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Computational ADME (absorption, distribution, metabolism, and excretion) models may be
used early in the drug discovery process in order to flag drug candidates with potentially
problematic ADME profiles. We report the development, validation, and application of
guantitative structure—property relationship (QSPR) models of metabolic turnover rate for
compounds in human S9 homogenate. Biological data were obtained from uniform bioassays
of 631 diverse chemicals proprietary to GlaxoSmithKline (GSK). The models were built with
topological molecular descriptors such as molecular connectivity indices or atom pairs using
the k-nearest neighbor variable selection optimization method developed at the University of
North Carolina (Zheng, W.; Tropsha, A. A novel variable selection QSAR approach based on
the k-nearest neighbor principle. J. Chem. Inf. Comput. Sci., 2000, 40, 185—194.). For the
purpose of validation, the whole data set was divided into training and test sets. The training
set QSPR models were characterized by high internal accuracy with leave-one-out cross-
validated R? (g?) values ranging between 0.5 and 0.6. The test set compounds were correctly
classified as stable or unstable in S9 assay with an accuracy above 85%. These models were
additionally validated by in silico metabolic stability screening of 107 new chemicals under
development in several drug discovery programs at GSK. One representative model generated
with MolConnZ descriptors predicted 40 compounds to be metabolically stable (turnover rate
less than 25%), and 33 of them were indeed found to be stable experimentally. This success
(83% concordance) in correctly picking chemicals that are metabolically stable in the human
S9 homogenate spells a rapid, computational screen for generating components of the ADME

profile in a drug discovery process.

Introduction

It has been estimated that nearly 50% of drugs fail
because of unacceptable efficacy, which includes poor
bioavailability resulting from ineffective intestinal ab-
sorption and limited metabolic stability.! Clearly, in
addition to pharmacological potency and toxicity, the
absorption, distribution, metabolism, and excretion
(ADME) properties are crucial determinants of the
ultimate clinical success of a drug candidate.! To reduce
the cost and improve the efficiency of experimental drug
discovery, the pharmaceutical industry welcomed the
“fail fast, fail cheap” 2 concept. One of the recent trends
in the pharmaceutical industry has been the integration
of what has traditionally been considered the “drug
development” stage into the early phases of drug
discovery. The aim of this paradigm shift is the prompt
identification, and possibly elimination, of candidate
molecules that are unlikely to survive later stages of
drug development. To this end, in vitro ADME screens
have been implemented in most pharmaceutical com-
panies.®
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As valuable as these experimental filters are, they do
have some limitations. For example, they require physi-
cal samples of compounds for testing, and despite
significant technical advances, they remain time-
consuming and resource-intensive. Thus, there is cur-
rently much interest in the development and application
of computational methods for predicting “druglikeness”.*
Such methods could be applied to virtual compounds or
existing libraries, permitting rapid and cost-effective
elimination of poor candidates prior to synthesis.

The main advantage of quantitative structure—
property relationship (QSPR) methods lies in the fact
that once such a relationship is ascertained, it becomes
of valuable assistance in the prognosis of the property
of interest of new molecules before they are actually
synthesized and tested. An automated variable selection
QSPR method based on the k-nearest-neighbor (kNN)
classification principle was introduced recently in one
of our laboratories.> This KNN QSPR method is formally
built upon the active analogue principle, which implies
that chemically similar compounds display similar
profiles of their physical and biological properties. All
compounds are characterized by multiple chemical
descriptors, and chemical similarity is evaluated by
Euclidean distance between points representing com-
pounds in multidimensional descriptor space. The selec-
tion of the optimal subset of descriptors, which affords
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Table 1. Representative Structural Moieties in the Training
Set?

Structural Moiety Occurrence Structural Moiety Occurrence
Amino Acids 37 Alcohols 123
Bases, nucleosides 11 Carbamates 62
Carboxylic acid 35 Nitrile 39
Nitro 17 Sulfone 66
Urea 17 Ketone 82
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the highest correlation between the actual and predicted
values of the target property for all compounds, is
achieved by using simulated annealing as a stochastic
optimization algorithm.

