Modes of Methyleneoxy Bridging and Their Effect on Tetrahydronaphthalene Lignan Cytotoxicity

Robert T. LaLonde,* Frank Ramdayal, Anatole Sarko, K oichi Yanai, ${ }^{\S}$ and Mianji Zhang
Department of Chemistry, State University of New York, College of Environmental Science and F orestry, Syracuse, New York 13210-2726

Recei ved April 15, 2002

Abstract

Dioxatricyclodecane, oxabicyclooctane, and benzodihydropyran derivatives of α-conidendrin (ACON), podophyllotoxin (PT), and sikkimotoxin (SK) were prepared to learn which methyleneoxy bridging modes and arene and aryl substituents coincided with high cytotoxicity. PTderived dioxatricyclodecane $\mathbf{1 4}$ showed in vitro activity at $10^{-8} \mathrm{M}$. SK analogue $\mathbf{1 2}$ was less active, and ACON analogue $\mathbf{1 1}$ was inactive at $10^{-4} \mathrm{M}$. In vivo intraperitoneal and subcutaneous activities of $\mathbf{1 4}$ were observed. In vitro cytotoxicities were higher for oxabicyclooctanes when hydroxymethyl group and methyleneoxy bridge were cis, as in deoxypicropodophyllin analog $\mathbf{2 0}$, rather than trans, as in PT anal ogue 5. Acetylation of the hydroxymethyl group of $\mathbf{2 0}$ lowered activities, whereas acetylation of 5 increased or lowered activities. Reduction of the hydroxymethyl group of $\mathbf{5}$ to a methyl group increased cytotoxicities. Molecular dynamics indicated the THN scaffold of benzodihydropyrans was conformationally mobile, but scaffolds of oxabicyclooctanes and dioxatricyclodecanes were immobile. Each of three PT-benzodihydropyrans was less active than its oxabicyclooctane counterpart.

Introduction

Among structural components most important for high cytotoxicity of a tetrahydronaphthalene (THN) lignan are configuration and substitution of the pendant aryl group located at C-4, the benzhydrylic carbon of podophyllotoxin (PT, 1, Scheme 1). This has been demonstrated ${ }^{1}$ through SAR, which was facilitated by oxidative ${ }^{2}$ methyleneoxy bridging of PT and dimethyl-α-conidendrin (2) through their respective diols $\mathbf{3}$ and 4 to oxabicyclooctane derivatives 5 and 6 . Succeeding hydrogenolyses were directed through the use of the appropriate reagents to proceed with retention or inversion at C-4 of $\mathbf{5}$ or $\mathbf{6}$ and resulted in α - or β-stereochemistry for the pendant aryl group as required. Simultaneously, the THN was regenerated in 7 and 8, and subsequently conformational rigidity of the THN scaffold was restored by dehydration, giving trans-fused oxolane derivatives 9 and 10, which replaced the original lactones.
The C-4 configuration in PT, its oxabicydooctane $\mathbf{5}$, and the oxabicyclooctane $\mathbf{6}$ derived from α-conidendrin (ACON) is the same. Conceivably, conformational immobilization of the THN scaffold could be achieved through an oxabicyclooctane just as it is by a trans-fused lactone or oxolane, although molecular models reveal the spacial relation of pendant to fused aromatic rings attached to an oxabicyclooctane scaffold is somewhat different from what it is in the corresponding lactone or oxolane derivatives. ${ }^{3}$ These considerations prompted our examination of methyleneoxy-bridging within oxabicyclooctanes and dioxatricyclodecanes and its effect on cytotoxicities. Both bridging modes immobilize the conformation of the THN scaffold. An added incentive

[^0]for engaging the preparation and cytotoxicity screening of these bridged compounds were future prospects for including additional THN lignans which, initially possessing β-pendant-ring stereochemistry, could be converted to α-stereochemistry directly with resulting cytotoxic activation without further hydrogenolyses and oxol ane formation. The foregoing prospects have been examined. Additionally, the cytotoxicity of a group of lignans having a conformationally mobile mode of bridging represented by benzodi hydropyrans has been compared to the analogous group of conformationally immobilized oxabicyclooctanes.

Results

Chemistry. ACON-derived diol 4^{4} (Scheme 1) was converted directly to dioxatricyclodecane 11 (Scheme 2) in 38% yield by $\mathrm{CuSO}_{4} / \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$. Using the same oxidant couple, a 36% yield of the sikkimotoxin (SK) analogue 12 was obtained directly from the corresponding diol $\mathbf{1 3}^{1}$. However, when this one-step procedure was applied to 9 -deoxypodophyllol, $\mathbf{3}$ (Scheme 1), the dioxatricydodecane 14 dropped to 0.7% yield. The overall yield of 14 was 29% from a two-step process involving dehydration of podophyllol $\mathbf{1 5}$ (Scheme 2) to the known oxabicyclooctane $\mathbf{1 6}$ 噱d then treating the latter with the oxidant couple in the usual manner to obtain 14. However, 14 and oxabicyclooctanes 5 (Scheme 1) and 16 (Scheme 2), all required in smaller amounts for initial cytotoxicity evaluations, could be obtained in the respective yields of $3.7,44$, and 27% from a single oxidation of diol $\mathbf{3}$ with DDQ. Oxabicyclooctane $\mathbf{5}$ was converted to its acetate 17 (Scheme 1), which was required for cytotoxicity comparisons. DDQ also converted 9-deoxypicropodophyllol (picroPT) 18 (Scheme 3) to a mixture of the isomeric pair of oxabicyclooctanes 19 and 20 in 10 and 20\% yields, respectively. Likewise, DDQ converted SK-based diol $\mathbf{1 3}$ to oxabicyclooctanes

Scheme 1

3: $\mathrm{R}-\mathrm{R}=\mathrm{OCH}_{2} \mathrm{O}$
4: $\mathrm{R}=\mathrm{OCH}_{3}$

8: $R=\mathrm{OCH}_{3}$

9: $\mathrm{R}-\mathrm{R}=\mathrm{OCH}_{2} \mathrm{O}$

21 and isomeric 22, in yields of 32% and 43%, respectively. Compound 20 was converted to its acetate 23. The cytotoxicities of the PT and picroPT acetates would be compared with those of their immediate precursor
alcohols. Also, the hydroxymethyl groups of PT-derived 5 and ACON-derived 6 were replaced by methyl groups to learn the influence of both the C-3 hydroxy and acetoxy groups on the cytotoxicity levels of oxabicyclooctanes lacking these more polar groups. Thus, the fivestep route summarized in Scheme 4, starting from dimethyl ACON (2) and involving the four intermediates 24-27, produced target 28 in 29\% overall yield. ${ }^{6}$ A similar seven-step sequence started from 9-deoxy PT (29, Scheme 4) proceeded through intermediates 3035 and yielded target 36 in 4\% overall yield. Relative to the preparation of 28, the two additional steps leading to 36 included protection and deprotection of the C-1 hydroxyl group, which was required for final methyleneoxy bridging to C-4.
Access to PT and SK benzodihydropyrans was through precursor diols 39 and 42 (Scheme 5). Steps required to obtain diol 39 included Pd/C-catalyzed hydrogenolysis of the C-9 hydroxyl group of 9-epi-4'-demethyl PT (37) followed by LAH reduction of the resulting lactone 38. Preparation of the required SK-based diol 42 involved demethylation at the C-4' oxygen of 9-deoxysikkimotoxin, 40, followed by LAH reduction of the resulting lactone 41. Phenolic diols 39 and 42 were oxidized by sodium metaperiodate ${ }^{7}$ (Scheme 6) to their respective o-quinones 43 and 44, which resulted through linking of a C-3 hydroxyl group to a C-2' position of a pendant, o-quinone ring. The intermediate, PT-derived o-quinone 43 was isolated and characterized. Subsequent reduction of both quinone intermediates by sodium hydrosulfite in the presence of sodium hydrogen phosphate, followed by treatment with dimethyl sulfate, provided the corresponding PT and SK benzodihydropyrans 45 and 46. The PT benzodihydropyran alcohol 45 was derivatized as its acetate, 47, and converted to its methanesulfonate, 48. The last of these three was treated with sodium iodide and zinc powder to obtain 49, the product in which the hydroxymethyl group of the precursor 45 had been replaced as a methyl group.

Molecular Modeling. Molecular dynamics (MD) simulations were carried out with dioxatricyclodecane 14, oxabicyclooctanes 36 and 16, and benzodihydropyran 45, which were chosen as representative structures resulting from various modes of methyleneoxy bridging. The trajectories of 400 ps simulations for all structures showed that a single skeletal molecular conformation characterized the dioxatricyclodecanes and each of the

Scheme 2

12: $\mathrm{R}=\mathrm{OCH}_{3} ; \mathrm{Ar}=\mathrm{Ar}_{1}$
14: $\mathrm{R}-\mathrm{R}=\mathrm{OCH}_{2} \mathrm{O} ; \mathrm{Ar}=\mathrm{Ar}_{1}$
13: $\mathrm{R}=\mathrm{OCH}_{3}$

Scheme 3

Scheme 4

0: $\mathrm{R}^{\star}=\mathrm{CH}_{2} \mathrm{OH}$

two types of oxabicyd ooctanes, whereas the benzodihydropyrans exhibited a high degree of conformational
flexibility. The dioxatricyclodecane and oxabicyclooctane conformations were stable and showed little torsional variability. In contrast, the benzodihydropyran skeleton underwent multipletransitions between four conformers, all relatively close in potential energy but exhibiting widely varying torsion angles in the nonaromatic portions of the structure. The minimum-energy conformations of the dioxatricyclodecane and oxabicyclooctane structures and the four benzodihydropyran conformers are illustrated in Figure 1. Comparing these conformational features with the respective cytotoxicity levels could indicate that conformational rigidity in the THN scaffold in these compounds may be among the necessary structural features that determine potential for high levels of cytotoxicity.

Cytotoxicities, SAR, and Discussion. The antiproliferative activities of the eighteen dioxatricyclodecanes, oxabicyclooctanes, and benzodi hydropyrans were determined through the National Cancer Institute (NCI), Cancer Drug Discovery and Development program. E ach compound was evaluated against approximately 55 cell lines of different tumor origins. The resulting mean graph midpoint (MGM), delta, and range values given in Table 1 allowed a preliminary, general comparison of the 18 compound activities across all cell lines. The MGM is calculated as the average GI_{50} for all tested cell lines. It ranged in value from 10^{-4} to 10^{-8} M and is expressed in Table 1 as $\log \mathrm{GI}_{50}$, which had values of >-4 to $<-8 \mathrm{M}$. The PT-derived dioxatricyclodecane, 14, was generally the most cytotoxic (M GM -7.74 M) of the 18 compounds. Also, 14 had the lowest delta value (0.26), which indicated relatively little difference between this compound's MGM and the log GI_{50} value ($<-8.00 \mathrm{M}$) observed for 49 of the 57 cell lines. However, the relatively high range value (3.37) for 14 pointed to a considerable activity difference in the most and least sensitive of the 57 cell lines. Since cytotoxicity is cell line sensitive, relative activities of the 18 compounds were compared more specifically on the basis of $\log \mathrm{Gl}_{50}$ values given in Table 2. All compounds except 6, 11, and 22 were cytotoxic, with log GI_{50} levels between >-4 and $<-8 \mathrm{M}$. Dioxatricyclodecane 14 was the most active of the 18 compounds in all eight cell panels. ${ }^{8,9}$ In vivo activities of $\mathbf{5}$ and $\mathbf{1 4}$ were appraised by the NCI fiber assay, ${ }^{10}$ which involves the intraperitoneal (IP) and subcutaneous (SC) implanta-

