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Pharmacophore, two-dimensional (2D), and three-dimensional (3D) quantitative structure-
activity relationship (QSAR) modeling techniques were used to develop and test models capable
of rationalizing and predicting human UDP-glucuronosyltransferase 1A4 (UGT1A4) substrate
selectivity and binding affinity (as Km,app). The dataset included 24 structurally diverse UGT1A4
substrates, with 18 of these comprising the training set and 6 an external prediction set. A
common features pharmacophore was generated with the program Catalyst after overlapping
the sites of conjugation using a novel, user-defined “glucuronidation” feature. Pharmacophore-
based 3D-QSAR (r2 ) 0.88) and molecular-field-based 3D-QSAR (r2 ) 0.73) models were
developed using Catalyst and self-organizing molecular field analysis (SOMFA) software,
respectively. In addition, a 2D-QSAR (r2 ) 0.80, CV r2 ) 0.73) was generated using partial
least-squares (PLS) regression and variable selection using an unsupervised forward selection
(UFS) algorithm. Both UGT1A4 pharmacophores included two hydrophobic features and the
glucuronidation site. The 2D-QSAR showed the best overall predictivity and highlighted the
importance of hydrophobicity (as log P) in substrate-enzyme binding.

Introduction
Recognition by the pharmaceutical industry that

undesirable absorption, distribution, metabolism, and
excretion (ADME) properties of new drug candidates are
the cause of many clinical phase drug development
failures has led to the need to identify such problems
in the drug discovery process.1 In this regard, the
demand for the rapid evaluation of increasing numbers
of compounds has driven the development of methodolo-
gies and software, which has resulted in the increased
application of molecular modeling techniques to ADME.2
Indeed, computational (in silico) and in vitro ADME
approaches are now widely utilized throughout the
discovery process to optimize the selection of the most
suitable drug candidates for development. Notably, in
silico approaches potentially allow the ADME properties
of a newly discovered compound to be predicted by
modeling the structural and physicochemical charac-
teristics of that compound without recourse to labora-
tory-based procedures.

An integral component of ADME evaluation is the
identification of the enzyme(s) responsible for the
metabolism of a new chemical entity, together with an
estimate of kinetic parameters. Cytochrome P450 (CYP)
and UDP-glucuronosyltransferase (UGT) are the prin-
cipal drug metabolizing enzyme systems.3,4 Apart from
metabolizing drugs, however, CYP and UGT also cata-
lyze the biotransformation of a multitude of structurally
diverse nondrug xenobiotics (e.g., environmental pol-
lutants, dietary chemicals) and endogenous compounds

(e.g., steroid hormones). Consistent with their broad
substrate profiles, CYP and UGT are known to exist as
superfamilies of independently regulated enzyme forms
(“isoforms”) that exhibit distinct, but often overlapping,
substrate and inhibitor selectivities. Thus, prediction of
variability in drug elimination and response in humans
requires knowledge of CYP and UGT isoform substrate
and inhibitor selectivities and the factors that regulate
isoform catalytic activity, particularly drug-drug in-
teractions and genetic polymorphisms.

In recent years, considerable effort has been directed
toward predicting the substrate and inhibitor selectivi-
ties of human CYP isoforms using molecular modeling
techniques including pharmacophore, 2D, and 3D quan-
titative structure-activity relationships (QSAR) and
homology modeling.5,6 For example, pharmacophore and
3D-QSAR models have been developed that can be used
to infer the active site binding requirements of sub-
strates and inhibitors for numerous CYP isoforms and
that can predict apparent Km (Km,app) for substrates and
apparent Ki (Ki,app) for inhibitors.7 In particular, Ekins
and colleagues have used the molecular modeling
software Catalyst (Accelrys, Inc.) to derive pharmaco-
phore models for several CYP isoforms that predict
Km,app or Ki,app values within 1 log unit.8-12 However,
the pharmacophores do not necessarily overlay the
oxidation sites of the chemicals, which may be a
significant drawback for substrate-derived pharmaco-
phores because it precludes any chemically intuitive
interpretation of the alignments. Other groups13,14 have
combined pharmacophore models with homology models
based on crystal structures of bacterial CYPs and, more
recently, the mammalian enzyme CYP2C5. These com-
bined models provide powerful tools that take into
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account the site of oxidation and allow investigation of
active site features and substrate interactions.

The successful adoption of in silico approaches for
study of the CYP family has progressed in parallel with
the increasing availability of CYP isoform substrate and
inhibitor selectivities, and the development of such
models has also been aided as a result of access to
homology models of human CYPs. However, the devel-
opment of models for predicting metabolism and for
characterizing structural features of substrates for UGT
isoforms is less advanced relative to CYP. Only recently
has the substrate profile of UGT isoforms begun to
approach an interpretable level, and an X-ray crystal
structure is not yet available. Nevertheless, it is envis-
aged that molecular modeling techniques, in particular
2D- and 3D-QSAR and pharmacophore modeling, will
translate well for application to UGT.

Recent studies have investigated the substrate profile
of the human UGT isoform UGT1A4.15,16 It has been
demonstrated that UGT1A4 has the ability to metabo-
lize a structurally diverse group of compounds, which
includes drugs, nondrug xenobiotics, and hydroxys-
teroids. Of particular interest is the capacity of UGT1A4
to catalyze the glucuronidation of primary (e.g., 4-ami-
nobiphenyl), secondary (e.g., desmethylclozapine), and
tertiary amine (e.g., clozapine) containing compounds.
Km,app values determined for the UGT1A4 substrates
ranged from 7 to 11 600 µM.

The studies reported here aimed to investigate the
structural and chemical properties that characterize
substrates of UGT1A4 and to evaluate several pattern
recognition techniques for the prediction of Km,app for a
set of UGT1A4 substrates. Catalyst was used to gener-
ate two pharmacophores for UGT1A4 substrates in
which the sites of conjugation were overlaid. One
pharmacophore (“common features”) can be used to
align molecules sensibly, and the other allows quantita-
tive prediction of the substrate Km,app. The alignment
from the common features model was used to develop a
molecular-field-based (SOMFA) model. Furthermore, a
2D-QSAR model was developed using the software
packages Cerius2 (Accelrys, Inc.) and Dragon (Milano
Chemometrics and QSAR Research Group, Milan, Italy)
based on a range of descriptors that capture information
associated with ligand-receptor binding events. The
predictivity of the three QSAR models was comparable
to those reported previously in the drug metabolism
field. Overall, these models provide a complementary
package for inferring various features associated with
substrate binding to UGT1A4. The development of
multiple models has also allowed comparison of these
different computational approaches for the challenge of
modeling UGTs.