In this paper, we have applied the KNN QSPR
approach to a data set of 631 compounds that were
tested in the GSK Metabolic and Viral (MV) Diseases
Center of Excellence for Drug Discovery (CEDD) for
metabolic turnover in human liver S9 homogenate. Our
objective was to establish robust and validated in silico
QSPR models for the screening of new compounds.
Frequently, the high value of g? for the training set is
considered as a sufficient criterion of a QSPR model’s
accuracy. However, as we showed recently,® this value
alone does not guarantee the acceptable predictive
ability of a QSPR model. All QSPR models developed
herein have been extensively validated using several
criteria of robustness and accuracy.®’ These models
were applied to an external set of 107 chemicals that
were under in vitro assay at the GSK MV CEDD as
these models were being developed. An average concor-
dance of about 85% was observed between in vitro
measurements and in silico prediction. The QSPR
models developed and validated in this study can be
used to evaluate metabolic turnover rates of large
chemical databases or virtual libraries.

Data Set

A data set of 631 diverse compounds was used for the
model generation. The complete structures of the com-
pounds in the training set cannot be disclosed at this
time because they are still in the discovery stage at
GSK. However, their chemical diversity can be described
to some extent by representative structural moieties
that occur in the training set molecules. These frag-
ments are shown in Table 1.
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Methods

1. Metabolic Stability. In vitro metabolic stability
of test compounds was assessed using pooled human
liver S9 homogenate. Test compounds (final concentra-
tion of 1 uM) were incubated at 37 °C in the presence
of the protein (5 mg/mL) and required cofactors. The
incubation mixture was sampled at 0, 15, 30, and 60
min. Following precipitation with acetonitrile, samples
were analyzed for test compound by LC/MS/MS meth-
ods. The percent turnover at 30 min was calculated by
the following formula:

peak area at 30 min

turnover % =1 — -
° peak area at 0 min

Thereby, each compound is assigned a value of turnover
rate ranging from 0% to 100%. The experimental
protocol is controlled by GSK.8 Considering the practical
significance of metabolic transformation rates in the
context of drug design, we divided compounds into four
subclasses: stable class (<25% turnover), moderately
stable class (25—50%), moderately unstable class (50—
75%), and unstable class (>75%).

2. Molecular Descriptors. The generation of mo-
lecular descriptors involves translation of chemical
structures into numerical values. We applied two dif-
ferent types of descriptors in this study: MolConnZ
descriptors® and atom pair (AP) descriptors.1?

2.1. MolConnz Descriptors. The MolConnZ pro-
gram?@ is designed to carry out the computation of a wide
range of topological indices of molecular structure.
These indices include (but are not limited to) the
following descriptors:11-23 differential molecular con-
nectivity indices, « molecular shape indices, electro-
topological state indices, graph’s radius and diameter,
Wiener and Platt indices, Shannon information indices,
counts of different vertices, counts of paths and edges
between different kinds of vertices, and many other
topological indices.

For the present work, a version of the MolConnZ
package® available at GSK servers was used. Initially,
310 different descriptors were generated for the avail-
able set of 631 compounds. However, many of these
descriptors had zero variance and were eliminated,
leaving 190 descriptors that were used eventually.

2.2. AP Descriptors. The AP descriptors were gen-
erated using an approach initiated by Carhart et al.10
The key components for defining a set of atom pair
descriptors include the definition of atom types and the
classification of distance bins. An atom pair is a type of
substructure defined in terms of the atom types and the
shortest path (or graph distance) between two atoms.
The graph distance is defined as the smallest number
of atoms along the path connecting two atoms in a
molecular structure. The general form of AP descriptors
is as follows:

atom type i—(distance)—atom type j

Here, distance is the molecular graph distance (i.e.,
shortest path) between atom types i and j. In this study,
the following 15 types of atoms were used: (1) negative
charge center, NCC; (2) positive charge center, PCC; (3)
hydrogen bond acceptor, HA; (4) hydrogen bond donor,
HD; (5) aromatic ring center, ARC; (6) nitrogen atoms,
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N; (7) oxygen atoms, O; (8) sulfur atoms, S; (9) phos-
phorus atoms, P; (10) fluorine atoms, FL; (11) chlorine,
bromine, iodine atoms, HAL; (12) carbon atoms, C; (13)
all other elements, OE; (14) triple bond center, TBC;
(15) double bond center, DBC. Further, distance bins
were defined in the interval between graph distance 1
(i.e., zero atoms separating an atom pair) to 15 or
greater. For this human S9 metabolic turnover data set
of 631 compounds, 625 AP descriptors with nonzero
value and nonzero variance were generated using the
GenAP program developed in the Laboratory for Mo-
lecular Modeling, University of North Carolina.

