Journal of Medicinal Chemistry

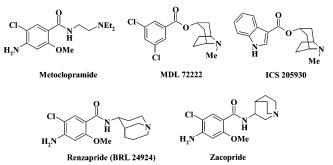
© Copyright 2003 by the American Chemical Society

Volume 46, Number 3

January 30, 2003

5-HT₄ Receptor Ligands: Applications and New Prospects

Michel Langlois^{*,†} and Rodolphe Fischmeister[‡]


CNRS-BIOCIS (UPRES A 8076) and Laboratoire de Cardiologie Cellulaire et Moléculaire, INSERM U-446, Institut de Signalisation et Innovation Thérapeutique (IFR-ISIT), Faculté de Pharmacie, Université de Paris-Sud, 92296 Châtenay-Malabry, France

Received March 4, 2002

Introduction

The physiological effect of serotonin (5-HT) is mediated in the central and periphery systems by seven subtypes of receptors. All but one are members of the G protein coupled receptor (GPCRs) family (Table 1). Thirteen genes coding for the 5-HT GPCRs have been characterized, and only three 5-HT receptors (5-HT₄R, 5-HT₆R, and 5-HT₇R) are coupled to G_s proteins and stimulate adenylyl cyclase activity, giving rise to an increase of the intracellular cAMP.¹ Considerable interest has been devoted to the characterization of 5-HT₄ receptors since their discovery^{2,3} in mouse colliculi neuronal cells and in the guinea pig ileum. Their presence in the gut allowed the proposal of a mechanism responsible for the pharmacological activity of several gastrokinetic benzamide drugs, such as metoclopramide, zacopride, and renzapride (Chart 1). Several splice variants of the 5-HT₄ receptors have been cloned,⁴ and they differ in the length of their C-terminal ends. When studied in heterologous expression systems, these receptors present some functional and pharmacological differences. In particular, the length of the C-terminal sequence of the receptor was shown to be implicated in its constitutive activity.⁵ 5-HT₄ receptors are localized in the central nervous system,⁶ heart,⁷ intestine,⁸ adrenal cortex,⁹ and the bladder,¹⁰ and several important physiological processes such as the release of acetylcholine in the hippocampus,¹¹ the increase of the

Chart 1. 5-HT₃ Receptor Antagonists of the First Generation

Ca²⁺ and pacemaker currents in the atrium,¹² the initiation of the intestinal peristaltic reflex,⁸ and the increase of the release of corticosterol in the adrenal gland⁹ are mediated through the activation of these receptors. Consequently, 5-HT₄ receptors have been implicated in a variety pathological disorders and constitute a valuable target for the design of new drugs. To date, several advances have been made to develop new molecules, in particular to cure the irritable bowel syndrome (IBS),¹³ which is characterized by an altered bowel function with an alternation of constipation and diarrhea due to the dysfunction of the intestinal serotoninergic system. But several other promising routes are currently under study, such as the prevention of atrial fibrillation¹⁴ with 5-HT₄ receptor antagonists, the improvement of the cognitive functions¹⁵ by the enhancement of the cholinergic transmission in the hippocampus with the 5-HT₄ receptor agonists, and the treatment of the voiding disorders associated with detrusor hypocontractility.¹⁰

^{*} To whom correspondence should be addressed. Address: CNRS-BIOCIS (UPRES A 8076), Faculté de Pharmacie, F-92296 Châtenay-Malabry Cedex, France. E-mail: zacopride@aol.com. Phone: 33 1 46835736. Fax: 33 1 46835740.

[†] CNRS-BIOCIS.

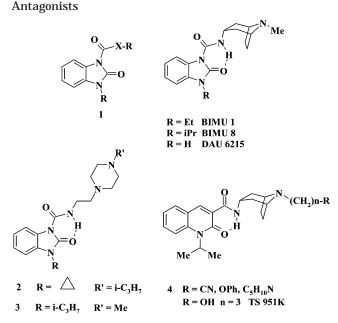
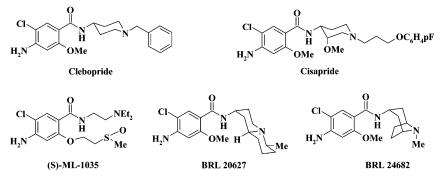

[‡] Laboratoire de Cardiologie Cellulaire et Moléculaire.

Table 1.	Different	5-HT	Receptor	Subtypes
----------	-----------	------	----------	----------

	5-HT1	5-HT ₂	$5-HT_3$	$5-HT_4$	$5-HT_5$	$5-HT_6$	5-HT ₇
subtypes	5-HT _{1A} , 5-HT _{1B} , 5-HT _{1D} , 5-HT _{1E} , 5-HT _{1F}	5-HT _{2A} , 5-HT _{2B} , 5-HT _{2C}			5-HT _{5A} , 5-HT _{5B}		
signaling pathways	cAMP↓a	$\operatorname{IP}_3 \uparrow {}^b$	ion channel $\uparrow c$	cAMP ↑ ^d	cAMP ^e	cAMP $\uparrow d$	cAMP $\uparrow d$

^{*a*} Decrease of cAMP synthesis. ^{*b*} Stimulation of the phospholipase C. ^{*c*} Increase of ion channel. ^{*d*} Increase of cAMP synthesis. ^{*e*} A possible negative coupling with adenylyl cyclase.

Chart 2. 2-Benzimidazolone and Quinoline Carboxamide Derivatives as $5\text{-}HT_4$ Agonists and


The first generation of the 5-HT₃ receptor antagonists benzamides, which turned out to be ligands for both 5-HT₃ and 5-HT₄ receptors (Chart 1), played a major role in the discovery of the potent and selective 5-HT₄ receptor ligands available to date. Previous recent reviews ^{16,17} have covered the different aspects of the SARs (structure–activity relationships) of this field. The present paper describes the recent advances made in medicinal chemistry and in the mechanisms proposed to explain the physiological role of 5-HT₄ receptors in the different tissues where they are present and the putative clinical applications of the agonists and antagonists.

Chemistry

The 5-HT₄ receptor ligands are related to the following chemical groups: benzimidazolones, benzamides, benzoic esters, aryl ketones, indole carboxylates or carboxamides and serotonin analogues.

Benzimidalone Derivatives. Initially, benzimidazole-1-carboxylic acid ester and amides **1** (Chart 2, X =O or NH) with the basic framework *endo* tropane or quinuclidine were described as potent 5-HT₃ receptor antagonists.¹⁸ In contrast with the reference compounds in the field such as MDL 72222¹⁹ and ICS 205-930,²⁰ the amidic derivatives were more potent than the corresponding esters. On the other hand, like benzamides such as zacopride²¹ or renzapride,²² the hydrogen bond between the NH amidic and the carbonyl group of benzimidazolone ring stabilized the coplanar conformation. In contrast with ondansetron, these compounds were capable of enhancing the electric-field-stimulated contraction of the intestine and possessed gastrokinetic properties.²³ It was demonstrated²⁴ that these properties were related to their ability to stimulate the 5-HT₄ receptors. Then, in the primary culture of mouse Colliculi neurons, compounds BIMU 1 and BIMU 8 were found to be potent agonists ($EC_{50} = 360$ and 72 nM, respectively) for stimulating the production of cAMP mediated by this receptor in a range of concentrations similar to that of 5-HT (EC₅₀ = 360 nM). The potency and the pharmacological profile of benzimidazolones were dependent on the N-substitution of the benzimidazole ring because the NH compound, DAU 6215, was inactive in this bioassay and was a competitive antagonist ($K_i = 220$ nM) of cAMP production by BIMU 8 and 5-HT.25 These pharmacological properties were confirmed in the gastrointestinal (GI) system and, in particular, in the relaxation of the carbachol contracted rat oesophagus,²⁶ an efficient model for the characterization of the 5-HT₄ ligands. BIMU 1 and BIMU 8 were equipotent to 5-HT ($pEC_{50} = 8$ and 7.9, respectively) but with a weaker intrinsic activity. DAU 6215 inhibited the effects of 5-HT and BIMU 8 ($pA_2 = 6.9-7.2$) in this model, confirming the identity between the central and peripheral receptors.²⁷

Although a combination of 5-HT₃ receptor antagonist and 5-HT₄ receptor agonist properties could have some advantage in clinical use, the search for selective compounds was mandatory to characterize correctly the 5-HT₄ receptors. In this respect, it was only recently²⁸ that selective compounds were designed in this benzimidazolone family. The tropane moiety was substituted by the piperazine ring linked to the benzimidazole group with the flexible ethyl chain (compounds 2 and 3, Chart 2). This structural modification brought about a decrease of affinity for 5-HT₃ receptors while the affinity for 5-HT₄ receptors was maintained. As in the parent series, the pharmacological profile depended on the nature of the substitution on the nitrogen atom of the benzimidazole ring: compound **2** ($R = c-C_3H_5$; R' =i-C₃H₇) was a selective ligand with 5-HT₄ receptor antagonist activity ($K_i = 6.7$ nM; $pK_i = 7.78$), and compound **3** ($\mathbf{R} = i \cdot C_3 \mathbf{H}_7$; $\mathbf{R}' = \mathbf{M}_e$) was a selective high partial agonist with moderate affinity (intrinsic activity = 0.94; K_i = 91.1 nM). More recently,²⁹ derivatives of 3-quinolocarboxamide 4, a bioisosteric group of benzimidazolone, were synthesized as structural analogues of BIMU 8. Several potent and selective 5-HT₄ receptor agonists were obtained by introducing various substituents on the nitrogen atom of the tropane ring. This work demonstrated the ability of the binding site of the 5-HT₄ receptor to accept voluminous groups around the ionic anchorage site. The alkyl chains with different groups such as piperidine, OH, phenoxy, and CN fitted correctly to give rise to agonists more potent than Chart 3. Gastrokinetic Benzamides of the First Generation

cisapride. TS-951K (**4**, R = OH, n = 3) was selected as a promising agent to alleviate symptoms of the gastrointestinal dysfunctions.³⁰

Benzamide Derivatives. The parent compound of this class was metoclopramide³¹ (Chart 3), and the amides of 4-amino-5-chloro-2-methoxybenzoic acid were the key compounds in the discovery of 5-HT₄ receptors ligands. Metoclopramide was characterized as a gastric prokinetic agent possessing dopamine receptor antagonist properties. Clebopride,³² a potent gastrokinetic compound in the guinea pig ileum bioassay, was designed by the modification of the amino chain of metoclopramide that was introduced into the piperidine framework. However, the presence of the N-benzyl substitution strengthened the affinity for the D₂ dopamine receptors and provided a highly potent D₂ receptor antagonist. Nevertheless, by introduction of other substitutions such as the aryloxypropyl chain, new compounds were discovered that turned out to be potent gastrokinetic compounds devoid of antidopaminergic properties. Cisapride³³ was the first molecule of this family largely used in a human clinic to treat gastrointestinal disorders.

The structural modifications of the 2-alkoxy chain of metoclopramide were also claimed to give compounds with potent gastrokinetic properties and weak affinity for the D_2 receptors in the guinea pig and rat. In particular, (*S*)-ML-1035, a sulfoxide derivative, was described as equipotent to metoclopramide in the enhancement of guinea pig ileum contraction and rat gastric emptying.^{34,35}

But more promising results were obtained with the derivatives of metoclopramide, such as BRL 20627,36 BRL 24682,³⁷ renzapride,²² and zacopride,^{21,38} where the amino flexible chain was introduced into a rigid framework such as the guinolizidine, tropane, and guinuclidine moieties. These compounds were potent 5-HT₃ receptor antagonists of the 5-HT-evoked Bezold-Jarisch reflex and more potent stimulants of the gastrointestinal motility than metoclopramide. On the other hand, and in contrast to metoclopramide, they were inactive on the dopaminergic receptors. Since 5-HT₃ receptors are present in the gastrointestinal system, blockade of these receptors might account for the gastrokinetic properties of these compounds. However, this putative mechanism was discarded³⁹ because several potent 5-HT₃ antagonists structurally different from benzamides had no effect on gastrointestinal motility. It was demonstrated³ that renzapride and 5-HT induced relaxation of the rat oesophagus and facilitated the peristaltic reflex in guinea pig ileum. Simultaneously,² these compounds were shown to be full agonists of the newly characterized 5-HT₄ receptor in mouse embryo colliculi neurons, which was positively coupled to adenylyl cyclase. In this bioassay, cisapride, renzapride, and zacopride behaved as agonists with pEC₅₀ values equal or inferior to that of 5-HT (7.14, 6.90, and 5.95, respectively) but with superior efficacy (142%, 133%, and 144%, respectively) while they were partial agonists in a different assay using 5-HT₄ receptor mediated cAMP response in guinea pig hippocampal membranes.⁴⁰

The structural requirements implicated in the recognition of the benzamides by the D₂ and 5-HT₄ receptors were studied by comparing the pharmacological properties of BRL 20627 and the phenyl-substituted indolizidine analogues 5 and 6 (Chart 4) mimicking the restricted conformers of clebopride.⁴¹ Only the β -phenyl stereoisomer 5 retained the gastric prokinetic activity, while the central dopamine antagonist activity was present in the α -phenyl stereoisomer **6**. Preliminary structural parameters implicated in the recognition by the 5-HT₄ and 5-HT₃ receptors were determined by King²² with the synthesis of benzamide analogues of the high-energy conformations of the cis junction of the quinolizidine ring of BRL 20627 (Chart 4). The compounds possessed an aza bicycle in such a way that the amino group of the second ring was "tied back". This induced a drop of the steric hindrance around the basic nitrogen atom.¹⁷ The most representative of this class of compounds was renzapride, which can be viewed as an analogue of zacopride and which was characterized as a potent stimulant of the electrically evoked guinea pig ileum contraction and of rat intragastric pressure. However, almost all of these compounds were also potent 5-HT₃ receptor antagonists in the 5-HT evoked Bezold–Jarisch reflex, indicating that 5-HT₃ and 5-HT₄ receptors possessed common steric requirements around the anchorage point of the ammonium ion.

The first breakthrough for obtaining more selective benzamides for 5-HT₄ versus 5-HT₃ receptors was reported by Flynn⁴² who used the pyrrolizidine ring as the basic constrained framework for the synthesis of SC-53116. This compound was characterized as a potent and efficient 5-HT₄ agonist in the rat tunica muscularis mucosae. With an EC₅₀ of 23.7 nM when tested in this preparation, SC-53116 was more potent than cisapride, renzapride, (*S*)- and (*R*)-zacopride, and BIMU 8 (EC₅₀ = 55, 44, 173, 505, and 40.3 nM, respectively). Similar to cisapride, SC-53116 had a moderate affinity for 5-HT₃ **Chart 4.** Influence of the Stereochemistry of the Basic Framework for the Recognition by the 5-HT₄ and the D_2 Receptors: Structural Intermediates between BRL 20627 and Renzapride

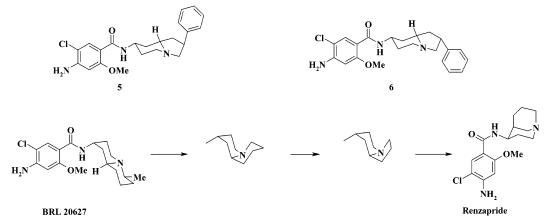
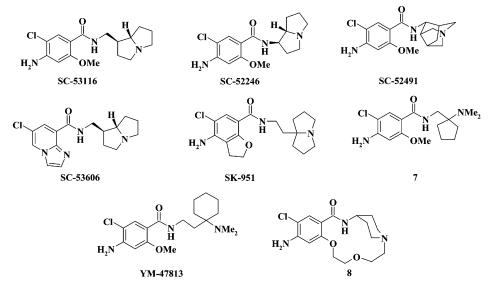
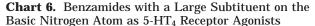
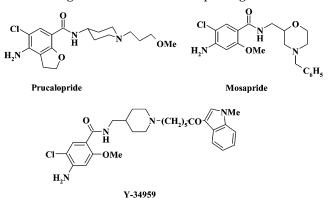



Chart 5. Second Generation of Benzamide Derivatives with Structural Modification of the Basic Chain




receptors ($K_i = 152$ nM) but was more selective because of the lack of affinity for the dopamine and adrenergic receptors. An enantioselectivity was observed because the exo (1S,8S) enantiomer was 10-fold more potent than the corresponding antipode. The SAR developed in this series highlighted the close structural relationships between the 5-HT₃ and 5-HT₄ ligands, since a modest structural variation led to large effect on the activity. Hence, shortening the amino chain gave rise to a potent 5-HT₃ receptor antagonist (SC-52246) with very weak affinity for the 5-HT₄ receptor. A comparison of SC-53116 with renzapride and zacopride indicated that the 5-HT₃ receptor binding site preferred more compact aza bicycles as the basic moiety. This point was clearly demonstrated with a series of azanoradamentane derivatives⁴³ that were 5-HT₄ receptor agonists but with a potent affinity for the 5-HT₃ receptor (SC-52491). The structural modification of the benzamide ring of SC-53116 led to a dramatic change of the pharmacological profile, since the imidazopyridine carboxamide SC-53606 (Chart 5) was a relatively selective potent antagonist of 5-HT₄ receptors.⁴⁴ Benzamides,⁴⁵ such as SK-951,46 with an achiral pyrrolizidine were more recently described. The essential structural modification with regard to SC-53116 resided in the substitution of the classical 4-amino-5-chloro-2-methoxybenzoic acid by

the 4-amino-2,3-dihydro-2-methylbenzo[*b*]-furan-7-carboxylic. SK-951 was claimed as a potent 5-HT₄ agonist (EC₅₀ = 14 nM) with a selectivity versus 5-HT₃ receptor of K_i = 420 nM in in vitro and in vivo models.^{46,47}

Structural constraints were also introduced into the basic ethyl side chain of metoclopramide in which the vicinal carbon atom of the basic nitrogen atom of the ethyl chain was introduced into a ring. Compound 7^{48} (Chart 5) was described as a 5-HT₃ receptor antagonist ($K_i = 9$ nM) devoid of any affinity for the 5-HT₄ receptor, while compound YM-47813⁴⁹ was shown to enhance the gastric motility and gastric emptying in dog when administered orally. On the other hand, the inclusion of the cyclopropane ring⁵⁰ in the ethyl chain gave rise to compounds with trans or cis configuration that turned out to be inactive on the 5-HT₄ receptors.

Pertinent information on the role of the steric requirements and of the orientation of the nitrogen atom lone pair of the basic framework was obtained from the macrocyclic benzamide $\mathbf{8}$,⁵¹ which was compared to the flexible analogue piperidine derivative. In contrast with the derivatives in which the nitrogen substituent was not tied back, $\mathbf{8}$ was a more potent 5-HT₄ receptor agonist (K_i (rat brain) = 29.7 nM, EC₅₀(electrically stimulated myenteric plexus) = 69 nM) than 5-HT₃ receptor antagonist ($K_i = 53.2$ nM).

However, the lack of bulk around the basic nitrogen was not an essential structural requirement for obtaining 5-HT₄ receptor agonists. As already reported, and in contrast to the 5-HT₃ receptor, the 5-HT₄ receptor binding site can fit the linear flexible substituent on the basic nitrogen atom. By use of this property, several potent and selective agonists of the 5-HT₄ receptors were designed in the benzamide series. Thus, mosapride⁵² (Chart 6), a benzylmorpholine derivative, was shown to possess potent gastrokinetic properties mediated by the 5-HT₄ receptors with an affinity value of 84 nM measured in the myenteric plexus of the guinea pig ileum.⁵³ Preliminary SAR⁵⁴ studies on this compound showed that the 5-HT₄ receptor agonist properties were always present with the phenylbutyl chain, confirming the existence of the large hydrophobic pocket around the cationic anchorage point in the binding site of the 5-HT₄ receptor. This point had been already emphasized with cisapride, but it might be implicated in the lack of selectivity of this compound that interacted with the 5-HT₁, 5-HT₂, and adrenergic receptors. The role of this secondary binding site in the functionality of the 5-HT₄ receptor and the selectivity versus that of the other receptors were clearly demonstrated with new benzamides such as prucalopride,⁵⁵ prepared from the metoclopramide-like benzofuran acid and N-methoxypropylpiperidine. This compound was particularly selective with p K_i values of 8.6 and 8.1 for the human 5-HT_{4(a)} and 5-HT_{4(b)} receptors, respectively. In different in vitro preparations of 5-HT₄ receptors, prucalopride was a potent agonist with pEC₅₀ values around 7.50. Similarly, Y-34959,⁵⁶ a benzamide of the aminomethylpiperidine framework, was characterized by the presence of a (1methylindol-3-ylcarbonylamino)pentyl chain on the basic nitrogen atom. It was a potent and selective ligand for the 5-HT₄ receptor (K_i (nM) values of D₂, 5-HT_{1A}, 5-HT₂, 5-HT₄ receptors were \geq 1000, 110, >1000, and 0.3, respectively).

Benzoates. The interest in the ester derivatives for the characterization of the 5-HT₄ receptors was shown with ICS 205-930, a potent 5-HT₃ antagonist that was the first surmountable antagonist of 5-HT₄ receptors² in the stimulation by 5-HT of cAMP formation in the primary culture of the mouse Colliculi neurons with moderate activity ($pK_i = 6.2$). The first potent antagonist was described by Buchheit⁵⁷ who prepared the ester analogue of metoclopramide SDZ 205-557. In contrast with the parent compound, the affinity for the 5-HT₄

receptor was dramatically increased and the compound antagonized the effect of 5-HT in the isolated guinea pig ileum longitudinal muscle preparation, with a pA_2 value of 7.4 while it was 5.6 in the contraction induced by the 5-HT₃ agonist 2-methylserotonin.⁵⁸ However, the good selectivity of this compound was not confirmed in binding studies using mouse neuroblastoma NG 108-15 cells, which express the 5-HT₃ but not the 5-HT₄ receptor, since the affinity of these cells was similar to that observed for the 5-HT₄ receptors in the striatum.⁵⁹ With the goal of obtaining more potent and selective compounds, several SAR studies on the esters derived from benzamides were designed.^{60–62} They confirmed the preliminary results on the increase in affinity for the 5-HT₄ receptor with regard to the corresponding benzamide. In particular, ML 1030263 (Chart 7) was characterized as a partial agonist equipotent to serotonin in the isolated guinea pig ileum longitudinal muscle preparation (EC₅₀ = 4 nM (80%)) and in the carbacholcontracted rat oesophageal muscularis mucosae ($IC_{50} =$ 2.4 nM (80%)). This compound was found to be selective on a large set of receptors with a weak affinity for the 5-HT₃ receptors ($K_i = 782$ nM). The introduction on the piperidine ring of various substituents modified the efficacy of the compounds, and a complete drop in efficacy was observed with the 3,5-dimethyl derivative. The cis compound ML 10375 was characterized as a potent antagonist of 5-HT in the rat oesophageal muscularis mucosae preparation.⁶² An examination of the X-ray crystal structures of ML 10302 and ML 10375 showed a similar folded conformation of the ethyl chain, giving an orientation of the hydrogen atom of the quaternary nitrogen atom that is similar to that of aza bicycle benzamides such as zacopride and renzapride. The data on the X-ray crystal structures were confirmed by structural analysis and showed a limited number of permissible conformations. The calculation of the minimum energy conformer indicated the putative equilibrium between the extended and the different folded conformations. An attractive hypothesis is that activation of the receptor is triggered by the propensity of a molecule such as ML 10302 to adopt the folded conformation in the binding site, mimicking conformational restricted molecules such as zacopride and renzapride.⁶² On the other hand, ML 10375 might bind the receptor site in the extended conformation and be unable to give the active folded form because of the steric interactions of both methyl groups with the binding site. A superior homologue of ML 10302 was characterized as a potent antagonist of the 5-HT₄ receptor (RS 23597),⁶⁴ confirming the implication of the steric properties in the pharmacological profile of the molecules.