Materials and Methods
Dataset Selection. The dataset comprised UGT1A4 sub-

strates characterized by Green and colleagues.15,16 These data
were derived from a single laboratory, using a common assay
procedure to quantitate aglycone glucuronidation by UGT1A4
stably expressed in HK293 cells. Hence, the kinetic parameter
modeled, namely, Km,app, may be considered to be internally
consistent. Substrates modeled were structurally diverse and
had Km,app values that spanned over 3 orders of magnitude,
both prerequisites for the Catalyst Hypogen algorithm. The
dataset comprised 24 substrates (Figure 1) and their corre-
sponding Km,app values, which ranged from 7 to 11 600 µM.

Model Generation. The molecular modeling studies were
performed using Silicon Graphics Octane2 (Silicon Graphics,
Mountain View, CA) and x86 Intel workstations. To test the
predictivity of the models constructed (described below), the
24 substrates investigated were divided into two groups: one
to generate the models (18 chemicals) and the second to test
the models (6 chemicals). The test set of six chemicals was
selected to span a wide range of Km,app values (47-1570 µM)
and for diversity of chemical structure in order to stringently
test the models generated. The ability of the models to predict
the Km,app values of these six chemicals was used as the
common method of validation. Currently, prediction within 1
log unit of the experimental Km,app value is considered standard
in the drug metabolism field.10 Randomization tests were
employed to assess statistical significance whenever supported
by the software. This involved the generation of alternative
training sets by randomization of the association between
Km,app and the substrate such that a chemical was not correctly
associated with its Km,app value. Repetition of the model
generation procedure with these randomized data sets allowed
calculation of the probability that the model was a result of a
chance correlation. To achieve a 99% confidence level, 99
randomization tests were necessary while 19 randomization
tests were required to achieve a 95% confidence level.

Pharmacophore Modeling with Catalyst. Catalyst, ver-
sion 4.6 (Accelrys, Inc.), was used for modeling. Substrates for
UGT1A4 were drawn from the View Compound Workbench
using the Visualizer module. Conformer generation was
performed using the “Best” function to ensure the widest
possible conformer coverage. Each substrate was allowed a
maximum of 255 conformers within an energy range of 20 kcal/
mol. The default method used by Catalyst for fitting a
substrate to a pharmacophore is the “Fast Fit” method. “Fast
Fit” finds the optimum fit of a conformer to a pharmacophore
without performing an energy minimization on the conformer.
The “Best Fit” procedure starts with “Fast Fit” and performs
a more thorough search of the torsional and rotational space
of the conformer. Common features pharmacophores were
developed using the Catalyst HipHop module, and predictive
3D-QSAR pharmacophores were developed using the Catalyst
HypoGen module. Catalyst refers to these hypothetical phar-
macophores as “hypotheses”, and these two terms will subse-
quently be used interchangeably. Interfeature spacing for both
modules of Catalyst was set to 1 Å because all molecules were
relatively small and feature-poor.

HipHop hypotheses were developed in an iterative manner
by gradually allowing inclusion of a greater number and
diversity of chemical features. The final “common features”
hypotheses were then analyzed for uniformity and sensibility
of mappings of all compounds. Here, the principal measure of
“sensibility” is the mapping of the glucuronidation site. In most
cases, the best hypothesis was also found to be the lowest “cost”
hypothesis. The total energy cost of a generated pharmacoph-
ore can be calculated from the deviation between the estimated
activity and the observed activity, combined with the complex-
ity of the hypothesis. A null hypothesis can also be calculated
on the basis of the presumption that the experimental activi-
ties are normally distributed about their mean and that there
is no relationship between the fit and the independent data.

Hypogen is a Catalyst module that searches for a 3D
arrangement of abstract chemical features that explain trends
and variations of activity with the chemical structure. It can
be used to predict the binding ability of chemicals toward an
enzyme or receptor. The fit of the chemicals to the putative
pharmacophore (i.e., how closely the features of each chemical
can match the features of the pharmacophore) is then linearly
correlated to the activity of the chemicals.17

Generation of User-Defined Glucuronidation Fea-
tures within Catalyst. Early experiments in pharmacophore
development using the UGT1A4 dataset highlighted some
difficulties caused by using the default hydrogen bond acceptor
(HBA) and hydrogen bond donor (HBD) features to recognize
glucuronidation sites within the substrates. For example, a
problem was discovered with the choice of the default Catalyst
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HBA feature because Catalyst does not consider sp2 nitrogen
atoms adjacent to aromatic rings (e.g., aniline-type nitrogens)
as possessing a lone pair of electrons. Such atomic features
are automatically assigned within the Catalyst drawing
module and are the default, and consequently, it was not
possible to map aniline-type nitrogen atoms to an HBA-based
feature. Thus, design of an HBD-based glucuronidation feature
was undertaken. Such a feature maps a vector in the direction
of the hydrogen. A difficulty in using an HBD-based glucu-
ronidation feature is to ensure that the feature recognizes
tertiary amines as glucuronidation sites because they do not
have a hydrogen. This was overcome by allowing the vector to

map in the direction of the lone pair in the specific case of a
tertiary nitrogen atom. This compromise is necessary in order
to achieve sufficiently general recognition of conjugation sites.
Such a compromise needs to be borne in mind when consider-
ing the mechanistic interpretation of mappings of the “excep-
tion” substrates. It should also be noted that an analogous
approach could be applied to the previous HBA-based feature;
the aniline type hydrogens could be allowed to map in the
direction of the lone pair vector in specific cases.

A third alternative can be considered whereby the glucu-
ronidation feature has no associated vector. Pharmacophores
containing such a feature may sacrifice specificity (because

Figure 1. Structures and Km,app values of the 24 UGT1A4 substrates in the training and test sets.
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only one feature, not two, are used), but the feature solves the
difficulties alluded to above regarding substrate site recogni-
tion. This “general” glucuronidation feature performs very well
and is widely recognized. All new features were added to the
Feature Dictionary of Catalyst.

HBA-Based Glucuronidation Vector (HBA-Glc. Vct.).
An “HBA lipid” chemical function was edited to recognize only
glucuronidation sites using the “View Hypothesis” workbench.
This involved removal of the capability to recognize features
such as ethers, esters, aromatic heteroatoms, etc. However,
this function cannot recognize sp2 nitrogen atoms adjacent to
aromatic rings (i.e., aniline-type nitrogens) because Catalyst
automatically assigns such atoms as lacking a lone pair of
electrons (n ) 0). Hence, they are considered unable to act as
HBAs, despite the well-known nucleophilic nature of such
atoms.

HBD-Based Glucuronidation Vector (HBD-Glc. Vct.).
In addition, an HBD chemical function was edited to recognize
tertiary amines and map the vector in the direction of the lone
pair electrons from the “View Hypothesis” workbench. This
allows the chemical function to recognize all glucuronidation
sites in the dataset, although a mechanistic interpretation may
be less valid. Editing was achieved by altering the atom
specifications for an “HBA lipid” chemical function to recognize
only a tertiary nitrogen, and then this function was included
as an “Or” option within the original HBD definition. Fur-
thermore, the original HBD chemical function was modified
to exclude primary and secondary amides as HBDs because
these are not glucuronidation sites. Validation of the feature
was achieved by testing its ability to recognize known glucu-
ronidation sites of UGT1A4 substrates.

