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Surflex is a fully automatic flexible molecular docking algorithm that combines the scoring
function from the Hammerhead docking system with a search engine that relies on a surface-
based molecular similarity method as a means to rapidly generate suitable putative poses for
molecular fragments. Results are presented evaluating reliability and accuracy of dockings
compared with crystallographic experimental results on 81 protein/ligand pairs of substantial
structural diversity. In over 80% of the complexes, Surflex’s highest scoring docked pose was
within 2.5 Å root-mean-square deviation (rmsd), with over 90% of the complexes having one of
the top ranked poses within 2.5 Å rmsd. Results are also presented assessing Surflex’s utility
as a screening tool on two protein targets (thymidine kinase and estrogen receptor) using data
sets on which competing methods were run. Performance of Surflex was significantly better,
with true positive rates of greater than 80% at false positive rates of less than 1%. Docking
time was roughly linear in number of rotatable bonds, beginning with a few seconds for rigid
molecules and adding approximately 10 s per rotatable bond.

Introduction

Discovery of novel lead compounds through virtual
screening of chemical databases against protein struc-
tures is well established.1 Many methods have been
published, varying primarily two components: scoring
functions2-8 and search methods9-12 (for a more com-
plete review, see Bissantz et al.13). The primary criteria
for evaluating docking strategies are docking accuracy,
scoring accuracy, screening utility, and speed. These
criteria tend to overlap. Docking accuracy reflects an
algorithm’s ability to discover a conformation and align-
ment (pose) of a ligand relative to a cognate protein that
is close to that experimentally observed and to recognize
the pose as correct. Recognition of a pose as correct
embeds one aspect of scoring accuracy: a scoring
function must ideally rank a correct pose of a molecule
higher than an incorrect one. The second aspect of
scoring accuracy is the ability to correctly predict the
rank order of binding affinities of ligands to a particular
protein. Scoring accuracy strongly influences screening
utility, which measures the ability of a docking algo-
rithm to detect true ligands of a protein within a
background of random ligands not thought to bind the
protein. Very low false positive rates are required, since
the size of libraries to be computationally screened
commonly exceeds 100 000 compounds. Computational
speed is critical in the application of a docking algorithm
to a screening problem.

Surflex is a new docking methodology that combines
Hammerhead’s empirical scoring function2 with a mo-
lecular similarity method (morphological similarity)14

to generate putative poses of ligand fragments. It
implements an incremental construction search ap-
proach, as in Hammerhead,9 but also implements a new
fragment assembly methodology that is both faster and
more accurate. This new fragment assembly method is
loosely related to genetic algorithm approaches,11 but
it is deterministic.

Results are presented evaluating reliability and ac-
curacy of dockings compared with crystallographic
experimental results on 81 protein/ligand pairs of
substantial structural diversity, beginning from ran-
domized initial conformations and alignments of mini-
mized ligands. Results are also presented assessing
Surflex’s utility as a screening tool on two protein
targets (thymidine kinase and estrogen receptor) using
the same data sets as in a recent paper that compared
several docking and scoring algorithms.13

Performance of Surflex in terms of docking accuracy
was comparable to the best available methods. Perfor-
mance of Surflex in terms of screening utility was
significantly better than that of competing methods,
with true positive rates of greater than 80% at false
positive rates of less than 1%, representing a 5- to 10-
fold improvement. Docking time was competitive with
the fastest methods and was roughly linear in number
of rotatable bonds, beginning with a few seconds for
rigid molecules and adding approximately 10 s per
rotatable bond on a Pentium III based 933 MHz desktop
hardware running Windows 2000 Professional.

Surflex is available free of charge to academic re-
searchers for noncommercial use (see http://jainlab.uc-
sf.edu for details on obtaining the software).

Methods

Three data sets were employed in assessing Surflex
docking performance relative to competing methods. In
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what follows, first the data sets are described, then the
algorithms, and last the precise procedures and param-
eters used.

Data Sets. The GOLD docking program11 has been
extensively tested on data sets of 100 protein/ligand
complexes from the PDB (reported in Jones et al.11) and
34 additional complexes, both of which have been made
publicly available (http://www.ccdc.cam.ac.uk/prods/
gold/value.html). Of these 134 complexes, 81 meet the
following criteria: (1) 15 or fewer rotatable bonds; (2)
no covalent attachments between ligand and protein;
(3) ligands with no obvious errors in structure. The
reasons for these criteria are as follows. First, Surflex
has been designed primarily as a screening tool of small-
molecule libraries, and over 80% of ligands from com-
mercial small-molecule screening libraries have 15 or
fewer rotatable bonds. Second, Surflex’s scoring function
was developed strictly on noncovalent complexes, and
the utility of screening hits that are reactive is generally
thought to be minimal. Third, rather than “fixing”
ligands, the complexes in which ligands had obviously
incorrect structures were eliminated. Modifying the
structures would have entailed generating starting
poses based on newly minimized structures. Interpreta-
tion of the direct subset of acceptable structures has the
benefit of using precisely the same ligands, proteins, and
configurations used in the initial study, allowing for
direct comparisons of results. These 81 complexes were
used to evaluate Surflex’s docking and pose recognition
accuracy (see Results and Discussion) and are available
via the author’s web site (http://jainlab.ucsf.edu). They
were used unmodified. For each structure, the mini-
mized native ligand was used to generate 10 random
conformations and alignments from which to perform
dockings. Only bonds outside the ring systems were
randomized, with the ring conformations used as found
in the minimized ligands. These random initial poses
are part of the available data set. This data set is
referred to as the “81 complex set.”

The data sets from the comparative paper of Bissantz
et al.13 were used to test Surflex’s screening utility.
These included protein structures for HSV-1 thymidine
kinase (1KIM) and estrogen receptor alpha (3ERT), 10
known ligands of TK in arbitrary initial poses, 10 known
ligands of ERR in arbitrary initial poses, and 990
randomly chosen nonreactive organic molecules from
the ACD ranging from 0 to 41 rotatable bonds. The data
sets were used without modification. These data sets
are referred to as the “screening set”.

Computational Methods. Surflex employs an ideal-
ized active site ligand (called a protomol, as described
previously15) as a target to generate putative poses of
molecules or molecular fragments. These putative poses
are scored using the Hammerhead scoring function,2
which also serves as an objective function for local
optimization of poses. Flexible docking proceeds either
by incremental construction from high-scoring frag-
ments as in Hammerhead9 or by a crossover procedure
that combines pieces of poses from intact molecules,
which will be described in detail. Since the scoring
function, pose generation procedure, and protomol
representation have been described elsewhere, they will
be described only briefly here with indications of modi-
fications to the algorithms. The software is available for

academic, noncommercial research free of charge, so
details of software operation will not be replicated here
(see http://jainlab.ucsf.edu to obtain the software).

The following describes the overall high-level proce-
dure, with details provided below. There are two phases
to the algorithm.

1. Protomol Generation. An idealized binding site
ligand is generated from the protein structure. This is
done once for a particular protein.

1.1. Input: (a) protein structure including hydrogens,
(b) list of residues to identify the protein site or a ligand
structure within the protein binding site, used solely
to identify residues proximal to the binding site.