For various larger groups on the basis nitrogen atom, the possibility of binding with the secondary binding site of the receptor was explored with the synthesis of the derivatives of ML 10302, where the piperidine ring was substituted by the different aryl- and hetero-arylpiperazines.⁶⁵ In contrast with ML 10302, these compounds were antagonists of the 5-HT stimulated cAMP synthesis induced by activation of cloned human 5-HT₄ receptors isoforms and **9** was shown to antagonize the stimulatory effect of 5-HT on the L-type calcium current (I_{Ca}) in human cardiac myocytes ($K_D = 0.7$ nM).

Chart 7. Benzoate and Carbamate Derivatives as Selective 5-HT₄ Receptor Agonists and Antagonists

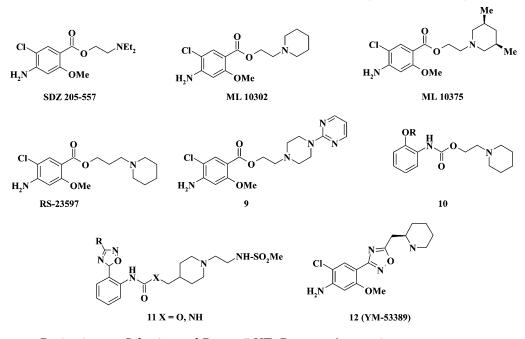
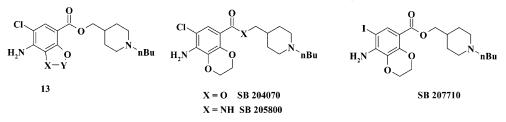



Chart 8. Benzoate Derivatives as Selective and Potent 5-HT₄ Receptor Antagonists

The presence of the ester function is a significant drawback for the administration in vivo of the compounds because of their putative short half-lives. A series of carbamates⁶⁶ derived from the previous esters were prepared (Chart 7). In contrast to the esters where the presence of the 4-amino-5-chloro substituents was mandatory for obtaining active compounds, the *o*-alkoxyphenyl carbamates **10** were the most potent and were characterized as a 5-HT₄ receptor antagonist in the guinea pig ileum. Similarly, aryl carbamates and ureas **11** in which the *o*-methoxy group was substituted by a heterocycle such as 1,2,4-oxadiazole were claimed as potent 5-HT₄ receptor antagonists.⁶⁷

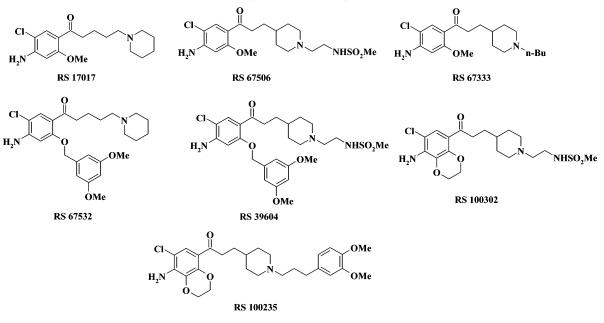
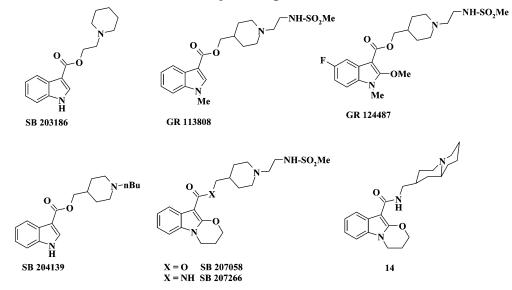
Another attempt to overcome the problems related to the bioavailability of the esters was presented recently with the preparation of the 1,2,4-oxadiazol derivatives⁶⁸ as the bioisosteric moiety of the carbonyl function. Compound **12** (YM-53389) was a highly selective 5-HT₄ agonist equipotent to cisapride. It was shown to possess significant activity that shortens the total gut transit time but without effect on the upper gastrointestinal propulsion.⁶⁹

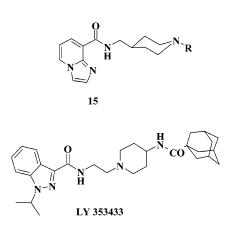
An important series⁷⁰ of benzoate derivatives (Chart 8) were obtained by introduction of the ortho oxygen atom of benzoic acid within a five- or six-membered ring, **13** (X-Y = O-CH₂ or O-(CH₂)₂-), and coupling with (1-butyl-4-piperidinyl)methylamine. Benzodioxan derivative SB 204070 was the most potent and highly selective antagonist of the 5-HT₄ receptors in the guinea pig distal colon longitudinal muscle myenteric plexus preparation (LMMP).⁷¹ In this assay, this compound

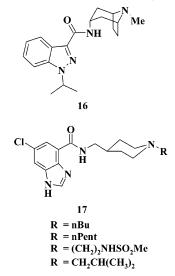
was characterized as an insurmountable antagonist with a pK_a value of 10.4, although its effect could be reversed with washout of the drug. The antagonist effect of derivative SB 204070 was confirmed in the in vivo model of the conscious dog Heidenhain pouch where the drug inhibited the 5-HT evoked response in a dosedependent manner.⁷² As previously reported for the other series, the corresponding amidic derivative of SB 204070 (SB 205800) was less potent although still active in the nanomolar range ($pK_a = 9$). The high affinity and the selectivity of SB 204070 led to the development of the iodo derivative SB 207710 as a radioligand that binds the 5-HT₄ receptors with a high affinity ($pK_i = 9.2$).⁷³

Aromatic Ketone Derivatives. The design of aromatic ketones structurally related to the benzoates opened another way to overcome the problem of the metabolic hydrolysis of the esters and of their weak bioavailability. From the 5-HT₄ receptor antagonist RS-23597,⁶⁴ the corresponding ketone RS 17017⁷⁴ (Chart 9) was shown to be a partial agonist about 1 order of magnitude less potent than 5-HT in the relaxation of carbachol contracted rat oesophageal muscularis mucosae (pEC₅₀ = 7.4). However, more potent compounds⁷⁵ were obtained with the basic framework of GR 113808 substituted by n-Bu (RS 67333) or (CH₂)₂NHSO₂Me (RS 67506). These compounds are highly selective for the 5-HT₄ receptor, although they also bind σ_1 and σ_2 receptors, and they behave as potent partial agonists in the model of relaxation of rat oesophagus ($pEC_{50} =$ 8.4 and 8.6, respectively). The 5-HT₄ receptor agonist

Chart 9. Ketone Derivatives as 5-HT₄ Receptor Agonists and Antagonists


Chart 10. Indole Amides and Esters as 5-HT₄ Receptor Antagonists

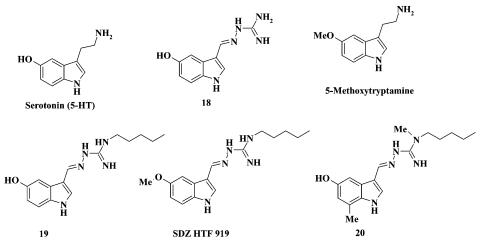


activity was demonstrated in vivo in the piglet model of tachycardia.⁷⁶ In contrast to the 5-HT₃ receptor antagonists and 5-HT₄ receptor agonists renzapride and zacopride, RS 67506 enhanced the lower intestinal propulsion in mice, suggesting that blocking of 5-HT₃ receptors might not be suitable for the treatment of propulsion impairment in the colon.⁷⁷ Modification of the *o*-methoxy group of the 5-HT₄ receptor agonists RS 17017 and RS 67506, in particular by the substitution with the 3.5-dimethoxybenzyl group, led to a complete loss of agonist efficacy and to the highly potent 5-HT₄ receptor antagonists RS 67532 and RS 39604, respectively. These compounds inhibited the 5-HT mediated relaxation of carbachol contracted rat oesophageal muscularis (p $K_i = 8.5$ and p $K_i = 9.2$).⁷⁵ Moreover, the combination of the favorable effects of the benzodioxane moiety in the benzoic esters and of the previous results obtained with the ketones led to new antagonist derivatives, such as RS 100302 and RS 100235.78

Indole Carboxylic Acid Ester and Amide Derivatives. As reported previously, this class of compounds was derived from ICS 205-930 or tropisetron, a potent 5-HT₃ antagonist, which binds to 5-HT₄ receptors with a medium affinity (1 μ M) and has an antagonist profile.² The substitution of the tropane moiety (Chart 10) by the more flexible ethylamido chain and the more bulky piperidine ring gave rise to SB 203186,79 a potent 5-HT₄ receptor antagonist in the piglet right atrium. However, an important advance was made with the synthesis of GR 113808⁸⁰ where the 4-piperidinylmethyl chain was introduced for the first time in the field of 5-HT₄ receptor ligands. This compound had a subnanomolar affinity and was very selective compared with other receptors. GR 113808 was a very useful pharmacological tool for the characterization of 5-HT₄ receptors, particularly with the tritiated molecule, which was used for the localization of 5-HT₄ receptors in various tissues and for receptor binding studies.⁸¹ A more elaborated compound, GR 124487, was claimed as a more potent

Chart 11. Imidazopyridine, Indazole, and Benzimidazole Derivatives as 5-HT₄ Receptor Antagonists

antagonist than GR 113808. Recently,82 naphthalene bioisosteric analogues were prepared, but they were clearly less potent. In search of new compounds that would be effective orally so that they could be used as therapeutic drugs, SmithKlineBeecham synthesized a series of indole derivatives using the favorable results obtained with SB 204070. The idea was to mimic the benzodioxane ring on the indole by introduction of an oxygen atom in position 2 of the ring. The oxazolo, oxazino, and oxazepino indoles hence obtained were potent antagonists of the 5-HT₄ receptors in the guinea pig distal colon (LMMP preparation), and the derivative with the six-membered ring, SB 207058, was the most potent (pIC₅₀ = 10.6).⁸³ As previously observed, the conversion to the analogous amide was detrimental for the activity, although the effect on these cyclic compounds was less marked and SB 207266 (piboserod) retained a good level of activity ($pIC_{50} = 9.2$). In contrast to SB 204070, the 5-HT response recovered its control level after washout of this drug, indicating a reversible antagonism. SB 207266 was highly potent in the model of the dog Heidenhain pouch when it was administered orally with a lasting time superior to 2 h, indicating good orally bioavailability.84


The influence of the constraints on the basic 4-piperidinylmethyl moiety chain was investigated with the synthesis of indolic esters of quinolizidine derivatives⁸⁵ that can mimic this basic group in the folded conformation. The best of these compounds were those obtained with a one methylene linker in the para position of the basic nitrogen atom between the acid and the aza bicycle group in the equatorial conformation. The favorable influence of the oxazino[3,2-*a*]indole group was also confirmed with the synthesis of **14**, which was highly potent in the guinea pig distal colon LMMP preparation (pIC₅₀ = 9.5) and inhibited the binding of [¹²⁵I] SB 207710 to piglet hippocampal membranes.

Several studies of the structural analogues of the indole ring were undertaken to design compounds with potential good bioavailability (Chart 11), and consequently, the search for the amidic derivatives was privileged. Imidazopyridine carboxamides or carboxylic esters **15**, with the basic framework derived from piperidine or quinolizidine rings, were claimed as 5-HT₄

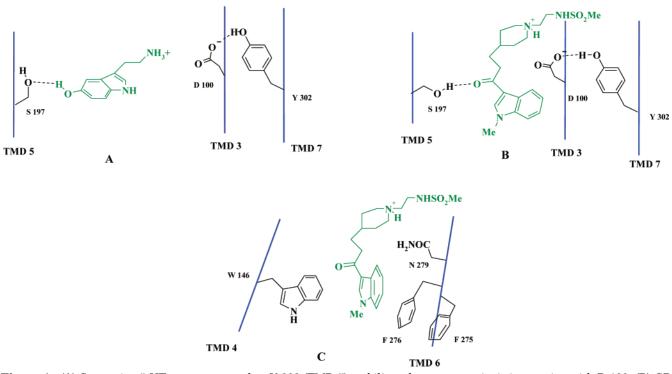
receptors antagonists.⁸⁶ An extensive SAR study on the indazole derivatives⁸⁷ was realized from a preliminary approach where it was demonstrated that indazole-3carboxamide of endo-3-tropanamine 16 (Chart 10) possessed a greater 5-HT₄ receptor affinity than tropisetron. As reported¹⁸ for the benzimidazolone series, *N*-isopropyl substitution gave the best compounds and the corresponding amides of the monocyclic piperidine linked directly to the ring or through a two-methylene chain were potent 5-HT₄ receptor antagonists. The potency was largely increased by the introduction, on the basic nitrogen atom, of a substituent with a hydrogen donor group associated with a hydrophobic moiety capable of binding to the accessory binding site already characterized in the 5-HT₄ receptor. One such compound, LY 353433, was a selective, potent, and orally active 5-HT₄ receptor antagonist. A similar SAR study was performed on a series of benzimidazole-4-carboxamides by Lopez-Rodriguez⁸⁸ who found, in contrast with the results of most previous studies, that amides were more potent 5-HT₄ receptor antagonists than the corresponding esters, particularly the amides 17 of 6-chlorobenzimidazole-4-carboxylic acid.

Serotonin Analogues. Serotonin is a potent agonist of the 5-HT₄ receptors in the different biological preparation in which this receptor is present. It could be a suitable structural model for designing new agonists for this receptor. The activity obtained with carbazimidamide 18 (Chart 12), a structural analogue of 5-HT where the guanidine group provided a stabilized basic function,⁸⁹ confirmed the interest in this approach. 18 was 2.5-fold more potent than 5-HT, with an efficacy of 150% and exhibiting a pD_2 value of 8.8 in the electrically stimulated longitudinal muscle preparation of the guinea pig ileum. However, the presence of the guanidine function could be an important drawback for the bioavailability of the compound. A SAR study⁹⁰ of the indole carbazimidamide family showed the possibility of introducing lipophilic groups capable of interacting with the secondary accessory hydrophobic site of the 5-HT₄ receptors. As already reported, this region of the receptor can accept a large set of substituents that clearly influence the pharmacological activity. Among a number of potent compounds, 19 was discovered as

Chart 12. Carbazimidamide Derivatives as 5-HT₄ Receptor Agonists or Antagonists

the most potent 5-HT₄ receptor full agonist described so far $(pD_2 = 9.3)$. However, SDZ HTF 919 or tegaserod,⁹¹ a moderate partial agonist ($pD_2 = 6.9$), was selected for the clinical investigations in the disorders of the intestinal transit. The presence of the methoxy group in this compound is structurally analogous to 5-methoxytryptamine, a selective 5-HT₄ receptor agonist. The indole carbazimidamide derivatives shared no recognition parameters with ligands of 5-HT₃ receptors, and they were perfectly selective compared with this receptor. However, the structural similarity of these compounds to serotonin might explain why 19 was only 15-fold less potent on the 5-HT_{1D} receptor than on the 5-HT₄ receptor. It is worth noting that, from the SAR study reported, the activity of these compounds resides only in the indole derivatives, since the carbazimidamide derivatives with the isosteric indole groups are either inactive or only weakly active. The introduction of a small substituent, for example, Me or Et, on the aromatic ring of 19 brought about an interesting drop of the intrinsic activity,⁹² since the compounds became 5-HT₄ receptor antagonists. 20 was a competitive and selective antagonist in the assay of the inhibition of 5-HT induced contractions of guinea pig ileum ($pA_2 =$ 8.4). This last point highlighted the influence of the subtle structural modification of the ligands on their efficacy. Indeed, a small steric hindrance or constraint can hamper the rearrangement of the receptor during the activation step of the receptor, producing a loss of efficacy and an antagonist profile for the molecules. This point has been reported recently with some agonists of 5-HT_{1A} and 5-HT₄ receptors^{62,93} that were transformed into the antagonists of the corresponding receptors by the introduction of a methyl group on the agonist structures.

Pharmacophore of the 5-HT₄ Ligands and the Binding Receptor Site


The preliminary data on the structural parameters implicated in the recognition of the 5-HT₄ receptor binding site were influenced by the results obtained in the field of the 5-HT₃ receptors because a number of 5-HT₃ antagonists were also 5-HT₄ receptor agonists or antagonists. Therefore, the presence of an aromatic system, a hydrogen acceptor group such as the carbonyl function, and a basic group was the essential charac-

teristic of the 5-HT₄ receptor pharmacophore. It was structurally closely related to the model generated by Hibert 94 for the 5-HT₃ receptor antagonists. However, several differences were emphasized during the search for more selective ligands and the main ones concerned the structure of the basic chain. The 5-HT₃ receptor site prefers the reduced steric hindrance around the basic nitrogen atom as in zacopride or renzapride, while the 5-HT₄ receptor site can fit very voluminous groups on the basic nitrogen atom. The best illustration of this point is provided by compounds such as cisapride, prucalopride, and LY 353433. The linker between the acceptor hydrogen group and the basic nitrogen atom possesses variable length: six bonds in GR 113808, SB 207266, and RS 67506, five bonds in RS 67532, and fours bonds in ML 10375 and SDZ 205-557.

In contrast with other members of the 5-HT receptor family, few molecular modeling studies have been published on 5-HT₄ receptors. In 1997, Lopez-Rodriguez⁹⁵ calculated the geometrical characteristics of a 3-D model of the pharmacophore by the active analogue approach of two sets of 5-HT₃ and 5-HT₄ receptor ligands. It was characterized by the following parameters: a carbonyl function coplanar with the aromatic ring located 3.6 Å from the centroid of the aromatic ring, a basic nitrogen atom separated by 8.0 Å from the centroid and by 5.4 Å from the oxygen atom of the carbonyl function, a hydrophobic accessory pocket capable of binding the voluminous substituent of the nitrogen atom. This study gave quantitative expression of what can be derived from a careful examination of the molecules and provided no information on the exact nature of the nitrogen atom substituent.

Few data were also available from SAR studies concerning the variation of the pharmacological profile of the molecules. For instance, the "tied back" structure of the basic framework of the 5-HT₄ receptor agonists of the first generation, such as zacopride and renzapride, was related to the agonist profile. However, this structural property was not totally relevant to the pharmacological profile because several agonists such as cisapride and prucalopride possess a large substituent on the basic nitrogen atom.

An interesting structural analysis reported by Buchheit⁸⁹ compared the 3D structure of serotonin and zacopride and proposed a pharmacophore model where

Figure 1. (A) Serotonin–5-HT₄ receptor complex. Y 302 (TMD 7) stabilizes the consensus ionic interaction with D 100. (B) GR 113808–5-HT4 receptor complex. S 197 binds through a hydrogen bond to the carbonyl group of the ester function. (C) GR 113808–5-HT4 receptor complex. The indole ring is embedded in a hydrophobic pocket defined by W 146, F 275, F 276, and N 279.

the basic nitrogen can be located either 5.7 or 7.4 Å from the center of the aromatic ring and 0.8 or 0.1 Å above the plane defined by this system. The carbazimidamide **19**, which has an embedded guanidine function, was capable of occupying simultaneously the two positions and of binding the putative hydrogen acceptor group and the charge acceptor located in the receptor site.