Scheme 5

Table 1. Mean Cytotoxicities of Dioxatricyclodecane, Oxabicyclooctane, and Benzodihydropyran Derivatives of THN ${ }^{\text {a }}$ Lignans toward Human Cancer Cells

	cytotoxicity $(\operatorname{log~GI}$			
$50, \mathrm{M})^{\mathrm{b}}$				
compd	MGM $^{\mathrm{c}}$	delta $^{\mathrm{d}}$	range $^{\mathrm{e}}$	cell lines $^{\mathrm{f}, \mathrm{g}}$
$\mathbf{5}$	-5.39	1.14	2.53	58
$\mathbf{6}$	$>-4.00^{\mathrm{h}}$			47
$\mathbf{1 1}$	$>-4.00^{\mathrm{h}}$			51
$\mathbf{1 2}$	-4.38	0.41	0.79	56
$\mathbf{1 4}$	-7.74	0.26	3.37	57
$\mathbf{1 6}$	-4.63	1.15	1.51	53
$\mathbf{1 7}$	-5.41	0.92	2.33	58
$\mathbf{1 9}$	-4.49	1.09	1.58	57
$\mathbf{2 0}$	-4.98	0.73	1.71	56
$\mathbf{2 1}$	-4.32	0.44	0.76	56
$\mathbf{2 2}$	$>-4.00^{\mathrm{h}}$			
$\mathbf{2 3}$	-4.91	3.09	4.00	48
$\mathbf{2 8}$	-5.42	0.49	1.21	56
$\mathbf{3 6}$	-6.07	1.01	3.08	51
$\mathbf{4 5}$	-4.51	0.78	1.08	58
$\mathbf{4 6}$	-4.70	1.01	1.52	58
$\mathbf{4 7}$	-4.39	0.65	1.03	59
$\mathbf{4 9}$	-4.42	0.52	0.82	58

${ }^{\text {a }}$ Tetrahydronaphthalene. ${ }^{\text {b }}$ Cytotoxicity values are molar concentrations corresponding to 50% growth inhibition. ${ }^{\text {c MGM }}$ is the mean graph midpoint for growth inhibition of all human cancer lines successfully tested. ${ }^{d}$ Delta is the logarithm difference between the MGM and the most sensitive cell line. ${ }^{e}$ Range is the logarithm difference between the $\log \mathrm{GI}_{50}$ of the most resistant and the most sensitive cell lines. ${ }^{\dagger}$ The several cell lines are distributed among nine human cancer cell panels, which include leukemia, melanoma, and nonsmall cell lung, col on, CNS, ovarian, renal, prostrate, and breast cancers. ${ }^{9}$ See refs 13 and $14 .{ }^{\text {h }}$ Cell lines giving log MGM values representing concentrations greater than log MGM -7.74 M are HOP-92 (-4.91), SF-268 (-7.07), MALME-3M (-7.08), SK-MEL-28 (-4.63), OVCAR-4 (-5.94), OVCAR-5 (-4.63), and BT-549 (-7.03). ${ }^{\text {i }}$ Compound 22 was insufficiently active in the three cell line, one-dose preliminary assay to warrant further testing in the 60 cell line assay.
tion of polyvinylidene fluoride hollow fibers in mice. Each fiber contains the various cancer cell cultures, and generally a minimum of 12 human cancer cell lines are used. Compounds are introduced in solution by the IP route. After termination of the four-day dosing routine, the fibers are evaluated for cell mass. The respective IP and SC scores for 5 were 14 and 2, while the corresponding scores for $\mathbf{1 4}$ were 10 and 6 . Net cell kill was observed for both compounds.

Replacement of the methylenedioxy group of 14 by two methoxy groups resulted in the sikkimotoxin (SK)derived $\mathbf{1 2}$ and at least a 1000-fold activity loss in the
seven cell lines for which activity data had been obtained. A further replacement of the trimethoxyphenyl group of $\mathbf{1 2}$ by the dimethoxyphenyl group of ACONderived $\mathbf{1 1}$ resulted in inactivity for all cell lines for the highest concentration level ($10^{-4} \mathrm{M}$) used in routine testing. The same two replacements of fused ring substituents and pendant rings in the oxabicyclooctane series of $\mathbf{5 , 2 1}$, and $\mathbf{6}$ resulted in a similar stepwise loss of activity.

Table 2 data also reveals that the PT-derived dioxatricyclodecane $\mathbf{1 4}$ is more active than its oxabicyclooctane counterpart 5 by factors in excess of 100 . However, in MDA-MB-435, $\mathbf{1 4}$ is only 30 times more active than 5 for the reason that MDA-MB-435 is much more sensitive than any of the other cell lines to 5 , and to several of the other compounds as well. Oxabicyclooctanes $\mathbf{5}$ and $\mathbf{2 0}$ differ in the stereochemical configuration of their hydroxymethyl groups. Oxabicyclooctane $\mathbf{2 0}$ was approximately 8 - to 70 -times more active than 5 in cell lines HOP-62, HCT-116, UACC-62, and OVCAR-3. However, $\mathbf{2 0}$ appeared marginally less active than 5 in SF-539 and DU-145, but was 25 -times less active than 5 in MDA-MB-435. Also, MDA-MD-435 was the most sensitive to 5 and the least sensitive to 20 than were any of the other seven cell lines. Of the three additional oxabicyclooctanes, including PT-derived 16, picropodo-phyllin-derived 19, and SK-derived 22, only diastereomers 16 and 19 were sufficiently active in preliminary screening for subsequent 60 cell line evaluations. These comparisons revealed that activities for both 16 and 19 were at the same low level $\left(\log \mathrm{Gl}_{50}-4.23\right.$ to $\left.-4.84 \mathrm{M}\right)$ in seven cell lines. However, the cytotoxicity levels increased for MDA-MB-435, as indicated by $\log \mathrm{Gl}_{50}$ values of -5.41 for $\mathbf{1 6}$ and -5.17 for 19. The hydroxymethyl group and the methyleneoxy bridge have a cis stereochemical relationship in both oxabicycl ooctane 19 and its isomer 20. Activities were lower for 19 than 20 by factors ranging broadly from 6 to 700 , except in MDA-MB-435 where activities were virtually the same for both oxabicycl ooctanes.

Molecular modeling ${ }^{11}$ indicated insignificant differences between the oxabicyclooctane scaffold of 5 and the same scaffold incorporated within the di oxatricycl odecane 14. This indication coupled to the lower activity of 5 compared with that of 14, and the variable cell line responses to $\mathbf{5}$ in relation to those of its diastereomer

A

B

Figure 1. (A) Stereoviews of minimum-energy conformations for three types of methyleneoxy-bridged lignans. Top to bottom: oxabicyclooctane 16, dioxatricyclodecane 14, and oxabi cyclooctane 5. (B) Stereoviews of the four minimum energy conformations of benzodihydropyran 45. Aromatic ring substituents are omitted.

Scheme 6

20, suggested that cytotoxicities could be responding to differing cell line interactions with the hydroxymethyl group, which possibly could function as a hydrogen bond donor or acceptor. The stereochemical relation of the hydroxymethyl group to methyleneoxy bridge is trans in 5, but cis in 20. Acetylation of the hydroxymethyl group would allow the resulting ester to function only as a hydrogen bond acceptor. Activities of acetate 17 were only 1.8 times higher or lower than those of its precursor 5 in seven cell lines. In contrast conversion of al cohol $\mathbf{2 0}$ to acetate $\mathbf{2 3}$ decreased activities by factors ranging from 115 to 316 for HOP-62, HCT-116, and UACC-62, but by only a factor of approximately 5 for SF-539. However, this acetylation also increased activity by a factor of near 4 for MDA-MB-435. Reduction of the hydroxymethyl group of 5 to the methyl group in 36 removed a polar group from the oxabicyclooctane scaf-
fold and increased activity by factors ranging from approximately 4 to 10 in five of the seven cell lines allowing comparison. However, the previously noted inversion of the hydroxymethyl group in 5, giving 20, had enhanced activity by greater amounts and in more cell lines than had the reduction of the hydroxymethyl group in 5. Activity enhancements ranging from 8 (SN12 C) to 66 (MDA-MB-435) resulted from reducing the hydroxymethyl group in ACON-derived 6 to the methyl group of 28.

The group of benzodihydropyrans 45, 46, 47, and 49 differ structurally from the oxabicyd ooctanes in having a more conformationally mobile THN scaffold and a morehighly oxygen-substituted aromatic ring. However, these four compounds share with the oxabicyclooctanes the same THN substituents, which include hydroxymethyl, acetoxymethyl, and methyl groups. Overall, the

Table 2. Cytotoxicity of Methyleneoxy-Bridged Tetrahydronaphthalene Lignan Analogues

	cytotoxicity ($\operatorname{log~GI} 50$)							
compd	lung HOP-62	colon HCT-116	$\begin{gathered} \text { CNS } \\ \text { SF-539 } \end{gathered}$	melanoma UACC-62	ovarian OVCAR-3	renal SN 12C	prostate DU-145	$\begin{gathered} \text { breast } \\ \text { MDA-MB-435 } \end{gathered}$
5	-5.36	-5.54	-5.60	-5.37	-5.84	a	-5.58	-6.53
6	>-4.00	>-4.00	>-4.00	>-4.00	>-4.00	>-4.00	>-4.00	>-4.00
11	>-4.00	>-4.00	>-4.00	>-4.00	>-4.00	a	>-4.00	>-4.00
12	-4.15	-4.55	-4.50	-4.16	-4.52	-4.46	-4.53	-4.71
$14{ }^{\text {b }}$	<-8.00	<-8.00	<-8.00	<-8.00	<-8.00	a	<-8.00	<-8.00
16	-4.72	-4.53	-4.81	-4.57	-4.84	-4.50	-4.40	-5.41
17	-5.37	-5.63	-5.76	-5.53	-5.67	-5.30	-5.34	-6.33
19	-4.32	-4.52	-4.75	-4.74	-4.62	-4.23	-4.52	-5.17
20	-6.66	-7.36	-5.41	-7.11	-6.74	-5.32	-5.35	-5.13
21	-4.32	-4.52	-4.75	-4.20	-4.62	-4.23	-4.52	-5.17
22 ${ }^{\text {c }}$								
23	-4.60	-4.86	-4.72	-5.00	a	-4.59	a	-5.73
28	-5.62	-5.56	-5.71	-5.16	-5.62	-4.92	-5.41	-5.82
36	-6.10	-6.36	d	-6.39	-6.73	-5.27	-6.32	-7.08
45	-4.28	-4.52	-4.68	-4.59	-4.60	-4.35	-4.43	-4.72
46	-4.22	-4.65	-4.61	-4.70	-4.82	-4.60	-4.64	-4.74
47	-4.17	-4.21	-4.24	-4.50	-4.25	-4.39	-4.15	-4.40
49	>-4.12	-4.50	-4.68	-4.52	-4.48	>-4.12	>-4.12	-4.94

${ }^{\text {a }}$ This particular cell line was lacking from the cell panel at the time of screening. ${ }^{b}$ Etoposide is reported (see ref 8) to give a log GI_{50} value of -5.2 in CAKI-1 (renal). Compounds 14, 5, and $\mathbf{4 6}$ give the respective $\log \mathrm{Gl}_{50}$ values of $<-8.00,-5.24$, and -4.60 in this cell line. ${ }^{\text {c C Compound }} \mathbf{2 2}$ was insufficiently active in the three cell line, one-dose preliminary assay to warrant further testing in the 60 cell line assay. ${ }^{\text {d }}$ Two 60 -cell line evaluations of compound 36 cytotoxicity resulted in widely divergent results for SF-539. Therefore, the $\log \mathrm{GI}_{50}$ value was omitted from the table for this particular cell line.

Table 3. Cytotoxicity Comparisons for Benzodihydropyrans 45, 46, 47, and 49 and Their Oxabicyclooctane Analogues 5, 21, 17, and 36

	cytotoxicity $\left(\operatorname{log~GI}_{50}\right)$			
compound	leukemia SR	lung NCI-322M	CNS SNB-75	ovarian OVCAR-4
$\mathbf{4 5}$	-5.29	-4.32	-4.37	-4.40
$\mathbf{5}$	-6.23	-5.21	-5.57	-4.63
$\mathbf{4 6}$	-4.74	-5.06	-5.44	-5.71
$\mathbf{2 1}$	-4.35	-4.36	a	-4.11
$\mathbf{4 7}$	-4.66	-4.77	-4.61	-4.32
$\mathbf{1 7}$	-6.12	-5.36	-5.70	-5.37
$\mathbf{4 9}$	-4.72	>-4.12	-4.91	-4.43
$\mathbf{3 6}$	-6.83	-5.67	-6.42	-6.42

a SNB-75 was lacking from the CNS cell panel when $\mathbf{2 1}$ was screened.
four benzodi hydropyrans produced were less active than the other types of methyleneoxy-bridged compounds except in cell line MDA-MB-435. The somewhat higher MGM and delta values (Table 1) for 46 pointed to higher sensitivities of other cell lines not included in Table 2. Four such cell lines indicating sensitivities to test compound at concentrations lower than $10^{-5} \mathrm{M}$ were found for 45 and 46 . These cell lines were used in comparing activities (Table 3) of all four benzodihydropyrans to activities of their oxabicyclooctane counterparts. The comparison was deliberately biased in choosing cell lines having the highest sensitivities to the benzodihydropyrans. The pair wise comparison demonstrated consistently higher activities for PT-derived oxabicyclooctanes than PT-derived benzodi hydropyrans. However, the SK-derived benzodihydropyran 46 was consistently more active than its oxabicylooctane counterpart, 21, in three comparisons involving cell lines SR, NCI-322M, and OVCAR-4.

