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Informative Library Design as an Efficient Strategy to Identify and Optimize
Leads: Application to Cyclin-Dependent Kinase 2 Antagonists
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The application of an informative, iterative library design strategy is presented for lead
identification and optimization. The computational algorithm underlying informative design
systematically uses data from both active and inactive compounds and maximizes the
information gained from subsequent design-synthesis-screening cycles. Retrospective analysis
of a released dataset of 17 550 compounds and corresponding cyclin-dependent kinase-2
activities showed that informative library design yields significant enrichments of active
compounds and efficiently discovers novel chemotypes in comparison with commonly used
diversity-similarity protocols.

Introduction

Although once perceived by some as a threat to
molecular modeling and design, the advance of combi-
natorial and parallel chemistry approaches is now seen
as a powerful ally of the computational chemist. No
longer is there a need to select one or a few compounds
based on a particular design method; typically ideas can
be tested by libraries of hundreds of compounds. This
is essential since many molecular modeling approaches
are qualitatively predictive at best. In fact, for most
methods, extrapolation to chemotypes beyond the set
of compounds used to derive the model remains a
significant problem in the day-to-day practice of the
(computational) medicinal chemist.

The art and science of computational library design
have been reviewed extensively.1-3 The method and
objective of the design can vary dramatically depending
on the stage and nature of the therapeutic project. In
the early phases, library designs may be aimed at
finding chemically diverse hits that can be optimized
to leads. Once hits have been identified, library designs
may focus on quickly analoging around particular
structural moieties to increase understanding of struc-
ture-activity relationships. Library design methods
have also been used to compare, design, or supplement
screening libraries. Different considerations can be
included in the designs such as the drug-likeness, and
one typically applies filters to remove the “swill”.4,5

This paper describes the application of a novel strat-
egy called informative library design.6 The goal of
informative design is to use molecules to “interrogate”

the target receptor and determine what chemical fea-
tures are required for activity. Each molecule, given its
conformational flexibility, is able to ask many questions.
The informative design method composes the library in
such a way that a maximum number of conclusions can
be drawn from the “answers” (assay results), as shown
in Figure 1. This is accomplished by maximizing the
Shannon entropy of the library (vide infra), which is
described elsewhere.7,8 Note that getting enhanced hit
rates is not the a priori objective of an informative
design strategy. The method involves both data and
model generation, taking advantage of the iterative
design-synthesis-screening cycle. After several rounds
of this cycle, the model for activity (i.e., features required
for binding) converges and may be applied for designing
combinatorial libraries based on novel scaffolds or
selecting compounds for testing from other sources.

This paper illustrates the utility of an informative
design strategy with a retrospective analysis using com-
pounds that were assayed during the course of a cyclin-
dependent kinase 2 (CDK2) antagonists9,10 project. We
approximated the real-life situation of a drug discovery
project by simulating multiple rounds of design-
synthesis-screening and then measured performance
by monitoring enrichment of active compounds, model
convergence, and the ability to discover different active
chemotypes. The latter is important, since the ability
to identify and optimize activity on chemically diverse
scaffolds greatly enhances the chances of finding active
compounds that have a favorable pharmacokinetic
profile. The informative design strategy has previously
been shown to select many different chemotypes when
the target’s crystal structure information is used.8 Here,
we demonstrate the utility and advantages of this
approach in the general case (i.e., unknown target
structure). Finally, we compared this strategy with a
more conventional diversity-similarity strategy that is
used frequently in the pharmaceutical industry.
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Methods

Protocol for Retrospective Computational Analysis.
This study simulates the iterative nature of molecular selec-
tion/synthesis and information flow in a real-life therapeutic
project setting. To this end, we distinguish an “early stage”
(lead generation/identification) and a “late stage” (lead opti-
mization/SAR expansion). In the early stage relatively large
numbers of molecules are selected from a chemically diverse
corporate or public compound collections. The late stage
involves selecting a smaller numbers of compounds and
operates on combinatorial collections characterized by large
numbers of potential compounds on a limited set of scaffolds,
targeted for the receptor of interest. To apply comparisons
across different methods, five rounds of selection were defined,
each having restrictions on the number of compounds that
could be selected and the source pool of potential compounds.
The protocols for each method are shown in Figure 2.