1.2. Output: a protomol (mol file) that serves as a
target to which putative ligands or ligand fragments are
aligned on the basis of molecular similarity.

1.3. Procedure: three different types of molecular
fragments are placed into the protein binding site in
multiple positions and are optimized for interaction to
the protein. High-scoring nonredundant fragments col-
lectively form the protomol (see below for details).

2. Docking. Ligands are docked into the protein to
optimize the value of the scoring function.

2.1. Input: (a) protein structure, (b) protomol, (c)
ligand or ligands.

2.2. Output: the optimized poses of docked ligands
along with corresponding scores.

2.3. Procedure (for each putative ligand) is the fol-
lowing.

2.3.1. Input ligand is fragmented, resulting in 1-10
molecular fragments, each of which may have some
rotatable bonds.

2.3.2. Each fragment is conformationally searched.
2.3.3. Each conformation of each fragment is aligned

to the protomol to yield poses that maximize molecular
similarity to the protomol.

2.3.4. The aligned fragments are scored and pruned
on the basis of the scoring function and the degree of
protein interpenetration.

2.3.5. One of two procedures is used to construct full
molecules from the aligned fragments: (a) an incremen-
tal construction approach as in Hammerhead or (b) a
new whole molecule approach that is described in detail
below. Results are presented with the whole molecule
approach, which is faster than the incremental con-
struction approach.

2.3.6. The best scoring poses are subjected to gradient-
based optimization of conformation and alignment, and
the top scoring poses are returned along with their
scores.

Details of the scoring function, protomol generation
process, and the docking search algorithm follow.

Scoring Function. The scoring function was tuned
to predict the binding affinities of 34 protein/ligand
complexes, with its output being represented in units
of -log(Kd)2. The range of binding affinities in the
training set ranged from 10-3 to 10-14 and represented
a broad variety of functional classes. The parametriza-
tion of the function effectively models the noncovalent
interactions of organic ligands with proteins, including
proteins with bound metal ions in their active sites. The
function is continuous and piecewise differentiable with
respect to ligand pose, which is important for the
gradient-based optimization procedures employed. The
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terms, in rough order of significance, are hydrophobic
complementarity, polar complementarity, entropic terms,
and solvation terms. The full scoring function is the sum
of each of these terms.

The dominant terms are the hydrophobic contact term
and a polar contact term that has a directional compo-
nent and is scaled by formal charges on the protein and
ligand atoms. These functional terms are parameterized
on the basis of distances between van der Waals
surfaces, with negative values indicating interpenetra-
tion. Each atom on the protein and ligand is labeled as
being nonpolar (e.g., the H of a C-H) or polar (e.g., the
H of an N-H or the O of a CdO), and polar atoms are
also assigned a formal charge if present. Figure 1 shows
plots of the hydrophobic term, the polar term for a
hydrogen bond with no formal charge, and an interac-
tion between the proton of a charged tertiary amine with
an ideally oriented charged carboxylate. Note that
formal charge for resonant structures such as carboxyl-
ates is spread on the heteroatoms for negative charges
and across the hydrogens attached to positively charged
heteroatoms. The hydrophobic term (bottom curve)
yields approximately 0.1 units per ideal hydrophobic
atom/atom contact. A perfect hydrogen bond yields
about 1.2 units (middle curve) and has a peak corre-
sponding to 1.97 Å from the center of a donor proton to
the center of an acceptor oxygen (learned entirely on
the basis of the empirical data and corresponding quite
closely to the expected value range). The charged
interaction peaks at about 2.3 units (top curve). Despite
the large difference in the value of an individual
hydrophobic versus polar contact, the hydrophobic term
accounts for a larger total proportion of binding energy
on average. There are many more hydrophobic contacts
than ideal polar contacts in a typical protein/ligand
interaction.

Apart from the hydrophobic and polar terms, the
remaining terms that have a significant impact on
ligand scores include the entropic term and the solvation
term. The entropic term includes a penalty that is linear
in the number of rotatable bonds in the ligand, intended
to model the entropic cost of fixation of these bonds, and
a term that is linearly related to the log of the molecular
weight of the ligand, intended to model the loss of
translation and rotational entropy of the ligand. The
solvation terms are linearly related to a count of the
number of missed opportunities for appropriate polar
contacts at the ligand/protein interface. However, nei-
ther the solvation term nor any of the terms intended
to guard against improper clashes received much weight
in the training. This was due to the fact that no negative
data were employed; only ligands with their cognate
proteins were used in parameter estimation, so there
was essentially no data from which to induce such
penalty terms.

Protomol Generation. The protomol docking tar-
gets differ from those previously reported by making use
of slightly different molecular fragments. Surflex’s pro-
tomols utilize CH4, CdO, and N-H molecular fragments
(Hammerhead used single H atoms instead of CH4
molecules). The molecular fragments are placed in the
protein active site based on identification of empty 1 Å
voxels that are between residues on the protein that
have been marked to identify the active site. Lines
connecting all pairs of marked residues are traversed,
and voxel scores are incremented as they are traversed.
After a 3D Gaussian smoothing, voxels that score above
a threshold are used as starting points for the placement
of molecular fragments. The three types of molecular
fragments are each placed in each voxel and are locally
optimized using the scoring function. The polar frag-
ments are placed in 36 different orientations. High-
scoring fragments are retained, with redundant frag-
ments being eliminated. Figure 2 shows the protomol
generated for streptavidin based on identification of the
protein residues containing any atoms whose surface
was within 2.0 Å of any atom of the native ligand biotin.
The protomol generated mimics the interactions made
by biotin with streptavidin and identifies some contacts
that are not made by the native ligand. The entire
process for a typical protein takes less than 1 min.

Docking Search Algorithm. a. Molecular Align-
ment. Surflex utilizes the morphological similarity
function and fast pose generation techniques described
previously14 to generate putative alignments of mol-
ecules or molecular fragments to the protomol. Briefly,
morphological similarity is defined as a Gaussian func-
tion of the differences in molecular surface distances of
two molecules at weighted observation points on a
uniform grid. The surface distances computed include
both distances to the nearest atomic surface and dis-
tances to donor and acceptor surfaces. Rapid generation
of molecular alignments that maximize the similarity
function is possible because the molecular observations
are local and are not dependent on the absolute coor-
dinate frame. So, two unaligned molecules or molecular
fragments that have some degree of similarity will have
some corresponding set of observers that are seeing the
same things. Optimization of the similarity of two
unaligned molecules is performed by finding sets of

Figure 1. Hydrophobic and polar terms of the scoring
function. The hydrophobic term peaks at approximately 0.1
units with a slight surface interpenetration. The polar term
for an ideal hydrogen bond peaks at 1.25 units, and a charged
interaction (tertiary amine proton (+1.0) to a charged car-
boxylate oxygen (-0.5)) peaks at about 2.3 units.

