# Potent and Selective Inhibitors of Platelet-Derived Growth Factor Receptor Phosphorylation. 3. Replacement of Quinazoline Moiety and Improvement of Metabolic Polymorphism of 4-[4-(N-Substituted (thio)carbamoyl)-1-piperazinyl]-6,7-dimethoxyquinazoline Derivatives 

Kenji Matsuno,*,† J unko Ushiki, ${ }^{\dagger}$ Takashi Seishi, ${ }^{\dagger}$ Michio Ichimura, ${ }^{\dagger}$ Neill A. Giese, ${ }^{\ddagger}$ Jin-Chen Yu, ${ }^{\ddagger}$ Shusuke Takahashi, ${ }^{\dagger}$ Shoji Oda, ${ }^{\dagger}$ and Yuji Nomoto ${ }^{\dagger}$<br>Kyowa Hakko Kogyo Co., Ltd., Pharmaceutical Research Institute, Shimotogari 1188, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, J apan, and Millennium Pharmaceuticals, Inc., 256 E. Grand Avenue, South San Francisco, California, 94080

Recei ved November 6, 2002


#### Abstract

We have previously reported that a series of 4-[4-(N-substituted (thio)carbamoyl)-1-pi perazinyl]-6,7-dimethoxyquinazoline derivatives were potent and selective inhibitors of platelet-derived growth factor receptor (PDGFR) phosphorylation and demonstrated several biol ogical effects such as suppression of neointima formation following balloon injury in rat carotid artery by oral administration. Here, we investigated structure-activity relationships of the 6,7dimethoxyquinazolinyl moiety. In regard to 6,7-dimethoxy groups, ethoxy analogues showed potent activity $\left(\mathrm{IC}_{50}\right.$ of $\mathbf{1 6 b}$ is $0.04 \mu \mathrm{M}$; $\mathrm{IC}_{50}$ of $\mathbf{1 7 a}$ is $0.01 \mu \mathrm{M}$ ) and further extension of the alkyl group reduced activity. Interestingly, methoxyethoxy ( $\mathrm{IC}_{50}$ of $\mathbf{1 6 j}$ is $0.02 \mu \mathrm{M}$; $\mathrm{IC}_{50}$ of $\mathbf{1 7 h}$ is $0.01 \mu \mathrm{M}$ ) and ethoxyethoxy ( $\mathrm{IC}_{50}$ of $\mathbf{1 7 j}$ is $0.02 \mu \mathrm{M}$ ) anal ogues showed the most potent activity, suggesting that the inserted oxygen atom significantly interacts with $\beta$-PDGFR. Among tricyclic quinazoline derivatives, the 2-oxoimidazo[4,5-e]quinazoline derivative 21a showed potent activity ( $\left.\mathrm{IC}_{50}=0.10 \mu \mathrm{M}\right)$. Regarding replacements of quinazoline by other heterocyclic rings, pyrazol o[3,4-d]pyrimidine ( $39 \mathrm{a}, \mathrm{IC}_{50}=0.17 \mu \mathrm{M}$ ) and quinoline ( $\mathrm{IC}_{50}$ of 40 a is $0.18 \mu \mathrm{M}$; $\mathrm{IC}_{50}$ of 40 b is $0.09 \mu \mathrm{M}$ ) derivatives showed potent activity. Isoquinoline and some pyridopyrimidine derivatives were completely inactive; therefore, 1-aza has an important role. Also 7-aza and 8 -aza substitution on the parent quinazoline ring has a detrimental effect on the interaction with $\beta$-PDGFR. We also demonstrated that the substituents on the quinazoline ring possess major consequences for metabol ic polymorphism. Although there existed extensive metabolizers and poor metabolizers in Sprague-Dawley rats administrated 6,7-dimethoxyquinazoline derivatives ( $\mathbf{1 b}$ and $\mathbf{1 c}$ ), 6-(2-methoxy)ethoxy-7-methoxyquinazol ine analogue $\mathbf{1 6 k}$ showed no metabolic polymorphism.


## I ntroduction

Platel et-derived growth factor (PDGF ) is known to act as a potent mitogen and chemotactic factor for various cells such as fibroblasts, smooth muscle cells (SMCs), mesenchymal cells, and brain glial cells. ${ }^{1-4}$ Abnormal PDGF-induced cell proliferation has been proposed to lead to proliferative disorders such as atherosclerosis, restenosis following PTCA, glomerulonephritis, glomerulosclerosis, liver cirrhosis, pulmonary fibrosis, and cancer. ${ }^{5-15}$ Additionally, PDGF and its receptor (PDG$F R$ ) are also up-regulated in these proliferative disorders. For example, PDGF plays a major role in the vascular response to injury within restenosis lesions. ${ }^{16-20}$ PDGFR is known to possess a tyrosine kinase activity and is autophosphorylated in the course of receptor activation. Therefore, an inhibitor of PDGFR phosphorylation would be expected to represent a therapeutic benefit for these proliferative disorders.

[^0]In our previous publications, a series of 4-[4-(Nsubstituted (thio)carbamoyl)-1-piperazinyl ]-6,7-dimethoxyquinazoline derivatives such as KN1022, KN734, and related analogues ( $\mathbf{l a - d}$, Table 1) were found to be selective inhibitors of the PDGFR phosphorylation, initial structure-activity relationships (SARs) focused on the 4-(4-nitrophenylcarbamoyl)piparazinyl moiety and substituents on the quinazolinyl moiety, and several biological effects have been reported. ${ }^{21-27}$ Bulky substitution at the 4-position of the phenyl ring was optimal for the urea analogues, especially the 4-isopropyl, 4-tertbutyl, or 4-phenoxyphenyl group. Additionally, the benzylthiourea analogues with a small substituent at the 4-position or a 3,4-methylenedioxy group were al so found to be optimal. F urthermore, the N -(thio)carbamoyl pi perazinyl moiety was essential for activity and 6,7bis substitutions on the quinazol ine ring were optimal. These anal ogues inhibited smooth muscle cell proliferation and migration induced by PDGF-BB and showed several in vivo effects, i.e., suppression of neointima formation following balloon injury in rat carotid artery by oral administration, ${ }^{21,22,28}$ reduction of tumor growth of NIH/3T3 cells transformed by PDGF in nude mouse, ${ }^{29}$ and improvement of survival due to a delay in disease