Summary and Conclusions. Podophyllotoxin (PT) and α-conidendrin can be converted through semisynthesis that includes intramolecular methyleneoxy bridging to dioxatricyclodecanes, oxabicyclooctanes, and benzodi hydropyrans, including those having the aryl and
arene substitution patterns of sikkimotoxin. In vitro cytotoxicities of the PT-derived dioxatricyd odecane 14 were the highest at a $\log \mathrm{Gl}_{50}$ value of $<-8 \mathrm{M}$ in most cell lines. In vitro cytotoxicities for the dioxatricyclodecanes and oxabicyclooctanes were lowered through replacement of the methylenedioxy group of the fused aromatic ring by two methoxy groups and were further lowered by replacement of one of two m-methoxy groups by hydrogen in the pendant aromatic ring. These results clearly indicated the requirement for particular aromatic substitution patterns in both fused and pendant aromatic rings for highest cytotoxicity of oxabicyclooctanes and dioxatricyclodecanes.

Inversion of the hydroxymethyl group of PT-derived oxabicyclooctane 5 resulted in mixed activity outcomes for its diastereomer, 20, with some cells becoming more sensitive to 20, and others less, when compared to 5 . Relevant to the configuration of the hydroxymethyl group in $\mathbf{5}$ and $\mathbf{2 0}$ were the differing activity responses to this group's acetylation. While acetylation of $\mathbf{5}$ resulted in some very small activity changes, acetylation of $\mathbf{2 0}$ lowered some activities by factors of 100 or more. Furthermore, reduction of the hydroxymethyl group of 5 to the methyl group of 36 enhanced activities, although the number of cell lines affected werefewer and the activity increases were smaller than those resulting from inversion of the hydroxymethyl group of 5 . These manifestations of activities responding to hydroxymethyl group manipulation point to this group's interactions with the various cell lines. However, incorporation of the hydroxymethyl group of oxabicyclooctanes $\mathbf{5}$ or $\mathbf{1 6}$ as a second methyleneoxy bridge in dioxatricyclodecane 14 enhanced cytotoxicities by factors of 10 to 1000 and was responsible for the greatest activity enhancement across all cell lines. This result might be attributed to some gain in scaffold rigidity that is provided by double bridging, the absence of the hydroxymethyl group, or a combination of both. Although in vitro activities of dioxatricyclodecane 14 and oxabicyclooctane 5 differed considerably, their in vivo activities were similar.

Activities of the group of oxabicyclooctanes (5, 17, and 36), which included hydroxymethyl-, acetoxymethyl-, and methyl-substituted members, were higher than those of their benzodihydropyran counterparts, which unlike the oxabicydooctanes, lacked the measure of immobilization of the THN scaffold, as indicated by molecular dynamics. Also, unlike the dioxatricyclodecanes and oxabicyclooctanes, it was a SK-derivative (46) that was the most active of the four-compound series of benzodihydropyrans.

Experimental Section

General. NMR data were obtained from Bruker 300 and 600 spectrometers and recorded in CDCl_{3} solution, unless indicated otherwise. Chemical shift values (δ) are reported in ppm and in relation to TMS ($\delta 0.00$) and $\mathrm{CDCl}_{3}(\delta 77.0)$ for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively; J values are in hertz (Hz). Quaternary, methine, methylene, and methyl carbons were differentiated by DEPT and when unassigned to a specific carbon are designated within parentheses as $0,1,2$, and 3 in association with ${ }^{13} \mathrm{C}$ NMR δ values. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ correlation and one bond ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ connectivity were determined by COSY and HMQC or HETCOR experiments, respectively, while multiplebond ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ connectivity was determined by HMBC. HRMS were determined by the Nebraska Center for Mass Spectrometry, University of Nebraska, Lincoln, NE. Preparative TLC was performed using $0.5-\mathrm{mm}$ thickness silica gel plates containing fluorescent indicator and were viewed under 254nm irradiation. Isocratic and gradient HPLC was determined for each sample submitted for cytotoxicity evaluation. HPLC employed a $5 \mu \mathrm{~m}, \mathrm{C} 18$ (2), $250 \times 4.60 \mathrm{~mm}$ column. Isocratic HPLC used solvents $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(65 / 35)$ for compounds 5, 6, 11, 12, 14, 16, 19-23, 45, 46, and 49, but $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (80/20) for 17, 28, 36, and 47. Retention times in minutes are designated $t_{\text {RII }}$ and $t_{\text {RI2 }}$, respectively, for the two isocratic sol vent systems. A $15-\mathrm{min}$ linear gradient HPLC used CH_{3} $\mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(50 / 50-95 / 5)$ for compounds 5, 6, 11, 12, 14, 16, 19 23, 45, 46, and 49, but $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(70 / 30-95 / 5)$ for 17,28 , 36, and 47. Compound retention times are designated t_{RG} and $t_{\text {RG2 }}$, respectively, for the two gradient solvent systems.

Materials. Podophyllotoxin and α-conidendrin were obtained respectively from Toronto Research Chemicals, Inc. (Ontario, Canada) and Raisio Chemicals, Raisio, Finland.

General Reaction, Extraction, and Separation Procedures. Unless indicated otherwise, reactions were conducted under dry N_{2}, and organic reaction solvents were dried except when a reagent required water as a solvent or the reaction was quenched with water. Product extracts were dried over anhyd MgSO_{4}, and the solvents were removed under vacuum. Products from the residue were separated and purified by silica gel MPLC and/or preparative TLC.
$\mathrm{CuSO}_{4} / \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ Oxidations of 1,4-Butanediols to Dioxatricyclodecanes: Direct Conversions of Diols 4, 13, and 3 , to the Respective Dioxatricyclodecanes 11, 12, and 14. The $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ in $\mathrm{H}_{2} \mathrm{O}$ were added together in one portion to the stirred diol in $\mathrm{CH}_{3} \mathrm{CN}$ solution. The mixture was heated to reflux for 0.5 h , cooled to $25^{\circ} \mathrm{C}$, diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with EtOAc. Dioxatricyclodecane 11: Diol 4 ($116 \mathrm{mg}, 0.3 \mathrm{mmol}, 45 \mathrm{~mL} \mathrm{CH} 3 \mathrm{CN}^{2}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(75$ $\mathrm{mg}, 0.3 \mathrm{mmol}, 5 \mathrm{~mL} \mathrm{H} 2 \mathrm{O}$), and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ ($116 \mathrm{mg}, 0.6 \mathrm{mmol}, 14$ $\mathrm{mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$) refluxed 0.5 h gave, after processing and MPLC $\left(\mathrm{CH}_{2}-\right.$ $\mathrm{Cl}_{2} /$ EtOAc, $3: 1$), 44 mg (38\%) 11: mp 165-166 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-6.07^{\circ}$ (c 2.5, acetone); HPLC $\mathrm{t}_{\mathrm{RI} 1} 6.3, \mathrm{t}_{\mathrm{RG1}} 6.7$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) 7.246.90 ($\mathrm{br}, 2, \mathrm{H}-2^{\prime}, 6^{\prime}$), 6.89 (d, J = $\left.7.72,1, \mathrm{H}^{\prime} 5^{\prime}\right), 6.81(\mathrm{~s}, 1, \mathrm{H}-8$), 6.48 ($\mathrm{s}, 1, \mathrm{H}-5$), $4.89(\mathrm{~d}, \mathrm{~J}=5.51,1, \mathrm{H}-9), 4.24(\mathrm{dd}, \mathrm{J}=9.33$, $6.33,1, \mathrm{H}-1$), 4.11 (dd, J $=9.57,6.24,1, \mathrm{H}-3$), 3.913 ($\mathrm{s}, 3$, OCH_{3}), $3.906\left(\mathrm{~s}, 6,2 \times \mathrm{OCH}_{3}\right), 3.84(\mathrm{~d}, \mathrm{~J}=9.74,1, \mathrm{H}-3), 3.66$ $\left(\mathrm{s}, 3, \mathrm{OCH}_{3}\right), 3.52(\mathrm{~d}, \mathrm{~J}=9.42,1, \mathrm{H}-1), 3.20(\mathrm{~m}, 1, \mathrm{H}-9 \mathrm{a}), 2.90$ ($\mathrm{t}, \mathrm{J}=6.10,1, \mathrm{H}-3 \mathrm{a}$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 333 \mathrm{~K}\right) 7.18(\mathrm{br}, 1)$ and $7.01(\mathrm{br}, 1)$ with collapse of $7.24-6.90$ observed at $298 \mathrm{~K} ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 149.36 (0), 149.20 (0), 148.80 (0), 148.38 (0), 133.47 (C-1'), 128.91 (C-4a), 126.87 (C-8a), 118.15 (1), 110.87
(1), 110.56 (1), 109.48 (1), 87.30 (C-4), 80.90 (C-9), 64.25 (C3), $63.58(\mathrm{C}-1), 56.06(\mathrm{C}-3 \mathrm{a}), 55.94\left(\mathrm{OCH}_{3}\right)$, $55.93\left(\mathrm{OCH}_{3}\right), 55.88$ $\left(\mathrm{OCH}_{3}\right), 55.85\left(\mathrm{OCH}_{3}\right), 49.69(\mathrm{C}-9 \mathrm{a})$. HRMS [M+] Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}$: 384.1573; Found: 384.1572. Dioxatricyclodecane 12. Diol $\mathbf{1 3}$ ($100 \mathrm{mg}, 0.239 \mathrm{mmol}, 36 \mathrm{~mL} \mathrm{CH} 33 \mathrm{CN}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ $(60 \mathrm{mg}, 0.239 \mathrm{mmol}, 4 \mathrm{~mL} \mathrm{H} 2 \mathrm{O})$, and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ ($129 \mathrm{mg}, 0.478$ mmol, 11 mL H H O) refluxed 0.5 h gave, after processing and MPLC, 36 mg (36\%) of $\mathbf{1 2}$ (glasslike solid): $[\alpha]^{25} \mathrm{D}+20.0^{\circ}$ (c $\left.0.5, \mathrm{CHCl}_{3}\right)$; $\mathrm{HPLC}_{\mathrm{RI} 1} 6.3, \mathrm{t}_{\mathrm{RG} 1} 7.0$; ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 7.13$ (br, 1, H-2' or H-6'), 6.81 (s, 1, H-8), 6.51 (s, 1, H-5), 6.43 (br, 1, H-6' or 2'), 4.89 (d, J = 5.49, 1, H-9), 4.25 (dd, J = 6.36, 9.35, $1, \mathrm{H}-1), 4.10(\mathrm{dd}, \mathrm{J}=6.24,9.60,1, \mathrm{H}-3), 3.91\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$, $3.88\left(\mathrm{~s}, 6,2 \times \mathrm{OCH}_{3}\right), 3.83(\mathrm{~d}, \mathrm{~J}=9.66,1, \mathrm{H}-3), 3.77(\mathrm{~s}, 3$, OCH_{3}), $3.67\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.51(\mathrm{~d}, \mathrm{~J}=9.25,1, \mathrm{H}-1), 3.20(\mathrm{ddd}$, $\mathrm{J}=1.19,5.96,6.70,1, \mathrm{H}-9 \mathrm{a}), 2.88(\mathrm{t}, \mathrm{J}=6.14,1, \mathrm{H}-3 \mathrm{a}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 153.2 (C-3', 5') 149.4 (C-7), 149.3 (C-6), 137.3 (C-4'), 136.4 (C-1'), 128.5 (C-4a), 127.0 (C-8a), 110.8 (C-8), 110.6 (C-5), 103.1 (C-2', 6^{\prime}), 87.5 (C-4), 80.8 (C-9), 64.3 (C-3), 63.6 $(\mathrm{C}-1), 60.8\left(\mathrm{OCH}_{3}\right), 56.1(\mathrm{C}-3 \mathrm{a}), 56.0\left(\mathrm{OCH}_{3}\right), 55.9\left(\mathrm{OCH}_{3}\right), 55.8$ $\left(\mathrm{OCH}_{3}\right), 49.6$ (C-9a); HRMS [${ }^{+}+\mathrm{Na}$] Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{Na}$: 437.1576; Found: 437.1583. Also formed was oxabicyd ooctane 21: $26 \mathrm{mg}(26 \%)$; $[\alpha]^{25} \mathrm{D}+66.3^{\circ}$ (c $0.3, \mathrm{CHCl}_{3}$). Dioxatricyclodecane 14: Diol $3^{1}(2.67 \mathrm{~g}, 6.63 \mathrm{mmol}, 300 \mathrm{~mL} \mathrm{CH} 3 \mathrm{CN})$, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.66 \mathrm{~g}, 6.63 \mathrm{mmol}, 100 \mathrm{~mL} \mathrm{H} 2 \mathrm{O})$, and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ ($3.58 \mathrm{~g}, 13.26 \mathrm{mmol}, 100 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$) heated 0.5 h gave, after processing and MPLC, 20 mg (0.7%) of 14 (crystalline solid from ether): mp $158-160{ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-5.2^{\circ}$ (c 0.59 , acetone); HPLC $\mathrm{t}_{\mathrm{RI} 1} 9.5, \mathrm{t}_{\mathrm{RG1}} 8.9$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) 7.08 (br, 1, H-2' or H-6'), 6.76 (s, 1, H-8), 6.44 (s, 1, H-5), 6.39 (br, 1, H-6' or H-2'), 5.94 (d, J = 1.39, 1, OCH O_{2}), 5.92 (d, J = 1.39, 1, OCH O_{2}), $4.85(\mathrm{~d}, \mathrm{~J}=5.54,1, \mathrm{H}-9), 4.23(\mathrm{dd}, \mathrm{J}=6.32,9.36,1, \mathrm{H}-1)$, 4.12 (dd, J = 9.61, 6.17, 1, H-3), 3.90 (br, 3, OCH 3), 3.88 (br, $\left.4, \mathrm{OCH}_{3}, \mathrm{H}-3\right), 3.77\left(\mathrm{br}, 3, \mathrm{OCH}_{3}\right), 3.52(\mathrm{~d}, \mathrm{~J}=9.35,1, \mathrm{H}-1)$, 3.20 (m, 1, H-9a), 2.89 (m, 1, H-3a); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 153.23 (C-5' or C^{\prime}), 152.79 ($\mathrm{C}-3^{\prime}$) or $\mathrm{C}-5^{\prime}$), 148.07 (C-6 or C-7), 147.62 (C-7 or C-6), 137.28 (C-4'), 136.45 (C-1'), 130.43 (C-8a), 128.24 (C-4a), 108.26 (C-8), 107.96 (C-5), 103.25 (C-2' or 6^{\prime}), 102.78 (C-6' or 2'), $101.20\left(\mathrm{OCH}_{2} \mathrm{O}\right), 87.42$ (C-4), 80.87 (C-9), 64.40 $(\mathrm{C}-3), 63.49(\mathrm{C}-1), 60.87\left(\mathrm{OCH}_{3}\right), 56.15\left(\mathrm{OCH}_{3}\right), 55.69(\mathrm{C}-3 \mathrm{a})$, 49.58 (C-9a). HRMS [M+ ${ }^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{7}: 398.1365$; Found: 398.1365. The major product from this reaction was oxabicyclooctane 5: $1.06 \mathrm{~g}(40 \%)$.
Formation of Dioxatricyclodecane 14 from Oxabicyclooctanes 16 and 5. Podophyllol 15 ($185 \mathrm{mg}, 0.442 \mathrm{mmol}$) was dehydrated by the method of Castro et al. ${ }^{5}$ giving 16 [153 mg (86.4\%), mp $252-257^{\circ} \mathrm{C},[\alpha]^{25} \mathrm{D}+18.3^{\circ}$ (c 2.9, $\left.\mathrm{CHCl}_{3}\right)$]. A warmed solution of $\mathbf{1 6}(150 \mathrm{mg}, 0.374 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}$ (55 mL) was cooled to $45{ }^{\circ} \mathrm{C}$, and to it was added a solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(94 \mathrm{mg}, 0.374 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ ($203 \mathrm{mg}, 0.749 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(18 \mathrm{~mL})$. The resulting mixture was heated to reflux under N_{2} for 0.5 h . Processing and MPLC ($\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 10$) gave $50 \mathrm{mg}(0.125 \mathrm{mmol})$ of 14 (34% yield) ($[\alpha]^{25} \mathrm{D}-28.9^{\circ}\left(\mathrm{c} 3.4, \mathrm{CHCl}_{3}\right)$). To a solution of 312 mg (0.779 mmol) of $5 \mathrm{in} \mathrm{CH}_{3} \mathrm{CN}(115 \mathrm{~mL})$ was added a solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(195 \mathrm{mg}, 0.779 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(13 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ ($422 \mathrm{mg}, 1.55 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(37 \mathrm{~mL})$. The resulting mixture was heated to reflux under N_{2} for 0.5 h , cooled to $25^{\circ} \mathrm{C}$, diluted with $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$, processed, and MPLC in the usual manner to obtain 34 mg (11% yield) of 14.
Formation of Oxabicyclooctane 5 from 9-Deoxypodophyllol 3. A solution of DDQ ($597 \mathrm{mg}, 2.63 \mathrm{mmol}$) in 80 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to a solution of diol $\mathbf{3}(706 \mathrm{mg}, 1.75 \mathrm{mmol})$ in 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The dark blue solution was stirred under N_{2} at $25^{\circ} \mathrm{C}$ and became progressively lighter in color. TLC indicated the absence of diol $\mathbf{3}$ (after 5.5 h). The solvent was removed under vacuum, and the residue was dissolved in EtOAc (100 mL). The solution was washed with aq 5% $\mathrm{NaHCO}_{3}(120 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, and brine $(30 \mathrm{~mL})$. The EtOAc extract was dried. The combined aq layers were extracted with $\mathrm{Et}_{2} \mathrm{O}$. Vacuum removal of sol vents from combined extracts left a residue, which by MPLC ($\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $1 / 5-1 / 1$) followed by preparative TLC ($\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 1$) gave oxabicyclooctane 5 ($306 \mathrm{mg}, 44 \%$): mp 144-146 ${ }^{\circ} \mathrm{C},[\alpha]^{25} \mathrm{D}$ $+15.2^{\circ}\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right), \mathrm{HPLC} \mathrm{t}_{\mathrm{RI} 1} 7.6, \mathrm{t}_{\mathrm{RG} 1} 6.4$, Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{7}\right)$

