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The energies and physical descriptors for the binding of 20 novel 1-(2,6-difluorobenzyl)-2-(2,6-
difluorophenyl)benzimidazole analogues (BPBIs) to HIV-1 reverse transcriptase (RT) have been
determined using Monte Carlo (MC) simulations. The crystallographic structure of the lead
compound, 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-4-methylbenzimidazole, was used as a
starting point to model the inhibitors in both the bound and the unbound states. The energy
terms and physical descriptors obtained from the calculations were correlated with their
respective experimental EC50 values, resulting in an r2 value of 0.70 and a root-mean-square
deviation (rms) of 0.53 kcal/mol. The terms in the correlation include the change in total
Coulombic energy and solvent-accessible surface area. Structural analysis of the data files from
the BPBI calculations reveals that all of the analogues with good biological activity show the
formation of a hydrogen bond between the ligand and the backbone nitrogen atom of lysine
103. By use of the structural results, two novel BPBI inhibitors have been designed and
calculations have been carried out. The results show the formation of the desired hydrogen
bonds, and the ∆Gbinding values predict the compounds to be excellent RT inhibitors. Subsequent
synthesis and biological activity testing of these analogues have shown the validity of the
predictive calculations. If the BPBIs are modeled in a site constructed from the crystal
coordinates of a member of another class of nonnucleoside inhibitors (the 4,5,6,7-tetrahy-
droimidazo[4,5,1-jk][1,4]benzodiazepine-2(1H)-thione and -one (TIBO) compounds), the cor-
relation with the same terms drops slightly, giving an r2 value of 0.61 with an associated root-
mean-square value of 0.53 kcal/mol. Conversely, if the TIBO compounds are modeled in a site
constructed from the BPBI complex crystal coordinates, a correlation can be obtained using
the drug-protein interaction energy and change in the total number of hydrogen bonds, giving
an r2 value of 0.63. These are the same descriptors that were used for the TIBO compounds
modeled in their own sites, where the r2 value was 0.72. These data suggest that it may be
possible, in some cases, to design novel inhibitors utilizing structural data from related, but
not identical, inhibitors.

Introduction

In the past few years, there has been a major effort
to design inhibitors that bind to and interfere with the
function of one of the three key enzymes of the HIV
virus: protease, integrase, and reverse transcriptase
(RT). The last enzyme is an excellent target for drug
design because it is essential for HIV replication but is
not required for normal cell replication. Nonnucleoside
inhibitors of this enzyme (NNRTIs) are especially at-
tractive drug candidates because they do not function
as chain terminators and do not bind at the dNTP site,1,2

making them less likely to interfere with the normal

function of other DNA polymerases and therefore less
toxic than nucleoside inhibitors (NRTIs) such as AZT.

While many good inhibitors of the NNRTI class have
been reported and three, including nevirapine, are used
clinically, the discovery of new, more efficacious inhibi-
tors is becoming increasingly important in light of the
emergence of HIV strains that are resistant to the
current drugs. Presently, the only way to circumvent
this problem is to administer a drug cocktail, usually
consisting of both NRTIs and NNRTIs together with
protease inhibitors, to patients. It has thus become
obligatory to design compounds that are active against
key variants that emerge upon treatment with the
inhibitors, in addition to wild-type. The end result of
these point mutations is the decreased activity of the
inhibitors, most likely due to decreased binding affinity.3

One possible way to reduce the development time for
clinically useful NNRTIs is to utilize computational
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methodology as a way to predict free energies of binding
(∆Gbinding) of candidate inhibitors prior to their synthe-
sis. The computational approach presented here pro-
vides a relatively rapid way to estimate the activity of
drug candidates prior to synthesis.

The present work uses Monte Carlo (MC) simulations,
in combination with a linear response (LR) method, to
estimate the free energy of binding of the inhibitor to
the RT enzyme. Recent results suggest that MC calcula-
tions of this type may be particularly efficient for
conformational sampling of protein structure.4,5 The LR
approach is much faster than the more traditional free
energy perturbation (FEP) or thermodynamic integra-
tion (TI) methods for the conversion of the lead sub-
strate into another analogue.6 While inherently suc-
cessful, these latter methods are computationally taxing
because of the necessity of carrying out calculations for
numerous intermediate stages of the transformation.
The linear response approach, on the other hand,
requires only one simulation each for the bound and the
unbound states of each new inhibitor to produce a
Boltzmann distribution of conformations. The resulting
set of structures allows for assessment of changes in the
orientation of the inhibitor following modifications in
either the drug’s or the protein’s structure. Such infor-
mation is invaluable in the design of new, more potent
inhibitors.