Scheme 1. General Synthetic Procedures


Scheme $\mathbf{2 a}^{\text {a }}$

${ }^{\text {a (a) }} \mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$; (b) fuming $\mathrm{HNO}_{3}, \mathrm{Ac}_{2} \mathrm{O}$; (c) $\mathrm{Zn}, \mathrm{AcOH}$; (d) $\mathrm{H}_{2} \mathrm{NCHO}, 19{ }^{\circ} \mathrm{C}$; (e) $\mathrm{POCl}_{3}$, reflux; (f) N-Boc-piperazine, $\mathrm{Et}_{3} \mathrm{~N}$, THF, reflux; (g) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}, 40^{\circ} \mathrm{C}$; (h) $\mathrm{R}_{6}-\mathrm{Hal}$ or $\mathrm{R}_{7}-\mathrm{Hal}, \mathrm{K}_{2} \mathrm{CO}_{3}$ or NaH or $\mathrm{Et}_{3} \mathrm{~N}$ or pyridine (KI), DMF or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (i) $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, then $\mathrm{R}-\mathrm{NCX}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{\mathrm{b}} \mathrm{X}=\mathrm{O}$ or S .
progression of a mouse model of chronic myelomonocytic leukemia. ${ }^{30}$

In this paper, we report the synthesis and SARs for inhibition of $\beta$-PDGFR phosphorylation by analogues exchanging the 6,7-dimethoxyquinazolinyl moiety. We examine the effect of a series of 6,7-substituents on the quinazoline ring, the effect of further substitution of the 6,7-dimethoxyquinazoline ring, and the possibility of finding a bioisosteric replacement for the quinazoline ring. We also report the metabolic polymorphism of 6,7dimethoxyquinazoline analogues in Sprague-Dawley rats (SD rats) and the solution by replacing the 6-methoxy group with a 6-(2-methoxyethoxy) group on the quinazol ine ring.

## Chemistry

To further explore the SAR of KN1022 derivatives, we prepared a series of anal ogues to examine the effects of the position and nature of substituents on the quinazoline ring and replacements by other heterocyclic ring systems. General synthetic procedures are outlined
in Scheme 1. There are three approaches for obtaining target molecules. Condensation of heterocyclic chlorides or methyl sulfide analogues with excess piperazine followed by treatment with iso(thio)cyanates provided thetarget molecules (procedure A). The target molecules were also obtained from compound $\mathbf{B}$, which were synthesized from Het-L and N-Boc-piperazine, by deprotection with trifluoroacetic acid and condensation with iso(thio)cyanates (procedure B). Additionally, compound C, which was synthesized from N-Boc-piperazine and isocyanate, was treated with trifluoroacetic acid followed by condensation with heterocyclic chloride to provide the target molecule (procedure C). The synthetic procedures for all compounds that were evaluated for inhibition of $\beta$-PDGFR phosphorylation are described in Tables 1-3.

The 6-alkoxy-7-methoxyquinazolines 16 and 6-meth-oxy-7-alkoxyquinazolines 17 were synthesized from isovanilic acid $\mathbf{2}$ and vanilic acid 3, respectively (Scheme 2). Benzylation of $\mathbf{2}$ and 3, followed by regiospecific nitration and reduction, yielded anthranilic esters 4 and

Scheme $3^{a}$


## Scheme $4^{\text {a }}$


a (a) $\mathrm{NH}_{3}$ (gas), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (b) N -Boc-piperazine, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}$, $80{ }^{\circ} \mathrm{C}$; (c) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$; (d) CDI, Et $\mathrm{t}_{3} \mathrm{~N}, \mathrm{DMF}, 80^{\circ} \mathrm{C}$; (e) $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, then 4-PhOPh-NCO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

5, respectively. Cyclization by heating in formamide, chlorination, and condensation with N -Boc-piperazine afforded the 4 -( N -Boc-1-piperazinyl)quinazolines (10 and 11). Deprotection of the benzyl group by hydrogenation, al kylation, and (thio)urea formation provided the target compounds 16 and 17, respectively. The 6-OBn-7-OMe analogue $\mathbf{1 6 i}$ was prepared from 10 by deprotection of the Boc group and condensation with 4-phenoxyphenyl isocyanate. Several analogues were synthesized by modification of the substituents, and the synthetic methods are described in Table 1.

The synthesis of tricyclic quinazolines (21, 26, and 27) is outlined in Scheme 3. There are three procedures for preparing the 2 -oxoimidazo[4,5-g]quinazoline analogue 21. For anal ogues possessing the same substituents at $R_{1}$ and $R_{3}$, commercially available 18 was cyclized with $\mathrm{N}, \mathrm{N}^{\prime}$-carbonyldiimidazole (CDI), followed by regioselective nitration, alkylation at $\mathrm{R}_{1}$ and $\mathrm{R}_{3}$, hydrogenation, and cyclization with formamide to afford the imidazo[4,5-g]quinazoline-2,8-diones 19. Chlorination of 19, followed by condensation with piperazine and treatment with isocyanate, provided the target molecule 21. The 2 -oxoimidazo[4,5-g]quinazolines possessing different substituents at $R_{1}$ and $R_{3}$ were prepared from 22. ${ }^{31}$ Compounds 21b and 21c ( $\mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{Et}$ ) were synthesized via $6-\mathrm{NH}_{2}$-7-NHEt ( $\mathbf{1 j}$ ) analogues. Introduction of an ethylamino group for 22, followed by chlorination ${ }^{32}$ and condensation with piperazine, afforded 24a. Protection of 24a with Boc group, reduction of nitro group, cyclization by CDI, methylation, deprotection, and treatment with corresponding iso(thio)cyanate provided target molecules. Compound $\mathbf{2 1 g}\left(\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{3}=\right.$ Et) was synthesized from $6-\mathrm{NO}_{2}-7-\mathrm{NHEt}(\mathbf{1 g})$ via $6-\mathrm{NH}_{2}-$ 7-NHEt ( $\mathbf{1 j}$ ) analogues. Treatment of 24a with 4 -phenoxyphenyl isocyanate, reduction of nitro group, cyclization by CDI yielded the target molecule. 6-N $\mathrm{O}_{2}-7-\mathrm{NHEt}$ anal ogues ( $\mathbf{1 g}, \mathbf{1 h}$ ) were also key intermediates for preparation of imidazo[4,5-g]quinazoline 26 and triazol o[4,5glquinazoline 27, respectively. Cyclization of $\mathbf{1 i}$, which was obtained by reduction of $\mathbf{1 h}$ with Fe dust, was accomplished by treatment with oxalyl chloride in pyridine and $\mathrm{N}, \mathrm{N}^{\prime}$-dimethylformamide solution under heating