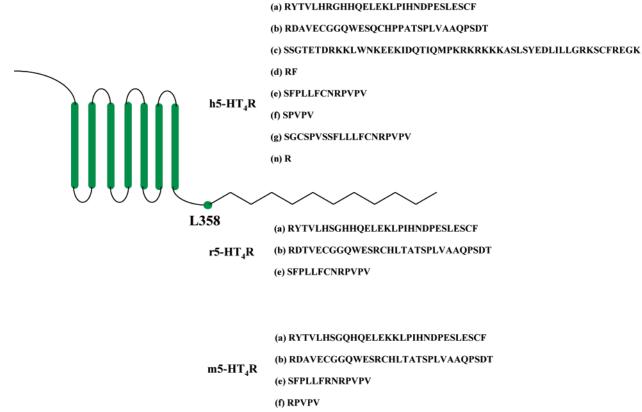
Recently,⁹⁶ a more direct approach of the nature of the interactions in the binding site and the ligands were reported with a site-directed mutagenesis and molecular modeling study. The new human 5-HT_{4(a)} isoform was expressed in COS-7 cells and several highly conserved amino acids residues in the G protein receptor family were mutated. Docking experiments taking into account the results of the measurements of the affinity and functional activity of serotonin and GR 113808 were realized. Essential results (Figure 1) indicated that, for the binding of serotonin, Y302 in the seventh helix played a major role in the stabilization of the consensus ionic interaction with D100 in the third helix, and S197 on the fifth helix was the anchorage point with the hydroxyl function. For GR 113808, it was proposed that S197 binds the carbonyl group of the function ester. It is worth noting that the substitution D100N had a relative weak effect on GR 113808 binding, which indicates a rather small contribution of the ionic interaction, since it can be substituted by an hydrogen bond. Docking experiments showed that the indole ring was embedded in a pocket defined by the residues W146, F275, F276, and N279 because any mutations of these amino acids decreased dramatically the affinity of the ligand for its site and modified the functional activity of serotonin. These last characteristics were common with other serotoninergic receptors, in particular the 5-HT₂ receptor.⁹⁷

Receptors, Localization, Structure, and Functions

The 5-HT₄ receptor is a member of the seven transmembrane-spanning G protein coupled family of receptors (GPCR) and constitute an important subtype of the class of serotonin receptors. Initially, the 5-HT₄ receptor was characterized in the neuronal cell culture⁹⁸ of mouse colliculi and it was shown to be positively coupled to adenylyl cyclase. The effect of serotonin was mimicked by the 5-HT₄ receptor agonists BIMU 1 and BIMU 8 and was blocked by the 5-HT₄ receptor antagonists DAU $6215.^{24,25}$ This positive effect of 5-HT_4 receptors on adenylyl cyclase is shared by the recently discovered 5-HT₆ and 5-HT₇ receptors.^{99,100} 5-HT₄ receptors are distributed in the guinea pig and rat central nervous system (CNS) in two anatomical and functional structures: the extrapyramidal motor system (striatum, globus pallidus, and substantia nigra) and the mesolimbic system (nucleus accumbens and olfactory tubercle).^{6,101} They were characterized by using the binding bioassay with [³H] GR 113808 as radioligand.⁸¹ In human, their presence was shown in basal ganglia and in the caudate-putamen nuclei where the density is the highest ($B_{\text{max}} = 225$ fmol/mg protein). Several areas with a substantial density of receptors were found: lenticular nucleus, substantia nigra, hippocampus, and frontal cortex.^{102,103} Recently,¹⁰⁴ the mapping of the 5-HT₄ receptor in the postmortem human brain was determined by using the localization of the 5-HT₄ receptor mRNA and the 5-HT receptor protein. The highest levels of 5-HT₄ receptors were found in caudate nucleus, putamen, nucleus accumbens, and hippocampal formation. 5-HT₄ receptors are also present in the periphery,^{105–107} particularly in the overall gastrointestinal tract where they are implicated in the contraction or

Figure 2. Activation of the 5-HT₄ receptor leads to activation of cAMP-dependent protein kinase (PKA) and inhibition of a voltage-activated K^+ channel. The resulting depolarization activates Ca^{2+} influx, which triggers neurotransmitter release.

the relaxation of the smooth muscle. Saturable binding of [³H] GR 113808 was determined in the longitudinal muscle and myenteric plexus of the guinea pig, with a larger number of sites in the upper part of the intestine: duodenum > jejunum > ileum >> colon > rectum. In all cases, the number of binding sites in the intestine is inferior to that in brain. The presence of 5-HT₄ receptors in the intestine allowed for the understanding of the mechanism of several benzamide gastrokinetic drugs, such as cisapride and metoclopramide.^{108,109} 5-HT₄ receptors are also present in the pig and human heart,⁷ but they are exclusively located in the atrium where they are responsible for the tachycardia and the positive inotropic effect observed after injection of 5-HT. Kaumann¹⁴ has suggested that 5-HT liberated from platelets could induce atrial arrhythmia by activation of these receptors. In the vascular system, 5-HT₄ receptors were characterized on the pulmonary vein and the mesenteric lymphatic system where they cause relaxation, but too few data have been reported to date to give a clear characterization of this receptor in these tissues.110


It has been demonstrated that the 5-HT₄ receptor is present in the human detrusor muscle and mediates the facilitation via a cholinergic mechanism of the contraction of the human bladder.¹⁰ 5-HT₄ receptors could be implicated in urinary incontinence because this syndrome has been found to occur in patients treated with cisapride.

5-HT mediates the release of corticosterone and aldosterone via 5-HT₄ receptors on the human adrenal cortex.⁹ Zacopride caused the release of cortisol in the human adrenocortical slices,¹¹¹ which was blocked only by high doses of tropisetron. To date, it is the only endocrine pathway that is regulated by this receptor subtype.

In almost all tissues where the 5-HT₄ receptors are present, 5-HT or the corresponding agonists are capable of increasing cAMP synthesis.¹¹² This was the case in the hippocampus, the atrium, the oesophagus, the gut, and the adrenal cortex. One of the characteristics of the 5-HT₄ receptors is their ability to be desensitized after their stimulation. It was shown^{113,114} that 5-HT elicited the depolarization of the pyramidal cells of the CA1 region of the hippocampus, and a concentrationdependent reduction in the amplitude of the afterhyperpolarization (AHP) was emphasized. This effect was competitively inhibited by selective 5-HT₄ receptor antagonists such as GR 113808 and SDZ 205-507.¹¹⁵ Similarly in colliculi neurons,¹¹⁶ the exposure of the receptors to 5-methoxytryptamine or 5-HT₄ receptor agonists was followed by a rapid and long inactivation that was related to the potency and the efficacy of the agonists. The desensitization was not dependent on the cAMP formed but on the mean occupancy time of the receptor by the agonist, and it was due to phosphorylation of the occupied receptor by β ARK or another specific receptor-dependent protein kinase.

A number of physiological processes can be triggered by an increase in intracellular cAMP. For instance, in mouse colliculi neurons,¹¹⁷ the activation of the 5-HT₄ receptors is followed by the inhibition of the voltageactivated K⁺ channel current caused by a phosphorylation reaction through cAMP-dependent protein kinase (PKA) (Figure 2). Consequently, the action potentials are significantly prolonged, resulting in a loss of afterhyperpolarization (AHP). Prolongation of the cell membrane depolarization would result in the activation of the voltage-dependent Ca^{2+} channels, leading to an increase of Ca²⁺ influx that contributes to neurotransmitter release. This phenomenon might explain the positive effect of a 5-HT₄ receptor activation on the release of acetylcholine (ACh) in the CNS. In the atria, the increased production of cAMP induces activation via PKA of the L-type Ca^{2+} channel current (I_{Ca}).¹² In the intestine, the direct effect of an increase in cAMP concentration, via activation of 5-HT₄ receptors, is the relaxation of the smooth muscle. However, 5-HT₄ receptor activation can also induce contraction of the smooth muscle through the indirect release of ACh that results from activation of 5-HT₄ receptors located on the sensory neurons of the myenteric plexus.¹⁰⁵

The cloning and the structural characterization of the rat 5-HT₄ receptors were described by Gerald^{118,119} who first isolated cDNA and expressed it in COS-7 cells. Two isoforms were first characterized. They were identical between residues 1 and 359 and differed only in the C-terminal region. They were generated by the alternative splicing of a unique gene and were named 5-HT_{4L} and 5-HT_{4S} for the long and short isoforms, respectively. More recently, a third shorter isoform was character $ized^{120}$ and the official nomenclature for these receptors was r5-HT_{4(b)}, r5-HT_{4(a)}, and r5-HT_{4(e)}. A similar diversity of isoforms was found for the mouse, and four isoforms were described: 5-HT_{4(a)}, 5-HT_{4(b)}, 5-HT_{4(e)}, and 5-HT_{4(f)}.^{120,121} In 1997, Blondel¹²² followed by Clayesen¹²³ and Van den Wyngaert¹²⁴ described the first human 5-HT₄ receptor isoform. Blondel¹²² isolated the receptor

Figure 3. C-terminal amino acid sequences of the 5-HT₄ receptor splice variants in human, mouse, and rat. The cloned 5-HT₄ receptors have identical sequences up to Leu 358 and differ by the length and by the nature of the amino acids. It is worth noting the repeat sequence PV in the variants e, f, and g.

from human atrium and named it $h5-HT_{4(a)}$ because it was considered to be homologous to the short isoform described in rat. This receptor was transiently expressed in COS-7, and the response to 5-HT and some 5-HT₄ receptor agonists was identical to the stimulation pattern of I_{Ca} obtained in response to these compounds in human atrial myocytes.¹²² Since then, several other splice variants were cloned: $h5-HT_{4(b)}$,⁴ two different h5-HT_{4(c)} isoforms,^{4,126} h5-HT_{4(d)},^{4,126} h5-HT_{4(e)}¹²⁷ (which will be called h5-HT_{4(e/g)} in the following, since this isoform was later renamed $h5-HT_{4(g)}^{125,128}$ and replaced by another $h5-HT_{4(e)}$ isoform¹²⁵ found to be more homologous to the mouse 5-HT_{4(e)} receptor¹²⁰), h5-HT_{4(f)},¹²⁵ and h5-HT_{4(n)}¹²⁹ Whatever the animal species (mouse, rat or human), the different splice variants have an identical sequence up to Leu 358 whereas the length and the composition of the rest of the C-terminus tail is specific for each variant (Figure 3). For instance, in human, the C-terminal end is very short for the 5-HT_{4(d)}⁴ and 5-HT_{4(n)}¹²⁹ isoforms (respectively, only 2 and 1 amino acids after Leu 358) and the 5-HT_{4(d)} isoform (only 2 after Leu 358) and is 31 amino acids long for the 5-HT_{4(b)} variant.⁴ One of the characterized isoforms, 5-HT_{4(c)}, might be the target of different protein kinases because several phosphorylation sites are present on its Cterminus tail.⁴ The tissue distribution revealed some degree of specificity. For instance, 5-HT_{4(a)}, 5-HT_{4(b)}, 5- $HT_{4(c)}$, and 5- $HT_{4(e/g)}$ receptors are all expressed in the atrium, brain, and intestine while the 5-HT_{4(a)} and 5-HT_{4(b)} receptor subtypes are the only receptors present in the bladder and kidney, respectively.⁴ On the other hand, the 5-HT_{4(d)} isoform was only characterized in the intestine. The different isoforms expressed in COS-7

cells displayed the classical profile of the 5-HT₄ receptors previously observed in the native tissues and showed an identical ability to stimulate adenylyl cyclase activity. No major difference could be found between the different isoforms as far as the K_i values of the agonists or the antagonist were considered. On the other hand, some significant differences in the functionality were observed with the agonists ML 10302 and renzapride. ML 10302, described as a potent agonist in the GI tractus in rat, was a weak partial agonist of each human isoform, whereas renzapride was a full agonist on the $5\text{-}HT_{4(b)}$ and $5\text{-}HT_{4(d)}$ isoforms and a partial agonist on the 5-HT_{4(a)} and 5-HT_{4(e/g)} receptors.¹²⁷ These functional differences may explain the tissue-dependent specificities observed with benzamides, which act as full or superagonists² in the mouse colliculi neurons and as only partial agonists¹² in other systems such as human myocytes. An attractive hypothesis is that a given receptor subtype might convey a specific functional response in a particular tissue. However, more information is needed to give clear conclusions on the exact repartition of the isoforms in the different tissues and the influence of the expression system on the efficacy of the ligands. Recently,¹²⁸ by use of a real time quantitative reverse transcription polymerase chain reaction (RT-PCR) method, the distribution of the different variants mRNA was investigated in the CNS, heart, and gut in human. The data obtained suggested the predominant presence of the $h5-HT_{4(b)}$ receptor over the $h5-HT_{4(a)}$ receptor in the different tissues studied. Interestingly, the existence of a new variant h was recently reported,¹²⁵ which possesses a 14 amino acid sequence inserted into the second extracellular loop and

Perspective

combined with the C-terminal sequence of the b variant, which led to its appellation 5-HT_{4(hb)}. This receptor has a pharmacological profile similar to those previously described in the competition binding assays for the other isoforms but differs in its response to the reference antagonist GR 113808, which displays a partial agonistic activity on this new isoform.

The influence of the length of the C-terminal part in the activation of the receptor was shown by Claeysen⁵ who studied the constitutive activity of the different mouse receptor isoforms. This activity was inversely correlated to the length of the terminal sequences. Thus, it was increased up to the level of the activity of the $m5-HT_{(4f)}$ isoform by the progressive deletion of the C-terminal part of the m5-HT_(4a) receptor up to residue 359. Moreover, a dramatic increase of the activity was obtained with deletion of an additional 13 residues. Therefore, it was proposed that the common part of m5-HT₄ receptors up to residue 346 confers to the receptor a constitutive activity (state R*) and that the subsequent residues on the terminal end modulate this constitutive activity, modifying the equilibrium between the inactive state R and the active state R*. The propensity of the receptor to possess a high constitutive activity was characterized by an increase of the thermal denaturation rate.⁵ The studies made on several Cterminal mutants modifying the R*/R ratio demonstrated that the receptor in its active state R* denatures much more quickly than the protein in its resting state R and that the denaturation rate depended on the Jvalue of the equilibrium constant between the R and R^{*} states. These studies on the constitutive activity of the different isoforms of 5-HT₄ receptors are important for a better understanding of the regulation mechanism of the signal transduction in the cell. As for other GPCRs,¹³⁰ constitutive activity of the 5-HT₄ receptors may be implicated in a number of pharmacological and pathological processes and may point to the potential role for an inverse agonist, such as GR 125487 and ML 10375,¹³¹ which reduce the constitutive activity of these receptors.

Recently, it was also shown that 5-HT_4 receptor agonists such as BIMU 8 were capable of stimulating the incorporation of palmitic acid in the $5\text{-HT}_{4(a)}$ receptor expressed in Sf 9 cells.¹³² These data emphasized the role of the membrane in the mechanism regulating the molecular events of the receptor and the signaling processes.

5-HT₄ Receptors and the Gastrointestinal System

5-Hydroxytryptamine has variable effects on the gastrointestinal tract. It induces both the contraction and relaxation of smooth muscle and stimulates the intramural nerve plexus. In mammalian small intestine, 5-HT is stored in the enteric neurons and in the mucosal enterochromaffin cells and it is secreted into the lumen and the submucosal tissue. Once liberated, 5-HT can act as a local hormone or a neurotransmitter through the different receptor subtypes present in the gastrointestinal tract: 5-HT₁, 5-HT₂, 5-HT₃, 5-HT₄, and 5-HT₇.^{133–137}

 $5\text{-}HT_{1A}$ receptors have been demonstrated to be responsible for the hyperpolarizing response of the

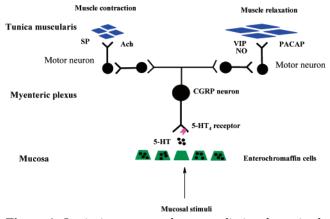
enteric neurons associated with the presynaptic inhibition of the release of ACh at the nicotinic receptors. It was also clearly demonstrated that 5-HT_{1D} receptor agonists, such as 5-CT and sumatriptan, are capable of stimulating the peristaltic reflex in the isolated guinea pig ileum.¹³³ 5-HT₂ receptors, previously known as D receptors, are localized on smooth muscle and their activation mediates contraction of the guinea pig longitudinal muscle. 5-HT₃ receptors,¹³⁸ similar to the 5-HT₄ receptors, are present at the presynaptic level on the enteric neurons and regulate positively the release of ACh. More recently, 5-HT₇ receptors have been characterized in the large intestine.¹³⁷

Activation of 5-HT₄ receptors in the GI system can cause various effects depending on the region studied and the animal species. 5-HT₄ receptor stimulation leads to the contraction of the guinea pig ileum and colon⁸ and increases the reflex sensitivity of the isolated and intact guinea pig ileum.¹³⁹ 5-HT₄ receptors were also implicated in the gastric emptying in rats140 and in the 5-HTP (5-hydroxytryptophane) induced defecation and diarrhea in mice.¹⁴¹ Conversely, stimulation of 5-HT₄ receptors may lead to relaxation of rat oesophagus and terminal ileum³ and of human intestinal smooth muscle¹⁴² and to a decrease in the spontaneous activity of the human colon.¹⁴³ These apparently opposite effects can be explained by the different localization of the 5-HT₄ receptors. They are present on the interneurons of the myenteric plexus and mediate indirectly the release of ACh.¹⁴⁴ The relaxation is induced directly by stimulation of the 5-HT₄ receptors present on the smooth muscle, the intensity of the effect depending upon the region studied.¹⁴⁵

Initially, the role of the 5-HT₄ receptors in the gut was demonstrated by Clarke³ who showed an activation of the peristaltic reflex of guinea pig ileum by 5-HT₄ receptor agonists. 5-HT had a biphasic effect depending on the concentration, the first phase $(10^{-9}-10^{-7} \text{ M})$ involving activation of 5-HT₄ receptors and the second phase (>1 μ M) involving activation of 5-HT₃ receptors. The initial phase was inhibited by atropine and was insensitive to the blockade by ICS 205-930 (<1 μ M), granisetron, and ondansetron excluding the contribution of 5-HT₃ receptors. Moreover, agonist-induced desensitization protocols allowed a clear separation of the two response; thus, long exposure of guinea pig ileum to 5-methoxytryptamine, a 5-HT₄ agonist, inhibited completely the first phase of the response to 5-HT but had no effect on the second phase. Likewise, exposure of the preparation to the 5-HT₃ receptor agonist, 2-methylserotonin, inhibited only the second phase of the response to 5-HT but left unchanged the first phase.¹⁴⁶ The benzamides of first generation and the benzimidazolones BIMU 1 and BIMU 8, which possess both 5-HT₃ receptor antagonistic and 5-HT₄ receptor agonist properties, were found to mimic the effect of 5-HT on the first phase and to evoke the peristaltic reflex.³ These experiments were the first demonstration of the mechanism of action of benzamides that possess gastrokinetic properties and are used as drugs to increase the gastric emptying and the intestinal transit.¹⁰⁸

The presence of 5-HT₃ receptors in the guinea pig ileum could be a drawback in the study of nonselective molecules. The characterization of 5-HT₄ receptors in

the rat oesophagus and particularly in the tunica muscularis mucosae constituted a clear improvement to the selection of 5-HT₄ receptor agonists.³ In contrast to guinea pig ileum, the 5-HT₃ agonist 2-methyl-5-HT possessed a very weak activity in this preparation. The assay evaluated the relaxation potency of the carbacholcontracted muscle preparation in the presence of cumulative doses of 5-HT ($ED_{50} = 15.6$ nM). Benzamides, such as renzapride and cisapride, were agonists equipotent to serotonin, and ICS 205-930 caused a rightward shift of the agonist effect curves. As demonstrated in the CNS, the 5-HT₄ receptors present in oesophagus mediated an increase of cAMP synthesis.¹⁴⁷ 5-HT and 5-HT₄ agonists caused a concentration-dependent increase of intracellular cAMP in the rank order of their efficacy, indicating that the 5-HT₄ receptors were most likely localized postsynaptically on the smooth muscle cells. As reported in colliculi neurons, a rapid desensitization of these nonneuronal 5-HT₄ receptors was observed independently of the level of cAMP production, indicating a homologous rather than heterologous desensitization process. This assay provided clear evidence for marked heterogeneity among animal species in the response to 5-HT. Indeed, different responses to serotonin were found when it was tested on carbacholcontracted oesophagus of rat, guinea-pig, rabbit, and dog. No effect was observed in dog, contractions were observed in guinea pig and rabbit, and a relaxation was found in rat only.148-150


 $5\text{-}HT_4$ receptors are also localized in the guinea pig stomach where 5-HT enhances the electrically induced contraction in the circular muscle strips from the fundus and corpus.^{151,152} However, the effect of 5-HT is rather complex because of the presence of different 5-HT receptors in this preparation. Stimulation of 5-HT_{1A} and 5-HT₂ receptors by a specific agonist (8-OH-DPAT and α -methyl-5-HT, respectively) inhibits contractions, while 5-HT₄ and 5-HT₃ receptors agonists (renzapride, metoclopramide, and 2-methyl-5-HT) increase the electrically induced contraction. Nevertheless, under physiological conditions, it is likely that the response to 5-HT is only mediated by 5-HT₄ receptors, unless large quantities of 5-HT are present. In rat, gastric 5-HT₄ receptors were implicated in the stimulation of the gastric emptying, a test largely used to select gastrokinetic drugs. However, several other data demonstrated an inhibitor role of 5-HT₃ receptors in rat stomach because several selective 5-HT₃ receptor antagonists possess an ability to stimulate the gastric emptying in this animal species.153

5-HT₄ receptors were identified in the distal colon longitudinal muscle myenteric plexus (LMMP) of guinea pig, another very useful preparation for the characterization of the ligands.¹⁵⁴ LMMP is a very sensitive model in which the pEC₅₀ value of serotonin is particularly high (9.2) compared to other tissues. As in the ileum, the effect of 5-HT on LMMP is blocked by atropine. This is consistent with the putative localization of the 5-HT₄ receptors on the cholinergic neurons. Renzapride, cisapride, and zacopride, when tested in guinea pig ileum, have an intrinsic activity inferior to 1, while all benzamides tested in the distal colon behave as full agonists. In particular, (*S*)-zacopride was a full agonist distinct from the (*R*) enantiomer. The high intrinsic activity in this model may be attributed to the high density of the 5-HT receptors or to a more efficient coupling mechanism. However, the situation is complicated by the observation that mosapride, a benzamide 5-HT₄ receptor agonist, was shown to be active only in the upper gastrointestinal system and not in the colon.¹⁵⁵ On the other hand, not only 5-HT₄ receptors but also 5-HT₃ receptors contribute to the propulsion of the colon, as evidenced in the guinea pig where 5-HT₄ and 5-HT₃ receptor antagonists decreased with an additive effect of the velocity of the propulsion while the agonists HTF 919 and prucalopride increased the propulsion.¹⁵⁶

In recent years, the interest in drugs effective in relieving the different types of constipation, a major disorder of the gastrointestinal system in human, was considerably increased. In particular, the role of 5-HT₄ receptors in the regulation of the human intestine motility was investigated. While the 5-HT₄ receptors had been well characterized in guinea pig large intestine,¹⁵⁷ the knowledge of their exact physiological role in the human gut was limited. Their implication¹⁵⁸ was shown in the 5-HT induced relaxation of the circular muscle of the human intestine. These receptors are localized in the myenteric plexus and the muscle,¹⁵⁹ and subsequently, the positive effect of 5-HT on cAMP synthesis was demonstrated.¹⁶⁰ Although 5-HT₇ receptors have been implicated in the relaxant effect of 5-HT,¹³⁷ Prins^{161,162} showed that the selective 5-HT₄ receptor agonists prucalopride and RO76186 elicited a clear dose-dependent relaxation of the KCl-precontracted circular muscle and that the potent selective 5-HT₄ receptor antagonists GR 113808, GR124487, and RS 39604 gave a concentration-dependent rightward shift of the 5-HT dose-effect curve. A similar relaxant effect was observed in the canine isolated rectum circular smooth muscle, an assay that can constitute a predictive 5-HT₄ receptor model for the human colon.¹⁶³

The role of 5-HT₄ receptors on the induction of the contractility was clarified by the recent data that proposed more information about the mechanism regulating the initiation of the peristaltic reflex in the intestine. It was supposed that serotonin was released from the enterochromaffin cells of the epithelium of the mucosa in response to chemical or mechanical stimuli induced by the progression of the faecal bolus.¹⁶⁴ 5-HT acts on the CGRP (calcitonin-gene-related peptide) containing sensory nerve terminal (Figure 4) and liberates CGRP, which brings about the release of excitatory (ACh, substance P, neurokinin A) and inhibitory (vasoactive intestinal peptide (VIP), pituitary adenylyl cyclase activating peptide (PACAP), and NO) neurotransmitters.¹⁶⁵ In contrast with previously published data, it was proposed that 5-HT₄ receptors are located on the sensory CGRP neurons and not on the intermediate cholinergic neurons. Consequently the activation of the 5-HT₄ receptor located on the primary afferent neurons would stimulate an excitatory neuron, producing contraction on the orad side and an inhibitory neuron on the caudad side. This results in a peristaltic reflex with contraction above and relaxation below the site of the stimulus.