As introduced by Åqvist,6 the original LR method to
estimate ∆Gbinding used empirically derived parameters
obtained from calculated van der Waals and Coulombic
components of the energy of interaction of the solute
with its environment. In some cases, a solvent-accessible
surface area (SASA) term is also added to give an
equation of the form7,8

Simulations using the MCPRO9 software, which incor-
porates this methodology, have previously been applied
to a series of sulfonamide inhibitors of human throm-
bin10 and neurotrophic inhibitors of FK506 binding
protein.11 In these LR calculations, the differences in
the interactions between the ligand in the bound (com-
plexed) and unbound states were successfully correlated
with their biological activity. The fact that comparable
results were obtained for FEP11 and LR5 calculations
for a series of FKBP inhibitors showed the utility of the
LR for lead optimization of drugs. LR calculations have
also been able to reproduce the experimental binding
energies of nonnucleoside 4,5,6,7-tetrahydroimidazo[4,
5,1-jk][1,4]benzodiazepine-2(1H)-thione and -one (TIBO)
inhibitors12 of HIV-1 RT with excellent accuracy. Com-
putationally derived free energies of binding for 12 TIBO
analogues complexed with wild-type RT produced an
excellent correlation with experimentally derived EC50

values (root-mean square (rms) error of 0.87 kcal/mol).12

In addition, we have probed with good quantitative
success using both LR and FEP methods,13 the response
of 8-Cl TIBO to the L100I and Y181C mutations
commonly observed in patients following treatment.
Most recently, the LR method has been extended to
correlate the biological activity with descriptive LR
terms for two14 or more15 series of NNRTIs.

In the present study, the calculations have been
extended to a new class of inhibitors, the 2-aryl-
substituted benzimidazoles16,17 (BPBIs). Preliminary
crystallographic data18 for the lead compound, 1-(2,6-
difluorobenzyl)-2-(2,6-difluorophenyl)-4-methylbenzimi-
dazole (analogue 1, Table 1) with HIV-1 RT, allowed us
to construct a model of the binding pocket. MC simula-
tions were conducted on wild-type RT complexed with
20 previously synthesized 4-substituted BPBIs (Table
1). The aim of this work is to use computer simulations
to obtain a correlation of binding energies for these
compounds with their respective measure of biological
activity, the EC50 values. A correlation of this type can
then be used to predict the activity of proposed inhibi-
tors that can be synthesized and tested for biological
potency. We also wished to determine if the same
correlation for the BPBIs could be made between their
descriptors and the EC50 values in a site constructed
from another inhibitor’s crystal structure coordinate
data. If this is possible, it might eliminate the poten-
tially long wait for crystal structure data for novel
classes of compounds.

Experimental Section
Protein and Inhibitor Parameters and Z-Matrix Gen-

eration. The potential energy functions used in these calcula-
tions have been previously described.19 The OPLS (Optimized
Potentials for Liquid Simulations) all-atom force field19 for the
protein was used in this study. The starting conformation for
the lead inhibitor was taken from the crystal structure
coordinates of the bound complex. The analogues used in this
study have previously been reported16 or are unpublished.17

The structure of the inhibitor was modified as needed using
the Spartan program20 and was then subjected to an AM1
geometry optimization. The Z-matrix connectivity was graphi-
cally assigned, and the results were saved as a PEPZ21

database and a BOSS22 input file. The AM1-CM1A partial
charges were then determined using BOSS. Atom types were
determined, and all parameters for the inhibitors other than
partial charges were assigned from the OPLS all-atom force
field. Last, a fully flexible Z-matrix was then made for each
inhibitor using the PEPZ program. Both bond stretching and
angle bending parameters were assigned automatically using
the atom-type combinations. The PEPZ program automatically
assigned the corresponding parameters drawing from a dihe-
dral database file, and any missing torsions were assigned by
analogy to existing torsions in the file. Each inhibitor has its
own nonbonded parameter file, the PEPZ database file, and
is treated as a unique residue.

Construction of the Site. Representative models of the
binding site of the protein were constructed from the crystal
structure coordinates of the 4-Me-BPBI18 or 8-Cl-TIBO23

inhibitor complexes with wild-type HIV-1 RT by including all
residues within approximately 15 Å of the inhibitor. To avoid
excessive fragmentation of the protein chains, a few residues
outside the original 15 Å cutoff were included in the model
site. Hydrogen atoms were then added to the site, and the
chains were capped with ACE and NME groups where ap-
propriate so that all protein termini were neutral. The final
system size, including capping groups, was 123 protein resi-
dues plus the inhibitor. To maintain charge neutrality for the
entire system, all nonmoving (e.g., not varied during the
simulation) Asp, Lys, Glu, and Arg residues were made neutral
with the exception of p66 residue Asp 192, which remained
charged. The proper tautomeric states of His residues were
assigned by visual inspection. Both a fully flexible and a
restricted protein-inhibitor Z-matrix file were made with
PEPZ using the Z-matrix file for the inhibitor and the crystal
coordinate file for the protein. The modified BPBI analogues
were then superimposed over the lead compound, 4-methyl-
BPBI, and subjected to manual docking to minimize any bad

∆Gbinding ) R(∆Evdw) + â(∆Ecoul) + γ(∆SASA) (1)
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steric interactions before the protein-inhibitor Z-matrix was
constructed. For the calculations of BPBI inhibitors in the 8-Cl-
TIBO site, the various inhibitors were overlaid onto 8-Cl-TIBO
in the correct orientation and 8-Cl-TIBO was deleted from the
complex. The reverse of this procedure was followed for the
TIBO derivatives in the 4-Me-BPBI site. For the MC simula-
tions, residues outside a 10 Å sphere of the center of the
inhibitor were kept rigid and included p66 residues 91-94,
109-110, 116-178, 184-185, 192-197, 199-205, 222-224,
230-232, 240-242, 316-317, 320-321, 343-349, and 381-
383 and p51 residues 134-135, 137, and 140. Residues whose
conformations were allowed to vary included p66 residues 95-
108, 179-183, 186-191, 198, 225-229, 233-239, and 318-
319 and p51 residues 136 and 138. The inhibitor was also free
to move during the simulation. A 9 Å solvent-solvent,
solvent-solute, and intrasolute nonbonded cutoff was used for
all simulations.

