.5 Å spacing for the receptor, the ligand, and the complex.
In the second step, VolSurf descriptors were derived from the
MIFs (see Table 3). These descriptors were analyzed by Partial
Least Squares (PLS) using the GOLPE program with the
autoscaling option before the statistical model was ob-
tained.34,35

B. The Glycogen Phosphorylase-b Data Set. The pKi

and the structures of the ligands used in this data set are
presented in Table 2. The protein, ligand, and complex were
prepared by using the nonneutralized protein without water,
applying the VolSurf procedure, as detailed above.

Results and Discussion

The VALIDATE Data Set. Molecule Prepara-
tion: Counterion/Protein Neutralization. FILMAP
was used to populate the counterion energy minima for
the different proteins treated. These were filled by
counterions, and the counterions positions were local-
ized outside or inside the GRID box defined by the
atomic coordinates of the ligand. Counterions were
observed inside the ligand-defined box for the L-arabi-
nose binding protein, for endothiapepsin and for two of
the HIV-1 protease structures. To avoid the overlap with
the ligands in the binding site, counterions were placed
at FILMAP-identified locations only outside the ligand-
defined boxes, even though these were found to be less
populated during the SA procedure. In all instances
where counterions were located inside the ligand-
defined box for L-arabinose binding protein, the coun-
terion was found at 2.0-2.5 Å from the side-chain of
Asp235, which in turn was 4.5 Å away from the ligand.
A counterion placed in that position would neutralize
this aspartate, thus masking its potentially significant

Figure 2. GRID-VolSurf calculation process: (1) The GRID
program obtains the molecular interaction field. (2) The
Volume and Surface descriptors are obtained at different
interaction energy levels.

Table 3. VolSurf Descriptors

Descriptors Obtained from the Hydrophilic (H2O) Interaction
V volume of the water molecule interaction field at 0.2 kcal/mol energy level
S surface of the water interaction field at the same 0.2 kcal/mol level
R rugosity, e.g. the ratio between the volume and the surface
G globularity, e.g., the ratio between the surface (S) and the surface of a sphere with the same

volume (V)
W1-W15 the volume of the hydrophilic interactions at five different energy levels: -0.2, -0.5, -1.0, -2.0,

-3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0, -10.0, -11.0, -12.0, -13.0, -14.0 kcal/mol
IW1-IW15 the integy moments at the same energy levels as W1-W15
CW1-CW15 the capacity factors, which are the ratio between the hydrophilic regions (W1-W15) and the

molecular surface (S)
Emin1, Emin2, and Emin3 these descriptors express the energy values for the three lowest energy minima
D12, D13, and D23 the distances between the three minima

Descriptors Obtained from the Hydrophobic (DRY) Interaction
D1-D15 the volume of the hydrophobic interactions at 15 energy levels: -0.2, -0.4, -0.6, -0.8, -1.0, -1.2,

-1.4, -1.6, -1.8, -1.9, -2.0, -2.1, -2.2, -2.4 and -2.6 kcal/mol
ID1-ID15 the integy moment at the previous energy levels
HL1-HL2 hydrophilic-lipophilic balance: the ratio between the volume of the hydrophilic regions at -3 and

-4 kcal/mol and the hydrophobic regions at -0.6 and -0.8 kcal/mol
A the strength of the ampiphilic moment.
CP critical packing parameter.
POL polarizability

Descriptors Obtained from the Polar (O) Interaction
Wp1-Wp15 the volume of the interaction with the O probe at 15 different energy levels
HB1-HB15 descriptors that represents the difference between the volume of the hydrophilic interaction

(W1-W15) and the O probe interactions (Wp1-Wp15) and expresses the hydrogen bond donor
capability of the target
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contribution to the ligand-protein interaction. There-
fore, counterions inside the GRID box were ignored.

Molecule Preparation: Water Molecules. As wa-
ter molecules play an important role in the binding
process, their influence in the VolSurf models was
examined. The number of water molecules present in
the crystal structures available from the PDB are
summarized in Table 4, along with the number of water
molecules inside the ligand-defined GRID box.

Quantitative Structure-Binding Relationships.
Four different models were obtained using the water/
nonwater and the neutralized/non-neutralized condi-
tions. The predicted versus experimental results for
each of the models are shown in Figure 3. Three
compounds could not be predicted by any model (9HVP,
2PTC, and 2ER7) and were found to be outliers.