Table 1. Inhibitory Activity on $\beta$-PDGFR Phosphorylation by Quinazoline Derivatives


| compd | $\mathrm{R}_{2}$ | $\mathrm{R}_{6}$ | $\mathrm{R}_{7}$ | $\mathrm{R}_{8}$ | R | X | procedure | $1 \mathrm{C}_{50}{ }^{\text {a }}(\mu \mathrm{M})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KN1022 ${ }^{\text {b }}$ | H | OMe | OMe | H | 4-NO2 ${ }_{2} \mathrm{Ph}$ | 0 |  | 0.70 |
| $1 a^{\text {b }}$ | H | OMe | OMe | H | 4-PhOPh | 0 |  | 0.08 |
| 1b ${ }^{\text {b }}$ | H | OMe | OMe | H | 4-CNPh | 0 |  | 0.85 |
| 1c ${ }^{\text {b }}$ | H | OMe | OMe | H | 4-CIPh | 0 |  | 1.10 |
| 1d ${ }^{\text {c }}$ | H | OMe | OMe | H | $\mathrm{PhCH}_{2}$ | S |  | 0.55 |
| KN734 ${ }^{\text {c }}$ | H | OMe | OMe | H | $3,4-\left(-\mathrm{OCH}_{2} \mathrm{O}-\right) \mathrm{PhCH} 2$ | S |  | 0.09 |
| 1e | H | H | H | H | 4-PhOPh | 0 |  | 0.38 |
| 1 f | H | H | H | H | $\mathrm{PhCH}_{2}$ | S |  | > 30 |
| 1 g | H | $\mathrm{NO}_{2}$ | NHEt | H | 4-PhOPh | 0 |  | 0.20 |
| 1h | H | $\mathrm{NO}_{2}$ | NHEt | H | $\mathrm{PhCH}_{2}$ | S |  | > 30 |
| 1 i | H | $\mathrm{NH}_{2}$ | NHEt | H | $\mathrm{PhCH}_{2}$ | S |  | 1.44 |
| 16a | H | OH | OMe | H | 4-CNPh | O | hydrogenation of 16i | 4.59 |
| 16b | H | OEt | OMe | H | 4-PhOPh | 0 | procedure $B$ | 0.04 |
| 16c | H | OEt | OMe | H | $\mathrm{PhCH}_{2}$ | S | procedure $B$ | 0.62 |
| 16d | H | OPr | OMe | H | 4-PhOPh | 0 | procedure B | 0.19 |
| 16e | H | $\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ | OMe | H | 4-PhOPh | 0 | procedure B | 0.10 |
| 16f | H | $\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}$ | OMe | H | 4-PhOPh | 0 | procedure B | 0.06 |
| 16g | H | $\mathrm{OCH}_{2} \mathrm{CN}$ | OMe | H | 4-PhOPh | 0 | procedure B | 0.09 |
| 16h | H | OBu | OMe | H | 4-PhOPh | 0 | procedure B | 1.39 |
| 16i | H | $\mathrm{OCH}_{2} \mathrm{Ph}$ | OMe | H | 4-CNPh | 0 | procedure $B$ | > 30 |
| 16j | H | $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}$ | OMe | H | 4-PhOPh | 0 | procedure B | 0.02 |
| 16k | H | $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}$ | OMe | H | 4-CNPh | 0 | procedure B | 0.51 |
| 16I | H | $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}$ | OMe | H | $3,4-\left(-\mathrm{OCH}_{2} \mathrm{O}-\right) \mathrm{PhCH}_{2}$ | S | procedure B | 0.08 |
| 16m | H | $\mathrm{OCH}_{2} \mathrm{COCH}_{3}$ | OMe | H | 4-PhOPh | 0 | procedure B | 0.30 |
| 16n | H | $\mathrm{OCH}_{2} \mathrm{COOMe}$ | OMe | H | 4-CNPh | 0 | procedure B | 6.08 |
| 160 | H | $\mathrm{OCH}_{2} \mathrm{COOH}$ | OMe | H | 4-CNPh | 0 | hydrolysis of 16n | > 30 |
| 16p | H | $\mathrm{OSO}_{2} \mathrm{Me}$ | OMe | H | 4-PhOPh | 0 | procedure $B$ | 0.07 |
| 16q | H | $\mathrm{OSO}_{2} \mathrm{Me}$ | OMe | H | $\mathrm{PhCH}_{2}$ | S | procedure B | 10.2 |
| 17a | H | OMe | OEt | H | 4-PhOPh | 0 | procedure $B$ | 0.01 |
| 17b | H | OMe | OEt | H | $\mathrm{PhCH}_{2}$ | S | procedure B | 0.15 |
| 17c | H | OMe | OPr | H | 4-PhOPh | 0 | procedure B | 0.29 |
| 17d | H | OMe | $\mathrm{O}^{\text {iPr }}$ | H | 4-PhOPh | 0 | procedure B | 0.64 |
| 17e | H | OMe | $\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ | H | 4-PhOPh | 0 | procedure B | 0.05 |
| 17f | H | OMe | $\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}$ | H | 4-PhOPh | 0 | procedure B | 0.07 |
| 17g | H | OMe | OBu | H | 4-PhOPh | 0 | procedure B | 0.65 |
| 17h | H | OMe | $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}$ | H | 4-PhOPh | 0 | procedure $B$ | 0.01 |
| 17i | H | OMe | $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}$ | H | $3,4-\left(-\mathrm{OCH}_{2} \mathrm{O}-\right) \mathrm{PhCH}_{2}$ | S | procedure B | 0.08 |
| 17j | H | OMe | $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OEt}$ | H | 4-PhOPh | 0 | procedure B | 0.02 |
| 17k | H | OMe | Me | H | 4-PhOPh | 0 | procedure A | 0.18 |
| 171 | H | OMe | Me | H | $\mathrm{PhCH}_{2}$ | S | procedure A | 1.54 |
| 32a | H | OEt | OEt | H | 4-PhOPh | 0 | procedure A | 0.08 |
| 32b | H | OEt | OEt | H | $\mathrm{PhCH}_{2}$ | S | procedure A | 0.31 |
| 32c | H | $\mathrm{OCH}_{2} \mathrm{Ph}$ | $\mathrm{OCH}_{2} \mathrm{Ph}$ | H | 4-PhOPh | 0 | procedure A | > 30 |
| 33a | H | OMe | H | OMe | 4-PhOPh | 0 | procedure A | 10.9 |
| 33b | H | H | OMe | OMe | 4-PhOPh | 0 | procedure A | > 30 |
| 34a | H | OMe | OMe | OMe | 4-PhOPh | 0 | procedure A | > 30 |
| 34b | Me | OMe | OMe | H | 4-PhOPh | 0 | procedure A | > 30 |
| 34c | Cl | OMe | OMe | H | 4-PhOPh | 0 | procedure B | > 30 |
| 34d | morphorino | OMe | OMe | H | 4-PhOPh | 0 | procedure B | > 30 |