Molecular Docking Journal of Medicinal Chemistry, 2003, Vol. 46, No. 4 501



observers of each molecule that form triangles of the
same size, where each pair of corresponding points in
the triangles are observing similar features. The trans-
formation that yields a superposition of the triangles
will tend to yield high-scoring superpositions of the
molecules. In Surflex’s docking search algorithm, poses
of molecular fragments that tend to maximize similarity
to protomols are used as input to the scoring function
and are subject to thresholds on protein interpenetra-
tion and local optimization based on the gradient of the
scoring function.

b. Molecular Fragmentation. Molecular flexibility
in docking is addressed by molecular fragmentation.
Molecules are fragmented by breaking non-ring rotat-
able bonds. Each such break eliminates a bond for
conformational search and eliminates the need to cross
the conformations of the two fragments. So, a molecule
with seven rotatable bonds, where each bond is sampled
at six rotameric positions, is reduced from 67 (>250000)
conformations to 63 + 63 (432) conformations, a reduc-
tion by nearly 3 orders of magnitude. In practice, a
heuristic set of rules are employed in conformational
sampling, where two, three, or six rotamers are used
for each bond (e.g., three for SP3-SP3 bonds). Also, a
maximum number of conformations per fragment can
be specified (default 20), and the algorithm selects the
most different conformations based on the root-mean-
square deviation (rmsd). Following completion of frag-

mentation and conformational search (and fast internal
clash relaxation), the resulting molecular fragments are
aligned to the protomol. For biotin, there are two such
fragments (the molecule breaks at the bond indicated
by the arrow in Figure 2) with a total of 21 conforma-
tions (1 for one fragment and 20 for the other) to be
aligned. There are two alternative procedures for mo-
lecular construction from fragments: incremental con-
struction and “whole molecule”. They also differ slightly
in how the fragments are aligned. However, both
procedures use the same fragmentation process.

c. Incremental Construction. In the incremental
construction mode, all molecular fragments are aligned
to maximize similarity to the protomol. The highest
scoring (by the docking scoring function) are used as
“heads”, which are locally optimized for fit to the protein.
From these, a directed alignment of the “tail” (next
molecular fragment) occurs by aligning each conforma-
tion of the appropriate fragment on the basis of similar-
ity to the protomol but subject to the constraint that
the alignments generated must place the connector
atom proximal to where it must be to make a connection
to the head. This procedure is highly analogous to that
of Hammerhead, but it relies on similarity to the
protomol instead of direct atom matching in order to
generate putative alignments. The process of incremen-
tal construction, while being reliable and quite fast
compared with many flexible docking methods, has one
primary weakness. It makes a very strong independence
assumption that maximizing the similarity of poten-
tially very small molecular fragments to the protomol
will tend to generate good poses. For particularly flexible
molecules, this may not be a good assumption. A very
small fragment may have a very different optimal
similarity based alignment than the same fragment in
the context of the remainder of the molecule.

d. Whole Molecule Algorithm. Surflex also imple-
ments a new approach to circumvent the strong inde-
pendence assumption above. In this “whole” molecule
docking approach, after the molecule is fragmented, the
“dead” pieces are still carried along with the “live” piece
in conformational search. However, only the live piece
corresponding to the fragment is searched. So, at the
end of the fragmentation and search process, the same
number of total conformations exists as in the incre-
mental construction procedure. The difference is that
in generating putative poses to the protomol, the “dead”
molecular pieces in their arbitrary initial conformation
are carried along with the searched fragment in the
molecular similarity computation. So, the pool of docked
poses to the protein contains alignments of initial
conformations of the ligand, which have been locally
conformationally sampled on the basis of the fragmen-
tation process. The poses that have the most inap-
propriate protein interpenetration are quickly elimi-
nated.

Since the scoring function is based on atom/atom
pairwise interactions, it is possible to generate a score
for any fragment of a docked pose. The poses that
remain after elimination of the worst interpenetrations
are scored on the basis of their individual fragments,
with the best of these being subject to local optimization.
Figure 3 illustrates this situation with two poses of
biotin relative to its binding site. In this case, the ring

Figure 2. Protomol for streptavidin (1stp) compared with the
native pose of biotin (green). The protomol consists of CH4

(hydrogens not shown), N-H, and CdO molecular fragments.
The protomol was generated solely on the basis of protein
structure. The location of the protomol was indicated by
marking the residues of the protein proximal to the native
ligand. Each of the interactions made by biotin with strepta-
vidin is well represented by a matching molecular fragment.
The indicated bond is broken by Surflex to make fragments of
biotin for docking.
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system of biotin on one pose (thin sticks) is close to being
correct, with the tail section containing the carboxylate
being close to correct in the other pose (thick sticks).
The atoms indicated in magenta belong to the “dead”
piece of their respective poses. The goal is to identify
the high-scoring “live” pieces (shown in atom color in
Figure 3) and to merge them while minimizing the final
deviation from the original poses, which yielded the high
scores to begin with. From the collection of docked poses,
a recursive search is performed for high-scoring frag-
ments from different posed conformers that have ac-
ceptable mutual geometry to be merged by enforcing the
broken bond between the fragments. In Figure 3, the
atoms on either side of the fragmentation bond in the
two separate fragments are indicated with circles. The
difference between the length of the fragmentation bond
and the distance between the atoms on either side of
the bond, but in different poses, is computed. Those pose
pairs where the difference is low (default of 0.5 Å)
become candidates for merging (in Figure 3, the differ-
ence is 0.36 Å). Further pruning is done on the basis of
the degree of overlap of the atoms in the fragments to
be joined. The first pass of this procedure yields a list
of fragment pairs potentially suitable for merging. If the
molecule has two fragments, the procedure proceeds to
merging the fragment pairs; otherwise, it recursively
enumerates additional fragments to be merged onto the
growing molecules.

The recursive search yields a list of whole molecules,
each consisting of fragments chosen from different
docked poses of the ligand and each of which scores well
in total over all fragments. Each fragment bond is
enforced one at a time. After each constraint is applied,
the new pose is quickly optimized to minimize the rmsd
from the atomic positions of the original fragments.
Then a fast local optimization with respect to the protein
is applied using the scoring function. In Figure 3, the
pose of biotin that corresponds to this stage is shown
in green lines. Note that the merged pose corresponds
very closely to the original poses of the separate frag-
ments but now correctly respects the bond constraints.
The whole molecules resulting from the procedure are
pruned on the basis of the docking score and are
subjected to further gradient-based score optimization.
The procedure ultimately returns the 10 best scoring
poses. In each stage of search and construction, there
are limits on the number of partial solutions retained
by the algorithm. At no point does the number of
simultaneously considered posed fragments exceed a few
thousand, even in the case of highly flexible molecules.
Generally, the alignment generation process and the
fragment enumeration and merging process take roughly
similar amounts of time and account for the bulk of the
computational cost. The molecular merging process is
similar to the technique of Pitman et al.16 The primary
difference is that in Surflex, the hierarchy of optimiza-
tions following the enforcement of a bond constraint
varies rotatable bonds as well as alignment parameters.

e. Search Algorithm Tuning. Tuning of the algo-
rithm was performed on the ligands and cognate pro-
teins indicated in Figure 4. These were the same
complexes used in tuning Hammerhead9 and represent
a range of flexibilities (1-10 rotatable bonds) and
binding affinities (10-6-10-13). The goal of the tuning
process was to ensure sufficient search depth to reliably
discover poses close to correct, beginning from random
initial conformations and alignments. Presuming a
reliable scoring function, the dockings would then be
accurate. No effort was made to develop a parameter-
ization for more rapid screening of large databases

Figure 3. Biotin during the docking process to streptavidin
(blue): (thin sticks) biotin’s ring system in a high-scoring, well-
docked configuration (atom color) with the carboxylate tail
(magenta) extending into the protein; (thick sticks) biotin’s
carboxylate tail in a high-scoring, well-docked configuration
(atom color) with the ring system (magenta) deviating from
ideal; (green lines) the result of merging the two well-docked
fragments at the atoms indicated by yellow circles. The merged
pose closely follows the parent fragments’ original configura-
tions.

