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A data set of 348 urea-like compounds that inhibit the soluble epoxide hydrolase enzyme in
mice and humans is examined. Compounds having IC50 values ranging from 0.06 to >500 µM
(murine) and 0.10 to >500 µM (human) are categorized as active or inactive for classification,
while quantitation is performed on smaller compound subsets ranging from 0.07 to 431 µM
(murine) and 0.11 to 490 µM (human). Each compound is represented by calculated structural
descriptors that encode topological, geometrical, electronic, and polar surface features. Multiple
linear regression (MLR) and computational neural networks (CNNs) are employed for
quantitative models. Three classification algorithms, k-nearest neighbor (kNN), linear dis-
criminant analysis (LDA), and radial basis function neural networks (RBFNN), are used to
categorize compounds as active or inactive based on selected data split points. Quantitative
modeling of human enzyme inhibition results in a nonlinear, five-descriptor model with root-
mean-square errors (log units of IC50 [µM]) of 0.616 (r2 ) 0.66), 0.674 (r2 ) 0.61), and 0.914 (r2

) 0.33) for training, cross-validation, and prediction sets, respectively. The best classification
results for human and murine enzyme inhibition are found using kNN. Human classification
rates using a seven-descriptor model for training and prediction sets are 89.1% and 91.4%,
respectively. Murine classification rates using a five-descriptor model for training and prediction
sets are 91.5% and 88.6%, respectively.

Introduction

Soluble epoxide hydrolases (sEH) are ubiquitous
enzymes that catalyze the hydrolysis of epoxides to their
corresponding 1,2-diols by the addition of water.1,2

Found in many plant and animal species, these enzymes
play an important role in the conversion of lipophilic
compounds to more hydrophilic and reactive metabolites
in biological systems. In some cases, the hydrolysis of
epoxides to diols serves as a detoxification step by
creating more polar, excretable products,3 or compounds
necessary for biological processes.1 In other cases, the
resulting diols or their metabolites can be more harmful
to a system than the parent epoxides. Epoxy fatty acids,
such as leukotoxin and isoleukotoxin, are hydrolyzed to
more toxic diols4 and have been associated with symp-
toms of multiple organ failure in burn victims5 and
acute respiratory distress syndrome.6 Epoxyeicosatrieno-
ic acids (EETs) are metabolites of arachidonic acids that
undergo hydrolysis by sEH to form dihydroxyeicosa-
trienoic acids (DHETs).7-9 EETs help regulate blood
pressure, but an increase in DHETs, particularly 14,-
15-DHET, a product of sEH hydrolysis, has been as-
sociated with induced hypertension in pregnant women.8
Research has shown that inhibition of sEH can reduce
blood pressure in mice7 and rats.8 The search for good
inhibitors of sEH may lead to promising pharmaceutical
targets for the treatment of hypertension and other
physiological symptoms in the human body.

The crystal structure of the murine sEH enzyme and
its interaction with alkylurea inhibitors has been in-
vestigated.3,10 The active site resides in the corner of
an L-shaped tunnel surrounded by hydrophobic chan-
nels that are open to solvents.10 This allows an inhibitor
to approach from either side. An alkylurea carbonyl
oxygen can accept a hydrogen bond from a hydroxyl
group on an active site tyrosine. Likewise, hydrogen
bond interactions can occur between an alkylurea amine
group and an aspartate carboxyl group at the active site.
Both interactions mimic those encountered in the ring-
opening of an epoxide at the active site,10 and previous
studies have investigated the roles of aspartates and
tyrosines in this mechanism.3,11,12

Several types of compounds have been investigated
as possible inhibitors of epoxide hydrolases such as
chalcone oxides,13,14 heavy metals,15 and alkylurea
compounds,16,17 but the focus of this study is the use of
alkylurea compounds. The backbone structure for the
majority of compounds used in this study (288 out of
348) and some representative compounds are shown in
Table 1. The inhibition of sEH is primarily dependent
upon hydrogen-bond acceptance of the inhibitor and
hydrogen-bond donation of the active site. The degree
to which this can occur when considering the structure
is dependent upon the substituent groups attached to
the inhibitor nitrogens (R1-R4). Because of the shape
and size of the active site tunnel as well as its hydro-
phobicity, varying substituent groups will affect how the
urea moiety of the molecule sits within the tunnel,
thereby affecting inhibition.
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The goal of this study is to create robust QSAR models
and binary classification models that predict and cat-
egorize inhibition values of alkylurea compounds toward
murine and human sEH. The use of quantitative and
classification models can augment and narrow the
search for future drug compounds, and the methodolo-
gies discussed below have been successfully applied in
modeling several physical and biological properties such
as aqueous solubility,18,19 glass transition tempera-
tures,20 multidrug-resistance reversal activity values,21

and enzyme inhibition.22-24

Experimental Section
Apparatus. Melting points were determined with a Thomas-

Hoover apparatus (A. H. Thomas Co., Philadelphia, PA) and
are uncorrected. Infrared (IR) spectra were recorded on a
Mattson Galaxy Series FTIR 3000 spectrometer (Madison, WI).
Mass spectra were measured by LC-MS: Waters 2790 liquid
chromatograph (Milford, MA) equipped with a 30 × 2.1 mm 3
µm C18 Xterra column (Waters) and a Micromass Quattro
Ultima (Manchester, UK) mass spectrometer. 1H and 13C NMR
were acquired on a QE-300 (General Electric).

Synthesis. Of the 348 compounds used in this study, 55
were obtained from Aldrich Chemical Co., Inc. (Milwaukee,
WI), 21 were obtained from Chem Service (West Chester, PA),
and 4 from Lancaster (Windham, NH) (see Table 3 for details).
A total of 98 compounds used in this study have been described
in previous publications.16,17,25-28 Other compounds were syn-
thesized by the condensation of the appropriate isocyanate and
amine following described methodology.16 Reaction products
were purified by recrystallization. In addition to sharp melting
points and single spot on silica gel thin-layer chromatography
(TLC), the products were characterized using 1H NMR (Gen-
eral Electric QE-300), infrared, and electrospray mass spec-
trometry. As examples, synthesis of compounds 160, 220, and
329 are described below.

N-Cyclohexyl-N′-4-chlorophenylurea (160). To a stirred
warm solution of 0.638 g (5.0 mmol) of 4-chloroaniline in 40
mL of hexane was added 0.71 g (5.7 mmol) of cyclohexyl
isocyanate dissolved in 5 mL of hexane. After stirring at room-
temperature overnight, a white solid was obtained, which was
recrystallized twice from hexane. The resulting white crystal
(1.06 g; yield: 84%) had a melting point of 223.0-224.0 °C.
IR (KBr) 3342 (s, NH), 3282 (m, NH), 1629 (s, CdO), and 1568
(s, amide II) cm-1. 1H NMR (DMSO-d6/TMS): δ 8.41 (s, 1H,
N′H), 7.40 (dt, J ) 8.9 Hz, 2.0 Hz, 2H, C-2′,6′), 7.24 (dt, J )
8.9 Hz, 2.0 Hz, 2H, C-3′,5′), 5.32 (d, J ) 8.1 Hz, 1H, NH), 3.4
(m, 1H, cyclohexyl), 1.8 (m, 2H, cyclohexyl), 1.7 (m, 2H,

cyclohexyl), 1.5 (m, 1H, cyclohexyl), 1.3 (m, 2H, cyclohexyl),
1.2 (m, 3H, cyclohexyl) ppm; 13C NMR (DMSO-d6): δ 154.3
(CdO), 139.6 (C-1′), 128.4 (C-3′,5′), 124.4 (C-4′), 119.1 (C-2′,6′),
47. (C-1), 33.0 (C-2,6), 25.3 (C-4), 24.4 (C-3,5) ppm. LC-MS m/z
(relative intensity): 505.1 (19, [2M + H]+), 253.0 (100, [M +
H]+).

N,N′-Bis(3,4-dichlorophenyl)urea (220). To a stirred
solution of 0.53 g (3.3 mmol) of 3,4-dichloroaniline in 15 mL
of chloroform was added 0.56 g (3.0 mmol) of 3,4-dichlorophe-
nyl isocyanate dissolved in 5 mL of chloroform. After stirring
at room temperature for 1 h, a white solid was obtained, which
was recrystallized twice from hexane. The resulting white
crystal (0.96 g; yield: 91%) had a decomposition point of
270.0-271.0 °C. IR (KBr) 3293 (m, NH), 3274 (m, NH), 1624
(s, CdO), and 1567 (s, amide II) cm-1. 1H NMR (CDCl3/TMS):
δ 9.54 (s, 2H, NH), 8.26 (s, 2H, C-2,2′), 7.93 (d, J ) 9.0 Hz,
2H, C-5,5′), 7.74 (d, J ) 8.9 Hz, 2H, C-6,6′) ppm. LC-MS m/z
(relative intensity): 701.5 (25, [2M + H]+), 351.3 (100, [M +
H]+).