${ }^{\text {a }} \mathrm{IC}_{50}(\mu \mathrm{M})$ of $\beta$-PDGFR phosphorylation. Autophosphorylation was measured in intact cells using a two-site enzyme linked immunosorbent assay (ELISA). ${ }^{28}$ b Previously described in ref 21. ${ }^{\text {c Previously described in ref } 22 .}$
conditions accompanied by decarboxylation to afford imidazo[4,5-g]quinazoline 26. This method is a new one to synthesize benzimidazole-type compounds. Hydrogenation of $\mathbf{1 g}$ followed by treatment with sodium nitrite under acidic conditions resulted in spontaneous cyclization to afford triazol o[4,5-g]quinazoline 27.

2-Oxoimidazo[4,5-d]pyrimidine 31 was synthesized from commercially available $\mathbf{2 8}$ (Scheme 4). Introduction of an amino group and N-Boc piperazine, followed by hydrogenation and cyclization with CDI, afforded 30.

Application of procedure B for $\mathbf{3 0}$ provided the target molecule 31.

## Results and Discussions

SAR for Inhibition of $\beta$-PDGFR Phosphorylation. All the analogues prepared were evaluated for their inhibition of $\beta$-PDGFR phosphorylation in accordance with known whole-cell assay, ${ }^{28}$ and the resulting $\mathrm{IC}_{50}$ values are listed in Tables 1-3.

Substituents on Quinazoline Ring. Table 1 shows the results of exchanging substituents on the quinazo-

Table 2. Inhibitory Activity on $\beta$-PDGFR Phosphorylation by Tricyclic Quinazoline Derivatives


|  |  |  |  |  |  <br> ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| compd | $\mathrm{R}_{1}$ | $\mathrm{R}_{3}$ | R | X | procedure | $1 \mathrm{C}_{50}{ }^{\text {a }}(\mu \mathrm{M})$ |
| 6,7-Alkylenedioxyquinazolines |  |  |  |  |  |  |
| 35a |  |  | 4-PhOPh | O | procedure A | 0.09 |
| 35b |  |  | $\mathrm{PhCH}_{2}$ | S | procedure A | > 30 |
| 36a |  |  | 4-PhOPh | 0 | procedure $B$ | 0.07 |
| 36b |  |  | $\mathrm{PhCH}_{2}$ | S | procedure B | > 30 |
| Benzo[g]quinazolines |  |  |  |  |  |  |
| 37a |  |  | 4-PhOPh | O | procedure $B$ | 0.39 |
| 37b |  |  | $\mathrm{PhCH}_{2}$ | S | procedure B | 1.30 |
| 1,3-Dihydro-2-oxo-2H-imidazo[4,5-g]quinazolines |  |  |  |  |  |  |
| 21a | Me | Me | 4-PhOPh | O | procedure $A^{\text {b }}$ | 0.10 |
| 21b |  | Et | 4-PhOPh | 0 | procedure $\mathrm{B}^{\text {b }}$ | 0.33 |
| 21c | Me | Et | $\mathrm{PhCH}_{2}$ | S | procedure $B^{\text {b }}$ | 1.14 |
| 21d | Et | Et | 4-PhOPh | 0 | procedure $A^{\text {b }}$ | 0.78 |
| 21e | Pr | Pr | 4-PhOPh | 0 | procedure $A^{\text {b }}$ | 21.0 |
| 21f | Bu | Bu | 4-PhOPh | 0 | procedure $A^{\text {b }}$ | > 30 |
| 21g | H | Et | 4-PhOPh | 0 | Scheme 3 | > 30 |
| 3H-Imidazo[4,5-g]quinazoline |  |  |  |  |  |  |
| $3 \mathrm{H}-1,2,3-$ Triazolo[4,5-g]quinazoline |  |  |  |  |  |  |
| 27 |  | Et | 4-PhOPh | O | Scheme 3 | 0.29 |