Figure 4. Ligands of trypsin (3PTB), DHFR (4DFR), throm-
bin (1DWD), and streptavidin (1STP) (left to right, top to
bottom, respectively) used in tuning Surflex for docking
accuracy. The ligands are shown in the protonation states
used.

Molecular Docking Journal of Medicinal Chemistry, 2003, Vol. 46, No. 4 503



of molecules, where sufficiently accurate scoring is more
important than accurate docking by rmsd, and consider-
able speedup is possible toward that end.

Computational Procedures. The protomol genera-
tion and docking algorithms described above are com-
pleted in two procedural steps. For both data sets, the
same docking procedure and parameters were used in
all runs. For the protomol generation, the same proce-
dure and parameters were used within all complexes
of the 81 complex set, but there was a minor difference
in treatment of the two proteins in the screening set
due to the lack of a pose for the two native ligands in
the latter experiments.

For the 81 complex set, protomol construction was
based on protein residues proximal to the native ligand
and on parameter settings to produce a small and buried
docking target (Surflex parameters: -proto_thresh 0.5
and -proto_bloat 0). For the screening set, protomols
were generated for TK and ER using default parameters
based on identification of the residues proximal to the
native ligands in 1KIM and 3ERT, respectively. Docking
was run with the new whole molecule approach (Surflex
parameter: -whole) and with default settings for all
other parameters.

Each docking of a putative ligand returned up to 10
scored poses, with the score consisting of a nominal
affinity score in units of -log(Kd) as in Hammerhead.2
A second value, representing the degree of protein
interpenetration, was also reported. This negative value,
called “bump”, has arbitrary units. For choosing poses
with the best score from multiple dockings of the same
ligand (in the 81 complex set), the score and bump were
combined into a single value, scaling the bump value
down by a factor of 5.0. In the tables of experimental
results, the protein penetration value reported is the
reported bump value divided by 5.0. Where results are
reported on the best pose by rmsd from multiple
dockings for the 81 complexes, all dockings returned by
Surflex (maximum of 10 for each) were considered. For
all other results on both data sets, only the top ranked
pose returned by Surflex was used.

Results and Discussion

Surflex was evaluated for docking accuracy, scoring
accuracy, screening utility, and speed. Docking accuracy
and the pose recognition aspect of scoring accuracy were
assessed on 81 diverse protein/ligand complexes (see
Methods). The second aspect of scoring accuracy (within-
protein ranking of ligands) was assessed in the context
of screening utility on two proteins, each with 10 true
ligands and 990 random ligands. Speed was assessed
in all cases. For all of the results reported, a single
parameter set for Surflex was used in the docking runs
and no modification of the proteins or ligands was made
from the original authors’ data sets (see Methods for
details).

Docking Accuracy and Correct Pose Recogni-
tion. Table 1 summarizes Surflex performance on the
81 complex data set. The table is broken into five blocks
of columns. The first contains data about each protein’s
cognate ligand: number of rotatable bonds, rmsd (Å) of
the pose corresponding to the minimized ligand gradient
optimized for docking score, and the resulting score
(-log(Kd)). The second reports the mean docking time

for 10 random initial conformations and alignments of
the native ligand. The third block has data based on
the best docked pose by rmsd over all 10 dockings: rms
deviation, score, and “pen.” (penalty for inappropriate
interpenetration of protein). The fourth has the same
data but for the best scoring pose over all 10 dockings.
In the choice of the best scoring pose, the sum of the
docking score and penetration was used. The fifth
contains data on the proportion of good runs with
respect to screening and identifying a correct pose as
the top-ranked. A good screening run was defined as
one in which the ligand scored well enough for screening
(greater than 1 log unit less than the optimized native
pose or 5.0 (-log(Kd)), whichever was lower). A good
docking accuracy was one in which the top scoring pose
was within 2.5 Å rms deviation from experimental
results.

In 76/81 cases (94%), Surflex returned a pose among
the top poses for all dockings within 2.5 Å rmsd (72/81
or 89% within 1.5 Å). This is a measurement of how
thorough the search procedure is and to what extent
the scoring function is able to recognize good dockings,
since Surflex returns just 10 poses for each docking.
Figure 5 (left) compares these results to those of
GOLD,11 which employed 20 independent runs (versus
10 for Surflex). The Surflex results were slightly better,
with half as many solutions having rmsd of greater than
2.0 Å. In practice, one is more concerned with whether
a single docking from a random initial pose will yield a
correct pose as its top ranked candidate. Table 1 also
reports the proportion of 10 dockings for each protein
that produced a correct pose as the top ranked based
on score. In 43/81 (53%) of cases, the proportion of such
dockings was 80% or greater. In 16/81 cases (20%), the
proportion was 20% or fewer. With a single docking from
a random initial pose, the chances were nearly 70%, on
average, of finding a pose that was close to correct.

The issue of pose recognition is partially addressed
by the discussion above. From the essentially infinite
space of docked poses, the pool of poses from indepen-
dent dockings contained a pose within 2.5 Å rmsd of
the experimental result 94% of the time. However, the
question of whether a docker can reliably identify a close
to correct pose as scoring the highest among predicted
poses is also very important. Figure 5 (right) is a plot
of the results for Surflex and for GOLD for rms devia-
tion of best scoring pose for each complex. The results
were quite comparable. For Surflex, of the 76 proteins
where a good docking was generated in any of the runs,
the best scoring pose over all runs was within 2.5 Å 65
times (86%) and within 1.5 Å 50 times (66%).

There are two subtleties that are important to note.
First, the pose selected as best on the basis of score
includes both the reported score and the contribution
of the interpenetration term. The latter term can be
high even in the case of a correctly docked ligand,
beginning from a minimized conformation. Often, the
coordinates of a crystal structure are not compatible
with a low-penetration configuration of a ligand struc-
ture that respects bond angles and lengths. Second, the
search depth has a strong effect on the results. In the
case where an excellent pose by rmsd exists, it may still
not score nearly as well as a nearby pose with equivalent
rmsd. So, there were 11 of 76 cases where the best
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Table 1. Results for Surflex on 81 Protein/Ligand Pairs