3. Pearson Correlation Analysis. Many MolConnZ
descriptors are highly correlated with each other. If two
descriptors are strongly correlated, typically one of them
is discarded.?* To eliminate highly correlated descrip-
tors, the Pearson correlation analysis was used. The
Pearson correlation between two variables reflects the
degree to which the variables are related. The correla-
tion coefficient r between two variables X and Y for N
compounds is calculated as follows:

3xv -2
Y- ) s -2

The value of r can take values between —1 and +1. A
correlation of +1 means that there is a perfect positive
linear relationship between variables, while —1 means
a perfect negative linear relationship. Following pair-
wise Pearson correlation analysis, one of the highly
correlated variables (r > 0.9) was removed and the
number of MolConnZ descriptors was reduced from 190
to 106. The SAS?> package was used for the analysis.

4. KNN QSPR Method. The kNN QSPR method®
used here employs the kNN classification principle?®
combined with simulated annealing algorithm for vari-
able selection. The activity of each compound in a
dataset is predicted in a leave-one-out cross-validation
process as a weighted average activity of its k nearest
neighbors (i.e., most similar compounds) in the dataset.
The procedure seeks to optimize simultaneously (i) the
selection of variables (nvar) from the original pool of all
molecular descriptors that are used to calculate simi-
larities between compounds (i.e., distances in the nvar-
dimensional descriptor space), (ii) number of nearest
neighbors (k) used to estimate the activity of each
compound, and (iii) value of g2. Specifically, the kNN
QSPR procedure involves the following steps.

(1) Select a subset of nvar descriptors randomly (nvar
is a number between 1 and the total number of available
descriptors) as a hypothetical descriptor pharmaco-
phore?’ (HDP). nvar is usually set to different values
in a range between 10 and 50 in several different runs,
and for each fixed value of nvar, we generate at least
10 models.

(2) For each HDP, compute g2 by a leave-one-out
cross-validation procedure as described below.

(3) Repeat steps 1 and 2 until the maximum g2 for a
given number of nvar is achieved. This optimization
process is driven by generalized simulated annealing
(see below) using g? as the objective function.
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The standard leave-one-out procedure has been imple-
mented as follows.

(1) Eliminate a compound in the training set and
predict its target property on the basis of the kNN
principle, i.e., as the weighted average property of the
k most similar molecules (k is set to 1 initially). The
similarity between any two compounds i and j is
evaluated as the Euclidean distance between their
representations in the descriptor space,

(@)

using only the subset of descriptors that corresponds
to the current trial HDP.

The X descriptors generated with MolConnZ were
range-scaled prior to distance calculations, and scaling
was not necessary for AP descriptors. The reason for
scaling the MolConnZ descriptors was that their abso-
lute ranges differ quite significantly, sometimes by
orders of magnitude, unlike AP descriptors, which are
integers ranging between zero to no more than a couple
of dozens of AP counts. Thus, the scaling was used to
avoid giving descriptors with significantly higher ranges
a greater weight upon distance calculations in multi-
dimensional MolConnZ descriptor space.