C: calcd, 65.99, found, 65.63; H: calcd, 6.04, found, 6.03; 16 ($190 \mathrm{mg}, 27 \%$): $\mathrm{mp} 256-257^{\circ} \mathrm{C},[\alpha]^{25} \mathrm{D}+21^{\circ}$ (c 0.2, dioxane), HPLC $\mathrm{t}_{\mathrm{RII}} 5.7$, $\mathrm{t}_{\mathrm{RG} 1} 4.3$; and dioxatricyclodecane 14 (26 mg , 3.7%). Oxabicyclooctane Acetate 17. $\mathrm{Ac}_{2} \mathrm{O}$ ($26 \mathrm{mg}, 0.255$ mmol) in dry THF (0.5 mL) was added to a solution of 5 (51 $\mathrm{mg}, 0.127 \mathrm{mmol}$) and DMAP ($31 \mathrm{mg}, 0.255 \mathrm{mmol}$) in dry THF $(0.5 \mathrm{~mL})$. The resulting solution was stirred under N_{2} at 25 ${ }^{\circ} \mathrm{C}$ for 2 h . The liquid was evaporated at reduced pressure. [MPLC] ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 15 / 1$) gave 48 mg (85\%) of 17: $[\alpha]^{25} \mathrm{D}$ $+67.7^{\circ}$ ($\mathrm{c} 0.9, \mathrm{CHCl}_{3}$); $\mathrm{HPLC} \mathrm{t}_{\mathrm{RI} 2} 5.7, \mathrm{t}_{\mathrm{RG} 2} 6.4 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ 7.14 (br, 1, H-2' or 6^{\prime}), 6.64 ($\mathrm{s}, 1, \mathrm{H}-8$ or 5), 6.41 ($\mathrm{s}, 1, \mathrm{H}-5$ or 8), 6.20 (br, 1, H-6' or 2^{\prime}), 5.89 (d, J $=1.28,1, \mathrm{OCH}_{2} \mathrm{O}$), 5.84 (d, J = 1.28, $\left.1, \mathrm{OCH}_{2} \mathrm{O}\right), 4.38(\mathrm{dd}, \mathrm{J}=5.36,11.19,1, \mathrm{H}-3)$, 4.25 (ddd, J = 2.41, 5.53, 8.06, 1, H-1), 4.17 (t, J = 10.64, 1, $\mathrm{H}-3), 3.88-3.81\left(\mathrm{~m}, 10,3 \times \mathrm{OCH}_{3}, \mathrm{H}-1\right), 3.20(\mathrm{dt}, \mathrm{J}=2.73$, 17.09, 1, H-9), 2.82 (m, 1, H-9a), 2.76 (dd, J = 1.74, 17.37, 1, $\mathrm{H}-9), 2.46(\mathrm{~m}, 1, \mathrm{H}-3 \mathrm{a}), 1.99\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ (CDCl_{3}) 170.80 (CO), 147.14 (C-7), 145.69 (C-6), 137.03 (C-1'), 136.07 (C-4'), 132.05 (C-8a), 128.70 (C-4a), 109.00 (C-5 or 8), 107.68 (C-8 or 5), 104.06 ($\mathrm{C}-2^{\prime}, 6^{\prime}$), $100.81\left(\mathrm{OCH}_{2} \mathrm{O}\right), 72.48(\mathrm{C}-1), 61.81$ $(\mathrm{C}-3), 60.74\left(\mathrm{OCH}_{3}\right), 56.12\left(\mathrm{OCH}_{3}\right), 49.03(\mathrm{C}-3 \mathrm{a}), 36.82(\mathrm{C}-9 \mathrm{a})$, 33.03 (C-9), $20.70\left(\mathrm{CH}_{3}\right)$. HRMS $\left[\mathrm{M}^{+}\right]$Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{8}$: 442.1628; Found: 442.1623.

Similarly, treatment of 9-deoxysikkimol $\mathbf{1 3}$ ($164 \mathrm{mg}, 0.392$ mmol) with DDQ ($98 \mathrm{mg}, 0.431 \mathrm{mmol}$) in 80 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 21 and 22. 21: $(53 \mathrm{mg}, 33 \%),[\alpha]^{25} \mathrm{D}+66.5^{\circ}\left(\mathrm{c} 3.4, \mathrm{CHCl}_{3}\right)$; HPLC $\mathrm{t}_{\mathrm{RI} 1} 4.8, \mathrm{t}_{\mathrm{RG} 1} 4.8{ }^{1}{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) 7.20 (br, $1, \mathrm{H}-2^{\prime}$ or H-6'), 6.68 (s, 1, H-8), 6.47 ($\mathrm{s}, 1, \mathrm{H}-5$), 6.21 (br, 1, H- b^{\prime} or H-2'), 4.27 (ddd, J $=2.42,5.69,8.20,1, \mathrm{H}-1), 3.92$ (dd, J $=5.39,10.90$, 1, H-3), $3.88\left(\mathrm{~s}, 6,2 \times \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.82(\mathrm{~d}, \mathrm{~J}=$ $8.27,1, \mathrm{H}-1), 3.74\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.72(\mathrm{~d}, \mathrm{~J}=10.57,1, \mathrm{H}-3)$, $3.62\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.30(\mathrm{dt}, \mathrm{J}=2.71,17.04,1, \mathrm{H}-9), 2.90(\mathrm{~m}, 1$, H-9a), 2.77 (dd, J $=2.18,17.10,1, \mathrm{H}-9), 2.32$ (ddd, J $=4.95$, 5.00, 9.52, 1, H-3a), 1.64 (br, 1, OH); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 153.4 (C-3' or C-5'), 152.0 (C-5' or C-3'), 148.6 (C-6), 146.9 (C-7), 137.0 (C-1'), 136.8 (C-4'), 131.0 (C-4a), 127.9 (C-8a), 111.9 (C-5), 110.7 (C-8), 104.3 (C-2' or C-6'), 104.0 (C-6' or C-2'), 84.1 (C-4), 72.6 $(\mathrm{C}-1), 60.9\left(\mathrm{OCH}_{3}\right), 60.0(\mathrm{C}-3), 56.2\left(\mathrm{OCH}_{3}\right), 55.9\left(\mathrm{OCH}_{3}\right), 55.8$ $\left(\mathrm{OCH}_{3}\right), 53.2$ (C-3a), 36.7 (C-9a), 32.7 (C-9); HRMS [M $\left.{ }^{+}+\mathrm{Na}\right]$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{Na}$: 439.17327; Found: 439.1737. 22: (72 $\mathrm{mg}, 44 \%$), $[\alpha]^{25 \mathrm{D}}-8.6^{\circ}$ (c 1.8, CHCl_{3}); HPLC $\mathrm{t}_{\mathrm{RI} 1} 4.1$, $\mathrm{t}_{\mathrm{RG} 1} 3.7$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 6.68$ (s, 1, H-8), 6.61 ($\mathrm{s}, 1, \mathrm{H}-5$), 6.37 ($\mathrm{s}, 2$, $\mathrm{H}^{\prime} \mathrm{Z}^{\prime}, 6^{\prime}$), 4.72 ($\mathrm{d}, \mathrm{J}=4.78,1, \mathrm{H}-9$), $4.45(\mathrm{~d}, \mathrm{~J}=4.05,1, \mathrm{H}-4$), 3.91-3.88(m, 1, H-3), $3.89\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.77$ $\left(\mathrm{s}, 6,2 \times \mathrm{OCH}_{3}\right), 3.79-3.73(\mathrm{~m}, 1, \mathrm{H}-1), 3.72\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.73-$ 3.68 (m, 2, H-1, 3), 2.76 (sep, J = 4.56, 1, H-3a), 2.69 (dd, J = 4.49, 8.98, 1, H-9a); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 153.1 (C-3', $\left.5^{\prime}\right), 148.8$ (C-7), 147.8 (C-6), 138.9 (C-1'), 136.7 (C-4'), 131.1 (C-4a), 128.0 (C-8a), 112.8 (C-5), 110.7 (C-8), 106.6 (C-2', $\left.6^{\prime}\right), 77.7$ (C-9), 68.7 ($\mathrm{C}-3), 60.8\left(\mathrm{OCH}_{3}\right), 60.2(\mathrm{C}-1), 56.2\left(\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{OCH}_{3}\right), 55.8$ $\left(\mathrm{OCH}_{3}\right), 48.1$ (C-3a), $47.0(\mathrm{C}-4), 43.3$ (C-9a); HRMS $\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{Na}$: 439.17323; Found: 439.1731.