N-Cyclopentyl-N′-dodecylurea (329). To a stirred cold
solution of 0.26 g (3.0 mmol) of cyclopentylamine in 30 mL of
hexane was added 0.42 g (2.0 mmol) of dodecyl isocyanate
dissolved in 5 mL of hexane. After stirring at room tempera-
ture for 1 h, a white solid was obtained, which was recrystal-
lized twice from hexane. The resulting white crystal (0.55 g;
yield: 93%) had a melting point of 95.0-96.0 °C. IR (KBr) 3346
(m, NH), 3329 (m, NH), 1671 (s, CdO), and 1570 (s, amide II)
cm-1. 1H NMR (DMSO-d6/TMS): δ 5.44 (t, J ) 7.4 Hz, 1H,
N′H), 4.87 (d, J ) 8.1 Hz, 1H, NH), 3.5 (m, 1H, cyclopentyl),
3.09 (q, J ) 6.9 Hz, 2H, CH2, C-1′), 1.9 (m, 2H, cyclopentyl),
1.7 (m, 2H, cyclopentyl), 1.6 (m, 1H, cyclopentyl), 1.4 (m, 2H,
CH2, C-2′), 1.2 (bm, 19H), 1.1 (m, 2H, C-11′), 0.85 (t, J ) 6.5
Hz, 3 H, CH3) ppm; 13C NMR (DMSO-d6): δ 157.8 (CdO), 48.6
(C-1), 40.3 (C-1′), 34.2 (C-2,5), 31.9 (C-2′), 30.5 (C-3′), 29.6 (C-
4′,5′,6′,7′), 29.5 (C-8′), 29.3 (C-9′), 27.1 (C-10′), 25.2 (C-3,4), 22.6
(C-11′), 14.1 (C-12′) ppm. LC-MS m/z (relative intensity): 593.5
(21, [2M + H]+), 297.3 (100, [M + H]+).

Enzyme Preparation. Recombinant mouse sEH (MsEH)
and human sEH (HsEH) were produced in a baculovirus
expression system29,30 and purified by affinity chromatogra-
phy.31 The preparations were at least 97% pure as judged by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis and
scanning densitometry. No detectable esterase or glutathione
transferase activities were observed. Esterases, as well as
glutathione transferases, interfere with the high throughput
screening assay used to obtain rank order of the compounds.32

Protein concentration was quantified using the Pierce BCA
assay (Pierce, Rockford, IL) using bovine serum albumin (BSA)
as the calibrating standard.

IC50 Assay Conditions. IC50s were determined as previ-
ously described16 using racemic 4-nitrophenyl-trans-2,3-epoxy-
3-phenylpropyl carbonate as substrate.32 Enzymes (0.10 µM
MsEH or 0.20 µM HsEH) were incubated with inhibitors for
5 min in pH 7.4 sodium phosphate buffer at 30 °C prior to
substrate introduction ([S] ) 40 µM). Activity was assessed
by measuring the appearance of the 4-nitrophenolate anion
at 405 nm at 30 °C during 1 min (Spectramax 200; Molecular
Devices, Inc., Sunnyvale, CA). Assays were performed in
triplicate. By definition, IC50 are concentrations of inhibitor
that reduce enzyme activity by 50%. IC50 were determined by
regression of at least five datum points with a minimum of
two points in the linear region of the curve on either side of
the IC50. The curve was generated from at least three separate
runs, each in triplicate.

Data Sets. This study employed four data sets, comprised
of subsets of the 348 urea-like compounds, each having an IC50

inhibition value (µM) for human sEH and/or murine sEH.
Common structural scaffolds and their frequencies in the data
are shown in Table 2. The observed IC50 values (in log units
of µM) for human and murine inhibition are shown for each
compound in Table 3. Structural information and observed IC50

(µM) values with associated errors are included in the Sup-
porting Information. Of these compounds, 288 (83%) have the
base structure shown in Table 1 with varying substituent

Table 1. Representative Compounds of the Prominent
Structural Backbone
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groups (R1-R4). The remaining compounds have a similar
structural basis with substitutions (i.e., replacing the oxygen
with sulfur, replacing one of the nitrogens with sulfur, etc.)
as illustrated in Table 2. Oxygen atoms are found in 326
compounds, nitrogen in 345, sulfur in 29, chlorine in 50, and
ring structures in 266 compounds. A total of four data sets
were created to accommodate quantitative and classification
modeling for human and murine data points.

Data set 1 contains all 207 compounds for which a quantita-
tive IC50 value was available for human sEH. Compounds for
which the lower limit of detection was reported were excluded,
as were compounds with IC50 values reported as inequalities.
Most of the compounds with IC50 results that are reported as
inequalities are non-urea-like compounds, which holds true
for data set 2 excluded compounds. The 207 compounds have
a molecular weight range of 144 to 404 amu (mean ) 250 amu).
Inhibition values range from 0.11 to 490 µM (-0.96 to 2.69
log units), with a mean inhibition value of 45.46 µM (0.69 log
units). Relative experimental errors range from 0.8% to 33.3%
of observed values (mean ) 6.8%). The compounds were split
into a training set (TSET), cross-validation set (CVSET), and
external prediction set (PSET) with 167, 19, and 21 members,
respectively.

Data set 2 contains all 186 compounds for which a quantita-
tive IC50 value was available for murine sEH. Compounds for
which the lower limit of detection was reported were excluded,
as were compounds with IC50 values reported as inequalities.
The 186 compounds have a molecular weight range of 101 to
404 amu (mean ) 246 amu). Inhibition values range from 0.07
to 431 µM (-1.16 to 2.63 log units), with a mean inhibition
value of 50.05 µM (0.66 log units). Relative experimental errors
range from 0.5% to 29.6% of observed values (mean ) 7.6%).
The 186 compounds were distributed among a TSET, CVSET,
and PSET of 150, 17, and 19 members, respectively. For both
data sets 1 and 2, compounds were placed pseudo-randomly
into the three subsets with the stipulation that PSET values
adequately represented the entire range of IC50 values without
being extreme values on either end of that range.

Data set 3 contains all 339 compounds for which an IC50

value was available for human sEH. The 339 compounds have
a molecular weight range of 60 to 527 amu (mean ) 246 amu).
A histogram of inhibition values was created to determine a
split point between active and inactive compounds based on
compound distribution (see Figure S1 in the Supporting
Information). A cutoff of 100 µM (2.00 log units) was chosen

as the best compromise between (1) having adequate numbers
of compounds in each class, and (2) finding a split point that
would support the highest quality models because many of the
compounds were poorly soluble above this cutoff concentration.
A total of 222 compounds with IC50 values of <100 µM are
considered active, and 117 compounds with IC50 g 100 µM
are considered inactive. The compounds were split into a
TSET, CVSET, and PSET of 269, 35, and 35 compounds,
respectively.

Data set 4 contains all 339 compounds for which an IC50

value was available for murine sEH. The 339 compounds have
a molecular weight range of 60 to 527 amu (mean ) 246 amu).
A histogram was created for these data, and the best split point
was determined to be 195 µM (2.29 log units) based on the
two criteria above (see Figure S2 in the Supporting Informa-
tion). A total of 235 compounds with IC50 <195 µM are
considered active, and 104 compounds with IC50 g 195 µM are
considered inactive. These compounds were placed into a
TSET, CVSET, and PSET of 269, 35, and 35 members,
respectively. For both data sets 3 and 4, compounds were
placed randomly into the three subsets with the stipulation
that the active-inactive global ratios were maintained in the
subsets.

All quantitative modeling and classification routines were
performed on a DEC 3000 AXP Model 500 workstation running
the UNIX operating system. The Automated Data Analysis
and Pattern recognition Toolkit (ADAPT) software package33,34

was used for descriptor generation and linear model building.
In-house simulated annealing,35 genetic algorithm,36 CNN,37

and classification routines were used to develop linear and
nonlinear quantitative and classification models. The following
steps describe the methodology used for building quantitative
and classification models.