The original KNN method was enhanced in this work
by using the weighted molecular similarity as opposed
to algebraic averaging as follows. In the original method,>
the activity of each compound was predicted as the
algebraic average activity of its k nearest compounds
in the training set. However, since the Euclidean
distances, in the selected descriptor space, between a
compound and each of its k nearest neighbors may not
be the same, the neighbor with the smaller distance
from a compound was given a higher weight in calculat-
ing the predicted activity as shown in

exp(—d;)
w; = ®3)
exp(—d;)

k nearest neighbors

and
y= zWiYi (4)

Here, d; is the Euclidean distance between a compound
and its neighbor i, w; is the weight for the nearest
neighbor i, y;j is the actual experimental activity value
for the nearest neighbor i, and ¥ is the predicted activity
value of the compound.
(2) Repeat step 1 until every compound in the training
set has been excluded and its activity predicted once.
(3) Calculate the leave-one-out cross-validated R? (g?)
value using
o2
@=1- (i i/.)2 5)
dHi—y)

Here, y; and ¥; are the actual and predicted properties
of the ith compound, respectively, and y is the average
activity of all compounds in the training set. Both
summations are over all compounds in the training set.
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— »| Leaveoutacompound from the training set

B
£
Z. Calculate distances between the eliminated and all remaining compounds
(in the original descriptor or activity space)
Identify N nearest neighbors as its restricted neighbors
Randomly select a subset of descriptors
® (a hypothetical descriptor pharmacophore)
:! Leave out a compound
2 Find k nearest neighbors among its restricted neighbors
| .8
7 ] -
Z l
Predict the activity of the eliminated compound by weighted ANN
L (using the identified k-nearest neighbors)

Calculate the predictive ability (¢°) of the model

v

Select the best QSPR model
(with the highest ¢° value)

Figure 1. Flowchart of the modified kNN method.

(4) Repeat steps 1-3 for k = 2, 3, 4, etc. Formally,
the upper limit of k is the total number of compounds
in the data set; however, the best value has been found
empirically to lie between 1 and 5. The k value that
leads to the highest g2 value is chosen for the current
kNN QSPR model.

Further details of the KNN method implementation
including the description of the simulated annealing
procedure used for stochastic sampling of the descriptor
space are given elsewhere.® In summary, the KNN QSPR
algorithm generates both an optimum k value and an
optimal subset of nvar descriptors, which together afford
a QSPR model with the highest value of g2. Figure 1
shows the overall flowchart of the current implementa-
tion of the KNN method.

5. Applicability Domain of QSAR Models. For-
mally, a QSPR model can predict the target property
for any compound for which its chemical descriptors can
be calculated. However, since the training set models
are developed by interpolating activities of nearest-
neighbor compounds, a special similarity threshold
should be introduced to avoid making predictions for
compounds that differ substantially from the training
set molecules. This threshold Dr is calculated as follows.

D; =Y+ Zo (6)

Here, y is the average Euclidean distance of k nearest
neighbors used to predict the target property of each
compound in the training set, o is the standard devia-
tion of these Euclidean distances, and Z is an arbitrary
parameter to control the significance level. We set the
default value of this parameter at 0.5, which formally
places the allowed distance threshold at one-half of the
standard deviation assuming Boltzman distribution of
distances between k nearest neighbor compounds in the
training set. Thus, if the distance of the external
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Table 2. Frequently Used o Values and the Corresponding
Critical Values of Z; for One-Tail Test?

08 Ze
0.10 1.28
0.05 1.64
0.01 2.33
0.001 3.10

aForz = 4, o = {U[o(27)Y2]} e~72,

compound from at least one of its nearest neighbors in
the training set exceeds this threshold, the prediction
is deemed unreliable.

6. Robustness of QSPR Models. To evaluate the
statistical significance of QSPR models, we have em-
ployed a standard hypothesis testing approach.2®8 The
robustness of training set models was examined by
comparing these models to those derived for random
data sets. The latter data sets were generated by
assigning target property values to the training set
compounds randomly but restricting these values to fall
within the same range as the actual values of the
original training set. In practice, this is achieved by
random shuffling of compound properties prior to QSPR
analysis.

According to the standard hypothesis testing ap-
proach, two alternative hypotheses are formulated:

Hy h=u
H: h>u

where u is the average value of g? for random data sets
and h is the g2 value for the actual data set. Thus, the
null hypothesis Hy states that the QSPR model for the
actual data set is not significantly better than random
models whereas the alternative hypothesis H; assumes
the opposite, i.e., that the actual model is significantly
better than random models. The decision-making is
based on the standard one-tail test, which involves the
following procedure.