optimized minimized
native ligand

best pose by rms
over all 10 runs

best pose by score
over all 10 runs

proportion
of good runs

PDB code nrot rmsd score mean time, s rmsd score pen. rmsd score pen. screen rms

6abp 4 0.28 6.6 9.8 0.14 7.1 -0.2 0.28 8.6 -0.3 0.8 0.9
1abe 4 0.30 6.7 10.8 0.18 6.6 -0.5 0.27 9.0 -0.3 0.8 1
1tng 1 0.33 5.4 3.8 0.20 5.0 0.0 0.22 5.1 0.0 0.8 1
1lst 5 0.24 12.6 27.0 0.23 12.5 -0.5 0.33 12.4 -0.3 1 1
1tnl 1 0.47 4.0 4.2 0.23 4.1 -1.0 2.26 4.0 -0.2 1 1
1wap 3 0.32 10.0 26.4 0.24 9.9 -0.2 0.30 9.9 -0.2 1 1
1lah 4 0.28 12.9 10.2 0.25 12.3 -0.3 0.30 12.7 -0.3 1 1
1ukz 6 0.41 10.9 49.2 0.25 10.1 -1.8 0.77 11.6 -1.6 1 0.7
1aha 0 0.38 6.3 2.4 0.26 6.1 0.0 0.37 6.4 0.0 1 1
2gbp 6 0.26 10.2 15.9 0.27 8.1 -0.4 0.63 8.1 -0.2 1 1
1dbb 1 0.56 7.6 9.9 0.28 6.2 -0.2 0.54 7.2 -0.3 1 1
2ada 6 0.29 15.3 47.6 0.29 14.3 -0.1 0.32 14.6 -0.1 1 1
1dr1 4 0.57 6.3 25.4 0.29 5.5 -0.2 1.25 7.3 -0.6 1 1
2ctc 4 0.39 9.4 8.2 0.32 6.8 -1.1 0.38 8.6 -0.4 0.8 1
1coy 1 0.66 7.0 7.4 0.32 6.7 -1.1 0.54 7.7 -0.5 1 0.9
3aah 3 0.44 14.3 27.4 0.33 14.9 -0.5 0.68 16.1 -0.4 1 1
7tim 5 0.42 3.4 8.4 0.34 5.4 -1.3 1.20 5.4 -0.5 1 1
1hsl 3 0.50 8.9 12.0 0.35 8.2 -1.7 0.51 8.8 -0.6 1 1
1srj 4 0.37 7.7 29.1 0.35 8.9 -1.0 0.39 9.2 -1.0 1 1
2sim 10 0.32 10.7 52.3 0.35 10.3 0.0 1.10 11.3 -0.1 1 1
3tpi 7 0.45 10.0 42.1 0.37 9.0 -0.4 0.52 10.3 -0.2 1 1
3ptb 1 0.60 6.3 4.4 0.37 4.5 -0.6 0.54 6.6 0.0 1 1
1ldm 1 0.51 7.3 2.9 0.38 6.5 -0.2 0.44 7.6 -0.2 0.8 1
1hdy 0 0.65 3.4 1.2 0.41 2.7 -2.6 0.66 3.4 -0.4 0.9 1
1phg 3 0.35 6.8 10.8 0.41 6.1 -3.5 4.44 6.1 -2.6 0.9 0.2
2phh 2 0.44 6.4 5.3 0.41 6.3 -0.2 0.44 6.3 -0.1 0.4 0.6
2cht 3 0.40 7.9 11.1 0.42 7.1 -0.7 0.42 7.4 -0.8 0.8 0.9
1mdr 3 0.64 7.9 8.5 0.45 5.3 -1.6 0.68 7.9 -0.3 1 1
1stp 5 0.51 11.4 28.3 0.46 11.4 -0.7 0.51 11.7 -0.3 1 1
1ack 3 0.36 3.9 9.9 0.50 3.2 -0.8 1.18 4.9 -0.5 1 0.9
1frp 8 0.41 9.4 41.6 0.50 9.8 -0.6 0.75 10.5 -0.5 1 0.8
1cbs 5 0.35 6.3 49.0 0.52 6.5 -0.6 1.77 7.3 -0.9 1 1
4cts 3 0.63 7.8 6.6 0.53 7.9 -0.4 2.20 7.9 0.0 0.8 0.9
1hyt 5 0.70 6.5 9.3 0.53 5.7 -0.5 0.55 6.0 0.0 0.2 0.4
1lcp 3 0.92 4.2 7.6 0.54 3.2 -1.3 2.01 5.3 -0.3 1 1
1rob 6 0.59 4.4 26.7 0.56 4.2 -1.0 0.82 4.5 -0.1 0.9 0.4
1dbj 1 0.62 6.6 6.8 0.57 4.9 -0.1 0.88 5.7 -0.2 0.3 0.4
1ulb 0 0.61 4.7 2.3 0.58 4.7 -0.3 0.77 5.5 -0.1 0.8 0.8
2ak3 6 0.62 8.5 48.1 0.58 9.0 -1.0 0.60 9.5 -1.1 0.7 0.6
1mrg 0 0.71 5.6 2.0 0.60 5.6 -0.1 0.70 5.6 -0.1 0.9 1
1lna 9 0.57 8.8 44.7 0.60 8.7 -0.3 0.88 9.2 0.0 1 0.8
1aco 4 0.62 12.0 8.4 0.63 9.2 -2.9 3.39 9.3 -0.5 1 0.7
1fki 0 0.69 6.6 6.7 0.64 6.6 -0.4 0.70 6.8 -0.4 0.6 0.8
1com 4 1.05 8.0 8.1 0.64 4.7 -0.5 0.86 7.4 -0.2 1 0.9
1tmn 14 0.53 14.5 171.2 0.65 13.6 -1.5 1.30 12.8 -1.1 1 0.6
3cpa 7 0.70 6.7 40.7 0.66 6.6 -1.7 1.90 8.7 -1.3 1 0.5
2dbl 6 0.63 8.5 64.6 0.66 8.7 -1.3 0.81 9.1 -1.0 1 0.9
1cbx 5 0.45 12.7 10.4 0.70 9.0 -0.4 0.70 9.0 -0.4 1 1
1mrk 5 0.58 5.3 34.1 0.75 8.0 -0.1 0.85 8.5 -0.1 1 1
6rsa 3 0.80 5.3 19.2 0.75 5.3 -0.6 0.78 5.3 -0.6 0.8 0.8
1trk 8 0.57 9.7 66.0 0.78 9.5 -1.8 1.22 12.6 -1.6 1 0.8
1fen 4 0.35 6.9 113.6 0.79 7.5 -1.0 1.18 9.4 -0.5 1 1
2lgs 4 0.83 7.7 7.4 0.79 4.9 -0.2 1.22 5.9 -0.2 0.5 0.7
1acj 0 0.35 5.2 3.7 0.81 4.7 -0.4 3.89 6.5 -0.3 1 0.2
1bma 14 0.67 6.6 100.4 0.86 6.1 -0.3 1.00 6.1 -0.2 0.4 0.5
2cgr 8 0.57 10.9 61.3 0.89 10.2 -1.2 1.63 10.2 -1.1 1 0.2
1eap 11 0.63 7.0 72.5 0.92 7.1 -3.2 4.89 10.0 -2.9 1 0.1
1dwd 11 0.49 9.1 113.1 0.93 8.7 -2.9 1.68 8.7 -1.7 1 0.4
8gch 9 0.68 7.9 69.9 0.96 5.3 -1.3 4.51 7.4 -1.2 0.9 0.2
1atl 11 0.65 7.5 65.5 1.05 7.1 -1.5 7.01 8.9 -1.0 0.9 0.3
1bbp 11 0.81 13.4 257.1 1.06 10.1 -1.0 1.07 13.2 -1.3 1 0.2
2r07 8 0.55 6.6 91.3 1.09 7.8 -0.7 1.35 8.6 -0.5 1 0.9
1baf 7 1.11 5.5 64.7 1.10 5.2 -0.9 6.52 7.9 -0.8 0.5 0.3
4dfr 10 0.56 11.6 74.2 1.24 8.4 -2.3 1.60 10.8 -1.7 1 0.6
1tni 4 1.48 4.8 9.6 1.33 3.6 -2.1 2.97 3.9 -0.1 0.9 0.4
1acm 7 0.74 9.6 31.6 1.35 6.0 -0.3 1.43 7.3 -0.5 0.8 0.2
1lpm 8 1.02 3.3 63.2 1.44 5.3 -2.7 1.87 6.4 -1.2 1 0.1
1hdc 6 0.60 3.9 104.3 1.47 6.6 -0.9 1.80 9.1 -0.6 1 0.7
1tka 8 0.47 5.4 63.7 1.49 7.6 -2.3 1.96 11.0 -1.3 1 0.6
2cmd 6 0.39 10.2 12.3 1.49 5.1 -2.9 1.60 7.7 -0.4 0.9 0.4
1epb 5 0.49 5.7 72.5 1.52 7.2 -2.2 2.87 8.5 -2.0 1 0.3
1fkg 11 0.82 6.6 108.2 1.52 4.7 -1.0 1.81 5.9 -1.0 0.2 0.2
3hvt 1 0.91 5.7 5.6 1.61 5.2 -0.3 1.64 5.4 -0.3 0.5 0.4
1hri 9 0.97 5.3 74.8 1.96 6.3 -0.7 1.98 7.1 -1.0 1 0.4
1lic 15 0.67 3.8 155.6 2.19 5.2 -1.1 3.46 7.1 -1.0 1 0
1snc 6 1.08 6.5 42.0 2.44 5.8 -2.0 4.92 6.4 -1.2 1 0
1etr 10 0.57 7.1 111.2 3.01 7.6 -3.6 4.05 9.5 -2.4 1 0
1glq 15 0.45 12.6 132.5 3.49 6.6 -1.2 5.68 8.7 -0.9 0.7 0
6rnt 7 0.55 5.3 44.1 4.68 3.4 -1.1 7.03 6.0 -1.9 0.3 0
1rds 11 0.86 12.2 94.4 4.79 6.7 -2.0 9.83 7.6 -0.8 0.6 0
1nco 11 0.57 10.6 151.9 6.69 9.5 -6.4 8.26 10.8 -3.2 1 0
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scoring pose was beyond 2.5 Å rmsd and scored better
than the best pose by rmsd. However, 5 of these 11
scored worse than the score that resulted from gradient
optimization of the minimized ligand. In these cases,
additional search depth would have yielded a low rmsd
pose as the best scoring pose. Of the 6 remaining cases
(where the best score exceeded the optimized minimized
ligand’s score), only 2 scored significantly better than
all poses discovered that were within 2.5 Å rmsd, again
suggesting that increased search depth would have
revealed a maximal scoring pose within an acceptable
rmsd. Overall, it appears that the scoring function
appears to recognize the correct binding mode reliably.