Glucuronidation Sphere (Glc. Sph.). An “HBD” chemical
function was modified in order to recognize the heavy atom
(O, S, N) of any potential glucuronidation site. By use of the
“View Hypothesis” workbench of Catalyst, vector associations
were removed from the original HBD feature. Atom specifica-
tions were altered to prevent recognition of aromatic hetero-
atoms (O, S, N) and imine and amide nitrogens because these
chemical features are not sites of glucuronidation (with the
rare exception of some aromatic N centers, which are not
present in this data set). Again, testing its ability to recognize
known glucuronidation sites of UGT1A4 substrates validated
the feature.

Modeling with SOMFA. Self-organizing molecular field
analysis (SOMFA) is based on a 3D-QSAR algorithm, similar
to CoMFA, that can detect the 3D positions in the electrostatic
and shape fields that influence the activities of a set of aligned
molecules.18 The algorithm calculates the steric and electro-
static fields for a set of aligned conformers and allows
visualization of significant interaction points on a ligand. The
common features (HipHop) pharmacophore alignment was
used to align the molecules for SOMFA model generation. The
aligned chemicals were then input to the program along with
the -log Km,app. The shape and electrostatic field were sampled
at 1 Å intervals over a 3D grid. The output consisted of a set
of points in 3D that represent the regions of space where the
shape or electrostatics of the substrate influenced the Km,app.

2D-QSAR Modeling. A wide range of 2D descriptors was
calculated from the structure of each chemical using the
Dragon (Milano Chemometrics and QSAR Research Group,
Milan, Italy) and Cerius2 (Accelrys, Inc.) programs. These
included topological, 2D autocorrelation, constitutional, BCUT,
thermodynamic, and electronic descriptors.34 Before generation
of the model, the least collinear and most relevant subsets of
descriptors were selected and all descriptors without a statisti-
cally significant correlation to -log Km,app were removed. The
significantly correlated descriptors were input to a program
implementing the Unsupervised Forward Selection (UFS)
algorithm.19 This method selects the two least well-correlated
descriptors and then selects additional variables on the basis
of their multiple correlation with those already chosen, thereby
selecting a subset of variables that are as close to orthogonal
as possible. Subsets of descriptors were selected using

this procedure with varying degrees of collinearity allowed
(r2

max ) 0.1, 0.2, ..., 0.9, 0.99).
A regression model was built for each descriptor subset

using principal component (PCR) regression. The variable
subset giving the best leave-one-out (LOO) cross-validated r2,
a measure of predictive ability of the model, was chosen for
further optimization. Any descriptor found to have a significant
correlation with the residuals of the model was included if it
improved the LOO cross-validated r2. Descriptors were omitted
from the model if the removal resulted in an increase in the
LOO cross-validated r2.

Results

Pharmacophore Modeling of UGT1A4 Substrates.
Catalyst identifies the 3D spatial orientation and overall
range of structural features associated with the ligands
and uses them to define a pharmacophore. Subse-
quently, Catalyst can be used in two ways. Identification
of the features common to all substrates generates a
qualitative “common features” model that highlights the
minimum necessary 3D arrangement of features that
are necessary for binding. Alternatively, the “fit” of a
ligand to a pharmacophore can be correlated with a
measure of binding affinity (e.g., Km,app) to generate a
quantitative model potentially capable of predicting that
measure of binding affinity.

“Common Features” Pharmacophore Model. The
Catalyst HipHop module was used to generate a “com-
mon features” model. The initial aim was to deduce the
distance(s) between one glucuronidation site and one
other common feature for all 24 substrates, since this
represents the simplest pharmacophore that can be
modified progressively. To achieve this, the vector-free
glucuronidation feature (Glc. Sph., see Materials and
Methods), which recognized all 24 substrates, was used.
The occurrence of this feature in a pharmacophore was
set to a minimum of 1 (i.e., each pharmacophore had to
include one glucuronidation feature), and Catalyst was
given the option of choosing only one other feature from
the default hydrophobe, HBA “lipid” or HBD features.
The two solutions consisted of a glucuronidation feature
and a hydrophobic feature separated by either 3 or 6.2
Å. With the exception of 4-nitrophenol, all substrates
could be mapped to the glucuronidation feature and the
hydrophobe feature of each pharmacophore. Catalyst
interpreted 4-nitrophenol as containing a glucuronida-
tion feature but no hydrophobe; hence, the substrate
was mapped only to the glucuronidation feature of each
pharmacophore.

No single vectorized glucuronidation function could
be designed to recognize the glucuronidation site of
every molecule. For example, the HBA-based glucu-
ronidation feature could not recognize the sites in the
biphenylamines; hence, the HBD-based feature must be
used for these substrates even though tertiary amines
are not recognized by the HBD-based feature. Hence,
the dataset was arbitrarily classified into groups com-
prising biphenyls, tertiary amines, steroids, and small
molecules (see Table 2). This allowed combinations of
groups to be investigated with vectorized glucuronida-
tion features.

Each group was searched for common features, using
a vectorized glucuronidation feature, and then combina-
tions of the groups were searched. However, the small
molecules group, which ranged in Km,app from 470 to
11 600 µM, was excluded from pharmacophore genera-
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tion procedures because of the molecules’ small size and
feature poorness. Analysis of the biphenyl group for the
common spatial arrangement of features generated only
one pharmacophore consisting of two hydrophobic re-
gions and one HBD-based glucuronidation feature (HBD-
Glc. Vct). The arrangement of features is a triangular
combination of the two distances found to be common
to all 24 substrates in the initial simplified model (i.e.,
3 and 6.2 Å) and is shown in Figure 2a.

The common spatial arrangement of features for the
combined biphenyl and steroid group was then inves-
tigated. The highest ranked pharmacophore for this
substrate group shared the same features in the same
geometry as that shown in Figure 2a (i.e., two hydro-
phobes and a HBD-Glc. Vct.). Substrates in this group
varied in Km,app from 7 to 460 µM. Similarly, the
common spatial arrangements of features for the com-
bined biphenyl and tertiary amine groups were exam-
ined, and the highest ranked pharmacophore for this
substrate group was also the same as that shown in
Figure 2a. Substrates in this group varied in Km,app
between 27 and 460 µM. Parts b and c of Figure 2
illustrate two representative UGT1A4 substrates, eu-
genol (which fitted despite exclusion from the training
set) and clozapine, mapped to the “common features”
pharmacophore. Table 3 shows the number of features
of the common features pharmacophore mapped by a
given substrate, conformer number and energy, reported
default fit value, and maximium omitted features (MOF)
setting used for the hypothesis generation.