Compound Source Pool/Data Set. See Supporting Infor-
mation. In the course of the CDK2 project, 17 550 compounds
were screened for CDK2 antagonistic activity. Compounds with

an IC50 lower than 25 µM or inhibition larger than 50% at 10
µM were considered active. The data set was split into two
subsets for the retrospective study: general screening pool and
targeted screening pool. The first pool consisted of 13 359
chemically diverse compounds from a general screening li-
brary, containing 207 actives. The targeted pool contained 161
actives and consisted of 951 compounds selected from the ACD
by the project chemists, using standard ISIS11 similarity
searching, and 3240 combinatorial synthetic compounds on
more than 22 unique chemical scaffolds, with actives on 14
out of the 22 scaffolds. These compounds were originally
selected for synthesis using a variety of techniques, including
Daylight fingerprint similarity,12 medicinal chemistry intu-
ition, informative library design, and similarity in pharma-
cophore signatures.

Informative Library Design Strategy. Whole molecule
3D pharmacophore-based descriptors were used,13,14 with six
feature types: hydrogen-bond acceptors and donors, hydro-
phobes, negative and positive charges, and aromatic groups.15

The resulting potential “pharmacophore space” contained 3.4
million pharmacophores. Each molecule was encoded as a
“molecular signature”, a bit string recording the presence or
absence of each pharmacophore in any of its conforma-
tions.13,14,16

The “design space” for each round of informative design
consisted of a subset of the total “pharmacophore space”. In
Round 0, the design space was the subset of all pharmaco-
phores displayed by at least 10 molecules in the general
screening pool, ∼1.8 million. For each of the subsequent rounds
(1-4), the design space was determined by the activity data
known at that point. Each pharmacophore was evaluated
separately for its usefulness on the basis of ability to discrimi-
nate between actives and inactives in the existing data set
using the “discrimination ratio” (DR), defined as DR ) [(Apharm/
Atotal)/(Ipharm/Itotal)]. Where Apharm and Ipharm denote the number
of active and inactive molecules containing the pharmacophore,
respectively, and Atotal and Itotal denote the total number of
active and inactive molecules in the data set. The DR is a
function of both active and inactive molecules and the total
size of the existing data set, measuring the tradeoff between
true positives and false positives. In each round of design,
pharmacophores with a DR greater than 10 were retained as
the “design space”. A DR of 10 is equivalent to matching 1%
actives and 0.1% inactives. Thus the design space is targeted
for the receptor being assayed, since the retained pharma-
cophores differentiate between active and inactive molecules.

In rounds 0-3, compounds were selected using the informa-
tive design technique (Figure 2).6,7 In round 4, the active
molecules from the previous rounds were used as queries, and
the Tanimoto similarity17 was calculated between each query

Figure 1. Schematic comparison of informative (left) and diversity (right) library design. In both figures, molecules are represented
as rows, descriptors (ex: chemical feature) as columns. In the Assay column, “Y” corresponds to active. Each design method has
selected four molecules to test a different portion of the “design space”. Informative design uses molecules to “interrogate” a
target receptor and determine which chemical features are required for activity. Each molecule is a “question”, with the red areas
indicating which features the molecule contains and the assay result is the “answer”. Informative design selects molecules to
maximize the difference between the patterns in the descriptor columns (codes). Unique codes enable the identification and retention
of important features when the compounds are assayed. In this example, the assay result is “YNNY”. Since every possible assay
outcome corresponds to one code, feature 10 (shown by yellow dots) can be identified as a determinant of activity. In contrast,
diversity methods select molecules to maximize the difference between the patterns in the molecules. The diverse design does
find in active compound, but the assay code (‘NYNN’) has four equivalent explanations for activity: features 9-12.