Conjugate Gradient Energy Minimization. The fully
flexible version of the Z-matrix for each protein-inhibitor
complex was minimized briefly using 50 steps of conjugate
gradient energy minimization with a distance-dependent
dielectric constant of 4 (ε ) 4r) prior to the MC simulations to
relax the crystal structure. The resulting coordinates were
then used as the starting point for the MC simulations of the
protein-inhibitor complexes (bound) or inhibitor (unbound).

Linear Response Calculations. All MC calculations were
carried out with the MCPRO9 (Monte Carlo simulation of
proteins) software. For these simulations, a 22 Å water cap
was used consisting of 851 TIP4P water molecules for the
bound state and 1485 molecules for the unbound inhibitor. A
1.5 kcal/(mol Å2) half-harmonic restraining force was applied
to waters at the surface of the sphere to prevent possible
evaporation. All protein side chains with any atom within ca.
10 Å of the cap atom, which was placed near the center of the
binding site, were sampled, while all backbone atoms remained
fixed; however, each inhibitor was fully variable. Bond lengths
for the protein remained fixed after the initial minimization.
A fixed protein residue-inhibitor list was specified for each
simulation and determined for each complex during the initial

solvent equilibration; the list was not updated during the
simulation. The frequency of attempted moves for protein
residue side chains was every 10 configurations, while an
attempted move for each inhibitor molecule was made every
56 configurations; all remaining moves were for the solvent.
Solvent-solvent neighbor lists that were periodically updated
were also used during the simulations, while the maximum
number of variables to be sampled for a given attempted move
was set to 10.

Each MC simulation for a bound inhibitor consisted of 1
million configurations of solvent-only equilibration, 10 million
configurations of full equilibration, and 10 million configura-
tions of energy averaging. Separate running averages were
obtained for the structural descriptors and the Lennard-Jones
and Coulombic energy components for both inhibitor-solvent
and inhibitor-protein nonbonded interactions. The standard
deviation for each of these components was e1.5% of the mean.
Unbound inhibitor simulations were carried out using an
annealing protocol14 after it was determined that the Coulum-
bic energies were not well converged when the same procedure
was used as for the bound inhibitor. Each unbound MC
simulation consisted of 1 million configurations of solvent-only
equilibration at the experimental temperature of 37 °C. This
was followed by 5 million configurations of equilibration in
which the solvent and only the dihedral angles of the inhibitor
were sampled. The MC acceptance rate for the inhibitor was
increased through a local heating option in MCPRO for the
inhibitor at the specified temperature of 727 °C (1000 K). This
was then followed by an additional 5 million configurations of
equilibration at the normal temperature (37 °C) and sampling
schemes followed by 10 million configurations of averaging.
This entire process was repeated from the heating phase for
five cycles and resulted in well-converged energies for the
inhibitor. As above, separate running averages were main-
tained for the various structural descriptors and the Lennard-
Jones (Uvdw) and Coulombic (Uelec) energy components of the
nonbonded interaction energies throughout the simulation.

Inhibitor Activity. The EC50 values for the model com-
pounds in this study have previously been reported16 or are

Table 1. Structures and Experimental and Calculated ∆G Values for 1-(2.6-Difluorobenzyl)-2-(2,6-difluorophenyl)benzimidazole
(BPBI) Inhibitorsa

BPBI inhibitor R substituent Y substituent X substituent EC50 (µM) ∆G, exptl (kcal/mol) ∆G, calcd (kcal/mol)

1 CH3 F, F F, F 0.44 -9.03 -9.01
2 OCH3 F, F F, F 0.08 -10.08 -8.99
3 Cl F, F F, F 0.4 -9.09 -8.49
4 NH-CH3 F, F F, F 2.4 -7.99 -8.53
5 NO2 F,F F,F 0.45 -9.01 -9.31
6 NH2 F, F F, F 0.53 -8.92 -8.95
7 NH2 F, F 2-OCH3, 5-F 2.71 -7.91 -8.79
8 CH3 H, H F, F 0.75 -8.7 -9.43
9 H F, F F, F 1.7 -8.19 -7.9