Oxabicyclooctane 6. This compound was prepared as previously described and exhibited physical properties, including ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, consistent with those reported. ${ }^{1}$ Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}\right) \mathrm{C}$: calcd, 68.38 , found, $67.54 ; \mathrm{H}$: calcd, 6.78 , found, 6.90.

Formation of Dioxatricyclodecane 12 from Oxabicyclooctane 21. Oxabicyclooctane 21 ($53 \mathrm{mg}, 0.127 \mathrm{mmol}$) dissolved in acetonitrile (20 mL) was refluxed with CuSO_{4}. $5 \mathrm{H}_{2} \mathrm{O}(34 \mathrm{mg}, 0.134 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(73 \mathrm{mg}$, 0.269 mmol) in water (6 mL) for 0.5 h to give 28 mg of oxatricyclooctane 12 (53\%); $[\alpha]^{25} \mathrm{D}+21.6^{\circ}$ (c $1.3, \mathrm{CHCl}_{3}$).

Formation of Dioxatricyclodecane $\mathbf{1 2}$ from Oxabicyclooctane 22. Oxabicyclooctane 22 ($70 \mathrm{mg}, 0.168 \mathrm{mmol}, 28$ $\mathrm{mLCH} 3 \mathrm{CN})$ was oxidized by $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(43 \mathrm{mg}, 0.168 \mathrm{mmol}$, 3 mL of $\mathrm{H}_{2} \mathrm{O}$) and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\left(91 \mathrm{mg}, 0.336 \mathrm{mmol}, 9 \mathrm{~mL}\right.$ of $\mathrm{H}_{2} \mathrm{O}$), 43 mg of dioxatricyclodecane 12 was obtained (60\%); $[\alpha]^{25}$ D $+19.6^{\circ}$ ($\mathrm{c} 3.4, \mathrm{CHCl}_{3}$).

Formation of Oxabicyclooctanes 19 and 20 from 9-Deoxypicropodophyllol 18. DDQ ($85 \mathrm{mg}, 0.372 \mathrm{mmol}$) and $18^{12}(100 \mathrm{mg}, 0.248 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ solution were heated to reflux under N_{2} for 22 h to give 19^{5} ($10 \mathrm{mg}, 10 \%$) and $\mathbf{2 0}(20 \mathrm{mg}, 20 \%)$ which were separated by MPLC $\left(\mathrm{CH}_{2}-\right.$
$\mathrm{Cl}_{2} /$ EtOAc, $1 / 1$) followed by preparative $\operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right.$, 1/1). 19: mp 71-72 ${ }^{\circ} \mathrm{C}$ (glasslike solid); $[\alpha]^{25} \mathrm{D}+88.5^{\circ}$ (c 1.1, CHCl_{3}); HPLC $\mathrm{t}_{\mathrm{RI} 1} 6.6, \mathrm{t}_{\mathrm{RG1}} 5.2 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 6.71(\mathrm{~s}, 1$, $\mathrm{H}-8$), 6.49 ($\mathrm{s}, 1, \mathrm{H}-5$), 6.20 (s, 2, H-2', 6^{\prime}), 5.96 ($\mathrm{d}, \mathrm{J}=1.19,1$, $\mathrm{OCH}_{2} \mathrm{O}$), $5.90\left(\mathrm{~d}, \mathrm{~J}=1.20,1, \mathrm{OCH}_{2} \mathrm{O}\right), 4.75(\mathrm{~s}, 1, \mathrm{H}-9), 4.10$ (br, 1, H-4), 4.06 (dd, J $=8.63,5.94,1, \mathrm{H}-3$), $3.83\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right.$), 3.76 (s, 6, $2 \times \mathrm{OCH}_{3}$), $3.71(\mathrm{~d}, \mathrm{~J}=8.69,1, \mathrm{H}-3), 3.59(\mathrm{dd}, \mathrm{J}=$ 8.91, 10.50, 1, H-1), 3.47 (dd, J = 5.78, 10.68, 1, H-1), 2.48 (d, $\mathrm{J}=5.56,1, \mathrm{H}-3 \mathrm{a}), 2.47$ (dd, J $=5.88,8.69,1, \mathrm{H}-9 \mathrm{a}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 153.0 (C-3', 5'), 147.6 (C-7), 146.4 (C-6), 140.4 (C-1'), 136.6 (C-4'), 133.8 (C-4a), 129.1 (C-8a), 110.9 (C-8), 107.7 (C5), $106.0\left(\mathrm{C}-2^{\prime}, 6^{\prime}\right), 101.0\left(\mathrm{OCH}_{2} \mathrm{O}\right)$, $78.1(\mathrm{C}-9), 71.0(\mathrm{C}-3), 62.5$ $(\mathrm{C}-1), 60.8\left(\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{OCH}_{3}\right), 53.6(\mathrm{C}-3 \mathrm{a}), 45.0(\mathrm{C}-4), 43.9$ (C-9a); HRMS $\left[M^{+}\right.$] Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{7}: 400.1522$; Found: 400.1521. 20: mp $84-86{ }^{\circ} \mathrm{C}$ (glasslike solid); $[\alpha]^{25} \mathrm{D}-23.7^{\circ}$ (c $0.9, \mathrm{CHCl}_{3}$); HPLC $\mathrm{t}_{\mathrm{RI} 1} 8.4, \mathrm{t}_{\mathrm{RG} 1} 6.5$; ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}$) 7.03 (s , 1, H-2'), 6.64 (s, 1, H-8), 6.25 (s, 1, H-6'), 6.11 (s, 1, H-5), 5.87 $\left(\mathrm{s}, 1, \mathrm{OCH}_{2} \mathrm{O}\right), 5.83\left(\mathrm{~s}, 1, \mathrm{OCH}_{2} \mathrm{O}\right), 4.23(\mathrm{t}, \mathrm{J}=6.95,1, \mathrm{H}-1)$, $3.90\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.77(\mathrm{t}, \mathrm{J}=4.06,1, \mathrm{H}-1)$, $3.75\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.48$ (dd, J $\left.=5.21,11.27,1, \mathrm{H}-3\right), 3.34(\mathrm{dd}$, $\mathrm{J}=7.30,11.20,1, \mathrm{H}-3), 3.25(\mathrm{~d}, \mathrm{~J}=15.65,1, \mathrm{H}-9), 2.90(\mathrm{~d}$, $\mathrm{J}=15.65,1, \mathrm{H}-9), 2.88(\mathrm{~m}, 1, \mathrm{H}-9 \mathrm{a}), 2.58(\mathrm{t}, \mathrm{J}=6.20,1, \mathrm{H}-3 \mathrm{a})$, 1.49 (br, 1, OH); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 153.1 (C-3' or 5'), 153.0 (C5^{\prime} or 3^{\prime}), 147.1 (C-6), 145.7 (C-7), 137.0 (C-4'), 136.3 (C-4a), 135.1 (C-1'), 128.3 (C-8a), 109.0 (C-8), 107.3 (C-5), 104.6 (C$\left.2^{\prime}\right) 104.0\left(\mathrm{C}-6^{\prime}\right), 100.9\left(\mathrm{OCH}_{2} \mathrm{O}\right), 86.4(\mathrm{C}-4), 71.5(\mathrm{C}-1), 62.3(\mathrm{C}-$ 3), $60.9\left(\mathrm{OCH}_{3}\right), 56.2\left(\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{OCH}_{3}\right), 52.7(\mathrm{C}-3 \mathrm{a}), 38.5$ (C-9), 37.5 (C-9a); HRMS [M ${ }^{+}$] Cal cd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{7}: 400.1522$; Found: 400.1534.

Oxabicyclooctane Acetate 23. $\mathrm{Ac}_{2} \mathrm{O}(24 \mathrm{mg}, 0.231 \mathrm{mmol})$ in dry THF (0.5 mL) was added dropwise to $\mathbf{2 0}(42 \mathrm{mg}, 0.105$ $\mathrm{mmol})$ and DMAP ($26 \mathrm{mg}, 0.210 \mathrm{mmol}$) in dry THF (1.0 mL), and the resulting solution was stirred under N_{2} for 2 h . The solvent was evaporated at reduced pressure to dryness, and the residue was dissolved in ether (20 mL). The solution was washed with 5% aq $\mathrm{NaHCO}_{3}(2 \times 3 \mathrm{~mL}), 1 \mathrm{~N}$ aq HCl $(5 \times 3$ $\mathrm{mL}), \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and brine (3 mL) then dried (anhyd MgSO_{4}). Evaporation of solution at reduced pressure and MPLC of the residue ($\mathrm{CHCl}_{2} / \mathrm{EtOAc}^{2} 10 / 1$) gave $\mathbf{2 3}$ ($35 \mathrm{mg}, 75 \%$). 23: $[\alpha]^{25} \mathrm{D}$ -27.0° (c $2.3, \mathrm{CHCl}_{3}$); HPLC $\mathrm{t}_{\mathrm{RII}}$ 18.9, $\mathrm{t}_{\mathrm{RG}} 11.7$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 6.99\left(\mathrm{~d}, \mathrm{~J}=1.82,1, \mathrm{H}-2^{\prime}\right), 6.63(\mathrm{~s}, 1, \mathrm{H}-8), 6.27(\mathrm{~d}$, $\left.\mathrm{J}=1.82,1, \mathrm{H}-6^{\prime}\right), 6.09(\mathrm{~s}, 1, \mathrm{H}-5), 5.87\left(\mathrm{~d}, \mathrm{~J}=1.37,1, \mathrm{OCH}_{2} \mathrm{O}\right)$, $5.84\left(\mathrm{~d}, \mathrm{~J}=1.37,1, \mathrm{OCH}_{2} \mathrm{O}\right), 4.26(\mathrm{dt}, \mathrm{J}=2.24,8.34,1, \mathrm{H}-1)$, 3.94-3.88 (m, 1, H-1), $3.90\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$, $3.82-3.75(\mathrm{~m}, 1, \mathrm{H}-3), 3.76\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.71(\mathrm{dd}, \mathrm{J}=10.18$, $11.36,1, \mathrm{H}-3), 3.23(\mathrm{~d}, \mathrm{~J}=16.56,1, \mathrm{H}-9), 2.90(\mathrm{dd}, \mathrm{J}=2.43$, 16.71, 1, H-9), 2.84-2.76 (m, 2, H-3a, 9a), $2.00\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 170.94 (CO), 152.89 ($\mathrm{C}-3^{\prime}$ or 5^{\prime}), 152.77 ($\mathrm{C}-5^{\prime}$ or 3^{\prime}), 147.04 (C-7 or 6), 145.60 (C-6 or 7), 136.70 (C-4'), 136.05 (C-4a), 134.58 (C-1'), 127.80 (C-8a), 108.75 (C-8), 107.27 (C5), $104.56\left(\mathrm{C}-2^{\prime}\right), 103.72\left(\mathrm{C}-6^{\prime}\right), 100.80\left(\mathrm{OCH}_{2} \mathrm{O}\right), 85.89(\mathrm{C}-4)$, $70.97(\mathrm{C}-1), 63.40(\mathrm{C}-3), 60.81\left(\mathrm{OCH}_{3}\right), 56.07\left(\mathrm{OCH}_{3}\right), 55.98$ $\left(\mathrm{OCH}_{3}\right), 44.29(\mathrm{C}-3 \mathrm{a}), 37.97(\mathrm{C}-9), 36.91(\mathrm{C}-9 \mathrm{a}), 20.80\left(\mathrm{CH}_{3}\right)$; HRMS [M ${ }^{+}$] Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{8}$: 442.1628; F ound: 442.1624.