Figure 2. Protocols for methods comparison. Round 0 repre-
sents the design of a general screening collection that is used
at the start of every project. A set of 1000 compounds was
selected using each method from the general screening source
pool of 13 359 compounds (gray boxes). In Rounds 1-3, small
“libraries” of 200-500 compounds were selected from the
targeted source pool of 4191 compounds. These rounds repre-
sent the typical SAR expansion/potency optimization that is
done based on the initial screening results. Finally, in Round
4, similarity searching was applied to both protocols. In the
case of the informative design, the similarity was calculated
in the refined descriptor space generated in the previous
rounds.
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molecule and compounds remaining in the source pool using
the final 82K pharmacophore bit strings.

Diversity/Similarity-Based Library Design Strategy.
Whole molecule 2D descriptors called MACCS keys18 were used
as implemented in the MOE platform from Chemical Comput-
ing Group.19 This allowed both diversity design and similarity
searching in the same descriptor space. The design space for
each round of diversity and similarity design was the complete
set of MACCS keys.

The selection method for Round 0 was the default molecular
diversity-based subset selection method implemented in MOE.
For each of the subsequent rounds (1-4), the design method
was similarity searching using MACCS keys. Two variations
of similarity selection criterion were tested: (1) Retain all
molecules with a Tanimoto similarity greater than some
threshold to any previously identified active. (2) Retain the
topmost similar compounds to each of the previously identified
actives. The first method performed the best, and those results
are reported for comparison.

Random Control. To determine if either of the design
methodologies produced significant improvements, we per-
formed 10 random selections of compounds. The average
results are reported.

Results and Discussion

The informative library design method differs from
more traditional diversity-similarity procedures in its
initial goal of building/optimizing a computational
model, which is subsequently applied to identify actives

on multiple chemical scaffolds. However, both selection
methods have the same long-term objective: identifying
the best compounds using the least amount of time and
resources. Thus we compared the methods by holding
the “resources” (compound source pools and number of
compounds selected) constant and monitored perfor-
mance with standard therapeutic project metrics: frac-
tion of actives recovered, enrichment for activity in the
designed library versus the source pool, and number of
active scaffolds identified. The results are collated in
Table 1. Enrichment is difficult to compare across
different publications because it depends on the source
pool composition and the selection size. So, Table 1 also
includes the “maximum” enrichment, which corresponds
to finding all the actives.

Since the informative library design strategy is aimed
at refinement of the computational model, we monitored
the size of pharmacophore design space in each round
(Table 2). The four rounds of informative design refined
the model from 1.8 M to 82 K pharmacophores, at which
point the final model was used for similarity search.
When applied in Round 4, this final model yielded an
enrichment of 7.7. It can also be observed in Table 2
that, although informative design does not initially aim
to produce a library enriched for activity, there is an
increase in library enrichment for each subsequent
round.

Diversity design, like informative design, does not aim
to identify actives, but rather to sample the chemical
space. So it is not surprising that the initial screening
library selection resulted in an enrichment less than
random sampling, yielding only 10 out of 207 possible
active leads. However, the observation that the similar-
ity design method did not consistently produce libraries

Table 1. Cumulative Results for Different Computational
Selection Methods

cumulative
enrichmenta

fraction of
actives recovered

active scaffolds
recovered

General Screening Library:
One Round, 1000 out of 13 359 Compounds Selected

informative 2.00 0.15
diversity 0.65 0.05
randomb 0.99 0.07
maximumc 13.60 1.00

Targeted Screening Library:
Four Rounds, 1000 out of 4191 Compounds Selected

informative 2.56 0.63 11
similarity 1.31 0.32 7
randomb 1.03 0.24 10
maximumc 4.19 1.00 14

a Enrichment ) (no. selected actives/no. selected)/(no. pool
actives/no. pool) b Average of 10 random selections. c Maximum
attainable, corresponds to recovery all actives in selected set.