Structure Entry and Modeling. All compounds were
sketched on a Pentium-III PC using HyperChem (Hypercube,
Inc. Waterloo, ON, Canada), which stored two-dimensional
connectivity information for use in ADAPT. All nontopological
descriptors required accurate three-dimensional structure
information, therefore the two-dimensional structures were
passed to the semiempirical molecular orbital package MO-
PAC38 for optimization. The PM3 Hamiltonian39 was used to
find low-energy three-dimensional geometries while the AM1
Hamiltonian40 was used for charge information. Previous work
has supported this approach of using different Hamiltonians
to extract appropriate structural information.41

Descriptor Generation. To construct predictive or clas-
sification models, it was first necessary to encode meaningful
information about the structural environment of each com-
pound. A total of 250 descriptors were calculated for each
compound using ADAPT: 150 topological, 30 geometric, 10
electronic, and 60 hybrid descriptors. Topological descriptors
required only a simple 2-D sketch of the molecule and encoded
information about atom types, bond types, and connectivity.
Examples included path counts,42,43 molecular connectivity,44-46

distance edge descriptors,47 and fragment counts. Geometric
descriptors provided information about molecular size and
shape; therefore, they were calculated using three-dimensional
coordinates of the structures. Some examples include molec-
ular surface area and volume48 and moments of inertia.49

Electronic descriptors provided information about the elec-
tronic environment of the compound such as partial atomic
charges, highest occupied and lowest unoccupied molecular
orbital energies, and electronegativity. Hybrid or polar surface
descriptors revealed information about partially charged
surface areas50 and hydrogen bonding characteristics of the
molecule.51 Specific details on descriptors that were chosen in
models are given below.

In addition to the ADAPT descriptors mentioned above,
DRAGON52 software was used to calculate approximately 230
descriptors from four categories: BCUTs (Burden CAS, Uni-
versity of Texas);53 molecular walk counts;54 constitutional
descriptors;51 and Weighted Holistic Invariant Molecular
(WHIM) descriptors.55,56

Table 2. Generic Scaffolds of the 348 Compounds
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Table 3. Observed and Predicted log IC50 (µM) Values and Predicted Class Labels for Soluble Epoxide Hydrolase Inhibitors

no. seta synthesisb

human
log IC50 (µM)

obsdc

human
log IC50 (µM)

calcdd
human cls.

calcde

murine
log IC50 (µM)

obsdc
murine cls.

calcde

1 3,4 Aldrich N/A x - N/A -
2 3,4 Aldrich N/A x - N/A -
3 3,4 Aldrich N/A x - N/A -
4 3,4 Aldrich N/A x - N/A -
5 3,4 Aldrich N/A x - N/A -
6 3,4 Aldrich N/A x - N/A -
7 3,4 ref 28 N/A x - N/A -
8 3,4 Aldrich N/A x - N/A -
9 3,4 Aldrich N/A x - N/A -
10 1,2,3,4 new 1.78 1.67 + 1.50 -*
11 3,4 new N/A x +* N/A -
12 3,4 new N/A x +* N/A -
13 1,2,3,4 new 0.04 0.31 + 0.41 +
14 1,2,3,4 new 0.00 0.18 + -0.10 +
15 3,4 new N/A x - N/A -
16 2,3,4 new N/A x - 2.52 -
17 3,4 new N/A x - N/A -
18 1,2,3,4 new -0.96 -0.29 + -0.74 +
19 1,2,3,4 ref 17 1.03 1.36 + 0.85 +
20 2,3,4 new N/A x +* 2.35 +*
21 1,2,3,4 new 1.62 1.98 + 1.13 +
22 1,2,3,4 new 0.63 1.16 + 0.23 +
23 1,2,3,4 new 0.49 0.81 + 0.05 +
24 1,2,3,4 new 0.16 0.67 + -0.07 +
25 1,2,3,4 new -0.24 -0.36 + 0.00 +
26 1,2,3,4 new -0.60 0.03 + -0.51 +
27 1,2,3,4 ref 17 0.74 1.18 + 0.02 +
28 1,2,3,4 ref 17 2.65 1.44 +* 2.13 +
29 1,2,3,4 ref 17 1.52 1.23 + 1.11 +
30 1,2,3,4 ref 17 -0.17 0.88 + -0.14 +
31 1,2,3,4 ref 17 0.78 1.27 + 0.08 +
32 1,2,3,4 ref 17 -0.14 0.33 + -1.05 +
33 1,2,3,4 ref 17 0.77 0.87 + 0.03 +
34 1,3,6 ref 17 -0.62 0.11 + N/A +x
35 1,2,3,4 ref 17 0.23 0.29 + -0.28 +
36 1,2,3,4 ref 17 1.53 1.19 + 0.98 +
37 1,3,4 ref 17 -0.92 -0.03 + -1.22 +
38 1,2,3,4 ref 17 -0.24 0.06 + 0.36 +
39 1,2,3,4 ref 17 -0.74 -0.34 + -0.92 +
40 1,2,3,4 ref 28 0.23 0.65 + -0.42 +
41 3,4 ref 17 N/A x - N/A +*
42 2,3,4 ref 17 N/A x +* 1.89 +
43 1,2,3,4 ref 17 1.68 0.63 + 0.76 +
44 1,2,3,4 ref 28 0.59 0.36 + 0.20 +
45 3,4 new -1.00 x + -1.22 +
46 1,2,3,4 new -0.21 -0.18 + -0.68 +
47 1,2,3,4 new -0.52 -0.55 + -0.92 +
48 5,6 ref 28 N/A x +x N/A +x
49 1,2,3,4 new -0.13 0.00 -* -0.70 +
50 3,4 ref 17 N/A x - N/A -
51 3,4 ref 28 N/A x - N/A +*
52 3,4 new N/A x - N/A -
53 2,3,4 new N/A x - 2.30 -
54 1,3,4 ref 28 -0.59 0.04 + -1.30 +
55 1,2,3,4 ref 28 1.18 -0.17 + -0.30 +
56 3,4 new N/A x - N/A +*
57 1,2,3,4 ref 28 -0.19 -0.10 -* -0.85 +
58 2,3,4 new N/A x +* 1.54 +
59 1,2,3,4 new 1.36 0.02 + -0.10 +
60 3,4 new N/A x - N/A -
61 2,3,4 new N/A x - 1.85 -*
62 2,3,4 new N/A x - 2.00 -*
63 3,4 new N/A x - N/A -
64 3,4 ref 17 N/A x - N/A -
65 3,4 new N/A x - N/A -
66 3,4 new N/A x - N/A -
67 3,4 ref 17 N/A x - N/A -
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Table 3. (Continued)

no. seta synthesisb

human
log IC50 (µM)

obsdc

human
log IC50 (µM)

calcdd
human cls.

calcde

murine
log IC50 (µM)

obsdc
murine cls.

calcde

68 3,4 new N/A x - N/A -
69 3,4 new N/A x - N/A -
70 3,4 ref 17 N/A x - N/A -
71 3,4 new N/A x - N/A -
72 3,4 new N/A x - N/A -
73 3,4 ref 28 N/A x +* N/A +*
74 1,2,3,4 new 1.44 1.65 + 1.29 +
75 1,2,3,4 ref 25 1.62 1.53 + 1.71 +
76 1,2,3,4 new 0.92 1.99 + 0.49 -*
77 1,2,3,4 new 1.60 1.11 + 1.23 +
78 1,2,3,4 ref 16 0.59 1.11 + 0.20 +
79 1,2,3,4 new 0.70 0.78 + -0.22 +
80 1,2,3,4 new 0.34 0.98 + -0.92 +
81 1,2,3,4 new 1.23 0.54 + 0.62 +
82 1,2,3,4 new 1.51 1.36 + 1.06 +
83 1,2,3,4 new 1.91 2.11 + 1.72 +
84 1,2,3,4 new 1.98 1.41 + 1.87 +
85 1,2,3,4 new 0.71 0.75 + 0.11 +
86 1,2,3,4 new 2.18 1.21 +* 1.60 +
87 1,2,3,4 new 0.49 -0.26 + -1.15 +
88 1,2,3,4 new 2.45 1.35 +* 2.13 +
89 1,2,3,4 new 1.33 0.98 + 0.52 +
90 1,2,3,4 new 1.85 1.53 + 1.52 +
91 1,2,3,4 new 1.28 0.18 + 0.64 +
92 1,2,3,4 new 2.55 1.04 - 2.09 +
93 1,3,4 new -0.85 0.65 + -1.30 +
94 1,3,4 new -0.04 0.48 + -1.22 +
95 2,3,4 ref 27 -1.15 x + -0.96 +
96 1,3,4 ref 27 0.40 0.57 + -1.30 +
97 1,2,3,4 ref 27 2.40 0.91 +* 1.95 +
98 1,2,3,4 ref 27 1.08 1.07 + 0.45 +
99 3,4 new -1.00 x + -1.30 +
100 3,4 new -1.00 x + -1.30 +
101 3,4 ref 27 -1.00 x + -1.30 +
102 3,4 ref 27 -1.00 x + -1.30 +
103 3,4 new -1.00 x + -1.30 +
104 1,2,3,4 new -0.62 -0.38 + -0.96 +
105 1,2,3,4 new 1.33 1.46 + 1.37 +
106 1,2,3,4 ref 27 2.14 1.83 +* 1.38 +
107 1,2,3,4 ref 27 0.81 -0.05 + 0.43 +
108 1,2,3,4 ref 27 0.23 0.64 + -1.00 +
109 1,2,3,4 new 1.30 1.04 + 0.79 +
110 1,2,3,4 new 0.95 0.57 + 0.71 +
111 1,2,3,4 Aldrich -0.80 -0.03 + -1.05 +
112 3,4 new -1.00 x + -1.30 +
113 3,4 new -1.00 x + -1.30 +
114 1,3,4 new -0.80 -0.24 + -1.22 +
115 3,4 new -1.00 x + -1.30 +
116 3,4 new -1.00 x + -1.30 +
117 1,2,3,4 new -0.26 0.88 + -0.38 +
118 3,4 new -1.00 x + -1.30 +
119 1,2,3,4 new 0.92 0.63 + -0.05 +
120 1,2,3,4 new 1.25 0.78 + -0.15 +
121 3,4 new -1.00 x + -1.30 +
122 3,4 ref 27 -1.00 x + -1.30 +
123 3,4 ref 27 -1.05 x + -1.30 +
124 3,4 ref 27 -1.00 x + -1.30 +
125 3,4 ref 27 -1.00 x + -1.30 +
126 3,4 ref 16 -1.00 x + -1.30 +
127 3,4 ref 16 -1.00 x + -1.30 +
128 1,3,4 ref 27 -0.74 -0.83 + -1.30 +
129 1,2,3,4 new 1.20 1.12 + 0.61 +
130 1,2,3,4 ref 25 0.14 0.06 + -0.12 +
131 1,3,4 new -0.74 -0.82 + -1.30 +
132 1,3,4 ref 28 0.28 0.03 + -1.30 +
133 3,4 ref 28 -1.00 x + -1.30 +
134 1,3,4 ref 28 0.57 0.07 + -1.30 +
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Table 3. (Continued)