${ }^{\text {a }} \mathrm{IC}_{50}(\mu \mathrm{M})$ of $\beta$-PDGFR phosphorylation. Autophosphorylation was measured in intact cells using a two-site ELISA. ${ }^{28}$ b Described in Scheme 3.
line ring. In the unsubstituted quinazolines, 4 -phenoxyphenylurea analogue $\mathbf{l e}$ showed moderate activity, whereas the benzylthiourea analogue $\mathbf{1 f}$ was devoid of any activity ( $\geq 100$-fold), even though the difference of activity for the corresponding 6,7-dimethoxy anal ogues ( $\mathbf{l a}$ and $\mathbf{1 d}$ ) was approximately 10 -fold. ${ }^{23}$ This discrepancy of activity indicates a distinct SAR and is unsuitable for finding an optimal replacement for the 6,7dimethoxyquinazol inyl moiety; therefore, we investigated the effect of a combination of substituents on the quinazol ine ring and an N -substituted (thio)carbamoyl moiety for several potent anal ogues.
In the 6-exchanged 7-OM e derivatives ( $\mathbf{1 6 a - q}$ ), 6-OEt analogues ( $\mathbf{1 6 b}, \mathbf{1 6 c}$ ) were equipotent to the initial 6,7$(\mathrm{OMe})_{2}$ analogues (1a, 1d) without the discrepancy of activity between 4-phenoxyphenylurea and benzylthiourea. The 6-OPr analogue ( $\mathbf{1 6 d}$ ) was slightly less potent, and $6-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ (16e) and $6-\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}$ (16f) analogues were equipotent to 6 -OEt ( $\mathbf{1 6 b}$ ) and 6,7$(\mathrm{OMe})_{2}(\mathbf{l a})$ anal ogues, suggesting that unsaturation of the alkyl group seems to have a beneficial effect. This
effect was clearly observed for 7-(OMe)-exchanged derivatives (discussed below). Since the $6-\mathrm{OCH}_{2} \mathrm{CN}$ analogue ( $\mathbf{1 6 g}$ ) also showed a potency similar to that for the $6-\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}$ analogue (16f), replacement of the terminal CH with a nitrogen atom on the alkynyl moiety of the propargyl group was acceptable. Further extension to $6-\mathrm{OBu}(\mathbf{1 6 h})$ and $6-\mathrm{OCH}_{2} \mathrm{Ph}(\mathbf{1 6 i})$ and deletion of the methyl group (16a) decreased activity, thus showing that some bulkiness is required but there is also limited bulk tolerance for the alkyl group at this position. However, 6-O( $\left.\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}$ analogues (16j-I) revealed the most potent activity among the $\mathbf{1 6}$ series, which were more potent than 6 -OBu ( $\mathbf{1 6 h}$ ) and even the initial 6,7-(OMe) $)_{2}$ analogues ( $\mathbf{l a}, \mathbf{1 b}$, KN734). Additionally, $6-\mathrm{OCH}_{2} \mathrm{COMe}$ analogue $\mathbf{1 6 m}$ showed somewhat moderate activity and $6-\mathrm{OCH}_{2} \mathrm{COOMe}$ analogue $\mathbf{1 6 n}$ was a weak inhibitor compared with $6-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}$ analogue $\mathbf{1 6 k}$. $6-\mathrm{OCH}_{2} \mathrm{COOH}$ analogue $\mathbf{1 6 0}$ was completely inactive. These results suggest that insertion of an oxygen atom (not oxo group) into the alkyl chain markedly enhances the activity, and this oxygen atom was speculated to have a significant interaction with $\beta$-PDGFR. F or the $6-\mathrm{OSO}_{2} \mathrm{Me}$ analogues, 4 -phenoxyphenylurea anal ogue 16p showed potent activity; however, a distinct SAR for benzylthiourea ( $\mathbf{1 6 q}$ ) was observed.
In the 6-OMe7-exchanged derivatives (17a-I), simiIar SARs of 6-exchanged derivatives ( $\mathbf{1 6}$ series) were observed. The 7-OEt analogues (17a, 17b) were potent inhibitors without discrepancy of activity, and further extension of the al kyl chain reduced activity ( $\mathbf{1 7 c}, \mathbf{1 7 g}$ ). Also, 7-OiPr analogue 17d was less potent than 7-OPr anal ogue 17c, indicating that bulkiness is unfavorable for the interaction with $\beta$-PDGFR. Unsaturation of the alkyl group (17e, 17f) clearly enhanced the activity, compared with 17c as discussed above. The 7-O( $\left.\mathrm{CH}_{2}\right)_{2-}$ OMe analogues ( $\mathbf{1 7 h}, \mathbf{1 7 i}$ ) also displayed the most potent activity, similar to the 6 -exchanged analogues ( $\mathbf{1 6 j}, \mathbf{1 6}$ ), and extension to the $7-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OEt}$ group (17j) was tolerated, suggesting that there is a significant bulk tolerance available for such substituents in the region of the 6 - and 7 -position on the quinazoline ring for further design. ${ }^{33}$ The 6-OMe-7-Me anal ogues (17k, 171) were slightly less potent without the discrepancy of activity than the initial 6,7-( OMe$)_{2}$ analogue ( $\mathbf{l a}, \mathbf{1 d}$ ), suggesting that 7 -methylation to 6 -methoxyquinazoline ${ }^{23}$ is advantageous but less effective than a methoxy group.
Additionally, the 6,7-(OEt) $)_{2}$ analogues (32a, 32b) had potency similar to that of the $6,7-(\mathrm{OMe})_{2}$ anal ogues ( $\mathbf{1 a}$, 1d); however, bulky 6,7-(OBn) 2 analogue 32c was inactive. Also, the marked decrease in activity was observed with the $6,8-(\mathrm{OMe})_{2}$ (33a) and $7,8-(\mathrm{OMe})_{2}$ (33b) analogues, compared with the initial 6,7-(OMe) 2 analogues (1a). Further addition of a substituent on 6,7-dimethoxyquinazoline resulted in no activity. Placing an additional 8 -OMe (34a), and 2 -substitution by Me (34b), Cl (34c), and morpholine (34d), onto 6,7-dimethoxyquinazoline also completely eliminated activity. These results reveal that the 6,7-dialkoxy subtitution on the quinazoline ring is optimal for potent activity.
Tricyclic Quinazoline Derivatives. The results of tricyclic quinazoline derivatives, which are combined with 6,7-dimethoxy groups on the quinazoline ring, are described in Table 2. Among these derivatives,

Table 3. Inhibitory Activity on $\beta$-PDGFR Phosphorylation by Other Heterocyclic Derivatives

${ }^{\mathrm{a}} \mathrm{IC}_{50}(\mu \mathrm{M})$ of $\beta$-PDGFR phosphorylation. Autophosphorylation was measured in intact cells using a two-site ELISA. ${ }^{28}{ }^{\mathrm{b}}$ Described in Scheme 4.

2-oxoimidazo[4,5-g]quinazoline analogue 21a showed potent activity, and extension of alkyl chains at the 1 and 3 positions reduced activity (compare 21a,b,d-f). The discrepancy of activity between 4-phenoxyphenylurea (21b) and benzyl thiourea (21c) was not observed. Additionally, 21g was devoid of activity, indicating that a hydrogen atom on the imidazoline ring has an enormous detrimental effect on activity.

For 6,7-alkylenedioxyquinazoline derivatives, the 4-phenoxyphenylureas (35a, 36a) were equipotent to the corresponding 6,7-(OMe) 2 analogue (la); however, a distinct SAR for the benzylthiourea analogues (35b, 36b) was observed. Benzo[g]quinazolines (37a, 37b), imidazo[4,5-g]quinazoline (26), and triazolo[4,5-g]quinazoline (27) showed only moderate activity. These were weaker than the corresponding initial 6,7-(OMe) 2 analogues (1a, 1d).

Exchange of Quinazoline Ring. Finally, the results of exchanging the quinazoline ring with other heterocycles are listed in Table 3. In the purine series, the 4-phenoxyphenylurea 38a displayed moderate activity with a distinct SAR for benzylthiourea (38b). 2-Amination (38c) reduced activity. F urthermore, 9-methylation (38d) completely abolished activity; therefore, the hydrogen atom at the 9-position was critical for activity. Pyrazolo[3,4-d]pyrimidine derivatives showed similar SAR for the purine derivatives, so 39a showed potent activity and 1-methylation (39b) completely abolished activity. 2-Oxoimidazo[4,5-d]pyrimidine 31 was also completely inactive, indi cating that carbonylation at the 2-position is disadvantageous for interacting with $\beta$ - P DGFR.