The release of CGRP was found to be inhibited by 5-HT₄ antagonists in human intestine and rat colon,¹⁶⁶

Figure 4. Intrinsic sensory pathways mediating the peristaltic reflex. The activation is brought about by mucosal stimuli, which release serotonin (5-HT) from enterochromaffin cells located in mucosa. 5-HT acts on the 5-HT₄ receptors located on the afferent projection of CGRP neurons. CGRP release is activated via the stimulation of the interneurons, the efferent projections of the excitatory (ACh, SP) and the inhibitory (VIP, PACAP, and NO) motor neurons. This results in the peristaltic reflex with contraction above and relaxation below the site of origination of the stimulus.

although a similar inhibitory effect was obtained in guinea pig colon with either 5-HT₃ or 5-HT₄ antagonists.

The additional relaxation induced by activation of the 5-HT₄ receptors present on the smooth muscle of the intestine or the colon in the different species studied can induce some misleading conclusions about the pharmacological profile of the 5-HT₄ receptors agonists or antagonists. Indeed, the overall effects of 5-HT are a balance between the excitatory and the inhibitory effects. Moreover, 5-HT₄ receptors were found to play a minor role in the normal gut function because administration of a potent 5-HT₄ receptor antagonist, such as SB-207266, had no effect on the level of defecation in mice.¹⁶⁷ However, when the intestinal function was disturbed by an abnormal level of 5-HT produced by stress or administration of 5-HTP, SB-207266 was capable of inhibiting the intestinal disfunction.¹⁶⁷

To date, gastrokinetic drugs with 5-HT₄ serotoninergic properties are used in a human clinic for the treatment of gastro-oesophageal reflux disease and different gastric stasis. Cisapride, which is particularly efficient in those different disorders, was also demonstrated to be capable of stimulating the peristalsis at the colonic level and of inducing defecation in constipated patients.^{168,169} Recently, the interest in drugs acting on gut motility and particularly on the disorders of the small bowel and the colon has largely increased. Irritable bowel syndrome (IBS) is a disorder that has been clinically well characterized and that represents a prevalence of 10% in the Western countries and 40% of the consultations in gastroenterologists.^{170,171} It is a complex dysfunction of the intestine with three components: the hypersensitivity of the gut, the altered motility, and the psychosocial disorder.¹⁷² In general, the patients may present either diarrhea or constipation or an alternation of both. Consequently, 5-HT₄ receptor agonists or partial agonists seem to be suitable for the treatment of IBS in which the intestinal propulsion impairment dominates while 5-HT₄ receptor antagonists can be effective in patients with significant diarrhea.

Much data¹⁷³ have been recently reported on the clinical activity of 5-HT₄ ligands in patients with IBS. SDZ HTF 919 or tegaserod, a partial 5-HT₄ receptor agonist, showed in a healthy subject a clear effect on the total colonic transit time (5 mg twice a day)¹⁷⁴ and a significant improvement in phase III clinical trials in patients with constipation-predominant IBS.^{92,175} Prucalopride was shown to be effective in healthy subjects for accelerating the colonic transit without modification of the gastric emptying and the small bowel transit.¹⁷⁶ However in patients with severe constipation, a dosedependent effect of acceleration of the overall transit time was observed¹⁷⁷ and several double-blind clinical studies demonstrated the significant efficacy of the compound in the mean weekly stool frequency.¹⁷⁸ Diarrhea may be the common side effect observed with the 5-HT₄ receptor agonists, which precludes their use in patients with diarrhea-predominant IBS. The visceral hypersensitivity observed with these patient may be mediated partially through activation of 5-HT₄ receptors, and it can be treated with 5-HT₄ receptor antagonists. SB-207266 or piboserod was effective in the preliminary clinical studies by increasing the orocaecal transit time toward normal values with improvement of the symptoms.^{179,180} A recent study in healthy volunteers demonstrated the relatively weak effect of the 5-HT₄ antagonism on the colonic transit in normal physiological conditions. However, a marked effect was observed on the colonic transit in the presence of the 5-HT₄ agonist cisapride, indicating the interest in this compound for the pathophysiological conditions.¹⁸¹

The role of 5-HT is not limited to the motor function of the intestine. Indeed, 5-HT was shown to be a potent intestinal stimulant secretagogue for intestinal chloride ion and is implicated in normal physiological conditions for the secretion of water in the digestion process. 5-HT is also a mediator of diarrhea in the carcinoid syndrome where the large release of 5-HT was emphasized. The luminal membrane of the epithelial cells of the small intestine contains an ion channel: a cAMP-dependent Cl⁻ channel known as cystic fibrosis transmembrane regulator (CFTR). The increase of the intracellular concentrations cAMP results in the secretion of the Clions in the lumen and subsequently of Na⁺ ions, which lead to water secretion. Abnormal activation of the cAMP-dependent Cl⁻ channel can be triggered by cholera toxin, which maintains the channel in the opened state, causing a massive secretion of water that is manifested as severe diarrhea.¹⁸² It was found that 5-HT stimulates the short-circuit current (SCC), a method for the evaluation of the index of the mucosal electrolyte secretion.^{183,184} However, the results depended on the animal species. In the guinea pig, the 5-HT effect was both tetrodotoxin-sensitive and -insensitive and was mediated by 5-HT₄ receptors, since the effect of 5-HT was mimicked by 5-methoxytryptamine and SC 53116 and inhibited by GR 113808 or high concentration of ICS 205-930. This indicates both a neuronal and nonneuronal localization of 5-HT₄ receptors mediating the secretion. Similar experiments performed in rat^{185,186} and in human^{187,188} led to the conclusion that 5-HT₄ receptors were not located on neurons. Recently, it was demonstrated that activation of the human jejunal mucosa preparation by stroking induced 5-HT release and Cl⁻ secretion. The increase of the 5-HT concentration by the release of 5-HT was associated with a positive change of the short circuit, which was blocked by inhibitors of the chloride secretion. The change of the SCC was inhibited by micromolar concentrations of tropisetron and SDZ 205-557 but not by the antagonists of the 5-HT_{1P}, 5-HT_{2A}, or 5-HT₃ receptors.¹⁸⁹ The most likely mechanism that explains these results is that the mechanical deformation induces a 5-HT release from the enterochromaffin cells, which activates the 5-HT₄ receptors present on the enteric sensory neurons. Consequently, some evidence indicates that 5-HT is implicated in the gastrointestinal disorders consequent to a release of water in the intestine, like in diarrhea. The animal models, such as 5-HTP induced diarrhea in mice, demonstrated clearly the role of 5-HT₄ receptors.¹⁴¹ Hence, 5-HT₄ receptor antagonists can be valuable drugs for treating these disorders by acting simultaneously on the control of the intestinal motricity and the excessive release of water.

Finally, 5-HT present in enterochromaffin cells can be released during treatment with cytotoxic drugs, and this results in episodes of emesis, which is a significant problem in the treatment of patients with cancer. The role of the 5-HT₃ receptors in the initiation of emesis and its inhibition by 5-HT₃ receptor antagonists have been largely documented.¹⁹⁰ However, emesis is only reduced by about 60% with selective 5-HT₃ antagonists used during chemotherapy treatment, which led to the proposal that 5-HT₄ receptors could also be implicated in this phenomenon. Thus, molecules combining 5-HT₃ and 5-HT₄ receptor antagonist properties could be more beneficial for this type of treatment.¹⁹¹

5-HT₄ Receptors and the Cardiovascular System

There is a large species-dependent heterogeneity in the number and subtypes of 5-HT receptors expressed in the heart. Activation of the 5-HT₃ receptors was shown to produce bradycardia through the activation of the Bezold–Jarisch reflex,¹⁹² while the activation of 5-HT₁ and 5-HT₂ receptors in cat, rabbit, rat, and dog¹⁹³ produces tachychardia. Selective activation of 5-HT₄ receptors also produces tachycardia but only in human and pig atria.^{7,194,195} In human and pig atrial strips, 5-HT induces a rapid increase in the contractile force, mimicking the positive inotropic effect of (-)-isoprenaline, a β -adrenergic receptor agonist. The pEC₅₀ value for 5-HT is 6.6, and its effect is not antagonized by any of the 5-HT₁, 5-HT₂, 5-HT₃ and β -adrenergic receptor antagonists except ICS 205-930. However, the maximum inotropic effect of 5-HT is smaller than that of (-)isoprenaline, suggesting a weaker coupling efficiency between receptor and effector or a lower density of receptors.¹⁹⁶ Binding studies have shown that the density of 5-HT₄ receptors in the human atrium was 10 and 5 times lower than the density of β_1 and β_2 receptors, respectively.¹⁹⁷

The stimulation of 5-HT₄ receptors in piglet isolated right atrium is a useful method for evaluating the potency and the pharmacological profile of 5-HT₄ receptor ligands. For instance, renzapride and cisapride behave as partial agonists in this model, while (–)zacopride is a full agonist.¹⁹⁸ Similarly, pharmacological differences were observed with benzimidazolones; BIMU 1 is full agonist, and BIMU 8 is only a partial agonist. The selective 5-HT₄ antagonists SB 203186, DAU 6215, and SDZ 205-557 caused a parallel rightward shift of the 5-HT concentration–effect curves, and the slopes of the Schild plots were not significantly different from 1, indicating a competitive antagonism.¹⁹⁹

An important aspect of cardiac response to 5-HT is the absence of effect of 5-HT or 5-HT₄ receptor agonists in the ventricular tissues of pig and human,^{200–202} although mRNA²⁰³ coding for 5-HT_{4(a)} and 5-HT_{4(b)} receptors has recently been found in the human ventricle. Thus, the lack of effect of 5-HT₄ agonists in the human ventricle is attributed either to the absence of 5-HT₄ receptors in this tissue or to the lack of functional coupling, therefore making it unlikely that 5-HT₄ receptor agonists will ever be used in the therapy of heart failure.

A mechanism was proposed to explain the effect of 5-HT via 5-HT₄ receptors on human cardiac cells.^{12,204} Exposure of human isolated atrial myocytes to 5-HT induced an increase of both whole-cell^{4,12} and singlechannel Ca^{2+} current (I_{Ca}) through voltage-gated L-type Ca²⁺ channels.²⁰⁴ This effect is due to 5-HT₄ receptor mediated activation of adenylyl cyclase, cAMP synthesis, and phosphorylation of the Ca²⁺ channels by cAMPdependent protein kinase A (PKA), increasing their opening probability. The mechanism proposed is similar to that described for the β -adrenoreceptor, suggesting that 5-HT and (-)-isoprenaline share a common signaling pathway. In addition to activating the L-type Ca^{2+} current I_{Ca} , there is also evidence that 5-HT stimulates the so-called pacemaker current $I_{\rm f}$ in atrial myocytes isolated from human patients.205,206 If is an inward current activated by hyperpolarization and carried via channels with mixed permeability for K⁺ and Na⁺. In control human myocytes, this current is activated at potentials too negative to play a significant role in pacing. However, when 5-HT is applied, cAMP generation via activation of 5-HT₄ receptors leads to a progressive shift to more depolarized potentials of the activation curve of $I_{\rm f}$. This allows a significant contribution of the $I_{\rm f}$ current to the diastolic depolarization, leading to a positive chronotropic effect. It was demonstrated that the effect of 5-HT on the $I_{\rm f}$ current was completely inhibited by the 5-HT₄ receptor antagonists DAU 6285 and GR 124487.

In 1994, a hypothetical role for 5-HT in the triggering of atrial arrhythmia through the activation of 5-HT₄ receptors was proposed.¹⁴ By use of a model of arrhythmic contractions in human isolated atrial strips, 5-HT was found to induce arrhythmic contractions with a higher incidence in tissues obtained from patients treated with β -blockers.²⁰⁷ Arrhythmias were totally blocked by SB 203186, a potent and selective 5-HT₄ receptor antagonist, and the blockade was surmounted by increasing 5-HT concentration. It was supposed that treatment with β -blockers induced a sensitization of 5-HT₄ receptors as well as any other step involved in the cAMP cascade. Subsequent experiments testing the effect of 5-HT on isolated right atrial strips from patients chronically treated or not treated with β -blockers demonstrated significantly lower EC₅₀ values for 5-HT in treated patients ($pEC_{50} = 7.9$) than in control patients (pEC₅₀ = 7.3).²⁰⁸ Through activation of Ca²⁺

channels, 5-HT stimulation of the 5-HT₄ receptor might lead to intracellular Ca²⁺ overload, a condition generally associated with the generation of arrhythmia. These experiments suggested that, under pathological conditions such as the enlarged atria of the elderly, endocardial lesions or carcinoid tumors, 5-HT released from platelets may cause atrial arrhythmias.

The 5-HT evoked positive chronotropic effect was characterized in vivo in piglets and minipigs.²⁰⁹ The effect was clearly antagonized by SB 203186 when it was administered iv or intraduodenum, indicating a good bioavailability of the 5-HT₄ antagonist despite the presence of the ester function. However, it was not possible to induce in vivo arrhythmias in piglets and minipigs by bolus injection of 5-HT. This lack of effect was most likely due to the very low density of 5-HT₄ receptors in pig compared to that found in human.

The presence of 5-HT₄ receptors in the human atrium and their potential role in the generation of arrhythmia or tachycardia is a serious concern when using 5-HT₄ receptor agonists as gastrokinetic agents. For instance, metoclopramide, renzapride, and cisapride, which are used clinically, all behave as partial agonists of the human atrial 5-HT₄ receptors.¹⁹⁹ However, the undesirable cardiac side effects of the 5-HT₄ receptor agonists are not necessarily related to their stimulant effect on cardiac 5-HT₄ receptors. For instance, when administered in humans, cisapride, a nonselective 5-HT₄ receptor agonist, produces arrhythmogenic effects that are not related to activation of cardiac 5-HT₄ receptors. Indeed, cisapride behaves as a blocker of the delayed rectifying K^+ current (I_{KR}), an effect that leads to a lengthening of the action potential,²¹⁰ a prolongation of the electrocardiographic QT, and polymorphous ventricular tachycardia such as torsades de pointes.²¹¹ However, this deleterious effect of cisapride on the QT interval is not encountered by the structurally related drug mosapride²¹² or by other 5-HT₄ receptor agonists such as ML 10302,²¹³ TS-951,²¹⁴ and TKS159 (4-amino-5-chloro-2-methoxy-N-[(2S,4S)-1-ethyl-2-hydroxymethyl-4-pyrrolidinyl]benzamide).²¹⁵

The recent characterization of several human 5-HT₄ receptor isoforms with some degree of specificity in their tissue distribution may indicate a different potency and/ or efficacy for a given 5-HT₄ receptor ligand when tested in different tissues.^{4,122} For instance, ML 10302 behaves as a potent stimulant of intestine in vitro and in vivo and as a partial and weak stimulant of I_{Ca} in isolated human atrial myocytes (1 μ M ML 10302 and 1 μ M 5-HT increased I_{Ca} by 17.4% and 157%, respectively, with regard to the basal level).¹²² Similarly, cisapride and renzapride behave as partial agonists on the $5-HT_{4(e/g)}$ isoform, while they behave as full agonists on the 5-HT_{4(c)} and 5-HT_{4(d)} isoforms.^{126,127} However, in the case of ML 10302, a similar pharmacological profile was obtained on 5-HT_{4(a)}, 5-HT_{4(b)}, and 5-HT_{4(e/g)} variants,^{122,127} which are all expressed in the heart,¹²⁸ indicating that another mechanism must account for the tissue specificity of the drug. A difference in the level of expression of a given receptor in different tissues might provide a possible explanation for the change in the profile of the molecules.¹²³

As shown above, 5-HT₄ receptors are connected to the electrical activity of the human atrium via activation

of two inward currents I_{Ca} and I_{f} , making these receptors potential candidates for the generation of atrial arrhythmia. However, down regulation of 5-HT₄ receptors was observed in atrial tissues of patients with atrial fibrillation (AF), which may provide a feedback mechanism for the stabilization of the arrhythmia.²¹⁶ This is accompanied by a general reduction of the transcription of L-type Ca²⁺ channel subunits. The overall reduction of the 5-HT₄ receptor and the Ca²⁺ channel transcription may contribute to the shortening of the action potential, providing a general protective effect against excessive intracellular Ca²⁺ accumulation and for stabilization of AF.²¹⁶

Altogether, these data highlighted the interest in 5-HT₄ receptor antagonists as potential antiarrhythmic drugs for humans for the prevention or treatment of atrial fibrillation. A recent study by Rahme²¹⁷ confirmed this hypothesis. RS-100302, a new 5-HT₄ receptor antagonist, inhibited the atrial flutter and fibrillation induced by rapid right pacing in juvenile pigs, and the effect was reversed by cisapride, a partial 5-HT₄ receptor agonist. It is worth noting the absence of ventricular electrophysiological effects, confirming that the only target of the 5-HT₄ receptor ligands in the heart was located on atria, and consequently minimum ventricular side effects can be expected with such a drug. Consequently the 5-HT₄ receptor antagonists have the potential to become a valuable alternative to the β -adrenergic and Ca^{2+} channel blockers for the treatment of AF, without depressive effects on the ventricle.²¹⁸

5-HT₄ Receptors and the Central Nervous System

As reported previously, 5-HT₄ receptors are expressed in the region of the limbic system and the nigro-striatal pathways. They were shown to be implicated in the longterm blockade of K⁺ channels,¹¹⁷ resulting in the opening of Ca²⁺ channels and the release of neurotransmitters such as ACh,^{219,220} serotonin,²²¹ and dopamine.²²² Consequently, 5-HT₄ receptors are potentially involved in a number of physiological processes of the central nervous system, such as learning, memory, depression, and anxiety, and agonists or antagonist of these receptors can be valuable pharmacological tools to explain the mechanisms of these processes.

The increase of cAMP mediated by the stimulation of the 5-HT₄ receptors in the hippocampus is supposed to induce long-term potentiation of the neurons, which plays an essential role in the cellular mechanism of learning and memory. Several behavioral studies have demonstrated that the 5-HT₄ receptor agonists can be considered as cognitive and learning function enhancers. For instance, metoclopramide, cisapride, and SR-17 (endo-8-methyl-8-azabibyclo[3.2.1]octan-3-yl benzofuran-3-carboxylate), a bioisosteric analogue of ICS 205-930, were shown to be active in the mouse passive avoidance test in the range of the doses of piracetam.²²³ However, because of the lack of specificity of the compounds used, it was impossible to conclude that 5-HT₄ receptors were solely involved in the effect of these drugs. More convincing evidence in favor of the role of the 5-HT₄ receptors was given by the effect of BIMU-1, which was active on the social olfactory recognition test and on the olfactory associative task, both effects being inhibited by the 5-HT₄ receptor antagonist GR 124487 and not inhibited by the 5-HT₃ receptor antagonist ondansetron. $^{117,224,2\check{2}\check{5}}$ In the rat, the selective hydrophobic 5-HT₄ receptor agonist RS 67333 but not the hydrophilic 5-HT₄ receptor agonist RS 67506 was shown to reverse the atropine-induced deficit performance in the Morris water maze, an effect that was inhibited by GR 113-808.²²⁶ More recently,²²⁷ the role of 5-HT₄ receptors in the neuronal mechanism of memory enhancement and the cognitive process was clearly demonstrated with SC 53116, which increased the spike amplitude in the hippocampal CA1 neurons, the tetanus-induced longterm potentiation, and the concentration-dependent release of ACh. The effects of SC 53116 was blocked by the 5-HT₄ receptor antagonists GR 113808. On the other hand, application of GR 113808 alone had no effect on the release of ACh, indicating that the 5-HT₄ receptors are not constitutively coupled to the cholinergic neuronal system. This latter result indicates that 5-HT₄ receptor agonists may prevent memory deficit but may exert little influence on the memory process itself. The beneficial effect of 5-HT₄ receptor agonists on the memory deficit was confirmed in vivo by a behavioral study in rat where SC 53116 improved the scopolamineinduced deficit in the passive avoidance test.²²⁷ However, these results are in contrast with those reported on the activity of 5-HT₄ receptor ligands RS 17017, RS 67333, and RS 67532 in the olfactive associative discrimination task in rats.²²⁸ In this study, the antagonist RS 67532 induced a marked impairment in the learning performance observed with regard to the control while the deficit induced by the antagonist was reversed by the administration of the agonists RS 17017 and RS 67333. Moreover, the hydrophobic compound RS 67333 administered alone gave a significant improvement in the learning of the task and the memory performance with regard to the control. These results were confirmed with RS 67333 in the Morris water maze where improvement of the learning rate was demonstrated.²²⁹

The above-mentioned memory-enhancing effects of 5-HT₄ receptors agonists may be relevant for the treatment of memory dysfunction in patients suffering from Alzeihmer's disease. Indeed, a binding study reported a decrease of the density of 5-HT₄ receptors in the hippocampus²³⁰ of patients with Alzeihmer's disease. Recent data²³¹ indicated another potential promising way to alleviate symptoms of the Alzheimer's disease with 5-HT₄ receptor agonists. In CHO cells expressing the neuronal h5-HT₄(e/g) receptor, 5-HT was found to stimulate the release of the non-amyloidgenic-soluble amyloid precursor protein (sAPP α), which exerts neuroprotective and enhancing memory effects. This process was blocked by GR 113808 and SB 204070.