Quantitative Structure-Binding Relationships:
Outlier Analysis. The ligand for the 2PTC complex is
bigger than any other compound in the training set and
has the highest pKi value. The 9HVP complex has a key
water molecule, responsible for a hydrogen bond be-
tween the protein and the ligand. To investigate the
influence of this water, the model in the neutralized
form and without crystal waters was used to predict the
activity of this compound with and without the water
molecule. When the water molecule is considered, the
binding affinity prediction improves. In this case, the
structure of the compound is better described when the
water molecule is present (see Figure 3). Therefore, we

conclude that the structural water molecule plays an
important role in this particular case.

However, we did not observe any influence on the
quality of predictions when comparing the inclusion/
exclusion of water molecules for the other HIV protease
inhibitor complexes included in this study. This implies
that displacing this water molecule in HIV protease may
not necessarily be a beneficial effect.

The 2ER7 complex is the one with the highest charge
and the position of the counterions in this particular
case could have a great impact in the interaction energy,

Table 4. Validate Set Modeling Information: Water Molecules
in the Complex and in the Receptor. Formal Charges

protein charge(complex) charge(receptor)

total
no. water

inside
no. water

1AAQ +4 +4 1 1
1ABE -4 -4 227 9
1ABF -4 -4 191 11
1APB -4 -4 168 11
1DBB +2 +2 0 0
1DBJ +2 +2 0 0
1DBM +1 +2 0 0
1EED -14 -14 278 41
1HIV +4 +4 90 23
1HVI +4 +4 1 1
1SBN +4 +2 316 107
1TLP -2 -2 162 0
1TMN -2 -2 144 0
2DBL +2 +2 0 0
2ER0 -14 -14 0 0
2ER6 -15 -14 321 50
2ER7 -20 -20 321 81
2ER9 -14 -14 321 41
2PTC +14 +8 157 83
2SNI +2 +3 168 80
2TMN -2 -2 165 0
3SIC -1 +2 273 148
3TMN -2 -2 173 0
4ER1 -14 -14 260 33
4ER4 -13 -14 325 54
4PHV +4 +4 104 23
4TMN -2 -2 162 0
5SIC -1 +2 288 169
5TMN -2 -2 173 0
6ABP -4 -4 205 10
6TMN -2 -2 170 0
7ABP -4 -4 193 11
4HVP +4 +4 95 24
7TLN -1 -2 166 9
8ABP -4 -4 207 11
9ABP -4 -4 207 9
9HVP +4 +4 1 1

Figure 3. Experimental vs predicted pKi values for the
validate data set. Model 1: With H2O and not neutralized.
Model 2: Without H2O and not neutralized. Model 3: With
H2O and neutralized. Model 4: Without H2O and neutralized.
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this effect could perhaps account for the poor prediction
of its binding affinity.

Water and Counterion Analysis. Since the coun-
terion positions selected to neutralize the proteins were
outside the box defined by the maximum and minimum
coordinates of each ligand, no significant difference was
observed between these models (Figure 3: models 1 and
3; and models 2 and 4). The introduction of the water
molecules could not improve the statistical performance
of the models, although the water-containing model
could predict some compounds better than the model
without water.

Statistical Analysis. The models obtained had two
latent variables, in all four cases. The first PLS com-
ponent explains, in part, the binding capabilities and
the structural differences between the 1SBN, 2SNI,
3SIC, and 5SIC complexes, compared to those other
complexes having lower inhibition constants. The second
component explains the remaining dependent variable
for the rest of the compounds.

To simplify the analysis and without considering the
singularities for the already-mentioned compounds, a
model was computed without these complexes, and by
excluding various descriptor blocks originating from the
ligand, the receptor or the ligand-receptor complex
(Table 5). The models with only one block have the
worse behavior, showing that information from both
interaction partners, i.e., ligands and receptors, is
required in order to derive acceptable models. This can
be reasoned by considering that interaction fields
calculated around the ligand do not consider which
functional groups interact with the receptor, and to
what extent. Nevertheless, when the descriptors are
derived from the ligand, the receptor and/or the com-
plex, PLS models show significantly improved statistical
parameters (Table 5). This behavior was observed when
the PLS model was applied to the entire set (data not
shown).