For 6,6-bicyclic heterocydes, 6,7-dimethoxyquinoline 40a showed potent activity, like the corresponding
quinazoline derivatives 1a. Introduction of a 3-COOEt group (40b) retained the potent activity without the discrepancy of activity for benzylthiourea 40c, suggesting that further modifications at the 3-position could be possible. The 4-phenoxyphenylureas with $6-\mathrm{Cl}$ (40d) and $7-\mathrm{Cl}$ (40f) and unsubstituted (40k) quinoline showed potent activity; however, the distinct SARs for benzylthioureas ( $\mathbf{4 0 e}, \mathbf{4 0 g}, \mathbf{4 0 l}$ ) were observed. Additionally, 2-substitution (comparing 40i with 40j and 40k) and 8-substitution (comparing 40h with 40d, 40f, and 40k) resulted in no activity, like the quinazoline derivatives. These results suggest that 6,7-bis substitution is optimal for the quinoline ring and possibly 3-substitution is tolerated for potent activity, and also, bioisosteric replacement of quinazoline by quinoline ring is possible. In contrast, isoquinol ines (41a and 41b) were completely inactive. Replacement by a cinnoline nucleus (42) was tolerated but led to a 10-fold reduction in potency. Phthalazine derivative 43a showed weak activity, and the modifications at the 1-position (43b and 43c) had no beneficial effect on activity. These results suggest that the arrangement of the nitrogen atom is crucial, indicating an essential rolefor the nitrogen atom at the 1-position and a subtly important role for the nitrogen atom at the 3-position on quinazoline ring. It is speculated that these nitrogen atoms might act as hydrogen bond acceptors for interacting with $\beta$-PDGFR.

Furthermore, pyrido[2,3-d]pyrimidine (44) was completely inactive and pyrido[3,4-d]pyrimidine (45) was appreciably weaker than the corresponding 6-fluoroquinazoline. ${ }^{23}$ These results indicate that nitrogen atoms at the 7-and 8-position on the parent quinazoline ring have enormous detrimental effects on the interaction with $\beta$-PDGFR.

The 4-anilino-6,7-dimethoxyquinazolines are wellknown as potent EGF receptor (EGFR) tyrosine kinase inhibitors reported by several groups. ${ }^{34-40}$ The observed SARs for quinazolinyl moiety with $\beta$-PDGFR and EGFR are almost similar, both receptors preferring 6,7dimethoxy and 6,7-diethoxy substitution and disfavoring 2 -substitution and 8-substitution on the quinazoline ring. Additionally, phthalazine and isoquinoline were not preferable for both receptors. On the other hand, quinolines were potent $\beta$-PDGFR inhibitors but were weak EGFR inhibitors. Also, benzo[g]quinazolines were potent EGFR inhibitors but modest $\beta$-PDGFR inhibitors. Previously, we reported that the position of substituent on the phenyl ring also had great influence on the activity for each inhibitor whose basic skeleton contains the same 6,7-dimethoxyquinazoline ring system. ${ }^{21,22}$ Although we evaluated the inhibitory activity for $\beta$-PDGFR phosphorylation using whole-cell assay, in contrast to assay using naked EGFR, these results will reveal some clues to understanding the dimensional differences of each interaction between $\beta$-PDGFR and EGFR with inhibitors.

Metabolic Polymorphism and the Solution by Exchanging the Methoxy Group on the Quinazoline Ring. We have already observed the pharmacokinetic polymorphism for 6,7-dimethoxyquinazoline derivatives such as KN1022, 1b, and 1c. For instance, with plasma concentration-time profiles and pharmacokinetic parameters of $\mathbf{1 b}$ after intravenous and oral administration to male SD rats delineated in Figures 1 and 2 and Tables 4 and 5 , the extensive metabolizers


Figure 1. Plasma concentrations of $\mathbf{1 b}$ after intravenous administration to male SD rats ( $1 \mathrm{mg} / \mathrm{kg}$ ).


Figure 2. Plasma concentrations of $\mathbf{1 b}$ after oral administration to male SD rats ( $30 \mathrm{mg} / \mathrm{kg}$ ).

Table 4. Pharmacokinetic Parameters after Intravenous Administration of $\mathbf{1 b}$ to $M$ ale SD Rats ( $\mathbf{1} \mathrm{mg} / \mathrm{kg}$ )

| rat no. | $\begin{aligned} & \mathrm{T}_{1 / 2 \beta} \\ & \text { (h) } \end{aligned}$ | MRT (h) | AUC $(\mu \mathrm{g} \cdot \mathrm{h} / \mathrm{mL})$ | $\begin{gathered} \mathrm{CL} \\ (\mathrm{~L} /(\mathrm{h} \cdot \mathrm{~kg})) \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\text {dss }} \\ (\mathrm{L} / \mathrm{kg}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Extensive Metabolizer |  |  |  |  |  |
| 1 | 0.97 | 0.650 | 2.87 | 0.349 | 0.22 |
| 2 | 0.45 | 0.390 | 2.48 | 0.404 | 0.16 |
| 3 | 0.39 | 0.350 | 2.42 | 0.413 | 0.15 |
| Poor Metabolizer |  |  |  |  |  |
| 4 | 3.1 | 4.20 | 23.6 | 0.0424 | 0.18 |

Table 5. Pharmacokinetic Parameters after Oral Administration of $\mathbf{1 b}$ to Male SD Rats ( $30 \mathrm{mg} / \mathrm{kg}$ )

| rat no. | $\mathrm{T}_{\text {max }}$ <br> (h) | $\mathrm{T}_{1 / 2}$ (h) | MRT <br> (h) | $\begin{gathered} \mathrm{C}_{\max } \\ (\mu \mathrm{g} / \mathrm{mL}) \end{gathered}$ | AUC ( $\mu \mathrm{g} \cdot \mathrm{h} / \mathrm{mL}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Extensive Metabolizer |  |  |  |  |  |
| 6 | 2 | 2.54 | 3.92 | 5.22 | 26.3 |
| Poor Metabolizer |  |  |  |  |  |
| 5 | 8 | 5.25 | 8.56 | 50.7 | 815 |
| 7 | 2 | 3.4 | 6.36 | 35.2 | 455 |

(EMs) and poor metabolizers (PMs) were identified in both administration pathways. In intravenous administration (Figure 1 and Table 4), rat nos. 1-3 were EMs and rat no. 4 was PM with almost a 10-fold difference for $\mathrm{T}_{1 / 2 \beta}$, MRT, AUC, and CL and with a similarity for $\mathrm{V}_{\mathrm{dss}}$. In oral administration (Figure 2 and Table 5), rat no. 6 was EM and rat nos. 5 and 7 were PMs, with almost a 10 -fold higher value of $\mathrm{C}_{\max }$ and with more than a 10-fold higher value of AUC for PMs.