no. seta synthesisb

human
log IC50 (µM)

obsdc

human
log IC50 (µM)

calcdd
human cls.

calcde

murine
log IC50 (µM)

obsdc
murine cls.

calcde

135 1,2,3,4 new 1.86 0.65 + 1.37 +
136 3,4 new -1.00 x + -1.30 +
137 1,3,4 new -0.28 -0.02 + -1.22 +
138 1,3,4 ref 25 -0.80 -0.04 + -1.22 +
139 1,3,4 ref 16 0.54 0.19 + 1.40 +
140 1,3,4 ref 28 -0.24 -0.28 + -1.30 +
141 1,2,3,4 new -0.82 0.41 + -1.15 +
142 1,2,3,4 new 0.40 0.46 + -0.14 +
143 3,4 new -1.00 x + -1.30 +
144 1,2,3,4 new -0.32 -0.79 + -0.07 +
145 1,2,3,4 new -0.85 -0.87 + -1.10 +
146 1,3,4 new -0.89 -0.82 + -1.22 +
147 1,2,3,4 new 0.40 -0.80 + 1.04 +
148 3,4 ref 27 -1.00 x + -1.30 +
149 1,2,3,4 ref 27 -0.77 -0.45 + -0.89 +
150 1,2,3,4 ref 27 -0.64 -0.17 + -0.15 +
151 1,3,4 new 0.00 -0.79 + -1.30 +
152 3,4 ref 27 N/A x + -1.30 +
153 3,4 ref 27 -1.00 x + -1.22 +
154 1,3,4 ref 27 -0.57 0.06 + -1.22 +
155 2,3,4 ref 27 -1.15 x + -1.05 +
156 3,4 ref 27 -1.00 x + -1.22 +
157 1,3,4 ref 27 -0.64 -0.74 + -1.22 +
158 1,3,4 ref 27 -0.80 -0.77 + -1.30 +
159 1,2,3,4 ref 27 -0.37 0.74 + -0.11 +
160 1,2,3,4 new -0.40 -0.41 + -0.72 +
161 1,3,4 new -0.72 -0.37 + -1.30 +
162 1,2,3,4 new -0.70 -0.46 + -1.15 +
163 1,2,3,4 ref 28 -0.72 -0.43 + -1.15 +
164 3,4 new -1.00 x + -1.22 +
165 1,2,3,4 ref 27 -0.96 -0.38 + -0.77 +
166 1,2,3,4 ref 27 -0.92 -0.38 + -1.15 +
167 1,2,3,4 ref 27 0.34 -0.13 + -0.77 +
168 1,3,4 new 0.18 -0.10 + -1.30 +
169 1,3,4 ref 27 0.18 0.17 + -1.30 +
170 1,2,3,4 ref 27 -0.44 0.27 + -0.77 +
171 1,2,3,4 new 0.63 0.39 + 0.36 +
172 1,2,3,4 ref 27 1.05 -0.06 + -0.10 +
173 1,2,3,4 ref 27 1.99 0.68 + 1.64 +
174 1,2,3,4 ref 27 0.32 -0.10 + 0.04 +
175 1,2,3,4 Chem Service -0.44 0.17 + -0.80 +
176 1,2,3,4 new 1.59 1.34 + 1.16 +
177 3,4 ref 27 -1.00 x + -1.30 +
178 3,4 ref 27 -1.00 x + -1.30 +
179 3,4 ref 27 -1.00 x + -1.30 +
180 3,4 new -1.00 x + -1.30 +
181 1,2,3,4 new 1.07 0.98 + 0.85 +
182 1,2,3,4 Lancaster 2.34 2.14 +* 2.35 +*
183 1,2,3,4 new 0.85 1.35 -* 0.90 +
184 1,2,3,4 new 2.62 1.19 - 2.26 +
185 1,2,3,4 new 0.98 0.94 + 0.13 +
186 1,2,3,4 new 1.83 1.63 + 1.81 +
187 1,2,3,4 new 1.19 0.98 + 0.75 +
188 1,2,3,4 Aldrich 0.08 0.82 + 0.36 +
189 1,2,3,4 ref 16 2.11 0.86 - 2.29 +*
190 3,4 Aldrich N/A x - N/A -
191 3,4 Aldrich N/A x - N/A -
192 1,2,3,4 new 0.48 0.56 + 0.90 +
193 1,2,3,4 new -0.26 0.25 + -0.68 +
194 3,4 new N/A x - N/A -
195 1,2,3,4 new 2.30 2.09 - 2.31 +*
196 1,2,3,4 new 0.58 1.00 + 0.37 -*
197 1,2,3,4 new 0.88 0.67 + -0.23 +
198 1,2,3,4 new 0.34 0.69 + -0.60 +
199 1,2,3,4 new 1.48 1.64 + 1.06 +
200 1,2,3,4 new 1.18 1.70 + 1.23 -*
201 1,2,3,4 new 0.53 1.15 + -0.23 -*
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Table 3. (Continued)

no. seta synthesisb

human
log IC50 (µM)

obsdc

human
log IC50 (µM)

calcdd
human cls.

calcde

murine
log IC50 (µM)

obsdc
murine cls.