On Model Interpretation. Before analyzing the
models, it is important to define and to state the
interpretation of the various interaction fields that have
been considered:

(a) Interaction fields computed around the ligand
represent all the possible interactions with the environ-
ment according to the GRID potential. However, when
a ligand interacts with a receptor, only some of these
interactions are actual in the binding process. Only
some chemical groups of the ligand will be correctly
interfaced to their receptor counterparts.

(b) In the case of the interaction fields calculated
around the receptor, the information is conceptually
similar to that extracted from the ligand, but it pertains

to the other interaction partner (i.e., water, counterions,
or ligands). Thus, receptor-derived interaction fields
represent all the possibilities for a chemical group of
the receptor to interact with other partners, but as
previously mentioned not all of these interactions
become actual.

(c) The ligand-receptor interaction fields show re-
gions where there is, potentially, a mismatch between
the ligand and receptor. They can also show where a
water molecule might bridge them.

Another important factor that should be considered
when interpreting the models is the meaning of the
different VolSurf descriptors (Table 3). To simplify the
interpretation, the interaction types are classified ac-
cording with their GRID potential energy:

(a) Steric interaction: between 0.0 and -3.0 kcal/mol.
(b) Hydrogen bond interaction (neutral species): be-

tween -3.0 and -10.0 kcal/mol.
(c) Charge-charge interaction (including hydrogen

bonds): between -10.0 and -15.0 kcal/mol.
All these terms are calculated for the probes used,

but they are weighted in different ways depending on
the probe and/or atom interaction partner. So, the H2O
probe considers the steric, the hydrogen atom, and the
charge interaction of a water molecule to the ligand and
not only the hydrogen bond capabilities of the com-
pound.

These above energy cutoff values are not exact.
Rather, they serve as guidelines to simplify the model
interpretation. For illustrative purposes, we present the
water-probe GRID fields for the ligand, receptor, and
complex for a high- and a low-affinity compound, 2TMN
and 1HIV, respectively (see Figure 4).

Furthermore, when interpreting these models, one
has to recall the different physicochemical processes
that occur during binding:11 (a) desolvation of the ligand;
(b) desolvation of the receptor cavity; (c) freezing the
conformational, rotational and translational degrees of
freedom; (d) forming the new interactions between the
ligand and receptor.

We have shown that VolSurf parameters correlate
well with the free energy of solvation.36 Since only one
conformer was used in the VolSurf calculation, it is
unlikely that VolSurf captures the entropic aspects that
are involved, e.g., the loss of the degrees of freedom
when transferring from the aqueous phase to the gas
phase. However, the large majority of thermodynamic
aspects (other than enthalpy), and indeed kinetic as-
pects, are not well captured by current molecular
modeling methods (VolSurf included). One can only hope
that soft models (such as QSAR) can compensate for the
poorly understood aspects of ligand-receptor interac-
tion. These models can evaluate factors that are not
directly calculated by a correlation to the experimental
data.

VolSurf-Based Binding Affinity Prediction for
a Diverse Set of Targets. The PLS pseudo-coefficients
(representing the influence of each variable into the
model) for the neutralized model without water mol-
ecules are shown in Figure 5. For clarity, the influence
of the different descriptors discussed separately for the
ligand, the receptor, and the complex. We note that,
with enough data, different trends are likely to be
observed for receptor binding sites where polar interac-

Table 5. Influence of the Different Blocks of Variables on the
Model

ligand complex receptor r2 q2 a q2 b SDEPb
SDEP
(sdep)b

+ - - 0.69 0.34 0.32 0.81 0.09
- + - 0.73 0.36 0.35 0.79 0.06
- - + 0.71 0.46 0.45 0.73 0.04
- + + 0.72 0.40 0.38 0.77 0.04
+ - + 0.85 0.62 0.59 0.62 0.05
+ + - 0.84 0.53 0.51 0.68 0.06
+ + + 0.82 0.53 0.51 0.68 0.04
a Leave one out. b Leave five random groups out 100 times.
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tions are dominant (e.g., arabinose binding protein),
compared to receptor binding sites where hydrophobic
interactions play a major role (e.g., HIV protease). Below
we provide the interpretation, as amenable to the entire
VALIDATE data set.