These observations might be due to the metabolic polymorphism, ${ }^{41}$ and we assumed that this metabolic polymorphism was attributed to the major metabolic enzyme for the 6,7-dimethoxyquinazolines because the corresponding desmethyl form was identified as the major metabolite for EMs (data not shown). Therefore,

Table 6. Pharmacokinetic Parameters after Intravenous Administration of $\mathbf{1 6 k}$ to EM and PM of Male SD Rats $(1 \mathrm{mg} / \mathrm{kg})^{\mathrm{a}}$

| rat no. | $\mathrm{T}_{1 / 2 \alpha}$ <br> $(\mathrm{~h})$ | $\mathrm{T}_{1 / 2 \beta}$ <br> $(\mathrm{~h})$ | AUC <br> $(\mu \mathrm{g} \cdot \mathrm{h} / \mathrm{mL})$ | CL <br> $(\mathrm{L} /(\mathrm{h} \cdot \mathrm{kg}))$ | $\mathrm{V}_{\text {dss }}$ <br> $(\mathrm{L} / \mathrm{kg})$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $8(\mathrm{EM})$ | 0.0449 | 0.230 | 1.16 | 0.866 | 0.215 |
| 9 (EM) | 0.0498 | 0.261 | 1.26 | 0.791 | 0.252 |
| $10(\mathrm{PM})$ | 0.0316 | 0.259 | 1.28 | 0.784 | 0.232 |
| $11(\mathrm{PM})$ | 0.0597 | 0.219 | 0.950 | 1.05 | 0.286 |

a EM: extensive metabolizer. PM: poor metabolizer.
the 6,7-dimethoxy moiety exchanged analogues prompted us to evaluate the pharmacokinetic profiles and we selected a potent $6-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}-7-\mathrm{OMe}$ anal ogue $\mathbf{1 6 k}$ for evaluation. We divided SD rats into EMs and PMs, predosing them with 4-chlorophenyl analogue 1c. After washout of 1c for each rat, 16k was intravenously administrated to each group. The results are displayed in Table 6. There were no differences between EMs and PMs for $\mathrm{T}_{1 / 2}$, AUC, CL , and $\mathrm{V}_{\text {dss }}$. These results indicate that the 6-methoxy group might cause the metabolic polymorphism and that exchange of 6,7-dimethoxy groups could prevent the metabolic polymorphism for 6,7-dimethoxyquinazoline derivatives.

## Conclusions

The SARs in the 6,7-dimethoxyquinazoline moiety were investigated. Regarding the position and variety of substituents on the quinazoline ring, 6,7-dialkoxy substitution was optimal. Among the alkoxy groups, ethoxy analogues showed potent activity and further extension of the alkyl group reduced activity. Interestingly, 2-methoxyethoxy and 2-ethoxyethoxy analogues displayed the most potent activity. These results indicate that the inserted oxygen atom significantly interacts with $\beta$-PDGFR. Among tricyclic quinazoline derivatives, 2-oxoimidazo[4,5-g]quinazoline derivatives showed potent activity. Regarding exchanges of quinazoline by other heterocyclic rings, pyrazolo[3,4-d]pyrimidine and quinoline derivatives showed potent activity. Isoquinoline and some pyridopyrimidine derivatives were completely inactive; therefore, the N-1 atom has an important role and replacement by N-7 and N-8 atoms in the parent quinazoline ring has detrimental effects on the interaction with $\beta$-PDGFR. Several compounds such as unsubstituted quinazolines and quinolines, 6,7-alkylenedioxyquinazolines, and purines showed the distinct SARs between the 4-phenoxyphenylureas and the benzylthioureas with more than a 100-fold difference, in contrast to 6,7-dimethoxyquinazol ine derivatives with an almost 10-fold difference.

We also demonstrated that the substituents on the quinazol ine ring possess major consequences for metabolic polymorphism. Although there exist extensive metabolizers and poor metabolizers in SD rats administered the 6,7-dimethoxyquinazol ine derivatives, 6-(2-methoxy)ethoxy-7-methoxyquinazoline analogue 16k showed no metabolic polymorphism. These results reveal that replacement of a metabolizable moiety is a significant choice for the prevention of metabolic polymorphism.

## Experimental Section

Melting points were determined on a Büchi 535 melting point apparatus or a Yanaco model MP apparatus (Micro Melting Point Apparatus) for compounds isolated as described
in the experimental procedures and are uncorrected. Analytical TLC was carried out on E . Merck 0.25 mm silica gel precoated glass plates ( 60 F-254) with detection by UV light. Normalphase silica gel (EM Science, silica gel 60) was used for chromatography. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a J EOL J NM-EX270 ( 270 MHz ) FT NMR spectrometer or a JEOL J NM-GX270 ( 270 MHz ) FT NMR spectrometer. Chemical shifts are reported as $\delta$ values (parts per million) downfield from internal TMS in appropriate organic solutions. FAB mass spectra were recorded with a J EOL JMS-DX303 mass spectrometer. Low-resolution EI mass spectra were recorded with a JEOL GC-Mate mass spectrometer. The IR spectra were recorded with a J ASCO IR-810 IR spectrometer or a HORIBA FT-200 IR spectrometer. Combustion analyses (CHN) were performed with a Perkin-Elmer series II CHNS/O 2400 analyzer, and the results agreed with theoretical values to within $\pm 0.4 \%$.

The typical synthetic methods are described as follows.
General Synthetic Procedure. Reaction for Target Molecules via Compound A (Procedure A). (1) Commercially available 4-hydroxyquinazoline ( $1.00 \mathrm{~g}, 6.85 \mathrm{mmol}$ ) was chlorinated with phosphorus oxychloride ( 20 mL ) by a known procedure. ${ }^{42}$ (2) A mixture of 4-chloroquinazoline and anhydrous piperazine ( $5.89 \mathrm{~g}, 68.4 \mathrm{mmol}$ ) in 2-propanol ( 20 mL ) was refluxed for 4 h . The reaction mixture was evaporated, and the resulting residue was dissolved in brine, extracted with chloroform, washed with brine, dried over anhydrous sodium sulfate, and evaporated to provide 4-(1piperazinyl) quinazoline ( $0.82 \mathrm{~g}, 3.83 \mathrm{mmol}$ ) in $56 \%$ yield from 4-hydroxyquinazoline. (3) Condensation of 4-(1-piperazinyl)quinazoline with 4 -phenoxyphenyl isocyanate ${ }^{21,22}$ provided le in $42 \%$ yield. The thioureas were obtained from the corre sponding isothiocyanate instead of 4-phenoxyphenyl isocyanate.