calcde

202 1,2,3,4 new -0.32 0.18 + -0.70 +
203 3,4 new N/A x - N/A -
204 2,3,4 new -1.00 x + -1.05 +
205 1,2,3,4 new 1.46 1.19 -* 1.56 +
206 1,2,3,4 Lancaster 1.40 1.45 + 2.15 +
207 2,3,4 new N/A x - 2.04 +
208 1,2,3,4 new 0.59 1.75 -* 1.27 +
209 1,2,3,4 new 1.30 1.76 -* 0.13 +
210 1,2,3,4 new 1.76 1.23 + 2.27 -*
211 1,2,3,4 new 1.45 1.19 + 1.48 +
212 1,2,3,4 new 1.12 1.18 + 1.43 +
213 1,2,3,4 new 0.46 0.40 + 0.41 +
214 1,2,3,4 new 0.58 0.38 + -0.41 +
215 1,3,4 new 1.70 1.63 + N/A -
216 1,2,3,4 new 0.85 0.65 + 1.11 +
217 1,2,3,4 new -0.16 0.19 + 0.11 +
218 1,2,3,4 new 1.34 0.26 + 1.72 +
219 1,2,3,4 new -0.92 -0.17 + -0.44 +
220 1,2,3,4 new -0.59 -0.49 + -0.15 +
221 1,2,3,4 ref 26 1.67 1.74 + 2.03 -*
222 1,2,3,4 new 0.10 -0.32 + 0.16 +
223 3,4 new N/A x - N/A +*
224 1,2,3,4 new 0.68 0.79 + 0.77 +
225 3,4 new N/A x +* N/A -
226 1,2,3,4 new -0.22 0.05 + 1.26 +
227 1,2,3,4 new -0.70 -0.40 + 0.41 +
228 1,2,3,4 new 2.34 1.25 - 2.11 +
229 1,2,3,4 new 1.15 1.33 -* 2.08 +
230 1,2,3,4 Aldrich 1.23 1.42 + 1.94 +
231 3,4 new N/A x - N/A -
232 1,2,3,4 new 1.99 0.96 -* 2.31 -
233 1,2,3,4 new -0.55 0.55 + -1.00 -*
234 3,4 new N/A x - N/A +*
235 1,2,3,4 new 2.43 0.87 +* 2.28 +
236 1,2,3,4 new 1.70 0.59 + 1.57 +
237 3,4 new N/A x - N/A +*
238 1,2,3,4 new 1.57 1.17 -* 1.11 +
239 1,2,3,4 new 0.05 0.07 + -0.15 +
240 3,4 new N/A x +* N/A +*
241 5,6 new N/A x +x N/A +x
242 3,4 Chem Service N/A x +* N/A -
243 1,2,3,4 Chem Service 1.60 1.72 + 2.49 -
244 1,2,3,4 Chem Service 1.17 1.26 + 2.49 -
245 1,2,3,4 new 2.55 2.12 - 2.27 +
246 1,2,3,4 new 1.33 1.59 + 1.39 +
247 3,4 ref 25 -1.00 x + -1.30 +
248 3,4 Lancaster N/A x - N/A +*
249 3,4 Lancaster N/A x - N/A -
250 1,2,3,4 Chem Service 2.21 2.32 - 2.43 -
251 3,4 Chem Service N/A x - N/A -
252 5,6 Chem Service N/A x -x N/A +x
253 5,6 Chem Service N/A x -x N/A +x
254 5,6 Chem Service N/A x -x N/A -x
255 5,6 Chem Service N/A x -x N/A +x
256 2,3,4 Chem Service N/A x - 2.48 -
257 1,2,3,4 Chem Service 2.50 2.47 - 2.59 -
258 3,4 Aldrich N/A x - N/A -
259 3,4 Aldrich N/A x - N/A -
260 1,2,3,4 Aldrich -0.33 -0.01 + -0.60 +
261 3,4 Aldrich N/A x - N/A -
262 3,4 Aldrich N/A x - N/A -
263 3,4 Aldrich N/A x - N/A -
264 3,4 Aldrich N/A x - N/A -
265 3,4 Aldrich N/A x - N/A -
266 3,4 Aldrich N/A x - N/A -
267 1,2,3,4 Aldrich 1.71 0.80 + 1.21 +
268 3,4 Aldrich N/A x - N/A -
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Table 3. (Continued)

no. seta synthesisb

human
log IC50 (µM)

obsdc

human
log IC50 (µM)

calcdd
human cls.

calcde

murine
log IC50 (µM)

obsdc
murine cls.

calcde

269 2,4,5 Aldrich N/A x -x 1.85 -*
270 3,4 Aldrich N/A x - N/A -
271 3,4 Aldrich N/A x - N/A -
272 3,4 Aldrich N/A x - N/A +*
273 1,2,3,4 ref 16 1.30 1.69 + 2.00 +
274 3,4 Aldrich N/A x +* N/A +*
275 3,4 Aldrich N/A x - N/A -
276 3,4 Aldrich N/A x - N/A -
277 3,4 Aldrich N/A x - N/A -
278 3,4 Aldrich N/A x - N/A -
279 3,4 new N/A x - N/A -
280 5,6 new N/A x +x N/A +x
281 1,3,4 Chem Service 2.38 1.93 - 2.88 -
282 1,2,3,4 Chem Service 2.28 2.14 - 2.62 -
283 1,2,3,4 Chem Service 2.11 1.42 - 2.36 -
284 1,2,3,4 Chem Service 1.91 2.45 -* 2.29 -
285 1,3,4 Chem Service 2.50 2.45 - N/A -
286 1,2,3,4 Chem Service 1.60 2.21 -* 2.27 +
287 1,2,3,4 new 0.52 0.64 + 0.87 +
288 1,2,3,4 ref 16 0.88 0.33 + 0.58 +
289 1,2,3,4 new 1.09 0.98 + 1.30 +
290 3,4 Aldrich N/A x - N/A -
291 3,4 Aldrich N/A x - N/A +*
292 3,4 Aldrich N/A x - N/A -
293 3,4 Aldrich N/A x - N/A -
294 3,4 Aldrich N/A x - N/A -
295 3,4 Aldrich N/A x - N/A -
296 3,4 Aldrich N/A x +* N/A +*
297 3,4 Aldrich N/A x - N/A -
298 3,4 Aldrich N/A x - N/A -
299 3,4 Aldrich N/A x - N/A -
300 3,4 Aldrich N/A x - N/A -
301 1,2,3,4 new -0.32 0.84 + -0.96 +
302 1,3,4 ref 16 -0.89 -0.56 + -1.22 +
303 1,2,3,4 new 1.71 2.35 -* 1.78 +
304 3,4 Chem Service N/A x - N/A -
305 1,2,3,4 Chem Service 2.45 1.95 - 2.32 -
306 1,2,3,4 Cayman Chem. 1.69 0.41 -* 1.78 +
307 1,2,3,4 Aldrich 2.48 2.28 - 2.03 +
308 3,4 Aldrich N/A x - N/A -
309 3,4 Aldrich N/A x - N/A -
310 3,4 Aldrich N/A x - N/A -
311 3,4 Aldrich N/A x - N/A -
312 3,4 Aldrich N/A x - N/A -
313 3,4 Aldrich N/A x - N/A -
314 3,4 Aldrich N/A x - N/A -
315 5,6 new N/A x -x N/A -x
316 1,2,3,4 Aldrich 2.64 2.28 - 2.63 +*
317 1,2,3,4 Aldrich 2.61 2.46 - 2.63 -
318 1,2,3,4 new 0.49 0.69 -* -0.42 +
319 1,2,3,4 new 1.34 0.80 + 0.00 +
320 1,2,3,4 ref 28 1.62 0.14 + 0.52 +
321 2,3,4 ref 28 N/A x +* -0.49 +
322 1,2,3,4 new 1.18 0.34 -* 1.28 +
323 1,2,3,4 ref 28 0.00 -0.04 + -0.47 +
324 1,2,3,4 ref 28 -0.38 -0.05 + 0.71 +
325 1,2,3,4 new 1.60 0.75 + 1.54 +
326 1,3,4 ref 28 -0.60 0.05 + -1.30 +
327 1,3,4 ref 28 -0.96 -0.26 + -1.30 +
328 1,2,3,4 ref 28 2.36 -0.64 +* -0.89 +
329 1,2,3,4 new -0.26 -0.25 + -1.00 +
330 3,4 new N/A x - N/A +*
331 1,2,3,4 new 0.85 1.61 + 0.32 +
332 1,2,3,4 new -0.55 0.65 + -0.60 +
333 1,2,3,4 new 1.89 1.36 + 0.40 +
334 1,3,4 new -0.82 0.78 -* -1.30 +
335 1,3,4 ref 27 1.13 0.72 + -1.30 +
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Objective Feature Selection. When dealing with a large
pool of descriptors, there is a chance that many of them will
offer little or no important information, or that several
descriptors may contain highly correlated or even identical
information. For the model building techniques discussed
below, a genetic algorithm or simulated annealing method was
employed to search the descriptor space to find the combina-
tions of descriptors that would best correlate molecular
structure with sEH inhibition. It was therefore desirable to
trim the overall descriptor pool of useless or redundant
information. Objective feature selection, which does not utilize
the dependent variable, was performed using only TSET
compounds to create a reduced descriptor pool that maximized
the amount of information within the reduced pool space. The
maximum size of the final reduced pool of descriptors was
constrained only by the following condition: the number of
reduced pool descriptors could be no more than 60% the
number of training set compounds. This limitation has been
shown to reduce the possibility of chance correlations when
building models.57

Two methods were used to remove less informative descrip-
tors from the pool: identical tests and pairwise correlations.
If a descriptor held zero or identical information across more
than 70-85% of its range, then it was removed from consid-
eration. The remaining descriptors were subjected to pairwise
correlations with all other descriptors. If two descriptors had
a pairwise correlation of greater than 0.80-0.93, then one of
those descriptors was removed at random. Because of the
different sets and distribution of compounds in the training,
cross-validation, and prediction sets, the above procedures
were carried out separately for each data set using separate
identical test and correlation cutoff values. As a result, the
number and types of descriptors in each reduced descriptor
pool were different for the four data sets.

Quantitative Model Formation and Validation. Three
methods were used to create quantitative models for prediction
of sEH inhibition values (log IC50 [µM]). Type 1 models used
linear feature selection and linear model development, type 2
models employed the descriptors chosen in type 1 feature
selection in a nonlinear CNN, and type 3 models used
nonlinear CNNs for both feature selection and model construc-
tion. For type 1, TSET and CVSET compounds were combined
to form a larger training set. In nonlinear modeling, these
compounds were kept separate - TSET members for training
and CVSET members to prevent CNN overtraining. In all
modeling, PSET compounds were used only at the end of the
procedure to validate the predictive ability of each model.