10 CH2-OH F, F F, F 0.05 -10.4 -9.64
11 CH2-Cl F, F F, F 0.16 -9.65 -9.82
12 CH2-NH2 F, F F, F 1.36 -8.33 -7.98
13 CH2-CH3 F, F F, F 0.82 -8.64 -10.08
14 C(O)NH2 F, F F, F 0.37 -9.14 -8.46
15 CH2OC(O)CH3 F, F F, F 0.06 -10.24 -10.29
16 C(O)H F, F F, F 0.1 -9.94 -9.44
17 NHC(O)CH3 F, F F, F 1.65 -8.23 -10.02
18 N(CH3)C(O)CH3 F, F F, F 0.04 -10.51 -10.25
19 Br F, F F, F 0.37 -9.13 -9.34
20 H F, F H, H 6.06 -7.41 -7.94
A CH2-CN F, F F, F 0.06 -10.24 -9.48
B CH2-N3 F, F F, F 0.045 -10.43 -10.6

a Activity (cell-based assay) is in µM at 37 °C.
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unpublished.17,24 These values were converted to estimated
experimental free energy values using the equation ∆Gbinding

) -RT ln Kform at 37 °C. Here, Kform, the equilibrium constant
for the formation of the complex, is taken to be the reciprocal
of the EC50 value. This estimate was required because Ki data
are not available for BPBI complexes with RT. Given the very
close similarity in structure of these variants, however, it is
reasonable to expect that EC50 and Ki, while not equivalent,
should be linearly related.25

The difference in the structural descriptors and the energy
terms between the bound and unbound inhibitors, along with
a term for the change in the solvent-accessible surface area
(SASA), was then calculated. The coefficients of the various
descriptors and energy terms were then determined using a
generalized linear response equation,

where cn represents an optimized coefficient for the associated
descriptor ún that is determined by a multiregression fit using
the JMP program26 to the experimental observable, the free
energy of binding. A partial listing of the various descriptors
that were evaluated includes terms such as EXX-LJ and EXX-
coul, which are the van der Waals and electrostatic inhibitor-
protein interaction energies, ∆FOSA or ∆PISA, which are the
changes in the hydrophobic or aromatic SASAs, respectively,
the number of hydrogen bonds donated by the ligand to the
protein or to water, and the change in dipole moment of the
compounds.

The linear regression analyses were carried out, and the
descriptor sets were chosen to maximize the correlation
coefficient, r2, and to minimize the rms error with as few
descriptors as possible. As a part of the standard fitting
protocol, approximately 10% of the compounds could be
eliminated as outliers. The statistical significance of the chosen
descriptors was confirmed by analysis of the variance using
the F ratios (regression model mean square/error mean square)
and making sure that the probability of a greater F value
occurring by chance (Prob > F) is less than 0.005.

The coordinate files from the simulations were analyzed
using the Insight II module (MSI). Hydrogen bonds were
determined using the preset distance measurement within this
module (3.04 Å).

Synthesis and Activity Determination of New BPBIs.
The synthesis of novel BPBI analogues was accomplished
through slight modifications of known procedures.16,17 The
activity of the analogues was tested in an HIV-1-based vector
pNLNgoMI/R-E assay, as has been previously described.27

Briefly, the vector expresses the murine cells surface marker
gene hsa from the nef reading frame to allow for the identifica-
tion of cells infected with the vector. The env gene is inacti-
vated in this vector. The vector is packaged into virus by
cotransfecting 293 cells with plasmid encoding the vector and
with the plasmid pHCMV-g, which expresses the VSV-g
envelope, limiting the vector to a single cycle of retroviral
replication.

Results and Discussion
Correlation of Experimental Binding Energies

with MC Descriptors. The difference between the
bound and unbound states for the various energetic and
structural terms collected during the MCPRO runs were
fit to the experimental observable, the free energy of
binding. Recent work has shown that additional de-
scriptors other than the purely energy-based terms may
be useful in these correlations, especially where sub-
stituent changes occur in the more flexible portions of
the drug, and protein interactions in these areas of the
inhibitor remained relatively constant across the drug
series. The basis for that notion stemmed from a study
of the correlation of energetic terms and structural
descriptors of ∼200 organic molecules that were fit to

free energies of solvation with excellent results.28 Only
four descriptors were needed to yield a correlation with
an r2 value of 0.91 and an rms error of 0.53.

Given the application of octanol/water partioning to
protein/water systems and its effect on protein/ligand
binding, the EC50 and IC50 values for 40 HIV-1 non-
nucleoside inhibitors from the HEPT and nevirapine
classes of compounds were recently correlated with the
differences between the bound and unbound states for
their respective energy terms and structural param-
eters,14 according to the equation

The descriptors that emerged as best for correlating the
combined data sets were (1) the protein-inhibitor
Lennard-Jones energy term (EXX-LJ), (2) the change
in the total number of hydrogen bonds for the ligand
(∆HBtotal), (3) the change in hydrophobic solvent-
accessible surface area for the ligand (∆PHOBarea), and
(4) a correction term for the presence of 2° amide
substituents in the ligand. The correlation coefficient,
r2, for this study was 0.75 with an rms deviation of 0.93
kcal/mol. The 20 HEPT analogues alone were found to
correlate with the same terms (without the correction
for amide substitutents because none were present in
this class of compounds) with an r2 value of 0.83. For
the nevirapine analogues, however, only the ∆HBtotal
and the 2° amide descriptors were significant, yielding
an r2 value of 0.58. A somewhat narrower range of
available activities may account for the relatively low
correlation for this latter set of compounds.