Figure 6 shows representative examples of dockings
of varying levels of accuracy. High-accuracy docking was
defined as rmsd less than 0.7 Å for the best scoring pose
of a complex. This accounted for 33% of the 81 com-
plexes. The ligand of 3tpi (7 rotatable bonds) was
representative of this group, with all atoms of the ligand
correctly placed. The ligand of 1tmn (14 rotatable bonds)
was representative of a good accuracy docking (0.7 e
rmsd < 1.5), which accounted for 29% of the complexes.
All parts of the ligand having significant interactions
with the protein were very well docked. In particular,
the interaction between the carboxylate and the pro-
tein’s catalytic zinc ion is well predicted. The indole ring
system was inverted in the docked pose, but this moiety
was largely solvent-exposed in the crystal structure. The
ligand of 1hri (9 rotatable bonds) is representative of
acceptable accuracy, defined as 1.5 e rmsd < 2.5 and
accounting for 18% of the complexes. There are no polar
contacts between the protein and the native ligand to
guide the docking. The envelopes of the docked pose and
the native pose are very similar, with the docked pose
accounting for the hydrophobic contacts between the
ligand and protein. The representative of the poorly
docked cases (rmsd > 5.0, 7% of complexes) was 1atl,
with 11 rotatable bonds. The ligand in the docked pose
shown in Figure 6 scored higher than the score of the

experimentally determined ligand pose. In this case,
Surflex incorrectly rotated four moieties out of the
conjugated system. Here, Surflex’s heuristic rules for
conformational search failed. The Surflex scoring func-
tion does not count intramolecular ligand nonbonded
contacts toward a ligand’s docking score, and this also
contributed to the problem. In the docked pose, the
ligand was flipped, but it still retained the correct
contact with the glutamine residue. The driving force
behind the flip appeared to be the salt bridge between
the primary amine of the ligand and the aspartic acid
of the protein at left. Note, however, that Surflex yielded
a pose within 2.5 Å rmsd that scored just 0.5 log units
lower than the pose shown.

Screening Utility. Table 1 reports one additional
measure of scoring accuracy that affects screening
utility: the proportion of the time that Surflex returned
its highest scoring pose at a score that was big enough
to be retained in a large screen. The threshold was set
(somewhat arbitrarily) at the minimum of 5.0 units
(-log(Kd)) and 1 log unit less than the optimized score
from the native minimized conformation. By this crite-
rion, Surflex found a high enough scoring solution at
least 80% of the time in 68/81 (84%) of the cases.

A more substantial test of screening utility was made
on two proteins used by another group to quantitatively
compare the performance of GOLD, Dock 4.0, and
FlexX.13 HSV-1 thymidine kinase (TK, PDB code 1kim)
and estrogen receptor R (ER, PDB code 3ert) were used
as targets in screens comprising 10 known ligands for
each protein and 990 randomly chosen molecules (see
Methods). The known ligands used for TK and ER are
shown in Figures 7 and 8, respectively. For the TK case,
experimental crystallographic data were also available
for each of the 10 TK ligands. Table 2 summarizes the
rmsd values for the 10 TK ligands. As above, Surflex
performance was very similar to that of GOLD, but it
far exceeded the performance of Dock and FlexX (note
that in this case only a single run of Surflex was

Figure 5. Plots of Surflex versus GOLD performance on 58 protein-ligand complexes tested in common: (left plot) rmsd values
of best docked pose from 10 random starting conformations (Surflex) and 20 random initial seeds (GOLD); (right plot) rmsd
values of highest scoring poses over the same dockings.

506 Journal of Medicinal Chemistry, 2003, Vol. 46, No. 4 Jain



performed, but the GOLD result was for the best scoring
pose over 10 runs). The TK structure used was from a
structure bound to thymidine. Consequently, the three
pyrimidines were docked least accurately, since signifi-
cant conformational adaptation occurs on the part of the
protein on binding a pyrimidine versus a purine.