(1) Determine the average value of g2 (u) and its
standard deviation (o) for random datasets.

(2) Calculate the Z score that corresponds to the g2
value for the actual dataset:

Z=(h—uwlo (7)

(3) Compare this Z score with the tabular critical
values of Z; at different levels of significance (0)?® to
determine the level at which Hy should be rejected. If
the Z score is higher than the tabular values of Z; (cf.
Table 2), one concludes that at the level of significance
that corresponds to that Z., Ho should be rejected and,
therefore, H; should be accepted. In this case, it is
concluded that the result obtained for the actual dataset
is statistically much more significant than the results
obtained for random data sets at a given level of
significance.

7. Model Validation: Training and Test Set
Selection. Often, a value of g? greater than 0.5 is
regarded as a proof of the high predictive ability of the
model (for instance, these criteria are used as an
ultimate indicator of a model’s predictive power by the
popular software CoOMFA marketed by Tripos®?). Al-
though a low value of g2 can indeed serve as an indicator
of the low predictive ability of the model, the opposite
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is not necessarily true; i.e., as we have demonstrated
recently,® high g2 values do not imply that the model
has any significant predictive power. The predictive
power of a QSPR model can be evaluated by its ability
to predict accurately the target property of compounds
not used in model development. Thus, to establish the
predictive power of a model, one needs to split the
available data set into the training and test sets. A
model is then developed for the training set compounds
and is evaluated by its accuracy in predicting the target
property of the test set compounds. The following
algorithm was used in this work to divide a set of N
compounds into the training and test sets.3°

(1) The total volume V occupied by N points repre-
senting compounds in the descriptor space is estimated
as in ref 6; the volume corresponding to one representa-
tive point is then equal to V/N.

(2) Select a compound with the highest activity.

(3) Include this compound in the training set.

(4) Construct a sphere with the center on the repre-
sentative point of this compound and with radius R =
c(V/N)1/K. Here, K denotes the number of descriptors
(dimensionality of the descriptor space), and c is the
dissimilarity level. (Dissimilarity level was varied to
construct more examples with different number of
compounds in the training and test sets.)

(5) Include compounds corresponding to representa-
tive points within this sphere (except the compound at
the center) in the test set.

(6) Exclude all points within this sphere from the
initial set of compounds.

(7) Let n be the number of remaining compounds. If
n = 0, go to step 11; otherwise, go to step 8.

(8) Let m be the number of spheres already con-
structed. Calculate distances djj;, with i =1, ..., n and
j = 1, ..., m, from the representative points of the
remaining compounds to the sphere surfaces.

(9) Select a compound with the smallest dj;.

(10) Go to step 3.

(11) Stop.

This algorithm discussed in more detail in the original
publication3® allows construction of training sets that
cover all descriptor space areas occupied by representa-
tive points. The higher is the dissimilarity level c, the
smaller is the training set and the larger is the test set.
It is expected that the predictive ability of a QSPR
model generally decreases when the dissimilarity level
increases. Obviously, the selection of training and test
set compounds is sensitive to the types of descriptors
used in calculations.

Results and Discussion

1. KNN QSPR Modeling Using MolConnZ De-
scriptors. 1.1. Model Robustness. As discussed above,
the robustness of a QSPR model should be established
by comparing results for the actual data set with those
for the data sets with randomized activity values. Thus,
10-, 20-, 30-, 40-, 50-, and 60-descriptor (nvar) models
were generated for the data sets of 631 compounds.
Figure 2 shows the plots of g2 vs nvar for the actual
and random data sets. For each nvar, the result is the
average of 10 independent models. Overall, the actual
QSPR models give consistently higher g2 values than
those for the random data sets.
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Figure 2. Plot of g? vs the number of variables selected for
KNN QSPR models using MolConnZ descriptors. The results
for both actual (triangles) and random (rectangles) data sets
are shown. Every g? value is the average of 10 independent
calculations.