By use of this same approach, 20 BPBI inhibitors and
their corresponding EC50 values were selected for
analysis (Table 1). Following MCPRO simulations on
the 4-substituted BPBI inhibitors, neither the standard
ELR descriptors (∆ELJ, ∆ECoul, and ∆SASA) nor the
descriptors for the combined HEPT and nevirapine
compounds yielded a correlation (r2 ) 0.25 or 0.11,
respectively). However, a modified set of terms was
found for these analogues that gave a reasonable
correlation for 16 of the BPBI drugs. The calculated data
for individual analogues are given in Table 2. The
equation describing the fit is shown below:

This equation gave a correlation coefficient with an r2

value of 0.70, an rms deviation of 0.53 kcal/mol, and an
unsigned error of 0.46 kcal/mol when the experimental
values were plotted against the calculated ∆Gbinding
values. The probability to F ratios (regression model
mean square error divided by the error mean square)
are all less than 0.005, implying that the probability of
a greater F value occurring by chance is not great. The
experimental and calculated ∆G values obtained from
the simulations are given in Table 1 and a plot of these
data is shown in Figure 1. Exclusion of any of the above
terms from the fit significantly lowered the correlation
coefficient (data not shown).

We decided to exclude compound 12 from the correla-
tion in Figure 1. This compound is a primary amine and
is probably protonated in aqueous solution. Its state of

∆Gbinding ) ∑cnún + constant (2)

∆Gcalc ) -0.94(∆Hbtotal) + 0.30(EXX-LJ) +
0.0085(∆PHOBarea) - 2.8(2° amide) + 4.6 (3)

∆Gcalc ) 0.101〈∆CoulTotal〉 + 0.027〈∆SASA〉 + 3.52
(4)
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protonation when bound to RT is uncertain, although,
given the hydrophobic character of the pocket, it could
be assumed to be unprotonated in the unbound form.
Our earlier studies12 on TIBO derivatives also contained
some amine ligands, and we found that the unproto-
nated amino groups gave us an excellent fit. Neverthe-
less, the uncertainty about the state of protonation of
12 argues for its removal from the correlation, even
though the results were not affected (r2 ) 0.697 without
compound 12; r2 ) 0.695 with 12).

Three compounds, 2, 13, and 17, fell outside the 2σ
limit of the correlation. While it is difficult to identify
the precise reasons for this, it is significant that the
calculation predicts much higher activity for 13 and 17
than is actually observed. Both of these compounds can
adopt several conformations, and it is tempting to
speculate that the minimization procedure chooses the
incorrect conformation. Structural studies currently in
progress will help to resolve this issue. This is especially
significant for compound 2, which is a potent inhibitor
of RT and whose activity is underestimated in the
computational procedure.

The two terms involved in the correlation of the BPBI
analogues include a term for the total change in Cou-
lombic energy between the bound and unbound states
〈∆CoulTotal〉 and a term for the change in solvent-
accessible surface area between the bound and unbound
states 〈∆SASA〉. The energy term implies a dominant
role for increased intersolute electrostatic interactions
between the inhibitor and the protein, which is, of
course, desirable upon binding. The SASA term indi-
cates that the burying of the ligand, which is exposed
to solvent in the unbound state, is favorable during
complexation.

The descriptors that correlated with the experimental
∆G values for the BPBIs were not the same as those
for the HEPT and nevirapine analogues mentioned
above, although they are related. In fact, a recent study
of NNRTIs using eight different NNRTI cores15 found
that each core had its unique descriptor set, which is
not unresonable given the structural differences be-
tween classes of drugs. Nonetheless, almost all of the
classes of NNRTIs had a term related to increasing the
energy of interaction upon complexation. In addition,
the burying of aromatic or hydrophobic areas was also
seen to be highly significant, as was hydrogen bonding
between the ligand and protein.

Thermodynamic and Structural Analysis for
Substituted BPBIs. Compilation of energy values and
descriptive structural terms during the MC calculations
provides a mechanism for assessing the contribution of
each of these parameters during the binding process.
In addition, individual snapshots were saved every
500 000 steps during the MC simulation, providing
structural information on the final inhibitor position,
including any hydrogen bonds formed to the protein.

Analysis of the structure files reveals that the most
of the inhibitors show a geometry repositioning during
the Monte Carlo simulation that decreases the distances
to two key protein side chain residues, K101 and K103
(Table 3). However, no correlation between activity and
the change in this distance could be drawn. Clearly,
geometry repositioning alone is not responsible for the
activity of the compounds. Not much movement is seen
for any of the drugs relative to the Y181, Y188, or W229

Table 2. Change in Energy Values (kcal/mol) and Descriptors between Bound and Unbound States for BPBI Inhibitors

BPBI
analogue ∆ESX-LJ ∆ESX-Coul ∆EXX-LJ ∆EXX-Coul ∆LJ total ∆CoulTotal ∆SASA ∆PHOBarea ∆PHILarea ∆AROMarea ∆HBondtot