Figure 3. Active scaffold recovery. Histograms shows cumulative number of actives recovered on each of the 14 active scaffold
classifications in the targeted source pool after four rounds of selection: source pool (black hashed bar), informative design (solid
black bar), similarity design (solid gray bar), and random selection (white bar). An asterisk above the bar indicates that the most
potent compound on the scaffold was retrieved by the corresponding method. Scaffold_00 contains a diverse set that did not
easily fall into chemotype classifications.

Table 2. Per Round Results on Model Refinement and
Enrichmenta

informative
diversity-
similarity randomb

round pharmacophores enrichment enrichment enrichment

0 1800 K 2.00 0.65 0.99
1 178 K 1.35 0.86
2 111 K 3.69 1.14
3 82 K 3.56 2.30
4 82 K 7.71 1.56 1.03
a Enrichment ) (no. selected actives/no. selected)/(no. pool

actives/no. pool). b Average of 10 random selections.
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enriched for activity is somewhat surprising. Although
it has been noted recently that similar molecules do not
necessarily have similar activities,20,21 the nearest-
neighbor principle is often employed as the technique-
of-choice in the hit-to-lead process. The first round of
similarity searching produced a lower than random
enrichment, but subsequent rounds did result in enrich-
ments of up a factor of 2.

For both the general and targeted screening selec-
tions, informative design provides higher enrichments
than diversity-similarity or random control. In par-
ticular, for the targeted screening library selections, the
cumulative enrichment of 2.56, observed for informative
design, is more than 60% of the maximum attainable
enrichment of 4.19. At all points, iterative informative
design performed better than both random selection and
diversity-similarity. Multiple rounds of informative
design, followed by a final similarity search in the
refined descriptor space, recover 60% of the actives in
the source pool, having “synthesized” only 25% of the
potential compounds in the source pool.

Figure 3 shows the overall performance of the differ-
ent design protocols with respect to their ability to
identify and optimize novel scaffolds. When informative
library design was used, 11 of the 14 active chemical
series were identified. Of those series, the most potent
compound was recovered in eight scaffolds, and the
second most potent in the other two cases. When
similarity searching followed diversity design, only 7 of
the 14 active chemical series were identified. This latter
result is not surprising since similarity-based selections
tend to pick chemically related compounds, which is
arguably not the best strategy for discovering all the
active scaffolds. Even random selection outperforms the
similarity strategy for the same reason.

Figure 3 also hints at the difficulty of using similarity
searching in combinatorial libraries. Similarity search-
ing retrieved more than 90% the actives on scaffolds 3,
7, 10, and 13. However, in those cases, similarity
searching retrieved the majority of the inactives as well.
Thus the source of the lower enrichments for this
approach is its tendency to retrieves all the compounds
from a scaffold once an active is identified.

Conclusions and Perspective

There are many possible variables in any comparison
of computational selection strategies (e.g., descriptor
type, selection method, scoring function, fraction se-
lected, etc.). Answering all those questions is beyond the
scope of this study. We hope that others will use the
supplemental data provided to expand these initial
comparisons. Here, our goal was to compare informative
design to a standard commercially available selection
protocol (diversity-similarity), under realistically simu-
lated conditions. Since the descriptors were not held
constant, we cannot say conclusively that the improved
performance was related to the 3D descriptors, the
selection method, or a combination of both. However,
the overall result is in agreement with another com-
parative study on the performance of active-site derived
pharmacophore models in combination with informative
design.8 In that case, using the same compound and
activity data, informative design performed better than
docking or similarity protocols using a different set of
descriptors. It appears that using either receptor-based
or ligand-based information, the strength of informative

design is in refining the model from all possible features/
interactions, down to only those critical for binding.
While this cannot be demonstrated unambiguously
without testing all possible variables (e.g., 2D MACCS
keys used with informative design), the overall conclu-
sions are unlikely to change. This retrospective study
has clearly demonstrated that informative design used
with 3D pharmacophores significantly outperforms a
commonly used diversity-similarity selection using
chemical substructure descriptors.
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