Recently, indeloxazine, an inhibitor of 5-HT and noradrenaline reuptake, was shown to increase the release of ACh in the rat frontal cortex. The effect was mediated through 5-HT₄ receptors because it was blocked by the selective antagonists GR 113808 and RS 23597 and not blocked by 5-HT_{1A/1B/2A/2C/3} antagonists. Thus, 5-HT₄ receptors may also play a role in the effects of antidepressants by increasing ACh release upon an increase of the level of 5-HT in the frontal cortex.²³²

Since modulation of the concentration of 5-HT in the CNS is a common mechanism involved in the action of

anxiolytic and antidepressant agents, the role of 5-HT₄ was examined. In 1996, Barnes²²¹ showed that a systemic administration of the 5-HT₄ receptor agonist renzapride induced a clear and dose-dependent increase of the extracellular levels of 5-HT (200%) in the rat hippocampus. This effect was antagonized by the 5-HT₄ receptor antagonist GR 125487D, which, when used alone, reduced the concentration of 5-HT to 80% below basal level. Although the previous study might suggest the involvement of 5-HT₄ receptors in the effects of antidepressants, a more recent study suggests the opposite. In this study,²³³ the potent and selective 5-HT₄ receptor antagonist SB 204070 was inactive on the effect of fluoxetine, a selective uptake inhibitor, on the decrease of the immobility time in the forced swim test. On the other hand, SB 204070 and GR 113808 were shown to possess marked anxiolytic properties in two animal models: the rat social interaction test²³⁴ and the elevated plus-maze.²³⁵ However, the effect was speciesdependent because in the BKW mice the 5-HT₄ receptor antagonists SDZ 205-557, GR 113808, and SB 204070 were unable to modify the behavior of the mice in the light/dark test box and caused an inhibition of the disinhibitory behavior of diazepam.²³⁶

By use of the microdialysis technique,²³⁷ it was shown that 5-methoxytryptamine, a 5-HT₄ receptor agonist, increased the release of dopamine and that this effect could be blocked by a high concentration of tropisetron. This result was confirmed with renzapride and (S)zacopride by in vitro studies in rat striatal slices and in vivo studies using microdialysis.^{222,238} The localization of the 5-HT₄ receptors in the extrapyramidal forebrain areas allowed the proposal of a hypothesis that the increase in dopamine release could play a role in the modulation of the reward and motor behavior processes. Preliminary data indicated that the antagonist GR 113808 reduced the ethanol intake in alcohol-preferring rats, suggesting a role of 5-HT₄ receptors in the regulation of the alcohol intake control.²³⁹ On the other hand, no antagonist effect of SB-204070 was found in the pharmacological test, implicating the basal forebrain, such as the stimulation of motor activity by amphetamine or nicotine and the cocaine intracranial selfstimulation reward threshold. As previously reported, such a lack of activity of 5-HT₄ receptor antagonists may reflect the absence of 5-HT tone in the area considered.²⁴⁰ Nevertheless, the partial 5-HT₄ receptor agonist RS 67333 and the antagonist SDZ 205-557, when injected in the accumbens nucleus in the rat, were found to significantly decrease the hyperactivity induced by cocaine injection.241

In summary, the data available in the literature indicate that in the future 5-HT₄ receptor ligands may play an important role in the treatment of several pathological disorders of the CNS. In particular, 5-HT₄ receptor agonists seem to be promising molecules for overcoming deficits of the memory and of the learning tasks. Although no clinical data are available to date, the observed decrease in the density of 5-HT₄ receptors in patients with Alzheimer disease²³⁰ indicates a potential therapeutic use for these new molecules. On the other hand, further work is needed to confirm the promising results obtained with different 5-HT₄ receptors

tors ligands in different animal models on anxiety, mood, and drug dependence.

5-HT₄ Receptors and Urinary Tract

Normal bladder functions require the simultaneous occurrence of detrusor relaxation and sphincter contraction during the filling phase and the converse during micturition. The descending bulbospinal pathway is an inhibitory circuit driven by the release of 5-HT, which inhibits bladder contraction through the activation of 5-HT_{1A} receptors. Indeed, it was clearly demonstrated that the application of 5-HT_{1A} antagonists in rat releases the inhibition of contraction and increases the capacity of the bladder through control exerted at the central level.²⁴²

However, 5-HT receptors are also present on the isolated bladder and may contribute to the peripheral effects of 5-HT. As already observed in several other tissues, the types of 5-HT receptors present in the bladder vary depending on the animal species. In guinea pigs, potentiation of the electrically evoked bladder is mediated by 5-HT_{2A}, 5-HT₃, and 5-HT₄ receptors,²⁴³ in rabbits by 5-HT₃ receptors,²⁴⁴ and in humans by 5-HT₄ receptors.²⁴⁵ Stimulation of 5-HT₄ receptors leads to activation of cholinergic neurons, release of ACh, and ACh-mediated contraction of the bladder. Several cases have been reported in clinical studies showing a facilitation of bladder emptying and, occasionally, urinary incontinence in patients treated with metoclopramide²⁴⁶ or cisapride.²⁴⁷ However, the nature of the pharmacological response of the activation of 5-HT₄ receptors also depends on the animal species, since 5-HT was found to inhibit the electrically evoked contraction of the bladder strip in Rhesus and Cynnomolgus monkeys. This effect was mimicked by BIMU 8 and renzapride, and it was competitively inhibited by the reference 5-HT₄ antagonists such as GR 113808, DAU 6285, and RS 23597-190.248

A complete pharmacological characterization²⁴⁹ of the role of 5-HT₄ receptors in the human isolated detrusor muscle was realized by evaluating the activities of reference agonists such as 5-HT, 5-MeOT, BIMU 8, zacopride, and cisapride in the isolated detrusor muscle. All these compounds induced bladder contraction with a rank order of potency comparable to that observed in other tissues (pEC₅₀ = 8.02, 6.02, 6.86, 5.67, and 6.61, respectively). In addition, 5-HT and 5-MeOT behaved as full agonists while the other compounds had intermediate intrinsic activity. Unexpectedly, RS 23597, which was described as a 5-HT₄ antagonist, behaved as a partial agonist. The 5-HT effect was competitively antagonized by GR 125487 with a pA₂ value of 9.75. Recently, the detrusor muscle of pig was shown to be an efficient model for studying potential drugs to be used in human clinics; 5-HT increases the electrical field stimulated cholinergic response of the pig bladder strips, and the effect is inhibited by RS-100235 and GR-113808.250

In conclusion, the pharmacological and clinical data reported with 5-HT₄ receptor agonists provide a rationale for the development of new therapeutic drugs for the management of the voiding disorders associated with the detrusor hypocontractility in human.¹⁰

5-HT₄ Receptors and Adrenal Gland

The first evidence for the role of 5-HT₄ receptors in the adrenal gland came from the finding that 5-HT stimulated the production of corticosteroides such as corticosterone and aldosterone in the adrenal glands of frog. This effect of 5-HT was demonstrated to be mediated by 5-HT₄ receptors, since it was mimicked by zacopride, cisapride, renzapride, BIMU 1, and BIMU 8.251,252 These drugs behaved as full or partial agonists in the model with the following rank order of potency: (S)-zacopride > BIMU 8 = (R,S)-zacopride > BIMU 1 = (*R*)-zacopride. Only high doses of ICS 205-930 were capable of blocking the production of aldosterone or corticosterone, while the selective 5-HT₃ antagonist MDL 72222 was totally inactive to inhibit this effect. As already reported in other tissues, the effect of 5-HT in adrenal glands appears to be mediated by stimulation of cAMP synthesis followed by activation of PKA and stimulation of the Ca²⁺ channels.²⁵³ Similar effects were observed in humans treated with metoclopramide, 254,255 which induced a transient increase of the plasmatic aldosterone concentration. The implication of 5HT₄ receptors was demonstrated in the human adrenal cortex where 5-HT and zacopride, as previously observed in frogs, mediated the increase of aldosterone secretion.²⁵⁶ The administration of zacopride²⁵⁷ in normal volunteers induced an increase of plasma aldosterone concentration without any modification of renin and ACTH levels. However, the increase of aldosterone level was only transient because the level of the steroid returned to the basal level during chronic administration of zacopride.^{258,259} These data explain why there was no change in blood pressure in patients during chronic administration of cisapride.²⁶⁰ As reported for other tissues, the transient effect of 5-HT₄ receptor activation on aldosterone secretion likely reflects the desensitization of the receptors. Hyperaldosteronism can exert deleterious effects on the cardiovascular system under pathological conditions. Since the inhibition of the renin-angiotensin system by inhibitors of the converting enzyme is not sufficient to restore a normal level of aldosterone, the combination of this therapy with a 5-HT₄ receptor antagonist could constitute a new approach for treating cardiovascular disorders such as heart failure and hypertension.²⁶¹

Conclusions and Perspectives

Since the pharmacological characterization of the 5-HT₄ receptors in brain and intestine, considerable progress has been made in the design of several potent and selective compounds from a relatively limited number of chemical leads and in the understanding of the functions of these receptors. Interest in this class of receptors resides in the existence of several isoforms distributed in various central and peripheral tissues and in the putative role of these different variants in the regulation mechanism of signal transduction and cell function. Preliminary data indicate the presence of 5-HT₄ receptors in major organs and tissues, although large qualitative and quantitative differences exist in their distribution. For instance, $5-HT_{4(a)}$ and $5-HT_{4(b)}$ receptors are the only isoforms present in the bladder and kidney, respectively, and 5-HT_{4(d)} receptor was only characterized in the intestine. To date, no information is available on the specific role of the different isoforms and, in pathological disorders, on the possible implication of the variability in tissue distribution. Potent 5-HT₄ receptor agonists are now available. However, from measurements of their binding capacity on expressed receptors, none of these agonists showed any specificity for any given 5-HT₄ receptor isoform, which is understandable because the binding site is structurally identical for all isoforms. Surprisingly, from measurements of their capacity to activate cAMP synthesis or to modulate cellular function, the efficacy of a given 5-HT₄ receptor agonist depends strongly on the variant considered. A partial explanation for this observation may reside in the allosteric influence of the C-terminal end on the rest of the receptor. Indeed, truncation of the C-terminal end of a given 5-HT₄ receptor was shown recently to increase its constitutive activity. This is particularly relevant, since the main differences between the 5-HT₄ receptor variants reside in their C-terminal composition and length. Therefore, a specific pattern of expression of the different 5-HT₄ receptor isoforms in a given tissue may confer to the cell a unique mechanism to finely regulate signal transduction and function. This may also provide a clue for the development of "selective" ligands, since the selectivity for a particular receptor isoform may not be revealed in binding studies but rather in functional studies (e.g., as observed with renzapride). The elucidation of the structural factors in this fascinating phenomenon is a challenge for the medicinal chemist. Also intriguing for the chemist is the structural similarity between some agonists and antagonists that differ in their chemical structures by subtle steric factors. However, to date, it is not realistic to imagine the design of selective ligands for a given isoform.

It is worth also noting that the localization and the functionality of the 5-HT₄ receptors are animal-speciesdependent and that potential drugs have to be selected on the basis of the animal models relevant to the clinical activity.

Originally designed to cure gastrointestinal disorders, 5-HT₄ receptor agonists and antagonists available to date are worthwhile pharmacological tools for understanding the physiological and pathophysiological roles of these receptors in the GI. Several drugs are currently in development to treat constipation and the IBS syndrome, a complex disorder of the GI system where the inactivation and the activation of the peristaltic reflex were closely mixed. It will be of interest to observe the effects in humans of partial agonists, such as tegaserod, which is currently under clinical investigation. But several other promising drugs are under study, in particular the use of antagonists in the prevention or treatment of atrial arhythmia, a major pathological disorder of people suffering heart failure or other cardiovascular problems related to platelet aggregation. Development of a new class of antiarrhythmic drugs potentially devoid of ventricular effects constitutes promising progress in cardiovascular therapeutics. Finally, a number of other pharmacological studies allow for prediction of a good future for 5-HT₄ receptor ligands with potential therapeutic applications for treatments of memory disorders, hypertension, and the dysfunction of the urinary tract.

Michel Langlois graduated as a chemical engineer from ENSCP (Paris, 1960). In 1964, he received his Ph.D. under the supervision of Professor Marc Julia. From 1976, as head of the Medicinal Chemsitry Department (Delalande Research), he supervised several programs on the design of reversible inhibitors of monoamine oxydase (MAO) A and B and the gastrokinetic benzamides (cimoxatone, zacopride). In 1987, he left industrial research and occupied different academic positions as Director of Research at CNRS. Currently, his research team is focused on the design of ligands of the G protein coupled receptors, particularly in the field of serotonin and melatonin receptors.

Rodolphe Fischmeister is Director of Research at IN-SERM and head of an INSERM unit devoted to cellular and molecular cardiology. His lab is based at the Faculty of Pharmacy of the University of Paris. After graduating as an electrical engineer from Supélec in 1978, he moved first to theoretical biology for doctoral studies (Ph.D. in 1980) and then to cellular physiology during the 2 ¹/₂ years of postdoctoral studies at Dalhousie University (Halifax, Canada) and Emory University (Atlanta, GA). He returned to France in 1983 and became a researcher at INSERM. He obtained a Doctorat d'État ès Sciences in 1987. His main research interests are directed toward cardiac electrophysiology, neuroendocrine regulation of heart function, cardiac membrane receptors and their signaling cascades, and cellular control of cardiac ion channels.

References

- Hoyer, D.; Clarke, D. E.; Fozard, J. R.; Hartig, P. R.; Martin, G. R.; Mylecharane, E. J.; Saxena, F. R.; Humphrey, P. P. A. International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). *Pharmacol. Rev.* 1994, 46, 157-243.
- (2) Dumuis, A.; Sebben, M.; Bockaert, J. The gastrointestinal prokinetic benzamide derivatives are agonists at the nonclassical 5-HT receptor (5-HT₄) positively coupled to adenylate cyclase in neurons. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1989**, *340*, 403–410.

- (3) Clarke, D. E.; Baxter, G. S.; Young, H.; Craig, D. A. Pharmacological properties of the putative 5HT₄ receptor in guinea pig ileum and rat oesophagus: role in peristaltis. In *Serotonin: Molecular Biology, Receptors and Functional Effects*, Fozard, J. R., Saxena, P. R., Eds.; Birkhäuser Verlag: Basel, Switzerland, 1991; pp 232-242.
- (4) Blondel, O.; Gastineau, M.; Dahmoune, Y.; Langlois, M.; Fischmeister, R. Cloning, expression and pharmacology of four human 5-hydroxytryptamine₄ receptor isoforms produced by alternative splicing in the carboxyl terminus. *J. Neurochem.* **1998**, *70*, 2252– 2261.
- (5) Claeysen, S.; Sebben, M.; Bécamet, C.; Parmentier, M.-L.; Dumuis, A.; Bockaert, J. Constitutively active mutants of 5-HT₄ receptors, Are they in unique active states. *EMBO Rep.* **2001**, *2*, 61–67.
- (6) Patel, S.; Roberts, J.; Moorman, J.; Reavill, C. Localization of serotonin-4 receptors in the striatonigral pathway in rat brain. *Neuroscience* 1995, *69*, 1159–1167.
- (7) Kaumann, A. J. Piglet sinoatrial 5-HT receptors resemble human atrial 5-HT₄-like receptors. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1990**, *342*, 619–622.
 (8) Craig, D. A.; Clarke, D. E. Pharmacological characterization of
- (8) Craig, D. A.; Clarke, D. E. Pharmacological characterization of a neuronal receptor for 5-hydroxytryptamine in guinea pig ileum with properties similar to the 5-hydroxytryptamine₄ receptor. *J. Pharmacol. Exp. Ther.* **1990**, *252*, 1378–1386.
 (9) Idres, S.; Delarue, C.; Lefevre, H.; Vaudry, H. Benzamide
- (9) Idres, S.; Delarue, C.; Lefevre, H.; Vaudry, H. Benzamide derivatives provide evidence for the involvement of a 5-HT₄ receptor type in the mechanism of action of serotonin in frog adrenocortical cells. *Mol. Brain Res.* **1991**, *10*, 251–258.
- (10) Tonini, M.; Candura, S. M. 5-HT₄ receptor agonists and bladder disorders. *TIPS* **1996**, *17*, 314.
- (11) Siniscalchi, A.; Badini, I.; Beani, L.; Bianchi, C. 5-HT₄ receptor modulation of acetylcholine outflow in guinea pig brain slices. *NeuroReport* **1999**, *10*, 547–551.
- (12) Ouadid, H.; Seguin, J.; Dumuis, A.; Bockaert, J.; Nargeot, J. Serotonin increases calcium current in human atrial myocites via the newly described 5-hydroxytryptamine4 receptors. *Mol. Pharmacol.* **1991**, *41*, 346–351.
 (13) Whitehead, W. E.; Engel, B. T.; Schuster, M. M. Irritable bowel
- (13) Whitehead, W. E.; Engel, B. T.; Schuster, M. M. Irritable bowel syndrome. Physiological and psychological differences between diarrhea-predominant and constipation-predominant patient. *Dig. Dis. Sci.* **1980**, *25*, 404–413.
- (14) Kaumann, A. J. Do human atrial 5-HT₄ receptors mediate arrhythmias? *TIPS* 1994, *15*, 451-455.
- (15) Meneses, A.; Hong, E. Effects of 5-HT₄ receptor agonists and antagonists in learning. *Pharmacol. Biochem. Behav.* **1997**, *56*, 347–351.
- (16) Clark, R. D. Medicinal chemistry of 5-HT₄ receptor ligands. In 5-HT₄ Receptors in the Brain and Periphery; Eglen, R. M., Ed.; Springer-Verlag: Berlin, 1998; pp 1–48.
- (17) Gaster, L. M.; King, F. D. Serotonin 5-HT₃ and 5-HT₄ receptor antagonists. *Med. Res. Rev.* **1997**, *17*, 163–214.
- (18) Turconi, M.; Nicola, M.; Quintero, M. G.; Maiocchi, L.; Micheletti, R.; Giraldo, E.; Donetti, A. Synthesis of a new class of 2,3dihydro-2-oxo-1*H*-benzimidazole-1-carboxylic acid derivatives as highly potent 5-HT₃ receptor antagonists. *J. Med. Chem.* **1990**, *33*, 2101–2108.
- (19) Fozard, J. R. MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Br. J. Pharmacol. 1983, 80, 466P.
- (20) Donatsch, P.; Engel, G.; Richardson, B. P.; Stadler, P. ICS 205-930: a highly selective and potent antagonists at peripheral neuronal 5-hydroxytryptamine (5-HT) receptors. *Br. J. Pharmacol.* **1984**, *81*, 34P.
- (21) Imbert, T.; Dorme, N.; Langlois, M. Nouveaux dérivés de l'amino-3 quinuclidine, leurs procédés de préparation et leur application thérapeutique (Novel derivatives of amino 3-quinuclidine, their syntheses, and their therapeutic application). Patent E. P. 83401338, June 29, 1983.
- (22) King, F. D.; Hadley, M. S.; Joiner, K. T.; Martin, R. T.; Sanger, G. J.; Smith, D. M.; Smith, G. E.; Smith, P.; Turner, D. H.; Watts, E. A. Substituted benzamides with conformationally restricted side chains. 5. Azabicyclo[*x*,*y*,*z*] derivatives as 5-HT₄ receptor agonists and gastric motility stimulants. *J. Med. Chem.* **1993**, *36*, 683–689.
- (23) Tonini, M. Recent advances in the pharmacology of gastrointestinal prokinetics. *Pharmacol. Res.* 1996, 33, 217–226.
- (24) Dumuis, A.; Sebben, M.; Monferini, E.; Nicola, M.; Turconi, M.; Ladinsky, H.; Bockaert, J. Azabicycloalkyl benzimidazolone derivatives as a novel class of potent agonists at the 5-HT₄ receptor positively coupled to adenylate cyclase in brain. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1991**, *343*, 245–251.
- (25) Dumuis, A.; Gozlan, H.; Sebben, M.; Ansanay, H.; Rizzi, C. A.; Turconi, M.; Monferini, E.; Giraldo, E.; Schiantarelli, P.; Ladinsky, H.; Bockaert, J. Characterisation of a novel 5-HT₄ receptor antagonist of the azabicycloalkyl benzimidazolone class: DAU 6285. *Naunyn-Schmiedeberg's Arch. Pharmacol.* 1992, 345, 264–269.

- (26) Baxter, G. S.; Clarke, D. E. Benzimidazolone derivatives act as 5-HT₄ receptor ligands in rat oesophagus. *Eur. J. Pharmacol.* **1992**, *212*, 225–229.
- (27) Waikar, M. V.; Hegde, S. S.; Ford, P. D. W.; Clarke, D. E. Pharmacological analyses of *endo*-6-methoxy-8-methyl-8-azabicyclo[3.2.1]oct-3-yl-2,3-dihydro-2-oxo-1*H*-benzimidazole-1-carboxylate hydrochloride (DAU 6285) at the 5-hydroxytryptamine₄ receptor in the tunica muscularis mucosae of rat oesophagus and ileum guinea-pig: role of endogeneous 5-hydroxytryptamine. *J. Pharmacol. Exp. Ther.* **1993**, 264, 654–661.
- (28) Tapia, I.; Alonso-Cires, L.; Lopez-Tudanca, P. L.; Mosquera, R.; Labeaga, L.; Innerarity, A.; Orjales, A. 2,3-Dihydro-2-oxo-1*H*benzimidazole-1-carboxamides with selective affinity for the 5-HT₄ receptor: synthesis and structure–affinity relationship of a new series of partial agonist and antagonist derivatives. *J. Med. Chem.* **1999**, *42*, 2870–2880.
- (29) Suzuki, M.; Ohuchi, Y.; Asanuma, H.; Kanako, T.; Yokomori, S.; Ito, C.; Isobe, Y.; Muramatsu, M. Synthesis and evaluation of novel 2-oxo-1,2-dihydro-3-quinolinecarboxamide derivatives as serotonin 5-HT₄ receptor agonists. *Chem. Pharm. Bull.* 2000, 48, 2003–2008.
- (30) Suzuki, M.; Ohuchi, Y.; Asanuma, H.; Kanako, T.; Yokomori, S.; Ito, C.; Isobe, Y.; Muramatsu, M. Synthesis and evaluation of novel 2-oxo-1,2-dihydro-3-quinolinecarboxamide derivatives as serotonin 5-HT₄ receptor agonists. *Chem. Pharm. Bull.* **2001**, 49, 29–39.
- (31) Pinder, R. M.; Brogden, R. N.; Sawyer, P. R.; Speight, T. M.; Avery, G. Metoclopramide: a review of its pharmacological properties and clinical use. *Drugs* 1976, *12*, 81–131.
- (32) Prieto, J.; Moragues, J.; Spickett, R. G.; Vega, A.; Colombo, M.; Salazar, W.; Roberts, D. J. Synthesis and pharmacological properties of a series of antidopaminergic piperidyl benzamides. *J. Pharm. Pharmacol.* **1977**, *29*, 147–152.
- (33) McGallum, R. W. Review of the current status of prokinetic agents in gastroenterology. Am. J. Gastroenterol. 1985, 80, 1008–1016.
- (34) Monkovic, I.; Brown, M.; Luke, G. M.; Standrige, R. T.; Willner, D.; Crosswell, A. R.; Algieri, A.; Buyniski, J. P.; Crenshaw, R. R.; Juby, P. F. Potential non-dopaminergic gastrointestinal prokinetic agents in the series of substituted benzamides. *Eur. J. Med. Chem.* **1989**, *24*, 233–240.
- (35) Butler, B. T.; Silvey, G.; Houston, D. M.; Borcherding, D. R.; Vaughn, V. L.; McPhail, A. T.; Radzik, D. M.; Wynberg, H.; Ten Hoeve, W.; Van Echten, E.; Ahmed, N. K.; Linnik, M. D. The resolution, isolation, and pharmacological characterisation of the enantiomers of a benzamide containing a chiral sulfoxide. *Chirality* **1992**, *4*, 155–162.
- (36) Hadley, M. S.; King, F. D.; McRitchie, B.; Turner, D. H.; Watta, E. A. Substituted benzamides with conformationally restricted side chains. 1. Quinolizidine derivatives as selective gastric prokinetic agents. J. Med. Chem. 1985, 28, 1843.
- (37) Fake, C. S.; King, F. D.; Sanger, G. J. BRL 43694: a potent and novel 5-HT₃ receptor antagonist. *Br. J. Pharmacol.* **1987**, *91*, 335P.
- (38) Gullikson, G. W.; Virina, M. A.; Loeffler, R. F.; Yang, D.-C.; Goldstin, B.; Flynn, D. L.; Moormann, A. Gastrointestinal motility response to the *S* and *R* enantiomers of zacopride, a 5-HT₄ agonist and 5-HT₃ antagonist. *Drug Dev. Res.* **1992**, *26*, 405-417.
- (39) Cohen, M. L.; Bloomquist, W.; Gidda, J. S.; Lacefield, W. LY 277359 maleate: a potent and selective 5-HT₃ receptor antagonist without gastrokinetic activity. *J. Pharmacol. Exp. Ther.* **1990**, *254*, 350–355.
- (40) Bockaert, J.; Sebben, M.; Dumuis, A. Pharmacological characterisation of 5-hydroxyryptanine₄ (5-HT₄) receptors positively coupled to adenylate cyclase in adult guinea pig hippocampal membranes: effect of substituted benzamide derivatives. *Mol. Pharmacol.* **1990**, *37*, 408–411.
- (41) King, F. D.; Hadley, F. D.; McClelland, C. M. Substituted benzamides with conformationally restricted side chains. 2. Indolozidine derivatives as central dopamine receptor antagonists. J. Med. Chem. 1988, 31, 1708–1712..
- (42) Flynn, D. L.; Zabrowski, D. L.; Becker, D. P.; Nosal, R.; Villamil, C. I.; Gullikson, G. W.; Moummi, C.; Yang, D.-C. SC-53116: The first selective agonist at the newly identified serotonin 5-HT₄ receptor subtype. *J. Med. Chem.* **1992**, *35*, 1486–1489.
- (43) Becker, D. P.; Nosal, R.; Villamil, C. I.; Gullikson, G.; Moummi, C.; Yang, D.-C.; Flynn, D. L. Serotonin 5-HT₄ agonist activity of a series of meso-azanoradamantane benzamides. *Bioorg. Med. Chem. Lett.* **1995**, *5*, 39–42.
- (44) Yang, D. C.; Goldstin, B.; Moormann, A. E.; Flynn, D. L.; Gullikson, G. W. SC-53606, a potent and selective antagonist of 5-hydroxytryptamine₄ receptor in isolated rat oesophageal tunica muscularis mucosae. *J. Pharmacol. Exp. Ther.* **1993**, *266*, 1339– 1347.