1 26.2 28.37 -53.9 -8.29 -27.7 20.09 -541.82 -99.37 -12.71 -325.67 -1.12
2 28.39 24.19 -51.05 -8.41 -22.65 15.79 -526.36 -108.13 -12.65 -306.87 -0.76
3 25.41 24.98 -54.13 -10.23 -28.72 14.75 -502.92 -24.79 -14.72 -297.48 -0.95
4 23.84 39.76 -53.75 -6.31 -29.91 33.44 -570.05 -104.52 -36.29 -326.09 -1.73
5 26.12 30.45 -55.28 -16.6 -29.16 13.85 -531.91 -20.83 -107.74 -301.7 -0.88
6 23.54 31.98 -51.69 -17.97 -28.16 14.02 -518.47 -22.67 -73.15 -322.39 -1.26
7 26.38 33.04 -51.87 -16.7 -25.48 16.34 -520.35 -77.16 -72.85 -297.26 -0.76
8 25.52 27.57 -43.17 -9.4 -17.65 18.17 -552.03 -97.16 -11.53 -378.51 -1.28
9 25.75 21.86 -48.16 -10.66 -22.41 11.21 -467.19 -19.59 -22.41 -320.49 -0.96

10 24.97 33.01 -48.51 -13.65 -23.54 19.36 -564.43 -69.17 -62.36 -325.94 -2.7
11 27.42 24.63 -55.33 -9.5 -27.92 15.14 -556.61 -67.05 -12.2 -308.93 -0.95
12 21.62 51.78 -54.83 -21.19 -33.21 30.59 -538.39 -63.87 -70.73 -301.25 -1.07
13 28.9 27.41 -53.5 -7.73 -24.6 19.69 -582.75 -143.78 -11.62 -324.42 -0.93
14 24.55 43.05 -51.88 -17.32 -27.33 25.73 -540.08 -21.05 -116.86 -296.66 -2.67
15 29.74 58.3 -53.49 -28.29 -23.75 30.01 -627.47 -135.9 -72.29 -314.56 -3.68
16 25.98 22.79 -55.39 -12.6 -29.41 10.18 -524.32 -37 -87.8 -299.83 -0.89
17 31.21 29.43 -45.54 -15.79 -14.33 13.64 -568.35 -156.87 -52.1 -262.79 -1.54
18 28.35 27.39 -53.95 -3.82 -25.6 23.56 -565.67 -161.71 -8.36 -296.59 -1.02
19 25.7 23.73 -53.95 -9.5 -28.26 14.23 -534.45 -20.5 -15.58 -324.05 -0.94
20 25.49 23.77 -46.67 -11.83 -21.18 11.95 -471.37 -23.83 -23.33 -380.83 -1.04

Figure 1. Predicted binding affinities (∆Gcalc) computed using
eq 4 vs experimental activities (∆Gexpt) for 17 BPBI analogues
with HIVRT.
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residue. These aromatic residues have all been impli-
cated in π-stacking interactions,13,23 which add further
stability to the bound inhibitors.

In addition to these general observations, the struc-
ture files reveal that all of the analogues that have an
experimental ∆Gbinding of better than -9.0 kcal/mol with
an oxygen atom in the 4-substituent show the formation
of a hydrogen bond between this O atom and the H-N
of K103. One other member of the series, compound 12,
also shows a hydrogen bond to K103; however, its
experimental ∆G value is only -8.33 kcal/mol. The
substituent in this case is an amino methyl group; the
acceptor N in the 4-position is less effective than an O.
Analogue 11, with 4-chloromethyl as a substituent and
whose ∆G value is -9.65 kcal.mol, also has a substi-
tutent that can function as a hydrogen bond acceptor,
although it is generally not as effective as O or N.
Analogue 6, with a 4-NH2 group, forms a hydrogen bond
from the N atom to the backbone carbonyl oxygen atom
of K101, as opposed to K103. The activity of this
analogue was good but not excellent. Thus, all of the
most efficacious inhibitors that have hydrogen-bonding
acceptor atoms in the 4-position show hydrogen-bonding
capability, which presumably adds stability to the drug’s
position in the binding pocket. An example of this
capability is shown in Figure 2 for compound 16. The
information obtained from this type of analysis is
extremely valuable in the design of proposed members
of the BPBI series.

Prediction of Novel BPBI Inhibitors. Armed with
a correlation of BPBI energy values and descriptors with
EC50 values, a preliminary attempt was made to predict
the activity of novel BPBI analogues against wild-type
RT. To this end, two new analogues, 1-(2,6-difluoroben-
zyl)-2-(2,6-difluorophenyl)-4-cyanomethylbenzimida-
zole (compound A, Table 1) and 1-(2,6-difluorobenzyl)-
2-(2,6-difluorophenyl)-4-azidomethylbenzimidazole (com-
pound B, Table 1), were designed. The rationale for the
selection of these compounds was based on the premise
that these groups would enhance contacts with the K103
residue. They were placed into the binding site, and
their binding energies were estimated using eq 4 above.
Following the simulations, the ∆Gbinding values of these
analogues were estimated to be -9.48 and -10.6 kcal/
mol, respectively, which corresponds to EC50 values of
0.075 and 0.035 µM. Subsequent synthesis, purification,
and testing of RT activity showed that the EC50 values
of the analogues were 0.06 and 0.045 µM, respectively.
Therefore, the method for estimation of the efficacy of

new analogues is quite accurate, and thus, the simula-
tion of additional new analogues is currently in progress.