Table 3. Standard One-Tail Hypothesis Testing for a
20-Descriptor KNN QSPR Model Using MolConnZ Descriptors

data sets g? Z score
random 1 —0.031 0.047
random 2 0.029 0.959
random 3 —0.143 —1.655
random 4 0.066 1.521
random 5 —0.018 0.245
random 6 —0.048 -0.211
random 7 —-0.074 —0.606
random 8 0.039 1.111
random 9 —0.054 —0.302
random 10 -0.107 —-1.107
average of random 1-10 —0.034
standard deviation 0.066
actual 0.511 8.284

The statistical examination of the results was per-
formed with one-tail hypothesis testing as described in
the Methods section. The g2 values for the 20-descriptor
kNN QSPR models obtained from 10 different random
data sets are shown in Table 3. This table also lists the
average ¢? value, the standard deviation of the ¢?
values, and the Z score for the 20-descriptor model for
the actual data set. A Z score of 8.28 indicates that there
is a probability of only about 10715 that the model
constructed for the actual data set is spurious.

In the kNN QSPR method, nvar can be set to any
value that is less than the total number of descriptors.
Figure 2 allows one to examine the relationship between
the statistical robustness of the actual model (charac-
terized by the difference between g2 values for actual
and random models) and nvar. Initially, as the value of
nvar increases, the model performance also improves
dramatically until it reaches a plateau at nvar of 30.
These results suggest that the optimal values of nvar
for models built with MolConnZ descriptors are between
30 and 50.

1.2. Model Generation and Evaluation Using
Training and Test Sets. Having established that
several robust KNN QSPR models for the entire original
data set can be obtained, we have concentrated on the
development of predictive (i.e., validated) models. Using
the training and test set selection procedure discussed
in Methods, the entire data set was divided into a
training set of 572 compounds and a test set of the
remaining 59 compounds. The ¢? value for a 30-
descriptor model for the training set was 0.516. The
accuracy of prediction for the training set is shown in
Table 4a. The model categorized 256 compounds as
stable, and 216 of them were actually stable as deter-
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Table 4. Accuracy Analysis of KNN QSPR Model Using
MolConnZ Descriptors

(a) Cross-Validated Training Set, 572 Compounds

predicated class

mod. mod.
actual class stable stable unstable unstable
stable 281 216 55 10 0
mod. stable 97 30 45 18 4
mod. unstable 73 6 20 32 15
unstable 121 4 17 44 56
total 572 256 137 104 75
(b) Test Set, 59 Compounds
predicated class
mod. mod.
actual class stable stable unstable unstable
stable 41 33 6 2 0
mod. stable 9 5 3 1 0
mod. unstable 4 2 0 1 1
unstable 5 0 0 2 3
total 59 40 9 6 4
(c) External Validation Set, 96 Compounds
predicated class
mod. mod.
actual class stable stable unstable unstable
stable 66 42 19 5 0
mod. stable 9 2 6 1 0
mod. unstable 12 1 6 2 3
unstable 9 5 1 1 2
total 96 50 32 9 5

mined experimentally. Thus, the accuracy of this train-
ing set model was 84% when applying the screen for
“acceptable” (slowly metabolizing) chemicals. Thirty
additional compounds were predicted as stable but
actually were found to belong to the moderately stable
class, which is adjacent to the stable class. On the other
side of the stability spectrum, the model assigned 75
compounds to the unstable class, and 56 of them were
actually assigned to this class experimentally. Thus, the
accuracy of this model was 75% when applied to select
“unacceptable” (rapidly metabolizing) chemicals. Fifteen
additional compounds were predicted as members of the
unstable class but actually belonged to the adjacent
moderately unstable class.

Table 4b shows the accuracy of prediction for the test
set. The model assigned 40 compounds to the stable
class, and 33 of them were indeed defined as stable
experimentally. This implies that the accuracy of this
model with respect to screening for “true positive” stable
compounds was 83%. Five additional compounds were
predicted as stable but actually belonged to the adjacent
moderately stable class, which can be also considered
as an acceptable prediction. This model also categorized
four compounds as unstable, and three of them were
actually assigned to this class experimentally. Only one
compound was erroneously predicted as unstable but
was experimentally assigned to the moderately unstable
class, which is adjacent to the unstable class. It should
be noted that the model produced no false positive or
false negative predictions.