Preparation of 4'-Demethyldeoxypodophyllotoxin, 38. 4'-Demethyl-9-epi podophyllotoxin (37) ($200 \mathrm{mg}, 0.50 \mathrm{mmol}$) in 15 mL of glacial HOAc at $95^{\circ} \mathrm{C}$ was stirred 5.5 h under H_{2} (1 atm) with 200 mg of Pd / C (10\%). After the catalyst was filtered off and the sol vent was removed in a vacuum, the residue was recrystallized from $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{THF}$ to give $38,{ }^{13} 120 \mathrm{mg}$ (62\%).

4'-Demethyl-9-deoxypodophyllol 39 by Reduction of 4'-Demethyldeoxypodophyllotoxin 38. 4'-Demethyldeoxypodophylotoxin 38 ($400 \mathrm{mg}, 1.04 \mathrm{mmol}$) in 35 mL of dry THF was treated with LiAlH_{4} ($320 \mathrm{mg}, 8.32 \mathrm{mmol}$) gave 39 (333 $\mathrm{mg}, 82 \%)$.

Formation of Benzodihydropyran 45. A solution of diol $39(100 \mathrm{mg}, 0.258 \mathrm{mmol})$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(20 \mathrm{~mL})$ was added to a stirred solution of $\mathrm{NaIO}_{4}(124 \mathrm{mg}, 0.568 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, and stirring was continued at $25^{\circ} \mathrm{C}$ for 6 h . Brine (10 mL) was added, and the mixture was extracted with $\mathrm{CHCl}_{3}(5 \times$ 30 mL). The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ ($2 \times 20 \mathrm{~mL}$), dried over MgSO_{4}, and evaporated to dryness. Preparative TLC of onethird of the residue gave red solid quinone (15 mg) 43: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 6.62(\mathrm{~s}, 1, \mathrm{H}-8), 6.38(\mathrm{~s}$,
$1, \mathrm{H}-5), 5.88\left(\mathrm{~d}, \mathrm{~J}=1.41,1, \mathrm{OCH}_{2} \mathrm{O}\right), 5.84(\mathrm{~d}, \mathrm{~J}=1.42,1$ $\mathrm{OCH}_{2} \mathrm{O}$), 5.77 (s, 1, H-6'), 4.16 (ddd, J = 1.91, 4.07, 10.98, 1, $\mathrm{H}-3), 3.80\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.78-3.72(\mathrm{~m}, 3, \mathrm{H}-1,4), 3.52(\mathrm{t}, \mathrm{J}=$ 11.50, 1, H-3), 2.67 (dd, J = 5.13, 14.46, 1, H-9), 2.46 (dd, J = 10.94, 14.32, 1, H-9), 2.26 (dt, J $=4.86,16.80,1, \mathrm{H}-3 \mathrm{a}), 1.86-$ 1.68 (br, 1, OH), 1.40-1.34 (m, 1, H-9a); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 176.2 (C-5'), 175.7 (C-4'), 167.7 (C-2'), 153.5 (C-3'), 146.3 (C6), 146.0 (C-7), 130.6 (C-4a), 129.9 (C-8a), 108.9 (C-1'), 108.6 (C-5), $108.0(\mathrm{C}-8), 106.8\left(\mathrm{C}-6^{\prime}\right), 100.7\left(\mathrm{OCH}_{2} \mathrm{O}\right), 69.8(\mathrm{C}-3), 66.1$ (C-1), $56.1\left(\mathrm{OCH}_{3}\right), 38.6$ (C-9a), 34.1 (C-3a), 31.0 (C-4), 30.4 (C-9); HRMS [M ${ }^{+}$] Cal cd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{7}$ (reduced form): 372.1209; Found: 372.1210. The remaining $2 / 3$ of the residue was redissolved in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and stirred with aq (15 mL) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(164 \mathrm{mg}, 0.80 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(60 \mathrm{mg}, 0.42$ mmol) for 0.5 h following a known method. ${ }^{14}$ The CHCl_{3} phase was separated, and the aq phase was extracted with CHCl_{3} ($3 \times 10 \mathrm{~mL}$). The combined CHCl_{3} phase was dried over MgSO_{4}. Evaporation of the CHCl_{3} gave a residue, which was methylated with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}$ to afford $45(21 \mathrm{mg}$, three-step yield from 4'-demethyl-9-deoxypodophyllol, 39, 30\%). 45: $[\alpha]^{25}$ -126.6° ($\mathrm{c} 4.6, \mathrm{CHCl}_{3}$); $\mathrm{HPLC}_{\mathrm{RI} 1} 5.5, \mathrm{t}_{\mathrm{RG} 1} 4.7 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ 6.67 (s, 1, H-8), 6.29 (s, 1, H-5), 6.21 ($\mathrm{s}, 1, \mathrm{H}-6^{\prime}$), 5.86 (s, 2, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 3.87\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.87-3.83(\mathrm{~m}, 2, \mathrm{H}-3,4), 3.83(\mathrm{~s}$ $6,2 \times \mathrm{OCH}_{3}$), 3.83-3.76 (m, 2, H-1), $3.26(\mathrm{~d}, \mathrm{~J}=10.44,11.76$, $1, \mathrm{H}-3$), 2.75 (dd, J $=4.99,13.97,1, \mathrm{H}-9), 2.54$ (dd, J = 12.10, 13.53, 1, H-9), 2.20-2.16 (m, 1, H-3a), 1.65-1.25 (m, 1, H-9a); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 153.4$ (C-5'), 151.9 (C-3'), 150.6 (C-2'), 146.0 (C-7), 145.6 (C-6), 135.4 (C-4'), 133.3 (C-4a), 130.3 (C-8a), 108.8 (C-5), $107.8(\mathrm{C}-8), 107.4\left(\mathrm{C}-1^{\prime}\right), 100.5\left(\mathrm{OCH}_{2} \mathrm{O}\right), 95.7\left(\mathrm{C}-6^{\prime}\right), 67.1$ (C-3), $66.6(\mathrm{C}-1), 60.94\left(\mathrm{OCH}_{3}\right), 60.91\left(\mathrm{OCH}_{3}\right), 55.8\left(\mathrm{OCH}_{3}\right)$ 39.6 (C-9a), 34.6 (C-3a), 33.2 (C-4), 31.2 (C-9); HRMS [M+ ${ }^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{7}$: 400.1522; Found: 400.1531.

Benzodihydropyran Acetate 47. $\mathrm{Ac}_{2} \mathrm{O}$ ($33 \mathrm{mg}, 0.32 \mathrm{mmol}$) in dry THF (0.5 mL) was added to 45 ($64 \mathrm{mg}, 0.16 \mathrm{mmol}$) and DMAP ($39 \mathrm{mg}, 0.32 \mathrm{mmol}$) in THF (1 mL). The resulting solution was stirred under N_{2} at $25^{\circ} \mathrm{C}$ for 2 h . The residue from evaporation of THF at reduced pressure was dissolved in ether (30 mL). The mixture was washed with aq NaHCO_{3} (5\%) $(2 \times 5 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{HCl}(2 \times 5 \mathrm{~mL})$, water (5 mL), and brine $(5 \mathrm{~mL})$. The organic phase was dried (anhyd MgSO_{4}). The ether was evaporated at reduced pressure. MPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right.$ 20/1) gave pure 47 (60 mg, 85\%): $[\alpha]^{25} \mathrm{D}-122.2^{\circ}$ (c 1.04 CHCl_{3}); HPLC t HI_{2} 9.4, $\mathrm{t}_{\mathrm{RG} 2} 8.5 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 6.67(\mathrm{~s}, 1$, $\mathrm{H}-8), 6.29$ (s, 1, H-5), 6.22 (s, 1, H-6'), 5.87 (s, 2, OCH ${ }_{2} \mathrm{O}$), 4.244.17 (m, 2, H-1), 3.88 (s, 3, OCH 3), 3.93-3.86 (m, 1, H-4), 3.86$3.82(\mathrm{~m}, 1, \mathrm{H}-3), 3.84\left(\mathrm{~s}, 6,2 \times \mathrm{OCH}_{3}\right), 3.25(\mathrm{dd}, \mathrm{J}=10.78$, 11.63, 1, H-3), 2.70 (dd, J $=4.99,14.02,1, H-9), 2.54$ (dd, J = 11.97, 13.81, 1, H-9), 2.23-2.18 (m, 1, H-3a), 2.10 (s, 3, CH3), 1.43-1.38 (m, 1, H-9a); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 171.1 (CO), 153.4 (C-5'), 151.9 (C-3'), 150.4 (C-2'), 146.1 (C-7), 145.6 (C-6), 135.4 (C-4'), 133.0 (C-4a), 129.7 (C-8a), 108.8 (C-5), 107.7 (C-8), 107.1 $\left(\mathrm{C}-1^{\prime}\right), 100.6\left(\mathrm{OCH}_{2} \mathrm{O}\right), 95.6\left(\mathrm{C}-6^{\prime}\right), 67.6(\mathrm{C}-1), 66.8(\mathrm{C}-3), 60.9$ $\left(\mathrm{OCH}_{3}\right), 55.8\left(\mathrm{OCH}_{3}\right), 36.3(\mathrm{C}-9 \mathrm{a}), 34.8(\mathrm{C}-3 \mathrm{a}), 33.0(\mathrm{C}-4), 31.2$ (C-9), $20.9\left(\mathrm{CH}_{3}\right) ; \mathrm{HRMS}\left[\mathrm{M}^{+}\right]$Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{8}: 442.1628 ;$ Found: 442.1631