- (45) Karigami, T.; Usui, T.; Ikami, T.; Tsukamoto, K.; Miwa, Y.; Taga, T.; Katakoa, T. Serotonin 5-HT₄ receptor agonistic activity of the optical isomers of (±)-4-amino-N-[2-(1-azabicyclo[3.3.0]octan-5-yl)ethyl]-5-chloro-2,3-dihydro-2-methylbenzo[b]furan-7-carboxamide. *Chem. Pharm. Bull.* **1998**, *46*, 1039–1043.
- (46) Takeda, M.; Tsukamoto, K.; Mizutani, Y.; Suzuki, T.; Taniyama, K. Identification of SK-951, a novel benzofuran derivative, as an agonist to 5-HT₄ receptors. *Jpn. J. Pharmacol.* **1999**, *79*, 203– 212.
- (47) Takeda, M.; Tsukamoto, K.; Yamano, M.; Uesaka, H. Effects of SK-951, a benzofuran derivative, as a prokinetic agent in rats and dogs. *Jpn. J. Pharmacol.* **1999**, *81*, 292–297.
- (48) Yang, D.; Brémont, B.; Shen, S.; Kefi, S.; Langlois, M. Serotoninergic properties of new conformationally restricted benzamides. *Eur. J. Med. Chem.* **1996**, *31*, 231–239.
- (49) Suzuki, T.; Imanishi, N.; Itahna, H.; Watanuki, S.; Miyata, K.; Ohta, M.; Nakahara, Y.; Yamagiwa, Y.; Mase, T. Novel 5-hydroxytryptamine 4 (5-HT₄) receptor agonists. Synthesis and gastrokinetic activity of 4-amino-*N*-[2-(1-aminocycloalkan-1-yl)ethyl]-5-chloro-2-methoxybenzamides. *Chem. Pharm. Bull.* **1998**, 46, 1116–1124.
- (50) Yang, D.; Kefi, S.; Audinot, V.; Millan, M.-J.; Langlois, M. Benzamides derived from 1,2-diaminocyclopropane as a novel ligand for human D₂ and D₃ dopamine receptors. *Bioorg. Med. Chem.* 2000, 8, 321–327.
- (51) Langlois, M.; Yang, D.; Brémont, B.; Shen, S. Synthesis and pharmacological activity of a macrocyclic benzamide. *Bioorg. Med. Chem. Lett.* **1995**, *5*, 795–798.
- (52) Morie, T.; Kato, S.; Harada, H.; Yoshida, N.; Matsumoto, J.-I. Synthesis and biological activities of the optical isomers of (±)-4-amino-5-chloro-2-ethoxy-N-[[4-(4-fluorobenzyl)-2-morpholinyl]methyl]benzamide (Mosapride). *Chem. Pharm. Bull.* **1994**, *42*, 877–882.
- (53) Yoshikawa, T.; Yoshida, N.; Mine, Y.; Hosoki, K. Affinity of mosapride citrate, a new gastroprokinetic agent, for 5-HT₄ receptors in guinea pig ileum. *Jpn. J. Pharmacol.* **1998**, *77*, 53– 59.
- (54) Kato, S.; Morie, T.; Kon, T.; Yoshida, N.; Karasawa, T.; Matsumoto, J.-I. Novel benzamides as selective and potent gastrokinetic agents. 2. Synthesis and structure–activity relationships of 4-amino-5-chloro-2-ethoxy-N-[[4-(4-fluorobenzyl)-2-morpholinyl]methyl]benzamide citrate (AS-4370) and related compounds. J. Med. Chem. 1991, 34, 616–624.
- (55) Briejer, M. R.; Bosmans, J.-P.; Van Daele, P.; Jurzak, M.; Heylen, L.; Leysen, J. E.; Prins, N. H.; Schuurkes, J. A. J. The in vitro pharmacological profile of prucalopride, a novel enterokinetic compound. *Eur. J. Pharmacol.* **2001**, *423*, 71–83.
- (56) Itoh, K.; Tomozane, H.; Hakira, H.; Sonda, S.; Asano, K.; Fujimura, M.; Sato, N.; Haga, K.; Kawakita, T. Synthesis and pharmacological properties of novel benzamide derivatives acting as ligands to the 5-hydroxytryptamine₄ (5-HT₄) receptor. *Eur. J. Med. Chem.* **1999**, *34*, 1101–1108.
- (57) Buchheit, K.-H.; Gamse, R.; Pfannkuche, H.-J. SDZ 205-557, a selective antagonist at 5-HT₄ receptors in the isolated guinea pig ileum. *Eur. J. Pharmacol.* **1991**, *200*, 373–374.
- (58) Buchheit, K.-H.; Gamse, R.; Pfannkuche, H.-J. SDZ 205-557, a selective, surmountable antagonist for 5-HT₄ receptors in the isolated guinea pig ileum. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1992**, *345*, 387–393.
- (59) Eglen, R. M.; Alvarez, R.; Johnson, L. G.; Leung, E.; Wong, E. H. F. The action of SDZ 205-557 at 5-hydroxytryptamine (5-HT₃ and 5-HT₄) receptors. *Br. J. Pharmacol.* **1993**, *108*, 376–382.
- (60) Langlois, M.; Zhang, L.; Yang, D.; Brémont, B.; Shen, S.; Manara, L.; Croci, T. Design of a potent 5-HT₄ receptor agonist with nanomolar affinity. *Bioorg. Med. Chem. Lett.* **1994**, *4*, 1433– 1436.
- (61) Elz, S.; Keller, A. Preparation and in vitro pharmacology of 5-HT₄ receptor ligands; partial agonism and antagonism of metoclopramide analogous benzoic esters. *Arch. Pharm. (Weinheim, Ger.)* **1995**, *328*, 585–594.
- (62) Yang, D.; Soulier, J.-L.; Sicsic, S.; Mathé-Allainmat, M.; Brémont, B.; Croci, T.; Cardamone, R.; Aureggi, G.; Langlois, M. New esters of 4-amino-5-chloro-2-methoxybenzoic acid as potent agonists and antagonists for the 5-HT₄ receptors. *J. Med. Chem.* **1997**, *40*, 608–6214.
- (63) Croci, T.; Langlois, M.; Mennini, T.; Landi, M.; Manara, L. ML 10302, a powerful and selective new 5-HT₄ receptor agonist. *Br. J. Pharmacol.* **1995**, *114*, 382P.
- (64) Eglen, R. M.; Bley, K.; Bonhaus, D. W.; Clark, R. D.; Hedge, S. S.; Johnson, L. G.; Leung, E.; Whiting, R. L. RS-23597-190: a potent and selective 5-HT₄ receptor antagonist. *Br. J. Pharmacol.* **1993**, *110*, 119–126.
- (65) Curtet, S.; Soulier, J. L.; Zahradnik, I.; Giner, M.; Berque-Bestel, I.; Mialet, J.; Lezoualc'h, F.; Donzeau-Gouge, P.; Sicsic, S.; Fischmeister, R.; Langlois, M. New arylpiperazine derivatives as antagonists of the human cloned 5-HT₄ receptor isoforms. *J. Med. Chem.* **2000**, *43*, 3761–3769.

- (66) Soulier, J. L.; Yang, D.; Brémont, B.; Croci, T.; Guzzi, U.; Langlois, M. Arylcarbamate derivatives of 1-piperidinethanol as potent ligands for 5-HT₄ receptors. *J. Med. Chem.* **1997**, *40*, 1755–1761.
- (67) Oxford, A. W. Substituted phenylcarbamates and phenylureas, their preparation and their use as 5-HT₄ antagonists. Int. Pat. Appl. WO 93/20071, 1993.
- (68) Suzuki, T.; Iwaoka, K.; Imanishi, N.; Nagakura, Y.; Miyata, K.; Nakahara, H.; Ohta, M.; Mase, T. Synthesis of the selective 5-hydroxytryptamine 4 (5-HT₄) receptor agonist (+)-(*S*)-2chloro-5-methoxy-4-[5-(2-piperidylmethyl)-1,2,4-oxadiazol-3-yl]aniline. *Chem. Pharm. Bull.* **1999**, 47, 120–122.
- (69) Nagakura, Y.; Akuzawa, S.; Miyata, K.; Kamato, T.; Suzuki, T.; Ito, H.; Yamaguchi, T. Pharmacological properties of a novel gastrointestinal prokinetic benzamide selective for human 5-HT₄ receptor versus human 5-HT₃ receptor. *Pharmacol Res.* **1999**, *39*, 375–382.
- (70) Gaster, L. M.; Jenning, A. J.; Joiner, G. F.; King, F. D.; Mulholland, K. R.; Rahman, S. K.; Star, S.; Wyman, P. A.; Wardle, K. A.; Ellis, E. S.; Sanger, G. J. (1-Butyl-4-piperidinyl)methyl 8-amino-7-chloro-1,4-benzodioxan-5-carboxylate hydrochloride: a highly potent and selective 5-HT₄ receptor antagonist derived from metoclopramide. *J. Med. Chem.* **1993**, *36*, 4121– 4123.
- (71) Wardle, K. A.; Ellis, E. S.; Baxter, G. S.; Kennett, G. A.; Gaster, L. M.; Sanger, G. J. The effect of SB 204070, a highly potent and selective 5-HT₄ receptor antagonist, on guinea-pig distal colon. *Br. J. Pharmacol.* **1994**, *112*, 789–794.
- (72) Bingham, S.; King, B. F.; Rushant, B.; Smith, M. I.; Gaster, L.; Sanger, G. J. Antagonism by SB 204070 of 5-HT-evoked contractions in the dog stomach: an in vivo model of 5-HT₄ receptor function. *J. Pharm. Pharmacol.* **1995**, *47*, 219–222.
- (73) Brown, A. M.; Young, T. J.; Patch, T. L. [¹²⁵I]-SB 207710, a potent, selective radioligand for 5-HT₄ receptors. *Br. J. Pharmacol.* **1993**, *110*, 10P.
- (74) Clark, R. D.; Jahangir, A.; Langston, J. A.; Weinhardt, K. K.; Miller, A. B.; Leung, E.; Eglen, R. M. Ketones related to the benzoate 5-HT₄ receptor antagonist RS-23597 are high affinity partial agonists. *Bioorg. Med. Chem. Lett.* **1994**, *4*, 2477–2480.
- (75) Clark, R. D.; Jahangir, A.; Langston, J. A.; Weinhardt, K. K.; Miller, A. B.; Leung, E.; Bonhaus, D. W.; Wong, E. H. F.; Eglen, R. M. Synthesis and preliminary pharmacological evaluation of 2-benzyloxy substituted aryl ketones as 5-HT₄ receptor antagonists. *Bioorg. Med. Chem. Lett.* **1994**, *4*, 2481–2484.
- (76) Eglen, R. M.; Bonhaus, D. W.; Johnson, L. G.; Leung, E.; Clark, R. D. Pharmacological characterisation of two novel and potent 5-HT₄ receptor agonists, RS 67333 and RS 67506, in vitro and in vivo. *Br. J. Pharmacol.* **1995**, *115*, 1387–1392.
- (77) Nagakura, Y.; Ito, H.; Kiso, T.; Naitoh, Y.; Miyata, K. The selective 5-hydroxytryptamine (5-HT)₄-receptor agonist RS67506 enhances lower intestinal propulsion in mice. *Jpn. J. Pharmacol.* **1997**, *74*, 209–212.
- (78) Clark, R. D.; Jahangir, A.; Flippin, L. A. RS-100235: a high affinity 5-HT₄ receptor antagonist. *Bioorg. Med. Chem. Lett.* **1995**, *5*, 2119–2122.
- (79) Parker, S. G.; Hamburger, S.; Taylor, E. M.; Kaumann, A. J. SB 203186. Br. J. Pharmacol. 1993, 108, 68P.
- (80) Grossman, C. J.; Gale, J. D.; Bunce, K. T.; Kilpatrick, G. J.; Whitehead, J. F.; Oxford, A. W.; Humphrey, P. P. A. Development of a radioligand binding assay for the 5-HT₄ receptor: use of a novel antagonist. *Br. J. Pharmacol.* **1993**, *109*, 618–624.
- (81) Waeber, C.; Sebben, M.; Grossman, C.; Javoy-Agid, F.; Bockaert, J.; Dumuis, A. [³H]-GR 114808 labels 5-HT₄ receptors in the human and guinea-pig brain. *NeuroReport* **1993**, *4*, 1239–1242.
- (82) Diouf, O.; Depreux, P.; Chavatte, Ph.; Poupaert, J. H. Synthesis and preliminary pharmacological results on new naphthalene derivatives as 5-HT₄ receptor ligands. *Eur. J. Med. Chem.* **2000**, *35*, 699–706.
- (83) Gaster, L. M.; Joiner, G. F.; King, F. D.; Wyman, P. A.; Sutton, J. M.; Bingham, S.; Ellis, E. S.; Sanger, G. J.; Wardle, K. A. N-[(1-Butyl-4-piperidinyl)methyl]-3,4-dihydro-2H-[1,3]oxazino[3,2-a]-indole-10-carboxamide hydrochloride: the first potent and selective 5-HT₄ receptor antagonist amide with oral activity. J. Med. Chem. 1995, 38, 4760-4763.
- (84) Wardle, K. A.; Bingham, S.; Ellis, E. S.; Gaster, L. M.; Rushant, B.; Smith, M. I.; Sanger, G. J. Selective and functional 5-hydroxytryptamine₄ receptor antagonism by SB 207266. *Br. J. Pharmacol.* **1996**, *118*, 665–670.
- (85) Wyman, P. A.; Gaster, L. M.; King, F. D.; Sutton, J. M.; Ellis, E. S.; Wardle, K. A.; Young, T. J. Azabicyclic indole esters as potent 5-HT₄ receptor antagonists. *Bioorg. Med. Chem.* **1996**, *4*, 255–261.
- (86) King, F. D.; Gaster, L. M. Imidazopyridine derivatives as 5-HT₄ receptor antagonists. Int. Pat. Appl. WO 94/08998, 1994.

- (87) Schaus, J. M.; Thompson, D. C.; Bloomquist, W. E.; Susemichel, A. D.; Calligaro, D. O.; Cohen, M. L. Synthesis and structure– activity relationships of potent and orally active 5-HT₄ receptor antagonists: indazole and benzimidazolone derivatives. *J. Med. Chem.* **1998**, *41*, 1943–1955.
- (88) Lopez-Rodriguez, M. L.; Benhamu, B.; Viso, A.; Morcillo, M. J.; Murcia, M.; Orensanz, L.; Alfaro, M. J.; Martin, M. I. Benzimidazole derivatives. Part 1. Synthesis and structure–activity relationships of new azabicyclic benzimidazole-4-carboxamides and carboxylates as potent and selective 5-HT₄ receptor antagonists. *Bioorg. Med. Chem.* **1999**, *7*, 2271–2281.
- (89) Buchheit, K.-H.; Gamse, R.; Giger, R.; Hoyer, D.; Klein, F.; Klöppner, E.; Pfannkuche, H.-J.; Mattes, H. The serotonin 5-HT4 receptor. 1. Design of a new class of agonists and receptor map of the agonist recognition site. *J. Med. Chem.* **1995**, *38*, 2326– 2330.
- (90) Buchheit, K.-H.; Gamse, R.; Giger, R.; Hoyer, D.; Klein, F.; Klöppner, E.; Pfannkuche, H.-J.; Mattes, H. The serotonin 5-HT₄ receptor. 2. Structure–activity studies of the indole carbazimidamide class of agonists. *J. Med. Chem.* **1995**, *38*, 2331–2338.
- (91) Tegaserod maleate, zelmac. Drugs Future 2001, 26, 99-100.
- (92) Buchheit, K.-H.; Klein, F.; Klöppner, E.; Pfannkuche, H.-J.; Mattes, H. The serotonin 5-HT₄ receptor; part 3. Design and pharmacological evaluation of a new class of antagonists. *Bioorg. Med. Chem. Lett.* 1995, *5*, 2495–2500.
- (93) Trillat, A.-C.; Malagié, I.; Mathé-Allainmat, M.; Anmela, M.-C.; Jacquot, C.; Langlois, M.; Gardier, A. M. Effects of WAY 100635 and (-)-5-Me-8-OH-DPAT, a novel 5-HT_{1A} receptor antagonist, on 8-OH-DPAT responses. *Eur. J. Pharmacol.* **1998**, *347*, 41– 49.
- (94) Hibert, M. F.; Hoffman, R.; Miller, R. C.; Carr, A. C. Conformation-activity relationship study of 5-HT₃ receptor antagonists and a definition of a model for this receptor site. *J. Med. Chem.* **1990**, *33*, 1594–1600.
- (95) Lopez-Rodriguez, M. L.; Morcillo, M. J.; Benhamu, B.; Rosado, M. L. Comparative receptor mapping of serotoninergic 5-HT₃ and 5-HT₄ binding sites. *J. Comput.-Aided Mol. Des.* **1997**, *11*, 589– 599.
- (96) Mialet, J.; Dahmoune, Y.; Lezoualc'h, F.; Berque-Bestel, I.; Eftekhari, P.; Hoebeke, J.; Sicsic, S.; Langlois, M.; Fischmeister, R. Exploration of the ligand binding site of the human 5-HT₄ receptor by site-directed mutagenesis and molecular modeling. *Br. J. Pharmacol.* **2000**, *130*, 527–538.
- (97) Roth, B. L.; Shoham, M.; Choudhary, M. S.; Khan, N. Identification of conserved aromatic residues essential for agonist binding and second messenger production at 5-hydroxytryptamine_{2A} receptors. *Mol. Pharmacol.* **1997**, *52*, 259–266.
- (98) Dumuis, A.; Bouhelal, R.; Sebben, M.; Bockaert, J. A 5-HT receptor in the central nervous system, positively coupled with adenylate cyclase, is antagonized by ICS 205-930. *Eur. J. Pharmacol.* **1988**, *146*, 187–188.
- (99) Monsma, F. J.; Shen, Y.; Ward, R. P.; Hamblin, M. W.; Sibley, D. R. Cloning and expression of a novel serotonin receptor with high affinity for the tricyclic psychotropic drugs. *Mol. Pharmacol.* **1993**, *43*, 320–327.
- (100) Bard, J. A.; Zgombick, J.; Adham, N.; Vaysse, P. J.-J.; Branchek, T. A.; Weinshank, R. L. J. Cloning of a novel human serotonin (5-HT₇) receptor linked positively to adenylate cyclase. *J. Biol. Chem.* **1993**, *268*, 23422–23426.
 (101) Grossman, C. J.; Kilpatrick, G. J.; Bunce, K. T. Development of
- (101) Grossman, C. J.; Kilpatrick, G. J.; Bunce, K. T. Development of a radioligand binding assay for 5-HT₄ receptor in guinea-pig and rat brain. *Br. J. Pharmacol.* **1993**, *109*, 618–624.
- (102) Doménech, T.; Beleta, J.; Fernandez, A. G.; Gristwood, R. W.; Cruz Sanchez, F.; Tolosa, E.; Palacios, J. M. Identification and characterization of serotonin 5-HT₄ receptor binding sites in human brain: comparison with other mammalian species. *Mol. Brain Res.* **1994**, *21*, 176–180.
- (103) Arranz, B.; Rosel, P.; San, L.; Sarro, S.; Navarro, M. A.; Marcusson, J. Characterization of the 5-HT₄ binding site in human brain. *J. Neural Transm.* **1998**, *105*, 575–586.
- (104) Bonaventure, P.; Hall, H.; Gommeren, W.; Cras, P.; Langlois, X.; Jurzak, M.; Leysen, J. E. Mapping of serotonin 5-HT₄ receptor mRNA and ligand binding sites in the post-mortem human brain. *Synapse* **2000**, *36*, 35–46.
- (105) Hedge, S. S.; Eglen, R. M. Peripheral 5-HT₄ receptors. *FASEB J.* **1996**, *10*, 1398–1407.
- (106) Clarke, D. E.; Craig, D. A.; Fozard, J. R. The 5-HT₄ receptor: naughty, but nice. *TIPS* **1989**, *10*, 385–386.
- (107) Tsuyuki, Y. U.; Saitoh, M.; Muramatsu, M. Identification and characterisation of the 5-HT₄ receptor in the intestine tract and striatum of the guinea pig. *Life Sci.* **1996**, *59*, 2129–2137.
 (108) Linnik, M. D.; Butler, B. T.; Gaddis, R. R.; Ahmed, N. K. Analysis
- (108) Linnik, M. D.; Butler, B. T.; Gaddis, R. R.; Ahmed, N. K. Analysis of serotoninergic mechanisms underlying benzamide-induced gatroprokinesis. *J. Pharmacol. Exp. Ther.* **1991**, *259*, 501–507.
- (109) Meulemans, A. L.; Schuurkes, J. A. J. Is the action of cisapride on the guinea-pig ileum mediated via 5-HT₄ receptors? *Eur. J. Pharmacol.* **1992**, *212*, 51–59.