1.3. External Validation. In the course of developing
QSPR models described above, the experimental data
for 107 additional compounds had become available.
These compounds constituted an external validation
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nvar (number of variables)

Figure 3. Plot of g? vs the number of variables selected for
the KNN QSPR models using AP descriptors. The results for
both actual (triangle) and random (rectangle) data sets are
shown. Every @g? value is the average of 10 independent
calculations.

data set. Eleven of these compounds were found to be
outside the model applicability domain based on the
threshold criteria (cf. eq 6). The results of prediction for
the remaining 96 compounds are shown in Table 4c. The
model predicted 50 compounds as stable, and 42 among
them actually belonged to the stable class, implying 84%
accuracy of prediction. Concurrently, the same model
predicted five compounds as unstable, and two of them
were experimentally unstable. The remaining three
compounds actually belonged to the moderately un-
stable class.

It is obvious from these studies that the disagree-
ments between predictions from our model and the
actual in vitro assay results are minimal for both stable
and unstable categories. This result confirms that KNN
QSPR models using MolConnZ descriptors are reliable
for the prediction of metabolic stability and can aid in
selecting “acceptable” and eliminating “unacceptable”
compounds.

1.4. Importance of Pearson Correlation Analy-
sis. We have also developed QSPR models using all 190
descriptors, but the detailed results are not listed here.
We found that the best models generated after deletion
of highly correlated descriptors using Pearson correla-
tion analysis had practically the same quality as models
built using all 190 descriptors; both had the average
accuracy about 85%. Thus, in this case, the exclusion
of highly correlated descriptors was reasonable. It did
not influence the accuracy of QSPR models but made
the variable selection procedure faster and more ef-
ficient. If QSPR models built with a fewer number of
descriptors have high predictive ability, no additional
analysis based on all descriptors is required. However,
in some cases a small variance between two or more
correlated descriptors may be very important for struc-
ture—property relationships,?* and including all of them
in QSPR studies may dramatically improve the predic-
tive power of models. Thus, if the predictive power of
QSPR models built using low-correlated descriptors is
poor, it may be necessary to perform analysis with all
descriptors.

2. KNN QSPR Modeling Using Atom Pair De-
scriptors. 2.1. Model Robustness. To examine the
robustness of a QSPR model, 1-, 2-, 5-, 10-, 15-, 20-, 30-,
40-, 50-, 60-, 70-, 80-, 90-, 100-, 110-, 150-, and 200-
descriptor models were established for both the actual
data set and data sets with randomized activity values.
Figure 3 shows the plots of g2 vs nvar for the actual
and random data sets. For each nvar, the result is the
average of 10 independent models. Overall, the g2 vs
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Table 5. Standard One-Tail Hypothesis Testing for a
20-Descriptor KNN QSPR Model Using AP Descriptors

data sets g2 Z score
random 1 0.023 0.789
random 2 —0.035 —0.295
random 3 —0.046 —0.501
random 4 -0.102 —1.547
random 5 0.037 1.050
random 6 0.069 1.648
random 7 —0.044 —0.463
random 8 -0.027 —0.146
random 9 —0.079 —-1.118
random 10 0.012 0.583
average of random 1—10 —0.019
standard deviation 0.054
actual 0.503 9.759

nvar relationships indicate that the actual QSPR models
give consistently higher g2 values than those for random
data sets.

Initially, as the value of nvar increased, the model
performance also improved dramatically until it reached
a plateau at nvar of 50. The results presented in Figure
3 suggest that the optimal nvar of AP descriptors is
between 50 and 70.

The statistical examination of the results was per-
formed with one-tail hypothesis testing as described in
Methods. The g2 values for the 20-descriptor kKNN QSPR
models obtained from 10 different random data sets are
shown in Table 5. This table also lists the average g2
value, the standard deviation of the g2 values, and the
Z score for the 20-descriptor model for the actual data
set. A Z score of 9.76 indicates that there is a probability
of only about 10720 that the model constructed for the
actual data set is spurious.