Pharmacophore-Based 3D-QSAR Model. The
HypoGen module of Catalyst was used to develop a 3D-
QSAR for UGT1A4 using published Km,app values shown
in Figure 1 for a training set of 18 structurally diverse
substrates of UGT1A4.15,16 For model generation, the
HBD-based glucuronidation feature (HBD-Glc. Vct.)
developed here and the default hydrophobic, hydrogen
bond acceptor, hydrogen bond donor, and ring aromatic
features were chosen as feature options. Of the 10
hypotheses returned, the lowest cost model was assessed
as the best. This assessment was based not only on the

Catalyst cost analysis but also on the possession of
features that were representative of the remaining
hypotheses, the highest correlation coefficient (r), and
the best prediction of the test set. A high correlation
(r ) 0.94; r2 ) 0.88) between the experimentally derived
and predicted Km,app values for the training set was
obtained, suggestive of a high-quality model. Figure 3a
demonstrates the structural features and geometry of
the pharmacophore derived using Hypogen. Mappings
of imipramine and benzidine to the hypogen pharma-
cophore are shown in parts b and c of Figure 3,
respectively.

Table 1. Test Set Predicted Km,app Values and Logarithm of
the Residuals for the Three Models

substrate
obsd

Km,app

pharmacophore
predicted
Km,app

a

SOMFA
predicted
Km,app

a

2D-QSAR
predicted
Km,app

a

2-aminobiphenyl 47 190 (0.6) 190 (0.6) 270 (0.7)
clozapine 62 80 (0.1) 160 (0.4) 100 (0.2)
retigabine 322 70 (0.6) 250 (0.1) 260 (0.1)
menthol 470 150 (0.5) 260 (0.4) 1200 (0.4)
carvacrol 1500 190 (0.9) 190 (0.9) 430 (0.5)
eugenol 1570 150 (1.0) 390 (0.6) 1100 (0.2)

a Km,app values in units of µM. Values in parentheses represent
the log of the residuals (i.e., log of observed value minus predicted
value).

Table 2. Substrate Groups from Which the “Common Features” Pharmacophore Was Developed

biphenyls tertiary amines steroids small molecules

2-aminobiphenyl loxapine 5R-pregnane-3â,20R-diol menthol
4-aminobiphenyl desmethylclozapine tigogenin borneol
diphenylamine amitriptyline diosgenin carvacrol
retigabine clozapine 5R-androstane-3R,17â-diol eugenol
daidzein ketotifen hecogenin 4-nitrophenol
benzidine chlorpromazine

cyproheptadine
imipramine

Figure 2. (a) The “common features” pharmacophore model
developed using the HipHop module of Catalyst. Cyan spheres
represent hydrophobic regions, and purple represents the
“glucuronidation” feature. (b) Eugenol mapped to the Hypogen
pharmacophore. (c) Clozapine mapped to the Hypogen phar-
macophore.
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Further validation of the predictive 3D-QSAR model
was undertaken by permutation and test set prediction.
The statistical significance of the retrieved hypothesis
was verified by randomizing the assignment of a de-
pendent variable to a structure (i.e., the Km,app of each
structure was randomly assigned to a different structure
and the hypothesis generation procedure was repeated).
This permutation process was repeated 19 times with-
out retrieving a more “significant” (lower cost) hypoth-
esis, indicating that the original model was unlikely to
be a chance event (p < 0.05). A permuted hypothesis is
considered more “significant” if the associated “hypoth-
esis cost” is closer to the “fixed cost” than the original
hypothesis cost (see Materials and Methods for descrip-
tion of “cost”).

Km,app values for four of the six compounds comprising
the validation set were estimated within 0.5 log unit of
the experimentally derived Km,app (see Table 1), with
eugenol having an error slightly greater than 1 log unit.

SOMFA Model. A 3D-QSAR model was developed
using the SOMFA methodology of Robinson and co-
workers.18 Using the HipHop derived pharmacophore
alignment, the same training set molecules (Figure 1)
were imported into the SOMFA software program, and
the electrostatic and steric maps were calculated for
each. The resulting model showed a good correlation
(r ) 0.85; r2 ) 0.73) for the training set using the shape
grid potentials. All six of the molecules in the test set
were then predicted within 1 log unit using the model
(See Table 1).

2D-QSAR Model. A 2D QSAR model was constructed
with Cerius2 software (Accelrys, Inc.) using a range of
chemical descriptors and the principal component (PCR)
regression methodology. Of the 319 descriptors calcu-
lated for each chemical using the Dragon and Cerius2

software, 208 were found to be significantly correlated
to -log Km,app at the 95% confidence level. The UFS with
an r2

max of 0.99 gave a 21-descriptor model with the best
LOO cross-validated r2 of 0.68. Sixteen descriptors in
the model were found to increase the LOO cross-
validated r2 when removed from the model generation
process. Thus, the optimum model was found to be a
5-descriptor, 1-component model with r2 ) 0.80 (r )
0.89) and LOO cross-validated r2 ) 0.73.

The model using the nonstandardized descriptors (i.e.,
calculated directly) is given by

Standardization of the descriptors for the particular
training set involves mean centering and unit normal-
ization (by subtracting the mean and dividing by the
standard deviation). Using standardized descriptors
gives an indication of the relative contribution of each
descriptor to the equation

Table 3. Number of Features of the Common Features
Pharmacophore Mapped by a Given Substrate, Conformer
Number and Energy, Reported Default Fit Value, and
Maximium Omitted Features (MOF) Setting Used for the
Hypothesis Generation

UGT1A4 substrate
features
mapped

conformer
number

conformer
energya

fit
value MOFb

tigogenin 3 9 17.6 1.9 -1
pregnane 3 8 19.7 2 -1
diosgenin 3 4 18.3 1.7 -1
androstane 3 7 14.2 1.7 -1
hecogenin 3 9 13.2 1.8 -1
loxapine 3 2 17 1.4 0
2-aminobiphenyl 3 6 12.6 2.2 -1
desmethylclozapine 3 9 19.3 2.7 -1
amitriptyline 3 25 5.9 0.4 0
clozapine 3 19 3.7 2.9 -1
4-aminobiphenyl 2 2 0 1.6 -1
ketotifen 3 16 9.5 0.5 0
chlorpromazine 3 8 18.7 2.1 -1
cyproheptadine 3 9 4.7 2 -1
diphenylamine 3 5 6.8 0.6 0
imipramine 3 37 4.6 1.8 0
retigibine 3 52 16 3 -1
daidzein 3 12 0 0.4 0
benzidine 3 2 0 0.4 0
(+)-menthol 3 11 0 2.3 -1
(-)-endo-borneol 2 5 0 2 -1
carvacrol 3 7 0.2 1.9 0
eugenol 3 5 1.3 2.8 0
4-nitrophenol 1 0 0 1 -1

a Conformer energy has units of kcal/mol. b Maximum omitted
features (MOF) ) -1 means that Catalyst considers all possible
mappings and finds the best possible fit. MOF ) 0 means that
Catalyst ignores mappings that involve a subset of features.