- (110) Cocks, T. M.; Arnold, P. J. 5-Hydroxytryptamine (5-HT) mediates potent relaxation in the sheep isolated pulmonary vein via activation of 5-HT₄ receptors. *Br. J. Pharmacol.* **1992**, *107*, 591–596.
- (111) Lefevre, H.; Contesse, V.; Delarue, C.; Feuilloley, M.; Hery, F.; Grise, P.; Raynaud, G.; Verhofstad, A. J.; Wolf, L. M.; Vaudry, H. Serotonin-induced stimulation of cortisol secretion from human adrenocortical tissue is mediated through activation of a serotonin₄ receptor subtype. *Neuroscience* **1992**, *47*, 999–1007.
- (112) Bockaert, J.; Fozard, J. R.; Dumuis, A.; Clarke, D. E. The 5-HT₄ receptor: a place in the sun. *TIPS* **1992**, *13*, 141–145.
 (113) Chaput, Y.; Araneda, R. C.; Andrade, R. Pharmacological and
- (113) Chaput, Y.; Araneda, R. C.; Andrade, R. Pharmacological and functional analysis of a novel serotonin receptor in the rat hippocampus. *Eur. J. Pharmacol.* **1990**, *182*, 441–456.
- (114) Andrade, R.; Chaput, Y. 5-Hydroxytryptamine₄-like receptors mediate the slow excitatory response to serotonin in the rat hippocampus. J. Pharmacol. Exp. Ther. **1991**, 257, 930-937.
- (115) Torres, G. E.; Holt, I. L.; Andrade, R. Antagonists of 5-HT₄ receptor mediated responses in adult hippocampal neurons. J. Pharmacol. Exp. Ther. **1994**, 271, 255-261.
- (116) Ansanay, H.; Sebben, M.; Bockaert, J.; Dumuis, A. Characterisation of homologous 5-Hydroxytryptamine₄ receptor desensitisation in Colliculi neurons. *Mol. Pharmacol.* **1992**, *42*, 808–816.
- (117) Bockaert, J.; Ansanay, H.; Letty, S.; Marchetti-Gauthier, E.; Roman, F.; Rondouin, G.; Fagni, L. Soumireu-Mourat, B.; Dumuis, A. 5-HT₄ receptors: long-term blockade of K⁺ channels and effects on olfactory memory. *C. R. Acad. Sci. Paris* **1998**, *321*, 217–221.
- (118) Gerald, C.; Adham, N.; Kao, H.-T.; Olsen, M. A.; Laz, T. M.; Schechter, L. E.; Bard, J. A.; Vaysse, J. J.; Hartig, P. R.; Branchek, T. A.; Weinshank, R. L. The 5-HT₄ receptor: molecular cloning and pharmacological characterization of two splice variants. *EMBO J.* **1995**, *14*, 2806–2815.
- (119) Adham, N.; Gerald, C.; Schechter, L.; Vaysse, P.; Weinshank, R.; Branchek, T. [³H]5-Hydroxytryptamine labels the agonist high affinity state of the cloned rat 5-HT₄ receptor. *Eur. J. Pharmacol.* **1996**, *304*, 231–235.
- (120) Clayesen, S.; Sebben, M.; Becamel, C.; Bockaert, J.; Dumuis, A. Novel brain-specific 5-HT₄ receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. *Mol. Pharmacol.* **1999**, *55*, 910–920.
- (121) Clayesen, S.; Sebben, M.; Journot, L.; Bockaert, J.; Dumuis, J. Cloning, expression and pharmacology of the mouse 5-HT_{4L} receptor. *FEBS Lett.* **1996**, *398*, 19–25.
- (122) Blondel, O.; Vandecasteele, G.; Gastineau, M.; Leclers, S.; Dahmoune, Y.; Langlois, M.; Fischmeister, R. Molecular and functional characterization of a 5-HT₄ receptor cloned from human atrium. *FEBS Lett.* **1997**, *412*, 465–474.
- (123) Clayesen, S.; Faye, P.; Sebben, M.; Lemaire, S.; Bockaert, J.; Dumuis, A. Cloning and expression of human 5-HT_{4S} receptors. Effect of receptor density on their coupling to adenylyl cyclase. *NeuroReport* **1997**, *8*, 3189–3196.
- (124) Van den Wyngaert, I.; Gommeren, W.; Verhasselt, P.; Jurzak, M.; Leysen, J.; Luyten, W.; Bender, E. Cloning and expression of a human serotonin 5-HT₄ receptor cDNA. *J. Neurochem.* **1997**, *69*, 1810–1819.
- (125) Bender, E.; Pindon, A.; Van Oers, I.; Zhang, Y.-B.; Gommeren, W.; Verhasselt, P.; Jurzak, M.; Leysen, J.; Luyten, W. Structure of the human serotonin 5-HT₄ receptor gene and cloning of a novel 5-HT₄ splice variant. *J. Neurochem.* **2000**, *74*, 472–489.
- (126) Mialet, J.; Berque-Bestel, I.; Sicsic, S.; Langlois, M.; Fischmeister, R.; Lezoualc'h, F. Pharmacological characterization of the human 5-HT_{4(d)} receptor splice variant stably expressed in Chinese hamster ovary cells. *Br. J. Pharmacol.* **2000**, *131*, 827– 835.
- (127) Mialet, J.; Berque-Bestel, I.; Eftekhari, P.; Gastineau, M.; Giner, M.; Dahmoune, Y.; Donzeau-Gouge, P.; Hoebeke, J.; Langlois, M.; Sicsic, S.; Fischmeister, R.; Lezoualc'h, F. Isolation of the serotoninergic 5-HT4(e) receptor from human heart and comparative analysis of its pharmacological profile in C6-glial and CHO cell lines. Br. J. Pharmacol. 2000, 129, 771–780.
- (128) Medhurst, A. D.; Lezoualc'h, F.; Fischmeister, R.; Middlemiss, D. N.; Sanger, G. J. Quantitative mRNA analysis of five C-terminal splice variants of the human 5-HT₍₄₎ receptor in the central nervous system by TaqMan real time RT-PCR. *Brain Res. Mol. Brain Res.* 2001, *90*, 124–134.
 (129) Vilaro, M. T.; Doménech, T.; Palacios, J. M.; Mengod, G. Cloning
- (129) Vilaro, M. T.; Doménech, T.; Palacios, J. M.; Mengod, G. Cloning and characterisation of a novel human 5-HT₄ receptor variant that lacks the alternatively spliced carboxy terminal exon. RT-PCR distribution in human brain and periphery of multiples 5-HT₄ receptor variants. *Neuropharmacology* **2002**, *42*, 60–73.
- (130) Pauwels, P. J.; Wurch, T. Review: amino acid domains involved in constitutive activation of G-protein-coupled receptors. *Mol. Neurobiol.* **1998**, *17*, 109–135.
- (131) Blondel, O. G.; Gastineau, M.; Langlois, M.; Fischmeister, R. The 5-HT₄ receptor antagonist ML 10375 inhibits the constitutive activity of human 5-HT_{4(c)} receptor. *Br. J. Pharmacol.* **1998**, *125*, 595–597.

- (132) Ponimaskin, E. G.; Schmidt, M. F. G.; Heine, M.; Bickmeyer, U.; Richter, D. W. 5-Hydroxytryptamine_(4a) receptor expressed in Sf9 cells is palmitoylated in an agonist-dependent manner. *Biochem. J.* 2001, *353*, 627–634.
 (133) Buchheit, K. H.; Buhl, T. 5-HT_{1D} and 5-HT₄ receptor agonists
- (133) Buchheit, K. H.; Buhl, T. 5-HT_{1D} and 5-HT₄ receptor agonists stimulate the peristaltic reflex in the isolated guinea pig ileum. In Serotonin: Molecular Biology, Receptors and Functional Effects; Fozard, J. R., Saxena, P. R., Eds.; Birkhâuser Verlag: Basel, Switzerland, 1991; pp 243–252.
 (134) Dhasmana, K. M.; Zhu, Y. N.; Cruz, S. L.; Villalón, C. M.
- (134) Dhasmana, K. M.; Zhu, Y. N.; Cruz, S. L.; Villalón, C. M. Gastrointestinal effects of 5-hydroxytryptamine and related drugs. *Life Sci.* **1993**, *53*, 1651–1661.
- (135) Galligan, J. J.; Surprenant, A.; Tonini, M.; North, R. A. Differential localization of 5-HT₁ receptors on myenteric and submucosal neurons. *Am. J. Physiol.* **1988**, 255, 603-611.
- submucosal neurons. *Am. J. Physiol.* **1988**, *255*, 603–611.
 (136) Briejer, M. R.; Schuurkes, J. A. J.; Sarna, S. K. Idiopathic constipation: too few stools and too little knowledge. *TIPS* **1999**, *20*, 1–3.
- (137) Prins, N. H.; Briejer, M. R.; Van Bergen, P. J. E. V.; Akkermans, L. M. A.; Schuurkes, J. A. J. Evidence for 5-HT₇ receptors mediating relaxation of human colonic circular smooth muscle. *Br. J. Pharmacol.* **1999**, *128*, 849–852.
- (138) Eglen, R. M.; Swank, S. R.; Walsh, L. K. M.; Whiting, R. L. Characterisation of 5-HT₃ and "atypical" 5-HT receptors mediating guinea-pig ileal contractions in vivo. *Br. J. Pharmacol.* 1990, 101, 513–520.
- (139) Craig, D. A.; Clarke, D. E. Peristalsis evoked by 5-HT and renzapride: evidence for putative 5-HT₄ receptor activation. *Br. J. Pharmacol.* **1991**, *102*, 563–564.
- (140) Hedge, S. S.; Wong, A. G.; Perry, M. R.; Ku, P.; Moy, T. M.; Loeb, M.; Eglen, R. M. 5-HT₄ receptor mediated stimulation of gastric emptying in rats. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1995**, *351*, 589–595.
- (141) Hedge, S. S.; Moy, T. M.; Perry, M. R.; Loeb, M.; Eglen, R. M. Evidence for the involvement of 5-hydroxytryptamine₄ receptors in 5-hydroxytryptophan-induced diarrhoea in mice. *J. Pharmacol. Exp. Ther.* **1994**, *271*, 741–746.
- (142) Costall, B.; Naylor, R. J.; Tuladhar, B. R. 5-HT₄ receptor mediated facilitation of the emptying phase of the peristaltic reflex in the guinea-pig isolated ileum. *Br. J. Pharmacol.* 1993, *110*, 1572–1578.
- (143) Tam, F. S.-F.; Hillier, K.; Bunce, K. T. Characterization of the 5-hydroxytryptamine receptor type involved in inhibition of spontaneous activity of human isolated colonic circular muscle. *Br. J. Pharmacol.* **1994**, *113*, 143–150.
- (144) Kilbinger, H.; Wolf, D. Effects of 5-HT₄ receptor stimulation on basal and electrically evoked release of acetylcholine from guinea-pig myenteric plexus. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1992**, *345*, 270–275.
- (145) Tuladhar, B. R.; Costall, B.; Naylor, R. J. Pharmacological characterization of the 5-hydroxytryptamine receptor mediating relaxation in the rat isolated ileum. *Br. J. Pharmacol.* **1996**, *119*, 303–310.
- (146) Craig, D. A.; Eglen, R. M.; Walsh, L. K. M.; Perkins, L. A.; Whiting, R. L.; Clarke, D. E. 5-Methoxytryptamine and 2-methyl-5-hydroxytryptamine-induced desensitization as a discriminative tool for the 5-HT₃ and putative 5-HT₄ receptors in guinea pig ileum. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1990**, *342*, 9–16.
- (147) Rondé, P.; Ansanay, H.; Dumuis, A.; Miller, R.; Bockaert, J. Homologous desensitization of 5-hydroxytryptamine₄ receptors in rat oesophagus: functional and second messenger studies. *J. Pharmacol. Exp. Ther.* **1995**, *272*, 977–983.
 (148) Leung, E.; Pulido-Rios, M. T.; Bonhaus, D. W.; Perkins, L. A.;
- (148) Leung, E.; Pulido-Rios, M. T.; Bonhaus, D. W.; Perkins, L. A.; Zeitung, K. D.; Hsu, S. A. O.; Clark, R. D.; Wong, E. H. F.; Eglen, R. M. Comparison of 5-HT₄ receptors in guinea-pig colon and rat oesophagus: effects of novel agonists and antagonists. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1996**, *354*, 145–156.
- (149) Cohen, M. L.; Susemichel, A. D.; Bloomquist, W.; Robertson, D. W. 5-HT₍₄₎ receptors in rat but not guinea-pig, rabbit or dog oesophageal smooth muscle. *Life Sci.* 1995, *51*, 1143–1148.
- (150) McLean, P. G.; Coupar, I. M.; Molenaar, P. A comparative study of functional 5-HT₄ receptors in human colon, rat oesophagus and rat ileum. *Br. J. Pharmacol.* **1995**, *115*, 47–56.
 (151) Buchheit, K.-H.; Buhl, T. Stimulant effects of 5-hydroxy-
- (151) Buchheit, K.-H.; Buhl, T. Stimulant effects of 5-hydroxytryptamine on guinea pig stomach preparations in vitro. *Eur. J. Pharmacol.* **1994**, *262*, 91–97.
- (152) Amemiya, N.; Hatta, S.; Takemura, H.; Ohshika, H. Characterization of the contractile response induced by 5-methoxytryptamine in rat stomach fundus strips. *Eur. J. Pharmacol.* **1996**, *318*, 403–409.
- (153) Yamano, M.; Kamato, T.; Miyata, K. Participation of a cholinergic mechanism in 5-hydroxytryptamine (5-HT₃) and (5-HT₄) receptor-mediated stimulation of gastric emptying in rats. *Arzneim.-Forsch.* **1997**, *47*, 1242–1246.
- (154) Wardle, K. A.; Sanger, G. J. The guinea-pig distal colon: a sensitive preparation for the investigation of 5-HT₄ receptormediated contractions. Br. J. Pharmacol. **1993**, *110*, 1593–1599.

- (155) Mine, Y.; Yoshikawa, T.; Oku, S.; Nagai, R.; Yoshida, N.; Hosoki, K. Comparison of effect of mosapride citrate and existing 5-HT₄ receptor agonists on gastrointestinal motility in vivo and in vitro. *J. Pharmacol. Exp. Ther.* **1997**, *283*, 1000–1008.
 (156) Jin, J.-G.; Foxx-Orenstein, A. E.; Grider, J. R. Propulsion in
- (156) Jin, J.-G.; Foxx-Orenstein, A. E.; Grider, J. R. Propulsion in guinea pig colon induced by 5-hydroxytryptamine (HT) via 5-HT₄ and 5-HT₃ receptors. *J. Pharmacol. Exp. Ther.* **1999**, *288*, 93– 97.
- (157) Elswood, C. J.; Bunce, K. T.; Humphrey, P. A. Identification of putative 5-HT₄ receptors in guinea-pig ascending colon. *Eur. J. Pharmacol.* **1991**, *196*, 149–155.
- (158) McLean, P. G.; Coupar, I. M. 5-HT₄ receptor antagonist affinities of SB207710, SB205008, and SB203186 in the human colon, rat oesophagus, and guinea-pig ileum peristaltic reflex. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1995**, *352*, 132–140.
- (159) Sakurai-Yamashita, Y.; Yamashita, K.; Kanasmatsu, T.; Taniyama, K. Localisation of the 5-HT₄ receptor in the human and the guinea-pig colon. *Eur. J. Pharmacol.* **1999**, *383*, 281–285.
 (160) McLean, P. G.; Coupar, I. M. Stimulation of cyclic AMP formation
- (160) McLean, P. G.; Coupar, I. M. Stimulation of cyclic AMP formation in the circular smooth muscle of human colon by activation of 5-HT₄-like receptors. *Br. J. Pharmacol.* **1996**, *117*, 238–239.
- (161) Prins, N. H.; Shankley, N. P.; Welsh, N. J.; Briejer, M. R.; Lefebvre, R. A.; Akkermans, L. M. A.; Schuurkes, J. A. J. An improved in vitro bioassay for the study of 5-HT₄ receptors in the human isolated large intestinal circular muscle. *Br. J. Pharmacol.* **2000**, *129*, 1601–1608.
- (162) Prins, N. H.; Akkermans, L. M. A.; Lefebvre, R. A.; Schuurkes, J. A. J. 5-HT₄ receptors on cholinergic nerves involved in contractility of canine and human large intestine longitudinal muscle. *Br. J. Pharmacol.* **2000**, *131*, 927–932.
- (163) Prins, N. H.; Van Haselen, J. F. W. R.; Lefebvre, R. A.; Briejer, M. R.; Akkermans, L. M. A.; Schuurkes, J. A. J. Pharmacological characterisation of 5-HT₄ receptor mediating relaxation of canine isolated rectum circular smooth muscle. *Br. J. Pharmacol.* **1999**, *127*, 1431–1437.
- (164) Grider, J. R.; Kuemmerle, J. F.; Jin, J.-G. 5-HT released by mucosal stimuli initiates peristalsis by activating 5-HT₄/5-HT_{1p} receptors on sensory CGRP neurons. *Am. J. Physiol.* **1996**, *270*, G778–G782.
- (165) Grider, J. R. Identification of neurotransmitters regulating reciprocal longitudinal muscle responses during the peristaltic reflex. *Gastroenterology* **1995**, *108*, A608.
- (166) Grider, J. R.; Foxx-Orenstein, A. E.; Jin, J.-G. 5-Hydroxytryptamine₄ receptor agonists initiate the peristaltic reflex in human, rat, and guinea pig intestine. *Gastroenterology* **1998**, *115*, 370–380.
- (167) Sanger, G. J.; Yoshida, M.; Yahyah, M.; Kitazumi, K. Increased defecation during stress or after 5-hydroxytryptophan selective inhibition by the 5-HT₄ receptor antagonist, SB-207266. *Br. J. Pharmacol.* 2000, *130*, 706–712.
 (168) Tonini, M.; Ciccocioppo, R.; Onori, L. Prokinetic drugs: a new
- (168) Tonini, M.; Ciccocioppo, R.; Onori, L. Prokinetic drugs: a new approach to the treatment of the functional disorders of the large bowel. *Riv. Ital. Colonprotoc.* **1992**, *11*, 172–180.
- (169) Tonini, M. Recent advances in the pharmacology of the gastrointestinal prokinetics. *Pharmacol. Res.* **1996**, *33*, 217–226.
- (170) Drossman, D. A.; Li, Z.; Andruzzi, E. Householder survey of funtional gastrointestinal disorders. Prevalence. Sociodemography, an health impact. *Dig. Dis. Sci.* **1993**, *38*, 1569–1580.
- (171) Talley, N. J.; Van Zinsmeister, A. R.; Dyke, C.; Melton, J. Epidemiology of colonic symptoms and the irritable bowel syndrome. *Gastroenterology* **1991**, *101*, 927–934.
- (172) Scarpignato, C.; Pelosini, I. Management of the irritable bowel syndrome: novel approaches to the pharmacology of gut motility. *Can. J. Gastroenterol.* **1999**, *13*, 50A–65A.
- (173) Appel, S.; Kumle, A.; Hubert, M.; Duvauchelle, T. First pharmacokinetic-pharmacodynamic study in humans with a selective 5-hydroxytryptamine₄ receptor agonist. *J. Clin. Pharmacol.* **1997**, *37*, 229–237.
 (174) Appel, S.; Kumle, A.; Meier, R. Clinical pharmacodynamic of SDZ
- (174) Appel, S.; Kumle, A.; Meier, R. Clinical pharmacodynamic of SDZ HTF 919, a new 5-HT₄ receptor agonist, in a model of slow colonic transit. *Clin. Pharmacol. Ther.* **1997**, *62*, 546–555.
- (175) Camilleri, M. Review article: tegaserod. Aliment. Pharmacol. Ther. 2001, 15, 277–289.
- (176) Bouras, E. P.; Camilleri, M.; Burton, D. D.; McKinzie, S. Selective stimulation of colonic transit by the benzofuran 5-HT₄ agonist, prucalopride, in healthy humans. *Gut* **1999**, *44*, 682–686.
- (177) Bouras, E. P.; Camilleri, M.; Burton, D. D.; Thomforde, G.; McKinzie, S.; Zinsmeister, A. R. Prucalopride accelerates gastrointestinal and colonic transit in patients with constipation without a rectal evacuation disorder. *Gastroenterology* **2001**, *120*, 354–360.
- (178) Prucalopride, R-93877, R-093877, resolor. Drugs Future 2000, 25, 761-763.
- (179) Houghton, L. A.; Jackson, N. A.; Whorwell, P. J.; Cooper, S. M. 5-HT₄ receptor antagonism in irritable bowel syndrome: effect of SB-207266-A on rectal sensitivity and small bowel transit. *Aliment. Pharmacol. Ther.* **1999**, *13*, 1437–1444.