Ligand. PLS coefficients computed using the water
and polar probes (W1-W15, Wp1-Wp9, and HB1-
HB15) have a positive contribution to binding: The
greater the water and polar interaction volumes are, the
better the binding affinities are, for this dataset. As all
the levels for the water probe have the same sign, all
the different interaction types (steric, H-bond, and
electrostatic) contribute in the same manner. The nega-
tive PLS coefficients for CW1-CW6 indicate that a large
ratio between polar regions and the total surface of the
molecule is detrimental: A high volume of interaction
per surface unit for the steric and H-bond (from 0 to
-10 kcal/mol) interactions has thus a negative influence
on the binding affinity. A small compound with high
CW1-CW6 values would have large hydrophilic regions

in a small surface, resulting in a high desolvation free
energy that would consequently decrease the binding.
The hydrophobic interactions have a positive coefficient
for the D1-D13 level; this implies that larger regions
of hydrophobic interaction in the ligand improve the
affinity.

Receptor. The coefficients for the descriptors calcu-
lated for the receptor follow similar trends to the ligand-
based coefficients, except for the water-probe based
volumes (W8-W15) and capacity factors (CW1-CW15).
The large negative coefficients of the W8-W15 and
CW8-CW15 descriptors are consistent with the follow-
ing interpretation: The displacement of tightly bound
waters that are present in protein cavities has a
negative effect on the binding affinity. The positive PLS
coefficients for CW1-CW7, that are consistent with high
affinity, are more likely to be related to loosely bound
water molecules that are also present in protein cavities.

Complex. The coefficients for the descriptors calcu-
lated for the ligand-receptor complexes follow the same
trends as the receptor-based coefficients. Hence, the
interpretation of the variables is similar to the one for
the receptor case. From Table 5, it is apparent that the
complex-derived descriptor block is redundant, i.e., that
significant PLS models can be achieved by using just
the ligand and the receptor variable blocks. Therefore,
one might be able to derive predictive models without
having to establish the bound conformations, or without
doing the docking of the ligand into the binding site.
This is not the case, since the VolSurf models use the
receptor-bound conformation for the ligand and the
ligand-bound conformation for the receptor, hence the
apparent redundancy in Table 5.

Figure 4. Interaction between the water probe and the ligand (a), receptor (b), and complex (c) for 2TMN (1), 1HIV (2) at -3
kcal/mol.

Figure 5. Experimental vs predicted values for the two sets
of glycogen phosphorylase inhibitors.
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Glycogen Phosphorylase-b Set. Molecule Prepa-
ration. The proteins were prepared as described above
for the nonneutralized, no water case. VolSurf descrip-
tors for the ligand, receptor, and complex were computed
using the H2O, DRY and O probes in a box that exceeded
the maximum and minimum coordinates of each ligand
by 5 Å. No water or charge study was conducted on this
set of compounds. Twenty-three different proteins of
similar size and binding mode were selected from the
original dataset.25

Quantitative Structure-Binding Relationships.
Plots comparing predicted and calculated vs experimen-
tal values are shown in Figure 6. A statistically signifi-
cant model (r2 ) 0.94, q2)0.89) of the inhibition con-
stants was obtained after variable selection (Figure 7)
(the statistical parameters before variable selection were
appropriate to use this technique q2 > 0.3) was per-
formed using the FFD technique, as implemented in
GOLPE (ratio combination ) 5; number of components
) 2).27,28

VolSurf-Based Binding Affinity Prediction for
a Single Target. Glycogen phosphorylase-b is an
enzyme that has a very hydrophilic binding pocket, since
it has evolved to bind mainly polar ligands, i.e., glucose
derivatives. This explains why many of the variables
in the hydrophobic interaction have been eliminated
during the variable selection process. It can be seen that
the contribution of each descriptor differs significantly
from the results obtained from the previous dataset,
which contains targets with mostly hydrophobic binding
pockets. As it often happens in homologous analogue
series, those descriptors that determine the size of the
binding site and the steric interaction are not relevant
to this PLS model. In contrast, descriptors related to
the polar interaction (ability to accept H-bonds) are very
important for these dataset, having a negative contribu-
tion to the global polar interaction and a positive
contribution to the hydrogen bond acceptor capabilities,
as shown in Figure 6.