Figure 3. (a) Pharmacophore-based 3D-QSAR model devel-
oped using the Hypogen module of Catalyst. Cyan spheres
represent hydrophobic regions, and purple represents the
“glucuronidation” feature. (b) Imipramine mapped to the
Hypogen pharmacophore. (c) Benzidine mapped to the Hypo-
gen pharmacophore.

pKm,app ) -3.54 + (0.21)(AlogP98) +
(0.18)(nRO5) + (3.40)(BENV1) + (2.51)(MATS3v) +

(1.66)(MATS5e)

pKm,app ) 3.88 + (0.24)(AlogP98normal) +
(0.14)(nRO5normal) + (0.20)(BENV1normal) +

(0.22)(MATS3vnormal) + (0.19)(MATS5enormal)
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where
(1) AlogP98 is log of the octanol/water partition

coefficient calculated by an atom-based method,
(2) MATS3v is the Moran autocorrelation of path

length 3 weighted by atomic van der Waals volumes,
(3) BENV1 is the negative burden eigenvalue 1

weighted by atomic van der Waals volumes,
(4) MATS5e is the Moran autocorrelation of path

length 5 weighted by atomic Sanderson electronegativi-
ties, and

(5) nRO5 is number of five-membered rings.
The pKm,app was permuted 100 times, and models

were generated for each permution. No model resulted
in as good a fit (r2) as the original, indicating that the
model is highly unlikely (p < 0.01) to be a result of a
chance correlation. Furthermore, the average “leave N
out” cross-validated r2 of 100 trials with N substrates
omitted (N ) 2-7) was performed to check that the
model is likely to generalize to novel chemicals, and the
results are summarized in Table 4. The models made
with these descriptors had good CV r2 values, between
0.79 (n ) 2, 11% of the set) and 0.75 (n ) 7, 39% of the
set), and showed low variability indicating a reliable
model suited to generalization.19

Discussion
Determination of a pharmacophore represents an

early, but significant, step toward the understanding
of a given receptor-ligand binding event. However,
while satisfaction of the pharmacophore criteria by a
molecule is necessary for a binding interaction to occur,
it may not be sufficient because many of the steric and
electronic influences on the binding event are ignored
in such an approach. Therefore, a 3D-QSAR modeling
approach that more specifically investigates such influ-
ences, such as SOMFA, could complement the pharma-
cophore approach well. Still, there are other molecular
determinants left unexplored by such approaches; hence,
a 2D-QSAR approach is potentially beneficial because
it allows exploration of an even wider range of molecular
determinants that may explain observed phenomena.
Thus, the aim of the research reported here was to
determine whether a complementary range of models
could be developed that describe the features necessary
for a compound to undergo glucuronidation by UGT1A4
and aid in the prediction of Km,app for putative sub-
strates. Previous 2D- and 3D-QSAR models of UGT
substrates/inhibitors have not been generally applicable
because they have used compounds of low structural
diversity (usually with a common substructure), making
extrapolation to structurally diverse datasets virtually
impossible.20-28

Substrates of phase I and II enzymes share a binding
mode whereby the atom at which reaction occurs must
be located at a specific position in the active site for
catalysis to occur. For substrates of UGT, this site is
adjacent to the bound cofactor UDP-glucuronic acid.
Hence, the minimum requirement for the alignment
(i.e., pharmacophore) is the mutual overlay of the
reactive site for each substrate. Indeed, the routine
incorporation of a “site of reactivity” feature into other
enzyme-based pharmacophore investigations should
generally aid in the alignment process. Such an ap-
proach decreases the complexity of the “pharmacophore
space” to be searched, thereby increasing the chance of
finding a chemically sensible alignment between sub-
strates. Successful pharmacophore developments for
CYP have included the site of oxidation as a pharma-
cophore feature. For example, de Groot et al anchored
the substrate oxidation site 3 Å from the iron atom.29,30

However, the reported CYP pharmacophores developed
using Catalyst7-12 make no mention of whether the
alignments from the pharmacophores result in the
overlay of a common site of metabolism. This deficiency
was addressed recently in the development of a phar-
macophore model of CYP2B6, using Catalyst, which
incorporated the site of oxidation as a pharmacophore
alignment feature.14 It should be noted, however, that
this model cannot be used to search a database of
potential substrates because the “site of reactivity”
feature is defined only for the training set of compounds
and will not recognize the site of reactivity in other
chemicals.

There is general acceptance that UGT-catalyzed
conjugation proceeds by a second-order nucleophilic
substitution (SN2) mechanism31 and hence requires a
nucleophilic site within a molecule. Furthermore, Yin
and co-workers propose that a basic residue within the
active site may deprotonate aglycons with a pKa high
enough to require it (e.g., a phenol) prior to reaction.27

Although sufficient kinetic data are not available, the
concept of this mechanism can be expanded to sub-
strates with lower pKa that are sufficiently nucleophilic
that they do not require initial deprotonation but do
require deprotonation of the intermediate transition
state. This hydrogen-bonding interaction potentially
represents a significant contribution in binding affinity
to the protein, thus justifying the inclusion of a “glu-
curonidation feature” based on a HBD site in the
pharmacophore. Hence, for a site to undergo UGT-
catalyzed conjugation, the general requirement is a
nucleophilic heteroatom attached to a proton (e.g., SH,
OH, NH). There are, however, exceptions that must be
borne in mind when considering the mechanism by
which UGTs function. Examples such as tertiary amine
or carbon glucuronidation cause a paradox in relation
to describing a general pharmacophore feature that
represents the glucuronidation site. HBDs do not ac-
curately represent tertiary amines, and HBAs do not
accurately represent C-based glucuronidation sites. In
general, however, a HBA feature (with its implicit lone
pair) is probably the most representative.