More important than docking accuracy for the pur-
poses of screening is the ability of a docker to detect
true positives against a background of random mol-
ecules. The false positive rate is exacerbated by the large
size of screening libraries, which can commonly exceed
100 000 compounds. False positive rates of 5% to
achieve a given true positive rate will yield 5000 inactive
compounds to recover just a few active compounds.
While this may enrich active compounds over an ex-
haustive screening approach, improvements in false
positive rates enhance the efficiency of screening and
reduce costs linearly with reduction in false positive
rates.

In a screening experiment on a particular protein,
interpretation of Surflex results requires a threshold on
allowable protein penetration penalty. From the 81-
complex set above, a reasonable threshold would be -3.0
(80/81 ligands meet this threshold). However, those
complexes were all native ligands complexed to the
proteins, and so this value might be optimistic in
docking non-native ligands. In the TK case, a threshold

of -3.0 allowed for all 10 positives to dock successfully,
and results are presented for this threshold. In the ER
case, a threshold of -3.0 allowed for 7/10 known ligands
to dock successfully. A threshold of -6.0 was required
to allow for 9/10 known ligands, and a threshold of
-12.0 was required to allow all 10 ligands to dock
successfully (results are presented for -6.0 and -12.0).

Table 3 summarizes the false positive rates of Surflex,
DOCK, FlexX, and GOLD at true positive rates ranging
from 80% to 100%. For Surflex on the TK library, the
ranks of the known ligands were 1, 5-7, 10, 13, 15, 17,
36, and 40. So, just 9/990 random molecules were among
the 8 highest scoring known ligands, corresponding to
a 0.9% false positive rate. This was roughly 10-fold
better than the best result of the competing methods
(GOLD’s result). For a true positive rate of 100%, the
Surflex FP rate was 3.2%, with the GOLD rate moving
to 9.3%. DOCK performs the weakest of the four
methods, with a 23% FP rate for a TP rate of 80%. In
the TK case, the binding interactions involve a number
of polar contacts with a relatively small component of
hydrophobic packing compared with the ER case, which
follows.

In the ER case, with the aggressive penetration
threshold (-6.0, allowing for 9/10 known ligands to
dock), Surflex yielded a FP rate of 0.2% for a TP rate of
80%. The ranks of the 9 successful known ER ligands

Figure 6. Representative examples of dockings of high accuracy (3tpi, 0.5 rmsd, 7 rotatable bonds), good accuracy (1tmn, 1.3
rmsd, 14 rotatable bonds), acceptable accuracy (1hri, 2.0 rmsd, 9 rotatable bonds), and poor accuracy (1atl, 7.0 rmsd, 11 rotatable
bonds). Over 80% of the best scoring dockings had rmsd less than 2.5 (acceptable, good, or high accuracy).
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were 1-5, 7, 9-10, and 15. By use of a penetration
threshold of -12.0, which accommodated all 10 ligands,
the rate changed to 1.3%. Both the 0.2% rate and the
1.3% rate were significantly better than the best of the
other three methods taken alone, which ranged from
5.3% for GOLD to 57.8% for FlexX. The combination of
GOLD docking with DOCK scoring yielded poorer FP
rates compared to Surflex under the more aggressive
penetration threshold but were comparable at the 80%
and 90% TP rates for the less aggressive threshold.
However, for 100% coverage of the positives, Surflex
yielded a 4-fold better FP rate than the hybrid GOLD/
DOCK method. The issue of the penetration penalty
deserves additional discussion. As noted above, a thresh-
old of -3.0 was sufficient to admit dockings for 80/81
complexes in a diverse set of proteins. However, this
threshold in the ER case rejected 3/10 known ER
ligands. Of course, application of this more stringent
threshold improved the FP rate at the cost of the

additional false negative. The ranks of the seven surviv-
ing known ER ligands were 1-7 using the -3.0 pen-
etration threshold, yielding a nominal false positive rate
of 0%.

To probe this issue further and to address the ques-
tion of docking accuracy to a hydrophobic bonding
pocket that was not the result of cocrystallization with
the target ligand, four ER ligands (minimized) whose
bound structures were known were docked to the
structure of ER bound to 4-hydroxytamoxifen (ligand
abbreviation “tam”, PDB code 3ERT). The bound poses
of the four ligands were obtained by superimposing the
coordinates of their respective complexes onto 3ERT
based on the R carbons of the residues proximal to tam.
Table 4 shows the results for these ligands plus tam
for the top scoring pose, the top ranked pose with rmsd
less than 2.0 Å, and the best pose (of the 10 returned)
by rmsd. In four of five cases, the penetration penalty
met the -3.0 threshold, so the initial 7/10 success rate
is hardly changed (10/14 or 71%) with the additional
four novel ligands (tam was in the original set of 10).
In the case with the worst penetration penalty (chrys),
docking the ligand to the native structure yielded an
rmsd of 0.60 Å compared with 3.61 when docked to
3ERT. This ligand had a very accurately docked pose
when docked to 3ERT that scored nominally higher than
the top ranked pose (8.52 versus 8.03), but because of a
significantly worse penetration penalty, it was ranked
number 3. In all cases of docking to 3ERT, a pose within
the top three yielded an rmsd less than 2.0 Å. Also, in
all cases, the best pose by rmsd was very accurately
docked (0.77 Å < rmsd < 1.34 Å). However, the docking
of each of the four novel ligands to their native protein
structures yielded better accuracies, and in the cases
with significant penetration penalties (rx core and
chrys), it also yielded much improved penetration
values. For screening purposes, a penetration threshold
of -3.0 appears to be appropriate provided that the
tradeoff of some false negatives is warranted by the
improved false positive rate. In practice, where possible,
reliance on known positive ligands to quantify the
expected false negative rate with various thresholds
would be a better approach.

With respect to the scoring function, the ER and TK
cases present very different binding pockets. In the ER
case, the binding pocket is much more hydrophobic than
in the TK case, and we see that the DOCK scoring
function improved GOLD’s docking performance. It
appears that the scoring functions for GOLD, DOCK,
and FlexX may have certain biases with respect to the
types of proteins on which they perform well in terms
of ranking the nominal binding affinities of ligands. The
scoring function of Surflex may also have such limita-
tions, but they were not revealed by these two data sets.
With both TK and ER, Surflex yielded very low false
positive rates compared to the other methods. If the
results bear out on other proteins, assaying the top
scoring 1000 out of 100 000 compounds (1%) should yield
a large proportion of the true positives in the compound
library.