Linear Regression Models. A simulated annealing opti-
mization routine35 was used to screen the reduced descriptor

pool to find the smallest subsets (models) of descriptors that
would accurately predict log IC50 (µM) values based on multiple
linear regression. Three-descriptor subsets were chosen as a
starting point, and the root-mean-square error (RMSE) was
calculated for TSET compounds for several models. Models
were assessed by descriptor T-values to ensure that the
magnitude of errors was no greater than 25% of the descriptor
coefficient, and only models with descriptor T-values >|4| were
examined further. A variance of inflation factor (VIF) were
calculated to check for multicollinearities by regressing each
descriptor against all others in the model. VIFs were calculated
as [1/(1 - R2)], where R is the multiple correlation coefficient.
Models were considered free of multicollinearities if the VIF
values for all model descriptors were less than 10. Finally, the
following statistical values were calculated to check for outliers
in each model: residuals, standardized residuals, studentized
residuals, leverage points, DFFITS values, and Cook’s dis-
tance.58,59 Model sizes were then increased sequentially and
evaluated as above until no significant improvement (decrease)
in RMSE was observed by adding another descriptor. Once
the best model was found, PSET compounds were used to
validate the models. Results were plotted for visual inspection.

Nonlinear CNN Models. Once a valid type 1 model was
found, its descriptors were used as inputs for a nonlinear CNN.
A three-layer, fully connected, feed-forward CNN, described
in detail previously,37,60 was used for nonlinear model forma-
tion. The number of input neurons equaled the number of
descriptors in the type 1 model, while a single output neuron
generated the calculated log IC50 values. The number of
neurons in the hidden layer was increased sequentially until
no marked improvement was seen in TSET RMSE. One
restriction placed on this process was to keep the ratio of TSET
observations to CNN adjustable parameters (weight and bias
terms) greater than two. Having too many CNN adjustable
parameters can lead to chance correlations during model
development.61

Network training was optimized using the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) quasi-Newton method.62-65 TSET
compounds were used to adjust weights and biases in the CNN
to minimize the RMSEs, and overtraining of the networks was
prevented by use of the CVSET. TSET RMSEs continually
improve during training, but at a certain point the network
starts to memorize idiosyncrasies of the individual compounds
in the TSET and loses its ability to generalize. Therefore, the
RMSEs of the CVSET compounds were periodically checked
throughout training. The weights and biases that produced
the minimum CVSET error were considered optimal. It was
at this minimum that the network was losing its ability to
generalize and so training was halted.

Table 3. (Continued)

no. seta synthesisb

human
log IC50 (µM)

obsdc

human
log IC50 (µM)

calcdd
human cls.

calcde

murine
log IC50 (µM)

obsdc
murine cls.

calcde

337 1,3,4 ref 27 -0.43 0.13 + -1.30 +
338 1,3,4 ref 27 -0.92 0.11 + -1.30 +
339 1,3,4 ref 27 -0.82 -0.32 + -1.30 +
340 3,4 ref 27 -1.00 x + -1.30 +
341 1,3,4 new -0.19 -0.05 + -1.30 +
342 1,3,4 new -0.16 0.13 + -1.30 +
343 3,4 new -1.00 x + -1.30 +
344 3,4 new -1.00 x + -1.30 +
345 1,2,3,4 new 0.88 0.76 + -0.19 +
346 3,4 ref 27 -1.00 x + -1.30 +
347 3,4 new -1.00 x + -1.30 +
348 1,2,3,4 new 2.69 2.29 - 2.51 -
a Denotes set memberships, where 1 is human quantitation, 2 is murine quantitation, 3 is human classification, 4 is murine classification,

5 is human external prediction, and 6 is murine external prediction. b Denotes the reference for the synthesis or commercial origin. “New”
indicates that the compound was not described before, but was synthesized in a manner consistent with the examples in this and other
papers. c IC50s of compounds denoted by N/A could not be determined because these compounds were above the highest concentration
(500 µM) of inhibitor tested. d Predicted log IC50 (µM) values from the Type III five-descriptor model. An x denotes compounds that were
not predicted with the quantitative model. e Classification results are denoted by + (active) or - (inactive), with an asterisk (*) denoting
a misclassification. An x after the classification result denotes a prediction of a compound that was not considered in training or validation
because of missing data.
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Initial weights and biases was assigned randomly at the
onset of network training, and the final network results were
dependent upon those weights and biases. To reduce the
dependence of results on initial weights and biases, and to
ensure that CNN results were reliable, a committee of five
randomly initialized networks was used. Their outputs were
averaged to produce a final predicted log IC50 for a compound,
and these average values were then used to calculate the final
RMSE and R values.

Fully Nonlinear CNN Models. Fully nonlinear quantita-
tive models used a CNN for both feature selection and model
building. The descriptor sets found using linear feature
selection are not necessarily the best subsets when considering
a nonlinear relationship between molecular structure and IC50

(µM) values. Therefore, a genetic algorithm routine with a
CNN fitness evaluator was used to determine the best subsets
of descriptors from the reduced descriptor pools. Once the best
subsets of descriptors were found, they were trained and tested
by the same type 2 procedures outlined above.

Classification Models. The k-Nearest Neighbor (kNN)
algorithm is a fast, supervised learning method that assigns
a class to a compound based on the distances to its k nearest
neighbors in descriptor space. Euclidean distances from a
compound of interest to all other TSET compounds are
measured, and the shortest k distances are used to assign the
class of that compound. In this study, k ) 3 was used to
prevent ties in a binary problem. A genetic algorithm employ-
ing the kNN as a fitness function was used to search the
descriptor space to find small subsets that would minimize
the number of incorrect classifications. Starting with three
descriptors, the genetic algorithm produced several models
that were evaluated based on their classification rates for the
TSET compounds. Subset sizes were increased until no
significant improvement was seen in TSET classification.
Models were then validated using the PSET compounds.

Two less successful classification methods were applied to
data sets 3 and 4 and will not be covered in detail. Linear
discriminant analysis (LDA)66,67 maximizes the distance be-
tween class means relative to their variances, while a radial
basis function neural network67,68 is a nonlinear classification
approach. Both schemes were utilized as fitness evaluators in
a genetic algorithm search of the reduced descriptor pool. As
with the kNN approach, the search began with three descrip-
tors and several models were analyzed, then model sizes were
increased until no marked improvement in TSET classification
rates was observed.

Results and Discussion
Data Set 1. A simulated annealing routine was used

to search the reduced pool of 95 descriptors for subsets
ranging from three to eight descriptors. A five-descriptor
model was chosen as optimal. The TSET RMSE was
0.802 log units (r2 ) 0.44) and PSET RMSE was 0.776
log units (r2 ) 0.47). Pairwise correlations among the
descriptors ranged from -0.27 to 0.68 (mean |r| ) 0.20),
and descriptor T-values were >|4|.

The five descriptors from the best type 1 model were
passed to a CNN, and network architectures from
5-2-1 to 5-5-1 were trained using a committee
approach of five networks. The best results were found
using a network architecture of 5-5-1 that provided a
TSET RMSE of 0.695 log units (r2 ) 0.56), CVSET
RMSE of 0.732 log units (r2 ) 0.54), and PSET RMSE
of 0.668 log units (r2 ) 0.60). Using nonlinear modeling
on descriptors chosen by linear feature selection im-
proved the RMS errors for both TSET (13.3%) and PSET
(13.9%) compounds.

Type 3 fully nonlinear models usually provide the best
modeling results in a QSAR, but due to their greater
computational cost it is desirable to find suitable models
sizes and network architectures using linear and hybrid

modeling. A genetic algorithm routine using a CNN
fitness evaluator was applied to a 5-5-1 network
architecture, and several five-descriptor models found
by this method were trained and validated using the
committee approach outlined above. The descriptors of
this model are listed in Table 4. WTPT-5 is the sum of
all path weights starting from nitrogen atoms, revealing
atom-specific branching information.42 2SP3 is a count
of sp3-hybridized carbons that are attached to two other
carbons. This denotes the amount of branching and
relative size of the molecule when considering carbon-
based side groups on the R1-R4 positions. MDE-44 is
the molecular distance edge term between all quater-
nary carbons, which gives an indication of the number
of quaternary carbons and the path lengths between
them.47 For example, compound 87 and 91 each have
three quaternary carbons, 87 has a higher MDE-44
value than 91 because the quaternary carbons are closer
together. If two compounds had different number of
quaternary carbons but their path length products were
equal, the compound with fewer carbons would have the
higher value. BCUT-58 is the negative second Burden
eigenvalue weighted by the atomic polarizability that
relates distribution of charge information throughout
the molecule.53 SAAA-2 is the average surface area of
hydrogen bond acceptor atoms (oxygen, nitrogen, sulfur,
fluorine) in the molecule.51

TSET and CVSET RMS errors were improved over
type 2 results (11.4% and 7.9%, respectively) and with
the exception of one outlier, PSET RMSE also improved.
TSET RMSE was 0.616 log units (r2 ) 0.66), CVSET
RMSE was 0.674 log units (r2 ) 0.61), and PSET RMSE
was 0.914 log units (r2 ) 0.33). Removing one severe
outlier, 328, from the 21-member prediction set resulted
in a PSET RMSE error ) 0.653 log units (r2 ) 0.58). It
is not clear why this compound was predicted so poorly,
as none of its descriptor values fell outside the range of
TSET compound descriptors, and it appears structurally
similar to many other compounds in the data set. It is
interesting to note that the predicted value of -0.644
log units for this compound is much closer to the
observed value of -0.886 log units for the murine data
set than the observed human set value of 2.362 log
units. See Table 3 for calculated log IC50 (µM) values.