Figure 6. Partial least squares pseudo-coefficients (two components) using the Validate data set.
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Conclusions

With the goal of optimizing both the receptor binding
affinity and the pharmacokinetic properties of ligands9

during drug discovery-oriented lead optimization (Fig-
ure 1B),10 we have chosen to estimate the suitability of
a descriptor set initially established for modeling phar-
macokinetic properties, with respect to binding affinity.
This integrated framework, based on GRID and VolSurf,
was utilized to estimate the binding affinity for a diverse
set of 38 ligand-protein complexes, as well as for a set
of 23 glycogen phosphorylase-b inhibitors. A database
of 195 ligand-protein complexes, derived from 51
targets, has recently been compiled.37 These are worth
investigating in the manner described here.

For binding affinity models using VolSurf, we estab-
lished that information from both the ligand, as well

as from the receptor and/or the corresponding ligand-
receptor complex, is required. There was little or no
influence from the water molecules in the VolSurf
derived models. However, since the data set is diverse
and the positions of the water molecules are not always
defined in the X-ray structures, it is not possible to
generalize these conclusions outside the scope of these
dataset. Furthermore, the interpretation of GRID-based
interaction fields, as quantified in the PLS models, can
be used to understand the factors that govern the
ligand-receptor interaction not only in the context of
binding, but in the context of pharmacokinetic proper-
ties as well. Being alignment-independent, this strategy
has the advantage that various chemical possibilities
can be explored for each series of ligands. The disad-
vantage of this methodology is that model interpretation

Figure 7. Partial least squares pseudo-coefficients (two components) after variable selection.
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in terms of chemical groups is more complex compared
to typical 3D-QSAR analyses, since the structure of the
complex and the receptor are also needed. However, this
approach is, to our knowledge, the first to demonstrate
that it is possible to integrate both binding affinity and
passive pharmacokinetic properties such as passive
permeability and solubility, at the molecular descriptor
level.

References
(1) Palm, K.; Luthman, K.; Ungell, A.-L.; Strandlund, G.; Artursson,

P. Correlation of drug absorption with molecular surface proper-
ties. J. Pharm. Sci. 1996, 85, 32-39.

(2) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approaches to estimate solubil-
ity and permeability in drug discovery and development settings.
Adv. Drug Delivery Rev. 1997, 23, 3-25.

(3) Van de Waterbeemd, H.; Camenisch, G.; Folkers, G.; Raevsky,
O. A. Estimation of Caco-2 cell permeability using calculated
molecular descriptors. Quant. Struct.-Act. Relat. 1996, 15, 480-
490.

(4) Stenberg, P.; Luthman, K.; Artursson, P.; Prediction of mem-
brane permeability to peptides from calculated dynamic molec-
ular surface properties. Pharm. Res. 1999, 16 (2), 205-212.

(5) Palm, K.; Luthman, K.; Ungell, A.-L.; Strandlund, G.; Beigi, F.;
Lundahl, P.; Artursson, P. Evaluation of dynamic Polar Surface
Area as predictor of drug absorption: comparison with other
computational and experimental predictors. J. Med. Chem. 1998,
41, 5382-5392.

(6) Oprea, T. I.; Gottfries, J. Toward Minimalistic modeling of oral
drug absorption. J. Mol. Graphics Mod. 1999, 17, 261-274.

(7) Zamora, I.; Ungell, A.-L. Correlation between drug absorption
and molecular surface descriptors: Comparison between differ-
ent experimental models, Eur. J. Pharm. Sci., submitted.

(8) Oprea, T. I.; Zamora, I.; Ungell, A.-U. Pharmacokinetic based
mapping device for chemical space navigation, J. Comb. Chem.
2002, 4, in press.

(9) Oprea, T. I.; Zamora, I.; Svensson, P. Quo Vadis, Scoring
Functions? Toward an Integrated Pharmacokinetic and Binding
Affinity Prediction Framework. In Combinatorial Library Design
and Evaluation for Drug Design; Ghose, A. K., Viswanadhan,
V. N., Eds., Marcel Dekker Inc.: New York, 2001; pp 233-266.

(10) Oprea, T. I. Virtual screening in lead discovery: A viewpoint.
Molecules 2002, 7, 51-62.

(11) Williams, D. H.; Cox J. P. L.; Doig, A. J.; Gardner, M.; Gerhard,
U.; Kaye, P. T.; Lal, A. R.; Nicholls, I. A.; Salter, C. J.; Mitchell,
R. C. Toward the semiquantitative estimation of binding con-
stants. Guides for peptide-peptide binding in aqueous solution.
J. Am. Chem. Soc. 1991, 113, 7020-7030.
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