The “common features” pharmacophore allows the
inference that the general features responsible for the
binding of UGT1A4 substrates with a Km,app between 5
and 500 µM are two hydrophobic regions and a region

Table 4. Average “Leave N Out” (LNO) Cross-Validated r2 of
100 Trials, with N Substrates Omitted (N ) 2-7) from the 18
Training Set Chemicals, and the Associated Standard
Deviations

LNO
% chemicals

left out
cross-validated

r2
standard
deviation

L1O 0.791
L2O 11 0.800 0.015
L3O 17 0.795 0.025
L4O 22 0.793 0.026
L5O 28 0.784 0.061
L6O 33 0.775 0.05
L7O 39 0.752 0.08

Pharmacophore and QSAR Modeling Journal of Medicinal Chemistry, 2003, Vol. 46, No. 9 1623



occupied by the glucuronidation site, in the geometry
highlighted in Figure 2a. Hence, the pharmacophore
provides a useful tool for gaining insight into the UGT
active site in the absence of a crystal structure. How-
ever, these general features do not necessarily explain
all the interactions of higher affinity substrates. For
example, it is likely that steroids benefit from a second
hydrogen-bonding interaction at the ring most distal to
the site of glucuronidation. It was noted that a number
of higher affinity substrates shared a relatively common
region of HBA groups near the 6.5 Å hydrophobe when
aligned, although not within sufficient tolerance to allow
Catalyst to assign a feature to the region. It is hypoth-
esized that an HBA feature within 1-2 Å of this
hydrophobic site may account for some of the selectivity
of the higher affinity substrates. It has been recognized
for some time that substrate hydrophobicity (lipophi-
licity) is essential for glucuronidation by hepatic
UGTs.25-27,31 Interestingly, the interfeature distances
highlighted (3-4 Å and 6.2-6.5 Å) in the “common
features” pharmacophore parallel those proposed for rat
UGT1A6.32 For the first time, this study sheds light on
the geometry of the hydrophobic regions within the
substrates and hence provides the beginning of a deeper,
mechanistic understanding of the human UGT isoforms.
Pharmacophore models developed concurrently for
UGT1A1 in this laboratory indicate that this isoform
may share a similar set of common features.33

Although not quantitative, the “common features”
model has potential for qualitative predictions of the
preferred site of conjugation in molecules with multiple
glucuronidation sites. For example, clozapine is known
to have two sites of conjugation: one secondary site and
one tertiary amine site.15 It is interesting to note that
this model correctly predicts the major conjugation site
(secondary amine) (see Figure 2c) as evidenced by the
default “fast fit” alignment on the “glucuronidation”
feature of the pharmacophore. Several of the small
molecules (for menthol, carvacrol, eugenol, 500 < Km,app
< 1600 µM) also fit the model very well (e.g., Figure
2b) despite being excluded from the training set used
to develop the model. In addition to potentially account-
ing for multiple binding modes, this adds further
credence to the model regarding the minimum features
necessary for binding.

Of the predictive models, the 2D-QSAR exhibited the
best overall predictivity for the chosen test set. To
further investigate the robustness of the 2D-QSAR
model for prediction, it is useful to test with more than
one test set. One method for doing this is to split the
dataset into training and test sets in multiple ways and
to determine the average prediction accuracy of the
multiple test sets. Leave-N-out cross validation allows
this and is, in essence, a validation with hundreds of
test sets of differing composition. Hence, our 2D-QSAR
model was further assessed by determining the average
“leave-N-out” cross-validated r2 of 100 trials with N
substrates omitted (N ) 2-7). Table 4 highlights these
data and the associated standard deviations. The CV
r2 values were good, between 0.80 (n ) 2, 11% of the
set) and 0.75 (n ) 7, 39% of the set), and showed low
variability indicating good prediction independent of the
particular test set chosen. These values better represent
the expected outcome18 when predicting the activities

of other chemicals than does a leave-one-out cross-
validated r2. A direct comparison of these results, unlike
the single test set results, cannot be made with the 3D-
QSAR models because n-fold cross-validation is not
implemented in the software.

Qualitative interpretation of the descriptors in the
2D-QSAR model is not simple because many molecular
descriptors represent a number extracted by a well-
defined algorithm from a molecular representation of a
complex system.34 However, log P (AlogP98) indicates
that substrate hydrophobicity is important for activity.
The importance of substrate hydrophobicity may be due
to properties of the active site of the enzyme and/or the
membrane environment of the enzyme. Since UGTs are
believed to be located on the lumenal face of the
microsomal membrane, substrates must traverse the
endoplasmic reticulum to gain access to the active site.31

Inclusion of the descriptor nRO5 (the number of five-
membered rings) may be due to the high-activity
steroids present in the dataset but may contain “hidden”
information relating to hydrophobicity also. Physical
interpretation of the BCUT descriptor (BENV1) and the
two 2D autocorrelation descriptors (MATS3V, MATS5e)
is more difficult. It is noteworthy, however, that BCUT
descriptors have been shown previously to incorporate
connectivity information and atomic properties relevant
to receptor-ligand intermolecular interactions.35 Fur-
thermore, the autocorrelation descriptors encapsulate
volume (MATS3V) and electronegativity (MATS5e) in-
formation associated with atom pairs separated by three
and five bonds, respectively.34

Two 3D-QSARs were generated using Catalyst and
SOMFA. The same sets of pharmacophoric features (two
hydrophobes and a glucuronidation feature) were elu-
cidated using the Catalyst Hypogen module (3D-QSAR)
as were elucidated using HipHop, although the geom-
etry was different. Hence, the discrimination was
achieved on the basis of the differing “fit” of molecules
as opposed to differing features of the highly specific
substrates vs the low-specificity substrates. The Hypo-
gen model showed a high correlation (r ) 0.94; r2 ) 0.89)
between predicted and experimental Km,app and was able
to fit the 18 molecules in the training set to within 0.3
log unit of the experimentally determined Km,app. Table
1 shows the predicted Km,app for the test set of six
molecules using the Hypogen model, five of which were
predicted to be within 1 log unit. This currently repre-
sents the level of predictivity being achieved by most
literature reports within the drug metabolism field.10

It should be noted that some of the mappings for the
predictive pharmacophore-based 3D-QSAR do not rep-
resent catalytically “sensible” mappings (e.g., Figure 3c)
because the site of conjugation is not mapped to the
glucuronidation function of the pharmacophore. For
example, by use of Catalyst’s default “Fast Fit” method,
imipramine maps to all three features whereas benzi-
dine maps preferentially only to the two hydrophobes,
omitting the glucuronidation site. The Hypogen algo-
rithm searches for structural differences to explain
differences in activity, thus causing it to ignore the
common scaffold when assigning pharmacophoric fea-
tures.36 Hence, a situation arises whereby in order to
account for some feature-poor or small compounds that
bind with moderate affinity, it is necessary for the
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Hypogen algorithm to allow compounds to map with
high precision but to only two of the three features. For
example, using Catalyst’s default “Fast Fit” method,
imipramine (Km,app ) 310 µM) maps to all three features
but poorly, whereas small, feature-poor benzidine
(Km,app ) 460 µM) maps very precisely but only to the
two hydrophobes, omitting the glucuronidation site. This
results in a nonsense alignment if judged by the
requirement of a pharmacophore to overlay the “site of
reactivity” as outlined above. The challenges presented
to Catalyst by feature-poor or small compounds with
moderate to high affinity are discussed further in a
review by Sprague.37 This is one of the primary reasons
for developing a “common features” model that maps
features in a “sensible”, chemically reasonable manner
because it has been built up sequentially and logically.
Both models contribute useful, yet differing, informa-
tion.