Benzodihydropyran 49 through Mesylation of Alcohol 45 Giving 48. Alcohol 45 ($162 \mathrm{mg}, 0.40 \mathrm{mmol}$) was treated with $\mathrm{MsCl}(66 \mathrm{mg}, 0.57 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under N_{2} and at $0^{\circ} \mathrm{C}$ for 2 h in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ ($58 \mathrm{mg}, 0.57 \mathrm{mmol}$). Mesylate 48 ($193 \mathrm{mg}, 99.7 \%$) was obtained after the standard workup procedure. Reductive cleavage ${ }^{15}$ of mesylate 48 giving 49. A mixture of mesylate 48 ($95 \mathrm{mg}, 0.20 \mathrm{mmol}$), Nal (150 $\mathrm{mg}, 1.0 \mathrm{mmol}$), zinc powder ($131 \mathrm{mg}, 2.0 \mathrm{mmol}$), and glyme (5 mL) was heated to reflux under N_{2} for 3 h . Standard processing of the reaction mixture followed by MPLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 20$ / 1) gave 49 ($52 \mathrm{mg}, 68 \%$) and unconverted 48 ($12 \mathrm{mg}, 13 \%$) 49: mp 152-154 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-175.0^{\circ}\left(\mathrm{C} 0.7, \mathrm{CHCl}_{3}\right) ; \mathrm{HPLC}_{\mathrm{RII}}$ 18.3, $\mathrm{t}_{\mathrm{RG} 1} 12.9 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 6.64$ ($\mathrm{s}, 1, \mathrm{H}-8$), 6.31 ($\mathrm{s}, 1$, H-5), 6.21 (s, 1, H-6'), 5.85 (s, 2, OCH 2 O), 3.90 (d, J = 5.57, 1 , $\mathrm{H}-4), 3.88\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$, 3.82 (dd, J = 1.62, 4.01, 1, H-3), 3.22 (t, J = 11.23, 1, H-3), 2.61 (dd, J $=4.87,14.09,1, H-9), 2.47(d d, J=11.33,13.93$, 1, H-9), 2.02 (m, 1, H-3a), 1.23 (d, J = 6.67, 3, H-1), 1.13 (m, 1, H-9a); ${ }^{13} \mathrm{C}$ N MR (CDCl_{3}) 153.28 (C-5'), 152.03 (C-3'), 150.63
(C-2'), 145.80 (C-7), 145.40 (C-6), 135.36 (C-4'), 132.76 (C-4a), 131.35 (C-8a), 108.82 (C-5), 107.58 (C-1'), 107.52 (C-8), 100.46 $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 95.65\left(\mathrm{C}-6^{\prime}\right), 66.83(\mathrm{C}-3), 60.93\left(\mathrm{OCH}_{3}\right), 60.89\left(\mathrm{OCH}_{3}\right)$, $55.81\left(\mathrm{OCH}_{3}\right), 39.22$ (C-3a), 36.51 (C-9), 32.88 (C-4), 31.57 (C9a), 21.55 (C-1); HRMS $\left[\mathrm{M}^{+}\right]$Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}$: 384.1573; Found: 384.1580.
Preparation of 4'-Demethyl-9-deoxysikkimotoxin, 41. According to a known procedure, ${ }^{10}$ treating 9-deoxysikkimotoxin 40 ($550 \mathrm{mg}, 1.33 \mathrm{mmol}$) with $30 \% \mathrm{HBr}-\mathrm{HOAc}(3 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}(25 \mathrm{~mL})$ for 13.7 h gave 41 ($338 \mathrm{mg}, 64 \%$).
Preparation of 4'-Demethyl-9-deoxysikkimol, 42. Treating 4'-demethyl-9-deoxysikkimotoxin (41, $338 \mathrm{mg}, 0.844 \mathrm{mmol}$) in dry THF (25 mL) with $\mathrm{LiAlH}_{4}(257 \mathrm{mg}, 6.752 \mathrm{mmol})$ gave 42 ($210 \mathrm{mg}, 62 \%$).

Formation of Benzodihydropyran 46. A solution of diol $42(208 \mathrm{mg}, 0.514 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(242 \mathrm{mg}, 1.131 \mathrm{mmol})$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} / \mathrm{H}_{2} \mathrm{O}(40 / 80 \mathrm{~mL})$ was stirred at $25{ }^{\circ} \mathrm{C}$ for 9 h . Processing the reaction mixture in the manner previously described for conversion of 39 to $\mathbf{4 3}$ followed by MPLC ($\mathrm{CH}_{2}{ }^{-}$ $\mathrm{Cl}_{2} /$ EtOAc, $1 / 1$) gave red, solid quinone ($100 \mathrm{mg}, 50 \%$) 44: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) 6.59 (s, 1, H-8), $6.40(\mathrm{~s}, 1, \mathrm{H}-5), 5.75\left(\mathrm{~s}, 1, \mathrm{H}-\mathrm{b}^{\prime}\right)$, $4.16(\mathrm{~d}, \mathrm{~J}=9.07,1, \mathrm{H}-3), 3.96(\mathrm{br}, 1, \mathrm{OH}), 3.78\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$, 3.77 (s, 3, OCH 3), $3.69\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.82-3.52(\mathrm{~m}, 4, \mathrm{H}-1,3$, $4), 2.65$ (dd, J $=5.51,15.22,1, \mathrm{H}-9), 2.44$ (dd, J = 8.84, 15.08, 1, H-9), 2.32-2.24 (m, 1, H-3a), 1.53-1.48 (m, 1, H-9a); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 176.2 ($\mathrm{C}-5^{\prime}$), 175.9 (C-4'), 167.9 (C-2'), 153.3 (C3^{\prime}), 147.6 (C-6), 147.5 (C-7), 129.0 (C-4a), 128.0 (C-8a), 112.0 (C-8), 111.4 (C-5), 109.5 (C-1'), 106.9 (C-6'), 69.8 (C-3), 65.5 $(\mathrm{C}-1), 56.2\left(\mathrm{OCH}_{3}\right), 56.0\left(\mathrm{OCH}_{3}\right), 55.9\left(\mathrm{OCH}_{3}\right), 37.7(\mathrm{C}-9 \mathrm{a}), 33.3$ (C-3a), 30.0 (C-4), 29.2 (C-9). The quinone 44 ($100 \mathrm{mg}, 0.259$ $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and an aq solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(477$ $\mathrm{mg}, 2.329 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(184 \mathrm{mg}, 1.295 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}$ $(8 \mathrm{~mL})$ were stirred rapidly for 0.5 h . The resulting catechol was methylated in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(30 \mathrm{~mL})$ with dimethyl sulfate ($300 \mathrm{mg}, 2.38 \mathrm{mmol}$) gave 46 ($60 \mathrm{mg}, 56 \%$): $[\alpha]^{25} \mathrm{p}-242.3^{\circ}$ (c 1.1, CHCl_{3}); ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 6.70(\mathrm{~s}, 1, \mathrm{H}-8), 6.36(\mathrm{~s}, 1, \mathrm{H}-5)$, 6.22 (s, 1, H-6'), 3.90 (d, J = 5.44, 1, H-4), 3.87 (s, 3, OCH ${ }_{3}$), $3.85\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.82(\mathrm{~m}, 1, \mathrm{H}-3), 3.81(\mathrm{~s}$, $3, \mathrm{OCH}_{3}$), 3.81-3.68(m, 2, H-1), $3.68\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.29(\mathrm{t}, \mathrm{J}=$ 11.18, 1, H-3), 2.76 (dd, J = 5.15, 14.18, 1, H-9), 2.56 (dd, J = 11.25, 13.96, 1, H-9), 2.22 (m, 1, H-3a), 1.72 (br, 1, OH), 1.35 (m, 1, H-9a); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 152.1 (C-5'), 150.9 (C-3'), 149.5 (C-2'), 146.1 (C-7 or 6), 146.0 (C-6 or 7), 134.1 (C-4'), 130.5 (C-4a), 127.8 (C-8a), 110.9 (C-5), 109.7 (C-8), 106.5 (C-1'), 94.6 (C-6'), $66.1(\mathrm{C}-3), 65.4(\mathrm{C}-1), 59.8\left(\mathrm{OCH}_{3}\right), 59.7\left(\mathrm{OCH}_{3}\right), 54.9$ $\left(\mathrm{OCH}_{3}\right), 54.7\left(\mathrm{OCH}_{3}\right), 54.6\left(\mathrm{OCH}_{3}\right), 38.3(\mathrm{C}-9 a), 33.3(\mathrm{C}-3 \mathrm{a})$, 31.5 (C-4), 29.4 (C-9); HRMS [M $\left.{ }^{+}+\mathrm{Li}\right]$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{Li}$: 423.1995; Found: 423.2001.

Formation of Oxabicyclooctane 36 from 9-Deoxypodophyllotoxin. Ethanolysis of 9-Deoxypodophyllotoxin 29. 29 ($530 \mathrm{mg}, 1.33 \mathrm{mmol}$) in 30 mL of absolute EtOH and 10 drops of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ was heated to reflux for 2 h after which the reaction mixture was cooled to $25^{\circ} \mathrm{C}$ and the EtOH was evaporated. The residue was dissolved in EtOAc (40 mL) and successively washed with 5% aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL}$), water (10 $\mathrm{mL})$, and brine (5 mL). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent and MPLC of the residue (eluting first with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 10 / 1$, then EtOAc) gave $\mathbf{3 0}$ (140 mg , 24\%) and starting 29 (389 mg, 73\%). Hydroxyl Group Protection of 30. DIPEA ($643 \mathrm{mg}, 4.96 \mathrm{mmol}$) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}$) was added to an ice-cooled solution of 30 (552 $\mathrm{mg}, 1.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After stirring the resulting solution under N_{2} for 10 min , a solution of $\mathrm{BrCH}_{2} \mathrm{OCH}_{3}$ (689 $\mathrm{mg}, 90 \%, 4.96 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added dropwise over 5 min , after which time stirring under N_{2} continued for 7 h . Solvent was removed at reduced pressure below $30^{\circ} \mathrm{C}$, and the residue was dissolved in EtOAc (40 mL). The EtOAc solution was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and brine (5 mL), and the organic phase was dried (anhyd MgSO_{4}). Reduced pressure solvent evaporation gave a residue, which was purified by MPLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 5 / 1$) to give 31 (589 mg , 97\%). Ester Reduction in 31. Ester 31 ($617 \mathrm{mg}, 1.26 \mathrm{mmol}$) in dry THF was stirred with $\mathrm{LiAlH}_{4}(252 \mathrm{mg}, 6.31 \mathrm{mmol})$ for 4.5 h . The residue obtained after standard workup was purified
by MPLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 1 / 1$) to obtain 32 ($494 \mathrm{mg}, 88 \%$). Mesylation of Alcohol 32 Giving 33. $\mathrm{MsCl}(234 \mathrm{mg}, 2.04$ mmol) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise to an ice-cooled solution of $32(455 \mathrm{mg}, 1.02 \mathrm{mmol})$ and triethylamine ($310 \mathrm{mg}, 3.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$. The resulting mixture was stirred under N_{2} at $0^{\circ} \mathrm{C}$ for 1.5 h . Water was added and the organic phase separated. The aq phase was extracted with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{~mL})$, and the combined organic phase was dried (anhyd MgSO_{4}). Evaporation of the solvent at reduced pressure and below $30^{\circ} \mathrm{C}$ gave 33 (520 mg , 97%), which was used in the next step without further purification. Reductive Cleavage ${ }^{15}$ of Mesylate 33 Giving 34. A mixture of 33 (510 mg , 0.97 mmol), Nal ($730 \mathrm{mg}, 4.86 \mathrm{mmol}$), and zinc powder (636 $\mathrm{mg}, 9.72 \mathrm{mmol}$) in glyme (10 mL) was refluxed under N_{2} for 3 h. The mixture was filtered to remove excess Nal and zinc. The filtrate was added to water and then extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined EtOAc extract was washed with brine and dried (anhyd $\mathrm{Mg} \mathrm{SO}_{4}$), and EtOAc was evaporated at reduced pressure. The residue was separated by MPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 10 / 1\right)$ to obtain 34 ($238 \mathrm{mg}, 57 \%$) and unconverted 33 ($50 \mathrm{mg}, 10 \%$). Deprotection in 34 Giving 35. A mixture of 34 ($238 \mathrm{mg}, 0.55 \mathrm{mmol}$), aq HCl ($37 \%, 10$ drops), and $\mathrm{MeOH}\left(10 \mathrm{~mL}\right.$) was refluxed under N_{2} for 1 h and then cooled to $25{ }^{\circ} \mathrm{C}$. The MeOH was evaporated at reduced pressure, and the residue was dissolved in EtOAc (25 mL). The solution was washed with 5%, aq $\mathrm{NaHCO}_{3}(6 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}$ (5 mL), and brine. The organic phase was dried (anhyd MgSO_{4}). The EtOAc was evaporated at reduced pressure, and al cohol 35 ($170 \mathrm{mg}, 80 \%$) was separated from the residue by MPLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 5 / 1$). Methyleneoxy Bridging in 35 Giving 36. E mploying the standard DDQ oxidation procedure described above, alcohol 35 ($156 \mathrm{mg}, 0.40 \mathrm{mmol}$) was treated with DDQ ($110 \mathrm{mg}, 0.48 \mathrm{~mm}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ for 4.5 h . MPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 15 / 1\right)$ gave 36 (60 mg , 39\%). 36: $[\alpha]^{25}{ }_{\mathrm{D}}+10.5^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$; HPLC $\mathrm{t}_{\mathrm{RI} 2} 7.6, \mathrm{t}_{\mathrm{RG} 2} 8.4 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 7.15$ (br, 1, H-2' or 6^{\prime}), 6.64 ($\mathrm{s}, 1, \mathrm{H}-8$), 6.38 ($\mathrm{s}, 1, \mathrm{H}-5$), 6.27 (br, 1, H-6' or 2^{\prime}), 5.88 (d, J = $1.42,1, \mathrm{OCH}_{2} \mathrm{O}$), $5.83(\mathrm{~d}$, $\left.\mathrm{J}=1.42,1, \mathrm{OCH}_{2} \mathrm{O}\right), 4.21$ (ddd, J $=2.42,5.54,8.07,1, \mathrm{H}-1$), $3.89\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.95-3.74\left(\mathrm{~m}, 7,2 \times \mathrm{OCH}_{3}, \mathrm{H}-1\right), 3.20(\mathrm{dt}$, $J=2.79,17.03,1, \mathrm{H}-9), 2.73$ (dd, J = 2.21, 17.04, 1, H-9), 2.55 ($\mathrm{m}, 1, \mathrm{H}-9 \mathrm{a}$), 2.17 (m, 1, H-3a), 1.16 (d, J $=6.93,3, \mathrm{H}-3$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 153.18 ($\mathrm{C}-3^{\prime}$ or 5^{\prime}), 152.51 ($\mathrm{C}-5^{\prime}$ or $\left.3^{\prime}\right), 146.84$ (C-7), 145.67 (C-6), 137.12 (C-1'), 136.89 (C-4'), 132.93 (C-8a), 128.80 (C-4a), 108.96 (C-5), 108.12 (C-8), 104.53 (C-2' or 6^{\prime}), 103.75 (C-6' or 2^{\prime}), $100.78\left(\mathrm{OCH}_{2} \mathrm{O}\right), 85.43(\mathrm{C}-4), 72.25(\mathrm{C}-1)$, $60.88\left(\mathrm{OCH}_{3}\right), 56.18\left(\mathrm{OCH}_{3}\right), 44.81(\mathrm{C}-9 \mathrm{a}), 39.97(\mathrm{C}-3 \mathrm{a}), 32.21$ (C-9), 11.21 (C-3); HRMS [M ${ }^{+}$] Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}: 384.1573$; Found: 384.1577.