A plot of calculated vs observed log IC50 values is
shown in Figure 1. The 21 PSET compounds are
represented by solid triangles. The plot shows substan-
tial spread, which is not unusual for biological activity
studies. The RMSE for the 21 PSET compounds is 0.914

Table 4. Descriptors for the Quantitative Type 3 Model of
Human Soluble Epoxide Hydrolase

descriptora type ranges average standard deviation

WTPT-5 topo 0-11.50 5.77 1.54
2SP3 topo 0-17.00 5.17 3.70

MDE-44 topo 0-34.80 1.32 2.93
BCUT-58 topo 0.98-1.95 1.81 0.11
SAAA-2 hyb -1.32-31.90 13.78 4.97
a WTPT-5, the sum of all path weights starting from nitrogen

atoms;42 2SP3, the count of sp3-hybridized carbons attached to two
carbons; MDE-44, the distance edge term between all quaternary
carbons;47 BCUT-58, the negative second Burden eigenvalue
weighted by atomic polarizability;53 SAAA-2, the average acceptor
atom surface area [Σ(SA)acc/no. of acceptor atoms].51
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log units, and the RMSE for 20 PSET compounds
(neglecting one outlier 328) is 0.653 log units. Of the
21 PSET compounds, 14 have predicted log IC50 values
within 0.653 log units of their observed values, and
seven have log IC50 values differing from their observed
value by more than this. The best calculated log IC50
value is for compound 329, and the worst outlier is 328.
These two compounds have very similar structures, but
somehow the five descriptors chosen as the best overall
set is able to describe 329 very well but 328 very poorly.

After obtaining these results, a second assay was
performed on 328. The original IC50 reported in this
study was 230 ( 20 µM, and the IC50 value obtained
from the second assay was 190 ( 30 µM. It was noted
that compound 328 dissolved much slower in DMF than
329, suggesting the formation of microcrystals that
could affect solubility. Likewise, the assay curve for 328
showed a distinct break, whereas assay curves for
similar compounds showed a smooth transitional curve.
This further supports the evidence of crystal formation
at higher concentrations. For several compounds, the
IC50 values for human sEH inhibition were on the order
of 10 times the IC50 values for murine sEH inhibition.
Extrapolating the IC50 value on the lower end of the
curve shows this to be true also for 328, and it is
believed that the higher observed value reported is due
largely to the poorer solubility. This may also explain
the poorly predicted value from the model. The tert-octyl

group on 328 may also contribute the higher observed
value because of steric hindrance in humans, but the
crystal structure has yet to be determined.

Data Set 2. Both linear and nonlinear modeling were
performed on data set 2 using the above procedures, but
results were not as robust as those found with data set
1.

Randomization Experiments. Scrambling experi-
ments were performed on the data to ensure that the
best linear and nonlinear models presented here were
the result of a structure-activity relationship and not
due to random effects. The dependent variables were
randomly scrambled, and models were trained and
validated using the above methodologies. An increase
in RMS errors and decrease in r2 was desired to show
that scrambled inhibition values had little correlation
to their structures. For data set 1, the scrambled five-
descriptor type 1 model had a TSET RMSE of 1.039 log
units (r2 ) 0.07) and PSET RMSE of 1.174 log units (r2

) 0.06). The type 3 model with 5-5-1 architecture
using scrambled inhibition values resulted in a TSET
RMSE of 0.935 log units (r2 ) 0.23), CVSET RMSE of
1.115 log units (r2 ) 0.08), and PSET RMSE of 1.082
log units (r2 ) 0.01). Visual inspection of a calculated
vs observed plot revealed the data clustered about the
network average value. From this, we concluded that
chance correlation had little or no effect in driving model
development.

Figure 1. Plot of calculated versus observed log IC50 (µM) of the data set 1 type 3 quantitative model (human soluble epoxide
hydrolase inhibitors). TSET (n ) 167), CVSET (n ) 19), PSET (n ) 21).

1076 Journal of Medicinal Chemistry, 2003, Vol. 46, No. 6 McElroy et al.



Data Set 3. The best model for the human classifica-
tion data set 3 was found using kNN, which produced
the seven-descriptor model listed in Table 5. MOLC-9
is the topological index J or the averaged distance sum
connectivity,46 which reveals molecular branching in-
formation. On average, inactive compounds had higher
values for this descriptor than active compounds. The
next two descriptors account for the carbon types in the
hydrophobic side chains of the inhibitors. 1SP3 and
2SP3 are counts of sp3-hybridized carbons bound to one
and two carbons, respectively. Both descriptors give
some degree of branching information but also give
insight into the amount of hydrophobicity on the nitro-
gen-bonded substituent groups. On average, active
inhibitors had fewer 1SP3 carbons and more 2SP3
carbons than inactive compounds. Inhibition may be
increased by longer, less-branched side groups attached
to the nitrogens, allowing for greater flexibility while
maintaining hydrophobic character. PND-5 is the su-
perpendentic index69 from pendant oxygen atoms. Cal-
culated from the pendent matrix, this descriptor relays
branching information of the molecule with respect to
terminal oxygens, in the majority of cases, the carbonyl
oxygen. SAAA-3 and CHAA-1 are both hydrogen-bond-
ing descriptors,51 calculated by assuming a mixture of
solute and solvent. SAAA-3 is the ratio of acceptor atom
surface area to total molecular surface area, and CHAA-1
is the summation of charges on all acceptor atoms.
These descriptors shed light on the relative available
acceptor atom area on the inhibitor and the associated
charges of the acceptor atoms, oxygen nitrogen, sulfur,
and fluorine, on the surface of the inhibitor that may
interact with the active site on the sEH enzyme. Active
compounds had slightly less relative acceptor atom
surface area than inactive compounds but with greater
negative charges on average. WHIM-42 is related to
atomic distribution and molecular density around the
Cartesian coordinate origin and first principal axis
determined by principal component analysis, weighted
by atomic electronegativity.56 The interpretability of this
descriptor is poor but gives some sense of the electronic
interactions occurring near the molecules center of
mass. Very little difference was seen for average WHIM
values of active vs inactive compounds, yet removing
this descriptor from consideration resulted in poorer
classification.

This model correctly classified 89.1% of the TSET
compounds and 91.4% of the prediction set compounds
(89.4% overall). The confusion matrix of classification
results is shown in Table 6. Individual predicted class
values are shown in Table 3. For both TSET and PSET,

there were higher percentages of false positives than
false negatives, due in part to a higher number of active
compounds in the entire data set. Overall, active
compounds were correctly classified at 92.8% and inac-
tive compounds at 82.9%, with 20 false positives and
16 false negatives. Average descriptor values for mis-
classified compounds predominantly fell between the
descriptor averages of active and inactive compounds.
For example, the false-active SAAA-3 descriptor average
was 0.11 and the false-inactive SAAA-3 average was
0.13. These values corresponded well to the active and
inactive descriptor averages of 0.10 and 0.13, respec-
tively. This trend was observed for the majority of
misclassified compound descriptor averages. Log IC50
values of the misclassified compounds were distributed
throughout the range of inhibition data and not centered
around the active-inactive cutoff value. The most poorly
predicted compound in the human quantitative model,
328, was also misclassified as an active compound in
this model.

LDA produced a model of seven descriptors with
TSET, CVSET, and PSET classification rates of 87.0%,
85.7%, and 88.6%, respectively. Using a RBF-NN also
resulted in a seven-descriptor model with a five-run
average classification rate of 81.6 ( 2.2%, 77.7 ( 5.1%,
and 81.1 ( 7.7% for the TSET, CVSET, and PSET,
respectively.