Alignment and conformer selection have been high-
lighted as the most important stage in molecular field-
based 3D-QSAR methods;38 hence, the SOMFA model
serves as a partial validation of the “common features”
alignment, as well as a model in its own right. The
shape-based SOMFA model (r ) 0.85; r2 ) 0.73) implies
that the “common features” pharmacophore may provide
a useful alignment of the UGT1A4 substrates and
additionally may provide useful insights regarding steric
interactions that cannot be predicted using only a
pharmacophore model. The predictive ability of the
SOMFA model, based on the six test chemicals, was
comparable with that of the Hypogen model, although
both were less accurate in prediction than the 2D QSAR.

As noted above, models generated for CYP have
generally achieved prediction similar to that reported
here (i.e., 1 log unit). However, increased prediction
accuracy is clearly desirable. Important factors with
regard to increasing prediction accuracy include (1) a
systematic search of existing and new modeling tech-
niques to find those most suitable for UGT and (2) an
increase in the availability of isoform substrate/inhibitor
selectivity and regioselectivity data. In addressing the
first factor, this study provides a comparison of the
major types of substrate-based modeling techniques in
current use and provides the basis for ongoing studies
in the field. While the linear 2D- and 3D-QSAR methods
reported here show usefulness, it is possible that
nonlinear pattern recognition techniques that are ca-
pable of accounting for data from more complex rela-
tionships will prove to be more appropriate. Research
is currently underway in these laboratories to explore
this possibility in light of the understanding gained from
this study. It is also anticipated that the accuracy of
predictive UGT models will further improve as increas-
ing numbers of chemicals are screened against these
enzymes.

Conclusion

In conclusion, we have reported here a generalized,
complementary approach to the challenge of modeling
substrates of UGT isoforms. The work provided impor-
tant insights into the structural and chemical properties
that characterize substrates of UGT1A4 and has al-
lowed an evaluation of several pharmacophore, 2D-, and
3D-QSAR pattern recognition techniques for the quan-

titative prediction of binding affinity (Km,app). In par-
ticular, the common features pharmacophore provides
a chemically intuitive representation of the spatial
characteristics of known UGT1A4 substrates and af-
fords a useful tool for gaining insight into the UGT
active site in the absence of a crystal structure. The 2D-
QSAR highlights the correlation with substrate hydro-
phobicity among other descriptors. The development of
a novel, user-defined “glucuronidation” feature within
Catalyst is proposed as a useful aid to the further
development of pharmacophore-based UGT models. In
terms of quantiatative predictivity, it would appear that
2D-QSAR is more effective than the 3D-QSAR tech-
niques used in this study for prediction of binding
affinity (Km,app). The outcomes of this study will aid in
directing further iterations of model development in the
UGT substrate modeling field and the drug metabolizing
field in general.

Acknowledgment. The authors gratefully acknowl-
edge Daniel Robinson and the Computational Chemistry
Research Group (Oxford University, U.K.) for the use
of the SOMFA software and to Milano Chemometrics
and QSAR Research Group for use of the Dragon
software.

References
(1) Roberts, S. A. High-throughput screening approaches for inves-

tigating drug metabolism and pharmacokinetics [Review]. Xe-
nobiotica 2001, 31, 557-589.

(2) Ekins, S.; Waller, C. L.; Swaan, P. W.; Cruciani, G.; Wrighton,
S. A.; et al. Progress in predicting human ADME parameters in
silico [Review]. J. Pharmacol. Toxicol. Methods 2000, 44, 251-
272.

(3) Miners, J. O.; Mackenzie, P. I. Drug glucuronidation in humans.
Pharmacol. Ther. 1991, 51, 347-369.

(4) Wrighton, S. A.; Stevens, J. C. The human hepatic cytochromes
P450 involved in drug metabolism. Crit. Rev. Toxicol. 1992, 22,
1-21.

(5) Lewis, D. F.; Dickins, M.; Eddershaw, P. J.; Tarbit, M. H.;
Goldfarb, P. S. Cytochrome P450 substrate specificities, sub-
strate structural templates and enzyme active site geometries.
Drug Metab. Drug Interact. 1999, 15, 1-49.

(6) Dai, R.; Pincus, M. R.; Friedman, F. K. Molecular modeling of
mammalian cytochrome P450s [Review]. Cell. Mol. Life Sci.
2000, 57, 487-499.

(7) Ekins, S.; De Groot, M. J.; Jones, J. P. Pharmacophore and three-
dimensional quantitative structure activity relationship methods
for modeling cytochrome P450 active sites [Review]. Drug Metab.
Dispos. 2001, 29, 936-944.

(8) Ekins, S.; Bravi, G.; Binkley, S.; Gillespie, J. S.; Ring, B. J.; et
al. Three- and four-dimensional quantitative structure activity
relationship analyses of cytochrome P-450 3A4 inhibitors. J.
Pharmacol. Exp. Ther. 1999, 290, 429-438.

(9) Ekins, S.; Bravi, G.; Binkley, S.; Gillespie, J. S.; Ring, B. J.; et
al. Three and four dimensional-quantitative structure activity
relationship (3D/4D-QSAR) analyses of CYP2D6 inhibitors.
Pharmacogenetics 1999, 9, 477-489.

(10) Ekins, S.; Bravi, G.; Binkley, S.; Gillespie, J. S.; Ring, B. J.; et
al. Three- and four-dimensional-quantitative structure activity
relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug
Metab. Dispos. 2000, 28, 994-1002.

(11) Ekins, S.; Bravi, G.; Ring, B. J.; Gillespie, T. A.; Gillespie, J. S.;
et al. Three-dimensional quantitative structure activity relation-
ship analyses of substrates for CYP2B6. J. Pharmacol. Exp.
Ther. 1999, 288, 21-29.

(12) Ekins, S.; Bravi, G.; Wikel, J. H.; Wrighton, S. A. Three-
dimensional-quantitative structure activity relationship analysis
of cytochrome P-450 3A4 substrates. J. Pharmacol. Exp. Ther.
1999, 291, 424-433.

(13) Afzelius, L.; Zamora, I.; Ridderstrom, M.; Andersson, T. B.;
Karlen, A.; et al. Competitive CYP2C9 inhibitors: Enzyme
inhibition studies, protein homology modeling, and three-
dimensional quantitative structure-activity relationship analy-
sis. Mol. Pharmacol. 2001, 59, 909-919.

(14) Wang, Q.; Halpert, J. R. Combined three-dimensional quantita-
tive structure-activity relationship analysis of cytochrome P450
2B6 substrates and protein homology modeling. Drug Metab.
Dispos. 2002, 30, 86-95.