- (181) Bharucha, A. E.; Camilleri, M.; Haydock, S.; Ferber, I.; Burton, D.; Cooper, S.; Tompson, D.; Fitzpatrick, K.; Higgins, R.; Zinsmeister, A. R. Effects of a serotonin 5-HT₄ receptor antagonist SB-207266 on gastrointestinal motor and sensory function in human. *Gut* **2000**, *47*, 667–674.
- (182) Hansen, M. B.; Skadhauge, E. Signal transduction pathways for serotonin as an intestinal secretagogue. *Comp. Biochem. Physiol.* **1997**, *118A*, 283–290.
- (183) Scott, C. M.; Bunce, K. T.; Spraggs, C. F. Investigation of the 5-hydroxytryptamine receptor mediating the "maintained" shortcircuit current response in guinea-pig ileal mucosa. *Br. J. Pharmacol.* **1992**, *106*, 877–882.
- (184) Leung, E.; Blissard, D.; Jett, M. F.; Eglen, R. M. Investigation of the 5-hydroxytryptamine receptor mediating the "transient" short-circuit current response in guinea-pig ileal mucosa. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1995**, *351*, 596–602.
- (185) Grossman, C. J.; Bunce, K. T. 5-HT₃ and 5-HT₄ receptors mediate the secretory effects of 5-HT in rat distal colon. *Br. J. Pharmacol.* **1994**, *112*, 176P.
- (186) Budhoo, M. R.; Kellum, J. M. Evidence for a 5-HT₄ receptor pathway mediating chloride secretion in the rat distal colon. *J. Surg. Res.* **1994**, *57*, 44–48.
- (187) Kellum, J. M.; Budhoo, M. R.; Siriwardena, A. K.; Smith, E. P.; Jebrailli, S. A. Serotonin induces Cl⁻ secretion in human jejunal mucosa in vitro via a nonneural pathway at a 5-HT₄ receptor. *Am. J. Physiol.* **1994**, *267*, G357–G363.
- (188) Budhoo, M. R.; Harris, R. P.; Kellum, J. M. The role of the 5-HT₄ receptors in Cl⁻ secretion in human jejunal mucosa. *Eur. J. Pharmacol.* **1996**, *314*, 109–114.
- (189) Kellum, J. M.; Albuquerque, F. C.; Stoner, M. C.; Harris, R. P. Stroking human jejunal mucosa induces 5-HT release and Cl⁻ secretion via afferent neurons and 5-HT₄ receptors. *Am. J. Physiol.* **1999**, *277*, G515–G520.
- (190) Endo, T.; Minami, M.; Hirafuji, M.; Ogawa, T.; Akita, K.; Nemoto, M.; Saito, H.; Yoshioka, M.; Parvez, S. H. Neurochemistry and neuropharmacology of emesis—the role of serotonin. *Toxicology* **2000**, *153*, 189–201.
- (191) Yamakuni, H.; Sawai, H.; Maeda, Y.; Imazumi, K.; Sakuma, H.; Matsuo, M.; Mutoh, S.; Seki, J. Probable involvement of the 5-hydroxytryptamine₍₄₎ receptor in methotrexate-induced delayed emesis in dogs. *J. Pharmacol. Exp. Ther.* **2000**, *292*, 1002– 1007.
- (192) Paintal, A. S. Vagal sensory receptors and their reflex effects. *Physiol. Rev.* 1973, 53, 159–227.
- (193) Villalon, C. M.; den Boer, M. O.; Heiligers, J. P. C.; Saxena, P. R. The 5-HT₄ receptor mediating tachycardia in the pig. In *Serotonin: Molecular Biology, Receptors and Functional Effects*; Fozard, J. R., Saxena, P. R., Eds.; Birkhâuser Verlag: Basel, Switzerland, 1991; pp 253–263.
- (194) Kaumann, A. J.; Sanders, L.; Brown, A. M.; Murray, K. J.; Brown, M. J. A 5-hydroxytryptamine receptor in human atrium. *Br. J. Pharmacol.* **1990**, *100*, 879–885.
- (195) Sanders, L.; Kaumann, A. J. A 5-HT₄-like receptor in human left atrium. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1992**, *345*, 382–346.
- (196) Lorrain, J.; Grosset, A.; O'Connor, E. 5-HT₄ receptors, present in piglet atria and sensitive to SDZ 205-557, are absent in papillary muscle. *Eur. J. Pharmacol.* **1992**, *229*, 105–108.
- (197) Kaumann, A. J.; Lynham, J. A.; Brown, A. M. Comparison of the densities of 5-HT₄ receptors, β_1 and β_2 -adrenoceptors in human atrium: functional implications. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1996**, *353*, 592–595.
- (198) Villalon, C. M.; den Boer, M. O.; Heiligers, J. P. C.; Saxena, P. R. Further characterization, by use of tryptamine and benzamide derivatives, of the putative 5-HT₄ receptor mediating tachycardia in the pig. *Br. J. Pharmacol.* **1991**, *102*, 107–112.
- (199) Medhurst, A. D.; Kaumann, A. Characterization of the 5-HT₄ receptor mediating tachycardia in piglet isolated right atrium. *Br. J. Pharmacol.* **1993**, *110*, 1023–1030.
- (200) Schoemaker, R. G.; Du, X. Y.; Bax, W. A.; Bos, E.; Saxena, P. R. 5-Hydroxytryptamine stimulates human isolated atrium but not ventricle. *Eur. J. Pharmacol.* **1993**, *230*, 103–105.
 (201) Saxena, P. R.; Villalon, C. M.; Dhasmana, K. M.; Verdouw, P.
- (201) Saxena, P. R.; Villalon, C. M.; Dhasmana, K. M.; Verdouw, P. D. 5-Hydroxytryptamine-induced increase in left ventricular dP/ dtmax does not suggest the presence of ventricular 5-HT₄ receptors in the pig. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1992**, *346*, 629–636.
- (202) Jahnel, U.; Rupp, J.; Ertl, R.; Nawrath, H. Positive inotropic response to 5-HT in human atrial but not in ventricular heart muscle. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1992**, *346*, 482–485.
- (203) Bach, T.; Syversveen, T.; Kvingedal, A. M.; Krobert, K. A.; Brattelid, T.; Kaumann, A. J.; Levy, F. O. 5-HT_{4(a)} and 5-HT_{4(b)} receptors have nearly identical pharmacology and are both expressed in human atrium and ventricle. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **2001**, *363*, 146–160.

- (204) Jahnel, U.; Nawrath, H.; Rupp, J.; Ochi, R. L-type calcium channel activity in human atrial myocytes are influenced by 5-HT. Naunyn-Schmiedeberg's Arch. Pharmacol. 1993, 348, 396-402.
- (205) Pino, R.; Cerbai, E.; Calamai, G.; Alajmo, F.; Borgioli, A.; Braconi, L.; Cassai, M.; Montesi, G. F.; Mugelli, A. Effect of 5-HT₄ receptor stimulation on the pacemaker current $I_{\rm f}$ in human isolated atrial myocytes. *Cardiovasc. Res.* **1998**, *40*, 516–522.
- (206) Workman, A. J.; Rankin, A. C. Serotonin, I_f and human atrial arrythmia. *Cardiovasc. Res.* **1998**, 40, 436–437.
- (207) Kaumann, A. J.; Sanders, L. 5-Hydroxytryptamine causes ratedependent arrhythmias through 5-HT₄ receptors in human atrium: facilitation by chronic β-adrenoceptor blockade. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1994**, *349*, 331–337.
- (208) Sanders, L.; Lynham, J. A.; Bond, B.; del Monte, F.; Harding, S. E.; Kaumann, A. J. Sensitization of human atrial 5-HT₄ receptors by chronic β-blocker treatment. *Circulation* **1995**, *92*, 2526–2539.
- (209) Parker, S. G.; Taylor, E. M.; Hamburger, S. A.; Vimal, M.; Kaumann, A. J. Blockade of human and porcine myocardial 5-HT₄ receptors by SB 203186. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1995**, *353*, 28–35.
- (210) Colatsky, T. J.; Argentieri, T. M. Potassium channel blockers as antiarrhythmic drugs. *Drug. Dev. Res.* **1994**, *33*, 235–249.
- (211) Ahmad, S. R.; Wolfe, S. M. Cisapride and torsades de pointes. Lancet 1995, 25, 508.
- (212) Carlsson, L.; Amos, G. J.; Andersson, B.; Drews, L.; Duker, G.; Wadstedt, G. Electrophysiological characterization of the prokinetic agents cisapride and mosapride in vivo and in vitro: implications for proarrhythmic potential? *J. Pharmacol. Exp. Ther.* **1997**, *282*, 220–227.
- (213) Crema, F.; Modini, C.; Langlois, M.; De Ponti, F. Intestinal prokinesia by two esters of 2-amino-5-chloro-2-methoxybenzoic acid: involvement of 5-HT₄ receptors and dissociation from cardiac effects in vivo. J. Pharmacol. Exp. Ther. **1999**, 288, 1045-1052.
- (214) Noguchi, K.; Ito, Y.; Isobe, Y.; Fukushima, K.; Tanaka, Y.; Shigenobu, K. Effects of 5-HT₄ receptor agonist prokinetic agents on the action potential parameters of isolated rabbit myocardium. *Pharmacology* **2001**, *63*, 73–79.
- (215) Sugiyama, A.; Hashimoto, K. Effects of gastrointestinal prokinetic agents, TKS159 and cisapride, on the in situ canine heart assessed by cardiohemodynamic and electrophysiological monitoring. *Toxicol. Appl. Pharmacol.* **1998**, *152*, 261–269.
- (216) Grammer, J. B.; Ženg, X.; Bosch, R. F.; Kühlkamp, V. Atrial L-type Ca²⁺-channel, β-adrenoreceptor, and 5-hydroxytryptamine type 4 receptor mRNAs in human atrial fibrillation. *Basic Res. Cardiol.* **2001**, *96*, 82–90.
- (217) Rahme, M. M.; Cotter, B.; Leistad, E.; Wadhwa, M. K.; Mohabir, R.; Ford, A. P. D. W.; Eglen, R. M.; Feld, G. K. Electrophysiological and antiarrhythmic effects of the atrial selective 5-HT₄ receptor antagonist RS-100302 in experimental atrial flutter and fibrillation. *Circulation* **1999**, *100*, 2010–2027.
- (218) Rosen, M. R. Leaky dikes and fibrillating swine. *Circulation* 1999, 100, 1942–1944.
- (219) Consolo, S.; Arnaboldi, S.; Giorgi, S.; Russi, G.; Ladinsky, H. 5-HT₄ receptor stimulation facilitates acetylcholine release in rat frontal cortex. *NeuroReport* **1994**, *5*, 1530–1232.
- (220) Kilbinger, H.; Gebauer, A.; Hass, J.; Ladinsky, H.; Rizzi, C. A. Benzimidazolones and renzapride facilitate acetylcholine release from guinea-pig myenteric plexus. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1995**, *351*, 229–236.
- (221) Ge, J.; Barnes, N. M. 5-HT₄ receptor-mediated modulation of 5-HT release in the rat hippocampus in vivo. *Br. J. Pharmacol.* **1996**, *117*, 1475–1480.
- (222) Steward, L. J.; Ge, J.; Stowe, R. L.; Brown, D. C.; Bruton, R. K.; Stokes, P. R. A.; Barnes, N. M. Ability of 5-HT₄ receptor ligand to modulate rat striatal dopamine release in vitro and in vivo. *Br. J. Pharmacol.* **1996**, *117*, 55–62.
- (223) Galeaotti, N.; Ghelardini, C.; Teodori, E.; Gualtieri, F.; Bartolini, A. Antiamnesic activity of metoclopramide, cisapride and SR-17 in the mouse passive avoidance test. *Pharmacol. Res.* **1997**, *36*, 59–67.
- (224) Letty, S.; Child, R.; Dumuis, A.; Pantaloni, A.; Bockaert, J.; Ronduin, G. 5-HT₄ receptor improve social olfactory memory in the rat. *Neuropharmacology* **1997**, *36*, 681–687.
- (225) Marchetti-Gautier, E.; Roman, F. S.; Dumuis, A.; Bockaert, J.; Soumireu-Mourat, B. BIMU1 increases associative memory in rats by activating 5-HT₄ receptors. *Neuropharmacology* **1997**, *36*, 697–706.
- (226) Fontana, D. J.; Daniel, S. E.; Wong, E. H.; Clark, R. D.; Eglen, R. M. The effect of novel, selective 5-hydroxytryptamine (5-HT)₄ receptor ligands in rat spatial navigation. *Neuropharmacology* **1997**, *36*, 689–696.

- (227) Matsumoto, M.; Togashi, H.; Mori, K.; Ueno, K.-I.; Ohashi, S.; Kojima, T.; Yoshioka, M. Evidence for involvement of central 5-HT₄ receptors in cholinergic function associated with cognitive processes: behavioral, electrophysiological, and neurochemical studies. J. Pharmacol. Exp. Ther. 2001, 296, 676–682.
- studies. J. Pharmacol. Exp. Ther. 2001, 296, 676–682.
 (228) Marchetti, E.; Dumuis, A.; Bockaert, J.; Soumireu-Mourat, B.; Roman, F. S. Differential modulation of the 5-HT₄ receptor agonists and antagonists on rat learning and memory. Neuropharmacology 2000, 39, 2017–2027.
 (229) Lelong, V.; Dauphin, F.; Boulouard, M. RS 67333 and D-cycloserine accelerate learning acquisition in the rat. Neuropharma-
- (229) Lelong, V.; Dauphin, F.; Boulouard, M. RS 67333 and D-cycloserine accelerate learning acquisition in the rat. *Neuropharma-cology* 2001, *41*, 517–522.
 (230) Reynolds, G. P.; Mason, S. L.; Meldrun, A.; De Keczer, S.; Parnes, C. (200) Reynolds, G. P.; Mason, S. L.; Meldrun, A.; De Keczer, S.; Parnes, P
- (230) Reynolds, G. P.; Mason, S. L.; Meldrun, A.; De Keczer, S.; Parnes, H.; Eglen, R. M.; Wong, E. H. F. 5-Hydroxytryptamine (5-HT)₄ receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases. Br. J. Pharmacol. **1995**, 114, 993–998.
- (231) Robert, S. J.; Zugaza, J. L.; Fischmeister, R.; Gardier, A. M.; Lezoualc'h, F. The human serotonin 5-HT₄ receptor regulates secretion of non-amyloidogenic precursor protein. *J. Biol. Chem.* **2001**, *276*, 44881–44888.
- (232) Yamaguchi, T.; Suzuki, M.; Yamamoto, M. Facilitation of acetylcholine release in rat frontal cortex by indeloxazine hydrochloride: involvement of endogenous serotonin and 5-HT₄ receptors. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1997**, *356*, 712–720.
- (233) Cryan, J. F.; Lucki, I. 5-HT₄ receptors do not mediate the antidepressant-like behavioral effects of fluoxetine in a modified forced swim test. *Eur. J. Pharmacol.* **2000**, *409*, 295–299.
- (234) Kennett, G. A.; Bright, F.; Trail, B.; Blackburn, T. P.; Sanger, G. J. Anxiolitic-like actions of the selective 5-HT₄ receptor antagonists SB 204070 and SB 207266. *Neuropharmacology* **1997**, *36*, 707–712.
- (235) Silvestre, J. S.; Fernandez, A. G.; Palacios, J. M. Effects of 5-HT₄ receptor antagonist on rat behaviour in the elevated plus-maze test. *Eur. J. Pharmacol.* **1996**, *309*, 219–222.
- (236) Costall, B.; Naylor, R. J. The influence of 5-HT₂ and 5-HT₄ receptor antagonists to modify drug induced disinhibitory effects in the mouse light/dark test. *Br. J. Pharmacol.* **1997**, *122*, 1105–1118.
- (237) Benloucif, S.; Keegan, M. J.; Galloway, P. Serotonin-facilitation dopamine release in vivo: pharmacological characterisation. J. Pharmacol. Exp. Ther. 1993, 265, 373–377.
- (238) De Deurwaerdére, P.; L'Hirondel, M.; Bonhomme, N.; Lucas, G.; Cheramy, A.; Spampinato, U. Serotonin stimulation of 5-HT₄ receptors indirectly enhances in vivo dopamine release in the rat striatum. *J. Neurochem.* **1997**, *68*, 195–203.
- (239) Panocka, I.; Ciccocioppo, R.; Polidori, C.; Pompei, P.; Massi, M. The 5-HT₄ receptor antagonist, GR 113808, reduces ethanol intake in alcohol-preferring rats. *Pharmacol. Biochem. Behav.* 1995, *52*, 255–259.
- (240) Reavill, C.; Hatcher, J. P.; Lewis, V. A.; Sanger, G. J.; Hagan, J. 5-HT₄ receptor antagonism does not affect motor and reward mechanism in the rat. *Eur. J. Pharmacol.* **1998**, *357*, 115–120.
- (241) McMahon, L. R.; Cunningham, K. A. Antagonism of 5-hydroxytryptamine₍₄₎ receptors attenuates hyperactivity induced by cocaine: putative role of 5-hydroxytryptamine₍₄₎ receptor in nucleus accumbens shell. J. Pharmacol. Exp. Ther. **1999**, 291, 300–307.
- (242) Testa, R.; Guarneri, L.; Angelico, P.; Velasco, C.; Poggesi, E.; Cimlia, A.; Leonardi, A. Effect of different 5-hydroxytryptamine receptor subtype antagonists on the micturition reflex in rats. *BJU Int.* **2001**, *87*, 256–264.
- (243) Barras, M.; Van der Graaf, P. H.; Angel, I. Characterisation of the 5-HT receptor potentiating neurotransmission in rabbit bladder. *Eur. J. Pharmacol.* **1996**, *318*, 425–428.
- (244) Messori, E.; Rizzi, C. A.; Candura, S. M.; Lucchelli, A.; Balestra, B.; Tonini, M. 5-Hydroxytryptamine receptors facilitate excitatory neuromuscular transmission in the guinea-pig isolated detrusor muscle. *Br. J. Pharmacol.* **1995**, *115*, 677–683.

- (245) Tonini, M.; Messori, E.; Franceschetti, G. P.; Rizzi, C. A.; Castoldi, A. F.; Coccini, T.; Candura, S. M. Characterisation of the 5-HT receptor potentiating neuromuscular cholinergic transmission in strips of human isolated detrusor muscle. *Br. J. Pharmacol.* **1994**, *113*, 1–2.
- (246) Nestler, J. E.; Stratton, M. A.; Hakim, C. A. Effect of metoclopramide on diabetic neurogenic bladder. *Clin. Pharm.* 1983, 2, 83-85.
- (247) Boyd, I. W.; Rohan, A. P. Urinary disorders associated with cisapride. *Med. J. Aust.* **1994**, *160*, 579–580.
- (248) Waikar, M. V.; Ford, A. P. D. W.; Clarke, D. E. Evidence for an inhibitory 5-HT₄ receptor in urinary bladder of *Rhesus* and *Cynomolgus* monkeys. *Br. J. Pharmacol.* **1994**, *111*, 213-218.
- (249) Candura, S. M.; Messori, E.; Franceschetti, G. P.; D'Agostino, G.; Vicini, D.; Tagliani, M.; Tonini, M. Neural 5-HT₄ receptors in the human isolated detrusor muscle: effects of indole, benzimidazolone and substituted benzamide agonists and antagonists. Br. J. Pharmacol. **1996**, *118*, 1965–1970.
- (250) Seller, D. J.; Chess-Williams, R.; Chapple, C. R. 5-Hydroxytryptamine-induced potentiation of cholinergic response to electrical field stimulation in pig detrusor muscle. *BJU Int.* **2000**, *86*, 714–718.
- (251) Idres, S.; Delarue, C.; Lefèbvre, H.; Vaudry, H. Benzamide derivatives provide evidence for the involvement of a 5-HT₄ receptor type in the mechanism of action of serotonin in frog adrenocortical cells. *Mol. Brain Res.* **1991**, *10*, 251–258.
- (252) Contesse, V.; Hamel, C.; Delarue, C.; Lefèbvre, H.; Vaudry, H. Effect of a series of 5-HT₄ receptor agonists and antagonists on steroid secretion by the adrenal gland in vitro. *Eur. J. Pharmacol.* **1994**, *265*, 27–33.
 (253) Contesse, V.; Hamel, C.; Lefèbvre, H.; Dumuis, A.; Vaudry, H.;
- (253) Contesse, V.; Hamel, C.; Lefèbvre, H.; Dumuis, A.; Vaudry, H.; Delarue, C. Activation of 5-hydroxytryptamine₄ receptors causes calcium influx in adrenocortical cells: involvement of calcium in 5-HT-induced steroid secretion. *Mol. Pharmacol.* **1996**, *49*, 481–493.
- (254) Rizzi, C. A. A serotoninergic mechanism for the metoclopramideinduced increase in aldosterone level. *Eur. J. Clin. Pharmacol.* **1994**, *47*, 377–378.
- (255) Norbiato, G.; Belivacqua, M.; Raggi, U.; Micossi, P.; Moroni, C. Metoclopramide increases plasma aldosterone in man. J. Clin. Endocrinol. Metab. 1977, 45, 1313–1316.
- (256) Lefèbvre, H.; Contesse, V.; Delarue, C.; Soubrana, C.; Legrand, A.; Kuhn, J. M.; Wolf, L. M.; Vaudry, H. Effect of the 5-HT₄ receptor agonist zacopride on aldosterone secretion from the human adrenal cortex. In vitro and in vivo studies. J. Clin. Endocrinol. Metab. 1993, 77, 1662–1666.
- (257) Lefèbvre, H.; Contesse, V.; Delarue, C.; Kuhn, J. M.; Vaudry, H.; Wolf, L. Lack of effect of serotonin₄ receptor agonist zacopride on ACTH secretion in normal men. *Eur. J. Clin. Pharmacol.* **1996**, *51*, 49–51.
- (258) Lefèbvre, H.; Contesse, V.; Delarue, C.; Legrand, A.; Kuhnl, J. M.; Vaudry, H.; Wolf, L. M. The serotonin₄ receptor agonist cisapride and angiotensine II exert additive effects on aldosterone secretion in normal man. *J. Clin. Endocrinol. Metab.* **1995**, *80*, 504–507.
- (259) Huang, Y.-Y.; Hsu, B. R.-S.; Tsai, J.-S. Effect of cisapride, a serotonin-4 receptor agonist, on aldosterone secretion: absence of age-related change. *J. Clin. Pharmacol.* **1997**, *37*, 1146–1149.
- (260) Lefébvre, H.; Gonzalez, K. N.; Contesse, V.; Delarue, C.; Vaudry, H.; Kuhn, J. M. Effect of prolonged administration of the serotonin₄ (5-HT₄) receptor agonist cisapride on aldosterone secretion in healthy volunteers. *Endocr. Res.* **1998**, *24*, 749–752.
- (261) Lefèbvre, H. Perspectives physiopathologiques et thérapeutiques des nouveaux récepteurs sérotoninergiques: à propos du récepteur de type 4 (Physiopathological perspectives and therapeutics of novel serotoninergic receptors: type 4 receptors). *Rev. Méd. Int.* 2000, *21*, 661–663.

JM020099F