Prediction of Activities for BPBI Inhibitors in
the 8-Cl-TIBO Binding Pocket or TIBO Inhibitors
in the 4-Me-BPBI Binding Pocket. To determine if
the differences in crystal structures of the respective
HIV-1 RT complexes of the lead inhibitors play a role
in predictive ability, MC simulations were carried out
on the 8-Cl-TIBO complex in its native site so that the
results could be compared to those of the 4-Me-BPBI
simulation. Following these calculations, backbone su-
perposition of the protein complexes constructed from
the crystal structure coordinates of these inhibitors
showed an rms deviation of only 0.87 Å. On the basis of
this close structural similarity, the 20 known BPBI
inhibitors were then placed into the RT binding pocket
in place of 8-Cl-TIBO and, conversely, 22 TIBO deriva-
tives (Table 4) were placed in the RT binding pocket in
place of 4-methyl-BPBI. Following the MC calculations
on all of these complexes, fitting of the resulting energy
terms and descriptors to the respective experimental
activities was again evaluated.

For the BPBI analogues placed in the TIBO binding
pocket, using eq 4 gave a reasonable correlation (r2 )
0.61; rms ) 0.56 kcal/mol) for experimental vs calculated
∆Gbinding if one additional analogue (BPBI 20) was

Table 3. Average Distance Measurements between Key Residuesa of Selected BPBIs in the 4-Me-BPBI Wild-Type Crystal Structure
before and after MCPRO Calculations

drug K101-O (Å) K103-CB (Å) Y181-CE2 (Å) Y188-CE2 (Å) W229-CH2 (Å) ∆Gcalc (kcal/mol)

1 -0.35 -0.6 0.2 0.13 0.18 -9.01
2 -0.52 -0.49 0.19 0.4 0.12 -8.99
3 -0.77 -0.52 0.28 0.29 0.28 -8.49
5 -0.33 -0.76 0.07 0.08 0.24 -9.31
8 -1.35 -1.07 0.34 0.07 0.36 -9.43

10 -0.9 -0.49 0.01 0.25 0.1 -9.64
11 0.57 -0.44 -0.12 0.48 0.11 -9.82
12 0.28 -0.84 0.23 0.28 0.25 -7.98
14 -1.2 -1.28 0.12 0.56 0.24 -8.46
16 -0.55 -0.41 -0.22 0.5 0.14 -9.44

a Distances are measured to the closest heavy atom in the inhibitor molecule. A positive number indicates movement further away
from the respective amino acid residue. A negative number indicates movement closer to the amino acid residue.

Figure 2. Representative example of hydrogen bonds between
ligand and protein in the HIVRT binding pocket.
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dropped from the fit. In general, the final distances to
K101 and K103 decreased for the good inhibitors in the
TIBO site (see Table 5), while the poorer inhibitors
moved closer to Y188 and W229. While the final position
of the inhibitors in the binding pocket was not identical

to that in the natural complex, this did not greatly affect
the ability for correlation with the biological activity of
these compounds.

For the TIBO analogues placed in the BPBI binding
pocket, a reasonable correlation (r2 ) 0.63; rms ) 1.00
kcal/mol) could be obtained for the calculated energy
terms and descriptors used in the fit for 17 of the TIBO
compounds in their own sites, according to eq 5, which
uses the same descriptors as those determined previ-
ously:15

However, an alternative fit using 19 compounds could
be obtained (eq 6, r2 ) 0.75, rms ) 0.80 kcal/mol) if
different descriptors were instead used:

In this equation, the useful terms are the change in
hydrophilic area, which has a negative coefficient
indicating that exposure of these areas is desirable upon
binding, and the change in the number of hydrogen
bonds donated to water, each of which adds 0.75 kcal/
mol of energy upon complexation. The coefficient of this
latter term is negative, signifying that water is the best
hydrogen-bonding medium, and the loss of hydrogen
bonds is thus unfavorable. Comparison of the locations
of the compounds before and after calculations revealed
that in general the best drugs moved closer to residue
Y181 while moving further away from K101 and K103
(see Table 6).

The ability to predict the activity for members of a
new class of inhibitors using existing crystal structure
information is desirable in that it would greatly acceler-
ate the drug design timetable. From the results pre-

Table 4. Structures and Experimental Activities29 for 4,5,6,7-
Tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepine-2(1H)-thione
and -one (TIBO) Analogues

compd R1 R2 X
activitya

(µM)
∆Gexpt

(kcal/mol)

T01 8-Br dimethylallyl S 0.003 -12.09
T02 8-Cl dimethylallyl S 0.0043 -11.87
T03 8-F dimethylallyl S 0.0058 -11.69
T04 8-Me dimethylallyl S 0.0136 -11.16
T05 9-F dimethylallyl S 0.025 -10.79
T06 9,10-di-Cl dimethylallyl S 0.0255 -10.76
T07 8-CtCH dimethylallyl S 0.0296 -10.68
T08 9-Cl dimethylallyl S 0.034 -10.6
T09 H dimethylallyl S 0.044 -10.44
T10 8-Br dimethylallyl O 0.0473 -10.39
T11 8-CN dimethylallyl S 0.0563 -10.29
T12 8-COH dimethylallyl S 0.188 -9.54
T13 9-Me diethylallyl O 0.3142 -9.23
T14 8-CtCH dimethylallyl O 0.4376 -9.02
T15 9-CF3 dimethylallyl S 0.485 -8.96
T16 8-Me dimethylallyl O 0.989 -8.52
T17 10-Br dimethylallyl S 1.075 -8.47
T18 8-CN dimethylallyl O 1.1396 -8.43
T19 9-NO2 methyl-c-Pr S 2.45 -7.96
T20 H dimethylallyl O 3.155 -7.81
T21 9-CF3 dimethylallyl O 5.919 -7.42
T22 9-NO2 methyl-c-Pr O 33.43 -6.35

a Activity (cell-based assay) at 37 °C.