Pharmacophore and QSAR Modeling Journal of Medicinal Chemistry, 2003, Vol. 46, No. 9 1625



(15) Green, M. D.; Tephly, T. R. Glucuronidation of Amines and
Hydroxylated Xenobiotics and Endobiotics Catalyzed by Ex-
pressed Human Ugt1.4 Protein. Drug Metab. Dispos. 1996, 24,
356-363.

(16) Green, M. D.; Bishop, W. P.; Tephly, T. R. Expressed Human
Ugt1.4 Protein Catalyzes the Formation of Quaternary Am-
monium-Linked Glucuronides. Drug Metab. Dispos. 1995, 23,
299-302.

(17) Sprague, P. W. Automated Chemical Hypothesis Generation and
Database Searching with Catalyst [Review]. Perspect. Drug
Discovery Des. 1995, 3, 1-20.

(18) Robinson, D. D.; Winn, P. J.; Lyne, P. D.; Richards, W. G. Self-
organizing molecular field analysis: A tool for structure-activity
studies. J. Med. Chem. 1999, 42, 573-583.

(19) Whitley, D. C.; Ford, M. G.; Livingstone, D. J. Unsupervised
forward selection: a method for eliminating redundant variables.
J. Chem. Inf. Comput. Sci. 2000, 40, 1160-1168.

(20) Said, M.; Ziegler, J. C.; Magdalou, J.; Elass, A.; Vergoten, G.
Inhibition of Bilirubin Udp-GlucuronosyltransferasesA Com-
parative Molecular Field Analysis (Comfa). Quant. Struct.-Act.
Relat. 1996, 15, 382-388.

(21) Said, M.; Battaglia, E.; Elass, A.; Cano, V.; Ziegler, J. C.; et al.
Mechanism of inhibition of rat liver bilirubin UDP-glucurono-
syltransferase by triphenylalkyl derivatives. J. Biochem. Mol.
Toxicol. 1998, 12, 19-27.

(22) Naydenova, Z. G.; Grancharov, K. C.; Alargov, D. K.; Golovinsky,
E. V.; Stanoeva, I. M.; et al. Inhibition of Udp-Glucuronosyl-
transferase by 5′-O-Amino Acid and Oligopeptide Derivatives
of Uridine-Structure-Activity Relationships. Z. Naturforsch.,
C: J. Biosci. 1998, 53, 173-181.

(23) Cupid, B. C.; Holmes, E.; Wilson, I. D.; Lindon, J. C.; Nicholson,
J. K. Quantitative structure-metabolism relationships (QSMR)
using computational chemistry: pattern recognition analysis and
statistical prediction of phase II conjugation reactions of sub-
stituted benzoic acids in the rat. Xenobiotica 1999, 29, 27-42.

(24) Ghauri, F. Y.; Blackledge, C. A.; Glen, R. C.; Sweatman, B. C.;
Lindon, J. C.; et al. Quantitative structure-metabolism relation-
ships for substituted benzoic acids in the rat. Computational
chemistry, NMR spectroscopy and pattern recognition studies.
Biochem. Pharmacol. 1992, 44, 1935-1946.

(25) Kim, K. H. Quantitative structure-activity relationships of the
metabolism of drugs by uridine diphosphate glucuronosyltrans-
ferase. J. Pharm. Sci. 1991, 80, 966-970.

(26) Resetar, A.; Minick, D.; Spector, T. Glucuronidation of 3′-azido-
3′-deoxythymidine catalyzed by human liver UDP-glucurono-
syltransferase. Significance of nucleoside hydrophobicity and
inhibition by xenobiotics. Biochem. Pharmacol. 1991, 42, 559-
568.

(27) Yin, H. Q.; Bennett, G.; Jones, J. P. Mechanistic Studies of
Uridine Diphosphate Glucuronosyltransferase. Chem.-Biol. In-
teract. 1994, 90, 47-58.

(28) Antonio, L.; Grillasca, J.; Taskinen, J.; Elovaara, E.; Burchell,
B.; et al. Characterization of catechol glucuronidation in rat liver.
Drug Metab. Dispos. 2002, 30, 199-207.

(29) de Groot, M. J.; Ackland, M. J.; Horne, V. A.; Alex, A. A.; Jones,
B. C. A novel approach to predicting P450 mediated drug
metabolism. CYP2D6 catalyzed N-dealkylation reactions and
qualitative metabolite predictions using a combined protein and
pharmacophore model for CYP2D6. J. Med. Chem. 1999, 42,
4062-4070.

(30) de Groot, M. J.; Ackland, M. J.; Horne, V. A.; Alex, A. A.; Jones,
B. C. Novel approach to predicting P450-mediated drug metabo-
lism: Development of a combined protein and pharmacophore
model for CYP2D6. J. Med. Chem. 1999, 42, 1515-1524.

(31) Radominska-Pandya, A.; Czernik, P. J.; Little, J. M.; Battaglia,
E.; Mackenzie, P. I. Structural and functional studies of UDP-
glucuronosyltransferases [Review]. Drug Metab. Rev. 1999, 31,
817-899.

(32) Jackson, M. R.; Fournel-Gigleux, S.; Harding, D.; Burchell, B.
Examination of the substrate specificity of cloned rat kidney
phenol UDP-glucuronyltransferase expressed in COS-7 cells.
Mol. Pharmacol. 1988, 34, 638-642.

(33) Sorich, M. J.; Smith, P. A.; McKinnon, R. A.; Miners, J. O.
Pharmacophore and Quantitative Structure Activity Relation-
ship Modeling of UDP-Glucuronosyltransferase 1A1 (UGT1A1)
Substrates. Pharmacogenetics 2002, 12 (8), 635-645.

(34) Todeschini, R., Consonni, V., Eds. Handbook of Molecular
Descriptors; Wiley-VCH: Weinheim, Germany, 2000.

(35) Gao, H. Application of BCUT metrics and genetic algorithm in
binary QSAR analysis. J. Chem. Inf. Comput. Sci. 2001, 41, 402-
407.

(36) Vandrie, J. H.; Nugent, R. A. Addressing the Challenges Posed
by Combinatorial Chemistrys3d Databases, Pharmacophore
Recognition and Beyond. SAR QSAR Environ. Res. 1998, 9, 1
ff.

(37) Sprague, P. W.; Hoffmann, R. CATALYST Pharmacophore
Models and Their Utility as Queries for Searching 3D Databases.
In Computer-Assisted Lead Finding and Optimization: Current
Tools for Medicinal Chemistry; Wiley-VCH: Weinheim, Ger-
many, 1997; pp 223-240.

(38) Cramer, R. D., 3rd; Patterson, D. E.; Bunce, J. D. Comparative
Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding
of Steroids to Carrier Proteins. J. Am. Chem. Soc. 1988, 110,
5959-5967

JM020397C

1626 Journal of Medicinal Chemistry, 2003, Vol. 46, No. 9 Smith et al.