Speed. Docking speed is a critical issue in screening
large compound libraries and may be important even
in a careful study of a small set of ligands. All of the
dockings reported here were performed with the same

Figure 7. HSV-1 thymidine kinase ligands used as positive
controls in screening. The abbreviations are as follows: dT,
deoxythymidine; idu, 5-iododeoxyuridine; hpt, 6-(3-hydrody-
propyl-thymine); ahiu, 5-iodouracil anhydrohexitol nucleoside;
mct, (North) methanocarbathymidine; hmtt, (6-[6-hydroxy-
methy-5-methyl-2,4-dioxohexahydropyrimidin-5-yl-methyl]-5-
methyl-1H-pyrimidin-2,4-dione; dhbt, 6-(3-hydroxy-2-hydroxy-
methylpropyl)-5-methyl-1H-pyrimidine-2,4-dione; acv, aciclo-
vir; gcv, ganciclovir; pcv, penciclovir.
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parameter set for Surflex. Figure 9 (left) shows a plot
of mean docking time of the 81 ligands from the first
data set versus number of rotatable bonds. Figure 9
(right) shows a plot of docking time of the 990 ligands
for TK and ER versus number of rotatable bonds. The
docking times for both cognate and random ligands were
very similar. Docking time was roughly linear in
number of rotatable bonds, beginning with a few seconds
for rigid molecules and adding approximately 10 s per
rotatable bond. The parametrization used for the dock-
ing runs was optimized for docking accuracy with
cognate ligands. Consequently, Surflex returned dock-
ings for all 990 of the TK random ligands and for 989
of the ER random ligands. Of course, many of these

dockings scored very poorly or had impossibly high
penetration values. Significant speedup for screening
purposes is possible and was not attempted in these
experiments.

Direct comparison of docking speed is somewhat
problematic because of differences in hardware and
methodology. The authors of GOLD reported a mean
docking time of 14 600 s (total time for 20 runs), with a
minimum of 3440 s on a set of 100 complexes (on SGI
R4400 hardware).11 They reported that two docking
runs were sufficient to yield good answers in a large
number of cases, which translates to 1460 s on average
and 344 s minimum. A single run of Surflex yielded a
good answer the majority of the time on the 81-complex
data set (which shares 58 complexes with the published
100-complex GOLD set11). Surflex’s mean time was 44
s over all 81, with the minimum being between 1 and 2
s. Clearly, even accounting for potential hardware
differences, Surflex was much faster than GOLD with
the settings and versions tested. However, speed opti-
mization of GOLD has been an area that has received
attention because the original validation set was pub-
lished.

The more recent benchmarking work of Bissantz et
al.13 offers perhaps a more reasonable comparison, since
multiple techniques were tested, including a more
recent version of GOLD. For the ER and TK cases,
Surflex’s mean docking times for all 1000 molecules

Figure 8. Estrogen receptor antagonists used as positive controls in screening.

Table 2. Thymidine Kinase Docking Accuracya

rmsd (Å) of best scoring poses

ligand Surflex Dock FlexX GOLD

dT 0.74 0.82 0.78 0.72
ahiu 0.87 1.16 0.88 0.63
mct 0.87 7.56 1.11 1.19
dhbt 0.96 2.02 3.65 0.93
idu 1.05 9.33 1.03 0.77
hmtt 1.78 9.62 13.3 2.33
hpt 1.90 1.02 4.18 0.49
acv 3.51 3.08 2.71 2.74
gcv 3.54 3.01 6.07 3.11
pcv 3.84 4.1 5.96 3.01

a Data for Dock, FlexX and GOLD are taken from Bissantz et
al.13
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were 124 and 93 s, respectively. The mean times for
molecules with 20 or fewer rotatable bonds were 84 and
64 s, respectively. Unfortunately, detailed timing data
were not published in the benchmarking study. The

authors indicated that the docking pace was roughly
between 50 and 100 s per molecule for FlexX, DOCK,
and GOLD on an SGI Indigo2 R10K processor. It
appears that under the parametrizations tested, Surflex
had comparable docking times (note that GOLD was run
with “library screening” settings that are more than 10-
fold faster than the standard settings on which its
docking accuracy has been validated).

Conclusions

Surflex represents an advance in flexible molecular
docking. In comparison with the best methods in each
category, Surflex is simultaneously as accurate in terms
of rmsd of docked ligands, as fast in terms of docking
speed, and significantly more accurate in terms of
scoring to the extent that false positive rates are 5- to
10-fold lower for equivalent true positive rates compared
to other methods. A diversity of protein active sites are
tractable with a single approach using a single param-
etrization. However, there are areas for improvement
in both its scoring function and search methodology.
With respect to scoring, three improvements would be
beneficial: (1) the scoring and penetration terms should
be consolidated into a single score and the parameters
should be re-estimated; (2) the scoring function param-
eters re-estimation should include explicit training on
negative examples (nonbinding ligands), which should
further reduce false positive rates; (3) the effect of
nonbonded self-interactions within ligands should be

Table 3. Comparative False Positive Rates in Screeninga

false positives from 990 random ligands, %

thymidine kinase estrogen receptor

TP, %
Surflex

(pen. < 3) DOCK FlexX GOLD
Surflex

(pen. < 6)
Surflex

(pen. < 12) DOCK FlexX GOLD GOLD/DOCK

80 0.9 23.4 8.8 8.3 0.2 1.3 13.3 57.8 5.3 1.2
90 2.8 25.5 13.3 9.1 0.7 1.6 17.4 70.9 8.3 1.5

100 3.2 27.0 19.4 9.3 2.9 18.9 23.4 12.1
a Data for Dock, FlexX, and GOLD are extrapolated from rank data and plots from Bissantz et al.13

Figure 9. Surflex docking times versus number of rotatable bonds: (left plot) mean docking times for cognate ligands of 81
proteins; (right plot) docking times for 990 random molecules versus number of rotatable bonds for TK (+) and ER (×). Dockings
were performed on a standard Windows 2000 Professional, 933 MHz Pentium III workstation.

Table 4. Estrogen Receptor Docking Accuracya

structure:
ligand:

docking target:

3ERT
tam

3ERT

1GWR
rx-core
3ERT

1GWQ
edl

3ERT

3ERD
des

3ERT

1L2I
chrys
3ERT

Top Ranked Pose
rmsd 0.93 0.84 1.89 2.86 3.61
score 9.86 6.34 5.54 8.01 8.03
pen. -0.45 -2.27 -0.63 -0.41 -4.28

Top Pose with rmsd < 2.0
rank 1 1 1 2 3
rmsd 0.93 0.84 1.89 1.74 0.898
score 9.86 6.34 5.54 6.85 8.52
pen. -0.45 -2.27 -0.63 -0.55 -5.95

Best Pose by rmsd
rank 9 2 4 10 9
rmsd 0.826 0.83 1.34 1.11 0.77
score 9.03 6.25 5.18 6.53 7.03
pen. -0.78 -2.2 -0.62 -2.49 -5.4

Top Ranked Pose Docked to Native Structure
rmsd 0.93 0.36 0.89 0.43 0.60
score 9.86 7.06 5.40 7.41 9.82
pen. -0.45 -0.25 -0.51 -0.72 -1.18

a Values are rmsd (Å), score (-log(Kd)), pen. (arbitrary units).
Abbreviations: tam, 4-hydroxytamoxifen; rx-core, 2-(4-hydroxy-
phenyl)benzo[b]thiophen-6-ol); edl, 17â-estradiol; des, diethylstil-
bestrol; chrys, (R,R)-5,11-cis-diethyl-5,6,11,12-tetrahydrochrysene-
2,8-diol.
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accounted for explicitly. With respect to search meth-
odology, the most significant area for further develop-
ment is in explicitly allowing a degree of protein
flexibility (e.g., side chain movement). Apart from that,
a number of incremental speed improvements are
possible (e.g., more efficient gradient-based pose opti-
mization) in addition to development of a specific
parametrization for library screening.
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