Formation of Oxabicyclooctane 28 from Dimethyl- $\alpha-$ conidendrin, 2. Methanolysis of $2.2(204 \mathrm{mg}, 0.53 \mathrm{mmol})$ in 24 mL of absolute MeOH and 5 drops of concentrated $\mathrm{H}_{2}-$ SO_{4} was heated to reflux for 24 h and then processed in the manner used for the conversion of 9-deoxypodophyllotoxin to 30. Obtained 24 ($98 \mathrm{mg}, 44 \%$) and recovered 2 ($104 \mathrm{mg}, 51 \%$). Mesylation of Alcohol 24 Giving 25. MsCl (129 mg, 1.12 mmol) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise to an ice-cooled solution of alcohol 24 ($234 \mathrm{mg}, 0.56 \mathrm{mmol}$) and triethylamine ($114 \mathrm{mg}, 1.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. The mixture was stirred under N_{2} at $0{ }^{\circ} \mathrm{C}$ for 2.5 h . Subsequent processing of the mixture in the manner used in the conversion of $\mathbf{3 2}$ to $\mathbf{3 3}$ gave $\mathbf{2 5}$ ($268 \mathrm{mg}, 96 \%$), which was used without further purification. Reductive Cleavage of Mesylate 25 Giving 26. A mixture of $\mathbf{2 5}$ ($258 \mathrm{mg}, 0.52 \mathrm{mmol}$), Nal (391 $\mathrm{mg}, 2.61 \mathrm{mmol}$), Zn powder ($171 \mathrm{mg}, 2.61 \mathrm{mmol}$), and glyme (15 mL) was heated to reflux under N_{2} for 4 h . Subsequent processing of the mixture in the manner used in the conversion of $\mathbf{3 3}$ to $\mathbf{3 4}$ gave $\mathbf{2 6}$ ($155 \mathrm{mg}, 74 \%$) and recovered $\mathbf{2 5}$ (24 mg , $9 \%)$ from MPLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 10 / 1$). Reduction of Ester 26 to 27. Ester 26 ($153 \mathrm{mg}, 0.382 \mathrm{mmol}$) in 7 mL of dry THF and $\mathrm{LiAlH}_{4}(73 \mathrm{mg}, 1.910 \mathrm{mmol})$ was stirred for 14 h followed by processing in the normal manner as noted above gave 27 (130 mg , 91\%). Methyleneoxy Bridging in 27 Giving 28. $27(120 \mathrm{mg}, 0.322 \mathrm{mmol})$ treated with DDQ ($88 \mathrm{mg}, 0.387$
mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the manner indicated above gave $\mathbf{2 8}$ (67 $\mathrm{mg}, 56 \%$) and an aromatized aldehyde as minor product (13 $\mathrm{mg}, 11 \%$). 28: $[\alpha]^{25}{ }_{\mathrm{D}}+50.6^{\circ}$ (c 1.8, CHCl_{3}); $\mathrm{HPLC}_{\mathrm{t}_{\text {RI2 }}} 6.0, \mathrm{t}_{\text {RG } 2}$ 7.2; ${ }^{1 \mathrm{H}}$ NMR $\left(\mathrm{CDCl}_{3}\right) 7.48$ (br, 1, H-5'), 6.87 (br, 1, H-6'), 6.66 (s, 1, H-8), 6.64 (br, 1, H-2'), 6.43 (s, 1, H-5), 4.22 (ddd, J = 2.28, 5.65, 8.01, 1, H-1), $3.90\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right)$, 3.76 (d, J = 8.10, 1, H-1), 3.97-3.74 (br, 3, OCH ${ }_{3}$), 3.59 ($\mathrm{s}, 3$, OCH_{3}), 3.21 (dt, J $=2.70,16.89,1, \mathrm{H}-9$), 2.71 (dd, J $=2.03$, 16.91, 1, H-9), 2.57 (m, 1, H-9a), 2.12 (m, 1, H-3a), 1.08 (d, $\mathrm{J}=6.88,3, \mathrm{H}-3)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 148.10\left(\mathrm{C}-3^{\prime}\right), 147.57(0)$, 146.70 (0), 133.90 ($\left(-1^{\prime}\right), 131.53$ (C-4a), 127.36 (C-8a), 119.14 (C-6'), 111.71 (C-5), 110.84 (C-8), $109.90\left(\mathrm{C}-2^{\prime}, 5^{\prime}\right), 85.10(\mathrm{C}-$ 4), $72.13(\mathrm{C}-1), 55.76\left(\mathrm{OCH}_{3}\right), 55.74\left(\mathrm{OCH}_{3}\right), 55.60\left(\mathrm{OCH}_{3}\right)$, 45.28 (C-9a), 39.72 (C-3a), 32.74 (C-9), 10.74 (C-3). HRMS [M ${ }^{+}$] Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5}$: 370.1780; F ound: 370.1779.

Molecular Modeling. Initial structural models of all compounds were constructed using Alchemy (versions II and 2000) ${ }^{11}$ or Chem3D (version 3.5.1) ${ }^{16}$ molecular modeling programs. Atomic charges were computed from a Mulliken population analysis using the Gaussian94 program. ${ }^{17}$ Final mini-mum-energy structures were computed with the Discover (version 2.9.5) program ${ }^{18}$ using its built-in Amber force field. Molecular dynamics (MD) simulations were also carried out with the Discover-Amber combination. All MD simulations were run at 300 K (NVT conditions) for a duration of 400 ps (after an initial equilibration period of 5 ps) using a time-step of 1 fs. Preliminary MD runs comparing fully substituted molecules with their skeletal equivalents, which were devoid of substituents on the two aromatic rings but contained all other substituents, showed no measurable differences. Consequently, all MD results are reported for the unsubstituted (skeletal) molecules.

Acknowledgment. This work was supported by the Mcl ntire-Stennis USDA-CREES program and SUNYESF. Determination of high-resolution mass spectra by the Nebraska Center for Mass Spectrometry, University of Nebraska, Lincoln, NE is also acknowledged. Compounds were evaluated for cytotoxic activities through the Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD.

Supporting Information Available: HPLC data for compounds 5, 6, 11, 12, 14, 16, 17, 19-23, 28, 36, 45, 46, 47, and 49. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Dantzig, A.; LaLonde, R. T.; Ramdayal, F. D.; Shepard, R. L.; Yanai, K.; Zhang, M. Cytotoxic responses to aromatic ring and configurational variations in α-conidendrin, podophyllotoxin, and sikkimotoxin derivatives. J. Med. Chem. 2001, 44, 180-185.
(2) Ramdayal, F. D.; Kiemle, D. J .; LaLonde, R. T. Directed DDQpromoted benzylic oxygenations of tetrahydronaphthalenes. J . Org. Chem. 1999, 64, 4607-4609.
(3) One indi cator of the spacial relation between fused and pendant aromatic ring is the torsion angle C-5, C-4a, C-4, all within the tetrahydronaphthalene scaffold, and $\mathrm{C}-1^{\prime}$ of the pendant ring. The measure of this torsion angle indicates the position of $\mathrm{C}-1^{\prime}$ relative to the plane of the fused aromatic ring. The energyminimized, Alchemy models of oxolane 10 and oxabicyclooctane 5 (Scheme 1) and dioxatricyclodecane 14 and oxabicyclooctane 16 (Scheme 2) have the torsion angles as follows: 10, 73.6°; 5 , $24.6^{\circ} ; 14,26.1^{\circ}$; and $\mathbf{1 6}, 48.9^{\circ}$. The torsion angle C-4a, C-4, C-1', and $\mathrm{C}-2^{\prime}$ (or 6^{\prime}) defines the twist orientation of the pendant ring plane relative to the plane of the fused aromatic ring.
(4) Hearon, W. M.; MacGregor, W. S. The naturally occurring lignans. Chem. Rev. 1955, 55, 957-1068.
(5) Castro, M. A.; Gordaliza, M.; del Corral, J . M. M.; San Feliciano, A. Preparation of triols and ethers related to podophyllotoxin. Org. Prep. Proced. Int. 1994, 26, 539-547.
(6) A shorter route to 28, involving initial mesylation of oxabicyclooctane 6 followed by reduction, was infeasible since the mesylate of $\mathbf{6}$ was found unstable at temperatures considerably lower than that required for a $\mathrm{Nal} / \mathrm{Zn}$-reduction.
(7) Nemec, J. U.S. Patent 4609644, Sep. 2, 1986.
(8) Dioxatricyclodecane 14 gives a $\log \mathrm{GI}_{50}$ value of <-8 in CAKI1, whereas the antineoplastic agent Etoposide gives a value of -5.2 in the same cell line, as reported by Van Vliet, D. S.; Tachichibana, Y.; Bastow, K. F.; Huang, E. S.; Lee, K. H.J . Med. Chem. 2001, 44, 1422-1428.
(9) Preliminary investigations by Dr. Susan Bane (Chemistry Department, SUNY Binghamton, Binghamton, NY) indicate that unlike PT its cytotoxic dioxatricyclodecane derivative $\mathbf{1 4}$ has no effect on mi crotubule polymerization at concentrations up to 55 $\mu \mathrm{M}$.
(10) Hollingshead, M. G.; Alley, M. C.; Camalier, R. F.; Abbott, B. J.; Mayo, J. G.; Malspeis, L.; Grever, M. R. In vivo cultivation of tumor cells in hollow fibers. Life Sci. 1995, 57, 131-141.
(11) Tripos Inc, 1699 South Hanley Road, St. Louis, MO 63144.
(12) Murphy, S. T.; Ritchie, E.; Taylor, W. C. Some constituents of Austral obaileya scandens (Austrobailyaceae) structures of seven new lignans. Aust. J. Chem. 1975, 28, 81-90.
(13) Terada, T.; Fujimoto, K.; Nomura, M.; Yamashita, J .; K obunai, T.; Takeda, S.; Wierzba, K.; Yamada, Y.; Yamaguchi, H. Antitumor agents. I. DNA topoisomerase II inhibitory activity and the structural relationship of podophyllotoxin derivatives as antitumor agents. Chem. Pharm. Bull. 1992, 40, 2720-2727.
(14) Cooksey, C. J.; Land, E. J.; Riley, P. A. A simple onepot preparation of 4-alkoxy- and 4-alkylthio-catechols and benzoquinones. Org. Prep. Proced. Int. 1996, 28, 463-498.
(15) Fujimoto, Y.; Tatsuno, T. A novel method for reductive removal of tosyloxy and mesyloxy groups. Tetrahedron Lett. 1976, 37, 3325-3326.
(16) CambridgeSoft. Com, 100 Cambridge Park Drive, Cambridge, MA 02140.
(17) Gaussian, Inc., Carnegie Office Park, Building 6, Suite 230, Carnegie, PA 15106.
(18) Accelrys Inc., 9685 Scranton Road, San Diego, CA 92121.

J M 020158P

[^0]: * To whom correspondence should be sent. Tel: (315) 470-6823. Fax: (315) 470-6856, e-mail: rtlal ond@mailbox.syr.edu.
 § Present address: Nippon Paper Industries Co. Ltd.