Table 5. Average Distance Measurements between Key Residuesa of BPBIs in the 8-Cl-TIBO Crystal Structure before and after
MCPRO Calculation

drug K101-O (Å) K103-CB (Å) Y181-CE2 (Å) Y188-CE2 (Å) W229-CH2 (Å) ∆Gcalc (kcal/mol)

1 0.53 -0.43 0.52 -0.26 0.16 -9.01
2 -0.8 -0.82 0.02 0.52 -0.05 -8.99
3 -0.33 -0.36 1.1 1.01 1.76 -8.49
5 0.22 -0.42 -0.37 -0.59 -0.95 -9.31
8 -0.03 -0.2 -0.73 0.22 -0.54 -9.43

10 -1.14 -0.64 -0.23 -0.07 -0.29 -9.64
11 0.14 -0.7 0.62 0.48 1.63 -9.82
12 0.19 0.07 -0.57 -0.78 -0.69 -7.98
14 -1.07 1.22 0.54 2.78 1.63 -8.46
16 -1.18 -0.96 -0.39 3.59 -1.24 -7.94

a Distances are measured to the closest heavy atom in the inhibitor molecule. A positive number indicates movement further away
from the respective amino acid residue. A negative number indicates movement closer to the amino acid residue.

Table 6. Average Distance Measurements between Key Residuesa of Selected TIBOs in the 4-Me-BPBI Wild-Type Crystal Structure
before and after MCPRO Calculations

drug K101-O (Å) K103-CB (Å) Y181-CE2 (Å) Y188-CE2 (Å) W229-CH2 (Å) ∆Gcalc (kcal/mol)

1 1.7 2.53 -0.48 0.3 -0.72 -9.01
2 1.02 0.87 0.13 -0.15 -0.09 -8.99
5 1.56 1.64 -1.19 -0.05 -0.08 -9.31
8 1.89 2.65 0.78 -1.78 -0.09 -9.43

10 0.38 2.09 0.3 0.06 -0.23 -9.64
11 0.55 0.51 0.72 -0.44 -0.31 -9.82
12 2.48 1.2 -0.13 0.47 -0.37 -7.98
14 -0.05 -0.49 0.87 -0.42 -0.7 -8.46
16 -0.51 -0.56 0.96 -0.47 -0.07 -9.44

a Distances are measured to the closest heavy atom in the inhibitor molecule. A positive number indicates movement further away
from the respective amino acid residue. A negative number indicates movement closer to the amino acid residue.

∆Gcalc ) 0.40〈EXXLJ〉 - 1.41〈∆HBtotal〉 + 4.13 (5)

∆Gcalc ) -0.03〈∆PHILarea〉 - 0.74〈∆HBtDtoWTRl〉 -
12.30 (6)
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sented above, it is apparent that it is possible to obtain
reasonable correlations after placing the drugs in a site
that is not constructed from crystal structure data of
the lead member of a specific class. In addition, the
information gleaned from the distance measurements
allows for the formulation of new members of a class
that might adjust for the gap in distance.

Conclusions

A good correlation was obtained between a measure
of biological activity (EC50 values) and the various
energy terms and descriptors for a training set of 20
known analogues of the new BPBI class against wild-
type RT. These relationships may be useful for the
prediction of the activity of additional novel analogues.
On the basis of the structural analysis of the simula-
tions, valuable information was obtained that will be
useful in the design of new members of this class.
Clearly, the ability of the BPBI inhibitors to form a
hydrogen bond to the backbone nitrogen of lysine 103
in the protein contributes to drug potency and can be
used in the design of novel analogues. Hydrogen bonding
to backbone atoms in the protein has also been observed
with the TIBO inhibitors23 and with the HEPT series
of drugs,14 suggesting it may be a universal feature for
good drug potency. By use of this information, two new
compounds have been synthesized and tested for bio-
logical activity with excellent results.

In addition, the ability to use the RT-TIBO complex
to predict the activity of BPBI analogues also lends
support for this idea. This could circumvent the long
wait for crystal structures of lead compounds for novel
NNRTIs, a major problem in the past for drug prediction
research. Proposed compounds could be simulated on
the computer using available structural information and
existing biological database information to obtain a
correlation. The calculated data could then be used to
predict the activity of compounds not only for wild-type
but also for mutant RTs prior to synthesis of the
inhibitors. This type of approach would certainly be
beneficial in shortening the path to more universally
potent AIDS drugs.
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