Data Set 4. The best classification model for the
murine classification data set 4 was found using kNN,
which produced the five-descriptor model listed in Table
7. MOLC-9, the topological index J, is described above.
As with the human classification model, inactive com-
pounds had higher average MOLC-9 values than active
compounds. 2SP3 is described above, and again active
compounds had a higher count of 2SP3 carbons than
inactive compounds. CHAA-2 is the average charge on
all acceptor atoms of the molecule, revealing the poten-
tial for hydrogen bonding at the active site.51 There was
very little difference between the average values for

Table 5. Descriptor Ranges and Averages for Active and Inactive Compounds for Seven-Descriptor Data Set 3 kNN Classification
Model: Human SEH Inhibition

range average (std dev)

descriptora type active inactive active inactive

MOLC-9 topo 1.10-3.46 1.47-4.56 2.05 (0.51) 2.67 (0.65)
1SP3 topo 0-5 0-10 0.79 (1.07) 1.17 (1.67)
2SP3 topo 0-17 0-16 6.19 (3.93) 3.39 (4.62)

PND-5 topo 0-312 0-92.10 17.60 (32.10) 13.84 (19.29)
SAAA-3 hyb 0.002-0.75 0-0.38 0.10 (0.07) 0.13 (0.07)
CHAA-1 hyb -2.19 to -0.42 -2.00 to -0.29 -1.26 (0.28) -1.11 (0.39)

WHIM-42 geo 0.37-0.69 0.39-0.70 0.58 (0.05) 0.55 (0.05)
a MOLC-9, topological index J;46 1SP3, count of sp3-hybridized carbons attached to one heteroatom; 2SP3, count of sp3-hybridized carbons

attached to two carbons; PND-5, superpendentic index calculated from pendent oxygen atoms;69 SAAA-3, Σ(SA)acc/(SA)tot; CHAA-1, Σ(Q)acc;51

WHIM-42, 1st component accessibility weighted by atomic Sanderson electronegativities.56

Table 6. Confusion Matrix of Training and Prediction Set
Compounds for Seven-Descriptor kNN Classification Model:
Human SEH Inhibition

training set ) 89.1%a prediction set ) 91.4%b

actual class active inactive active inactive

active 183 15 23 1
inactive 18 88 2 9
a Active TSET compounds correct classification ) 92.4%; inac-

tive TSET compounds correct classification ) 83.0%. b Active
PSET compounds correct classification ) 95.8%; inactive PSET
compounds correct classification ) 81.8%.
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active and inactive compounds, but removing this
descriptor from the model resulted in poorer classifica-
tion results. WHIM-42 is described above, and again
there was little difference in average values of active
and inactive compounds. WHIM-84 encodes an overall
shape of the molecule weighted by van der Waals
volume. The overall shape value, K, used in the calcula-
tion of WHIM-84 is equal to 1 for linear molecules and
0 for ideal spherical molecules, and ranges between 0.5
and 1 for planar molecules.55 Active compounds had
slightly higher values than inactive compounds.

This model correctly classified 91.5% of the TSET
compounds and 88.6% of the PSET compounds (91.2%
overall). The confusion matrix of classification rates is
shown in Table 8. Individual predicted class values are
shown in Table 3. For both the TSET and PSET, there
were higher percentages of false-actives than false-
inactives. Overall, active compounds had a correct
classification rate of 95.3% and inactive compounds a
rate of 81.7%, with 11 false-negatives and 19 false-
positives. As with the human classification results,
misclassified compounds had descriptor values that fell
between the active/inactive average values, and log IC50
(µM) values of misclassified compounds were distributed
throughout the range of inhibition data.

LDA produced a model of six descriptors with TSET,
CVSET, and PSET classification rates of 88.5%, 85.7%,
and 94.3%, respectively. Using a RBF-NN resulted in
a seven-descriptor model with a five-run average clas-
sification rate of 81.5 ( 2.1%, 86.3 ( 2.4%, and 83.4 (
7.1% for the TSET, CVSET, and PSET, respectively.

Randomization Experiments. As with the quan-
titative models, it was important to ensure that the best
classification models found were not due to chance.
Therefore, a scrambling experiment was also carried out
for classification models. The dependent variables, in
this case the binary classifiers, were randomly scrambled
10 times. Classification models were built using kNN,
LDA, and RBF-NN algorithms to find the best models
of the same size as those listed above. Poor results, or
PSET classification rates within one standard deviation

of random class assignment in the TSET, were desired
to show that the best models were indeed classifying
compounds based on their molecular structure features
rather than chance.

Scrambling experiment results for the data set 3
seven-descriptor kNN model were 71.6 ( 1.1% for the
TSET and 54.3 ( 10.2% for the PSET. The uneven
distribution of active and inactive compounds in the
training set allowed for a random class assignment of
54.6% in the PSET; therefore, it was concluded that
chance effects played little or no role in the formation
of the above model.

Scrambling experiment results for the data set 4 five-
descriptor kNN model were 72.4 ( 1.6% for the TSET
and 56.3 ( 10.0% for the PSET. The uneven distribution
of active and inactive compounds in the TSET allowed
for a random class assignment of 57.7%; thus, chance
effects again played little or no role in the formation of
the above model.

Scrambling experiments for the LDA and RBF-NN
models for human and murine data sets also revealed
little or no chance effect in those models.

Conclusions

Successful models that quantitatively predict or clas-
sify human and murine soluble epoxide hydrolase
inhibition by urea-like compounds have been presented.
Both linear and nonlinear quantitative models were
created for data set 1 (human sEH), and the fully
nonlinear model gave the best results. Classification
models using three different algorithms had successful
classification rates, with kNN providing the best overall
TSET and PSET classification rates for data sets 3
(human sEH) and 4 (murine sEH).

Similar structural descriptor types were found in all
the models (i.e., hydrogen bonding, carbon types, branch-
ing), supporting a relationship between structure and
inhibitor activity. Inhibition is affected by the position
of the urea moiety at the active site, which is in turn
dependent upon the size and shape of the alkyl groups
attached to the urea nitrogens. In general, inhibition
of murine sEH was achieved with lower inhibitor
concentrations than needed for human sEH inhibition.
In the few instances where a lower concentration was
needed for human sEH inhibition compared to murine
sEH inhibition, it was not clear from a structural
standpoint why this was so. The differences in effective
IC50 concentrations are most likely due to subtle differ-
ences in the configuration of human and murine sEH,
and the manner in which inhibitors interact in those
systems. Compounds with very low IC50 concentrations
(<1.00 µM) seem to favor a structure with hydrogens

Table 7. Descriptor Ranges and Averages for Active and Inactive Compounds for Five-Descriptor Data Set 4 kNN Classification
Model: Murine SEH Inhibition

range average (std dev)

descriptora type active inactive active inactive

MOLC-9 topo 1.10-3.47 1.47-4.56 2.07 (0.52) 2.72 (0.64)
2SP3 topo 0-17 0-16 6.26 (3.91) 2.80 (4.48)

CHAA-2 hyb -0.41 to -0.12 -0.44 to -0.09 -0.35 (0.05) -0.32 (0.09)
WHIM-42 geo 0.37-0.69 0.39-0.70 0.58 (0.05) 0.55 (0.05)
WHIM-84 geo 0.34-0.98 0.32-0.98 0.84 (0.09) 0.74 (0.18)

a MOLC-9, topological index J;46 2SP2, count of sp2-hybridized carbons attached to two carbons; CHAA-2, Σ(Q)acc/countacc;51 WHIM-42,
1st component accessibility weighted by atomic Sanderson electronegativities;56 WHIM-84, K global shape index weighted by van der
Waals volume.56

Table 8. Confusion Matrix of Training and Prediction Set
Compounds for Five-Descriptor kNN Classification Model:
Murine SEH Inhibition

training set ) 91.5%a prediction set ) 88.6%b

actual class active inactive active inactive

active 200 10 24 1
inactive 16 78 3 7
a Active TSET compounds correct classification ) 95.2%; inac-

tive TSET compounds correct classification ) 83.0%. b Active
PSET compounds correct classification ) 96.0%; inactive PSET
compounds correct classification ) 70.0%.

1078 Journal of Medicinal Chemistry, 2003, Vol. 46, No. 6 McElroy et al.



in the R2 and R3 positions, and a host of substituents
on the R1 and R4 positions. The exact ratio between
bulkiness and length on either R1 or R4 is difficult to
ascertain, but is encoded in the models through size and
branching descriptors such as 2SP3, MOLC-9, WTPT-
5, MDE-44, etc., mentioned above. The sizes and
shapes of substituents on R1 and R4 then determine
how well the compound will sit within the active site
pocket to allow hydrogen bonding or other electronic
interactions as encoded by descriptors such as SAAA-
x, CHAA-x, etc.

Scrambling experiments resulted in poorer models for
classification and quantitation, providing evidence that
results were not due to chance. The models that best
predicted log IC50 values and correctly classified com-
pound activity contained descriptors that may offer
insight into the role those features play in inhibiting
the sEH enzyme in human and murine systems. These
models may be used as a tool for screening similar
compounds whose activity or IC50 values are unknown,
provided that those new compounds have structures
similar to those used in training these models. One
strategy may be to apply the classification models to
an unknown to determine its activity. Those compounds
deemed active by the classification could be tested
further through the quantitative model for an estimate
of inhibitor concentration.
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