2.2. Model Generation and Evaluation Using
Training and Test Sets. To validate the QSPR model,
we selected 560 compounds into the training set and
left 71 compounds in the test set based on the training
and test set selection procedure discussed in Methods.
The g? value for a 50-descriptor model for the training
set was 0.511, and the accuracy of prediction for the
training set is shown in Table 6a. The model categorized
281 compounds as stable, and 218 among them were
actually stable as determined experimentally. This
means that the accuracy of this model is 78% when
applying the screen for “acceptable” chemicals. Forty-
two additional compounds were predicted as stable but
actually belonged to the moderate stable class, which
is adjacent to the stable class. Concurrently, this model
classified 61 compounds as unstable, and 52 among
them actually belonged to the unstable class. That is,
the accuracy of this model is 85% when applying the
model to screen for “unacceptable” chemicals. Six com-
pounds are predicted as unstable but actually belong
to the adjacent moderately unstable class.

Table 6b shows the accuracy analysis for the test set.
The model assigned 48 compounds to the stable class,
and 40 of them were indeed defined as stable experi-
mentally. This implies that the accuracy of this model
with respect to screening for “true positive” stable
compounds was 83%. Seven additional compounds were
predicted as stable but actually belonged to the adjacent
moderately stable class, which can be also considered
as the acceptable prediction. This model also categorized
five compounds as unstable, and two of them were
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Table 6. Accuracy Analysis of KNN QSPR Model Using AP
Descriptors

(a) Training Set, 560 Compounds

predicated class

mod. mod.
actual class stable stable wunstable unstable
stable 276 218 44 13 1
mod. stable 94 42 34 16 2
mod. unstable 70 13 24 27 6
unstable 120 8 22 38 52
total 560 281 124 94 61
(b) Test Set, 71 Compounds
predicated class
mod. mod.
actual class stable stable unstable unstable
stable 46 40 5 1 0
mod. stable 12 7 2 3 0
mod. unstable 7 1 2 1 3
unstable 6 0 1 3 2
total 71 48 10 8 5
(c) External Validation Set, 78 Compounds
predicated class
mod. mod.
actual class stable stable unstable unstable
stable 51 43 6 2 0
mod. stable 9 3 4 2 0
mod. unstable 10 5 2 2 1
unstable 8 5 2 1 0
total 78 56 14 7 1

actually assigned to this class experimentally. The
remaining three compounds actually belonged to the
moderately unstable class, which means that one will
not be acceptable chemicals when applying the screen
for “unacceptable” compound selection. It should be
noted that the model produced no false positive or false
negative predictions.

2.3. External Validation. When applying this model
for predicting the external validation data set including
107 compounds, 29 of these compounds were regarded
as too dissimilar from the training set based on the
threshold criteria (cf. eq 6). The results of prediction for
the remaining 78 compounds are shown in Table 6c. The
model predicted 56 compounds as stable, and 43 among
them actually belonged to the stable class. This means
that the accuracy of this model is 77% as applied to
screening for metabolically stable compounds. Concur-
rently, this model predicted one compound as unstable,
but none actually belonged to the unstable class. This
incorrectly predicted that the compound was experi-
mentally assigned to the moderately unstable class,
which is adjacent to the unstable class.

Similar to our studies with MolConnZ descriptors, the
disagreement between predictions from the model and
the results from the actual in vitro assay is minimal in
the stable and unstable categories, confirming that the
screen can be very effective in picking “acceptable” and
eliminating “unacceptable” compounds.

Conclusions

We have developed several thoroughly validated
QSPR models of metabolic stability measured in human
S9 in vitro metabolic stability assay for a series of GSK
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compounds. Compounds were divided into four classes
according to their stability. These models were shown
to be very accurate in assigning compounds to extreme
classes (i.e., stable and unstable). Comparable results
were obtained using MolConnZ and AP descriptors.
These models can be used as an in silico screen to
predict the metabolic stability of diverse chemicals
undergoing ADME testing. They can be applied to
analyze existing chemical databases and combinatorial
library design as one of the evaluation indices for ADME
properties in ongoing drug discovery programs. Finally,
the approaches applied in this paper to develop the in
silico screen for human S9 metabolic turnover can be
used in ADME QSPR studies of other series of com-
pounds.
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