Reaction for Target Molecules via Compound B (Procedure B). (1) A mixture of commercially available 2,4-dichloro-6,7-dimethoxyquinazoline ( $4.62 \mathrm{~g}, 17.8 \mathrm{mmol}$ ) and N-tert-butoxycarbonylpiperazine ( $3.65 \mathrm{~g}, 19.6 \mathrm{mmol}$ ) in triethylamine ( $12.4 \mathrm{~mL}, 89.1 \mathrm{mmol}$ ) and THF ( 50 mL ) was stirred overnight at room temperature. The reaction mixture was evaporated, and then water and NaCl were added. The resulting precipitate was collected, washed with water, and dried to provide 4-(2-chloro-6,7-dimethoxy-4-quinazolinyl)-1piperazinecarboxylic acid tert-butyl ester ( $7.15 \mathrm{~g}, 17.5 \mathrm{mmol}$ ) in $98 \%$ yield. (2) To an ice-cooled solution of 4 -(2-chloro-6,7-dimethoxy-4-quinazol inyl)-1-piperazinecarboxylic acid tert-butyl ester ( $2.40 \mathrm{~g}, 5.88 \mathrm{mmol}$ ) in dichloromethane $(20 \mathrm{~mL})$ was added trifluoroacetic acid ( 20 mL ). The mixture was stirred for 1.5 h at the same temperature, evaporated, and azeotroped with toluene. After the residue was dissol ved in DMF ( 30 mL ) and triethylamine ( $4.09 \mathrm{~mL}, 29.3 \mathrm{mmol}$ ), 4-phenoxyphenyl isocyanate ( $1.24 \mathrm{~mL}, 5.88 \mathrm{mmol}$ ) was added. The reaction mixture was stirred overnight under argon atmosphere at room temperature and poured into water, and then NaCl was added. The resulting precipitate was collected, washed with water, dried, and purified by silica gel column chromatography to provide 34c ( $2.23 \mathrm{~g}, 4.29 \mathrm{mmol}$ ) in $73 \%$ yield. The thioureas were obtained by using the corresponding isothiocyanate instead of 4-phenoxyphenyl isocyanate.

Reaction for Target Molecules via Compound C (Procedure C). (1) To a methylene chloride solution ( 25 mL ), N-tert-butoxycarbonylpiperazine ( $2.50 \mathrm{~g}, 13.4 \mathrm{mmol}$ ) and 4-phenoxyphenyl isocyanate ( $2.83 \mathrm{~mL}, 13.4 \mathrm{mmol}$ ) were added. The reaction mixture was stirred overnight at room temperature, followed by addition of methanol, evaporation, and purification by silica gel column chromatography to provide 4 - N -(4-phenoxyphenyl)carbamoyl]-1-piperazinecarboxylic acid tertbutyl ester ( $4.25 \mathrm{~g}, 10.7 \mathrm{mmol}$ ) in $80 \%$ yield. (2) To an icecooled solution of 4-[N-(4-phenoxyphenyl) carbamoyl]-1-pi perazinecarboxylic acid tert-butyl ester ( $4.57 \mathrm{~g}, 11.51 \mathrm{mmol}$ ) in methylene chloride ( 50 mL ) was added trifluoroacetic acid ( 60 mL ). The mixture was stirred for 2.5 h at the same temperature and evaporated, and the residue was dissolved in dimethylformamide ( 24 mL ) and triethylamine ( 8 mL ). 6-Chlo-
ropurine ( $2.58 \mathrm{~g}, 16.69 \mathrm{mmol}$ ) was added. The reaction mixture was stirred overnight under argon atmosphere at room temperature and poured into water, and then NaCl was added. The resulting precipitate was collected, washed with water, dried, and purified by silica gel column chromatography to provide 38a ( $3.41 \mathrm{~g}, 8.22 \mathrm{mmol}$ ) in $71 \%$ yield.

N-(4-Phenoxyphenyl)-4-(4-quinazolinyl)-1-piperazinecarboxamide (le). $42 \%$ yield from 4-(1-piperazinyl) quinazoline and 4-phenoxyphenyl isocyanate as described in general synthetic procedureA; mp $74-75^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{i} \mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H} N M R$, FABMS, IR. Anal. ( $\left.\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Benzyl-4-(4-quinazolinyl)-1-pi perazinethiocarboxamide (1f). $52 \%$ yield from 4-(1-piperazinyl)quinazol ine and benzyl isothiocyanate by procedure A; $\mathrm{mp} 68-70^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\right.$ ${ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ ); ${ }^{1} \mathrm{H}$ NMR, FABMS. Anal. ( $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{~S} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ ) C, H, N.
4-(7-Ethylamino-6-nitro-4-quinazolinyl)-N-(4-phenoxy-phenyl)-1-piperazinecarboxamide (1g). 67\% yield from 7-(ethylamino)-6-nitro-4-(1-piperazinyl)quinazoline (24a, ${ }^{1 \mathrm{H}}$ NMR, EIMS, IR), which was synthesized from 7-(ethylamino)6 -nitroquinazoline-4(3H)-one (23) ${ }^{32}$ in $94 \%$ yield and 4-phenoxyphenyl isocyanate by procedure A; mp 242-244 ${ }^{\circ} \mathrm{C}$ (EtOAc-$\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{4}\right) \mathrm{C}$, H, N.

N-Benzyl-4-(7-(ethylamino)-6-nitro-4-quinazolinyl)-1piperazinethiocarboxamide (1h). 77\% yield from 24a and benzyl isothiocyanate by procedure A; mp 135-136 ${ }^{\circ} \mathrm{C}$ (EtOAc-$\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. ( $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S} \cdot$ $\left.0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(6-Amino-7-(ethylamino)-4-quinazolinyl)-N-benzyl-1piperazinethiocarboxamide (1i). A mixture of $\mathbf{1 h}(4.26 \mathrm{~g}$, 9.44 mmol ), iron dust ( $4.26 \mathrm{~g}, 76.3 \mathrm{mmol}$ ), and $\mathrm{FeCl}_{3} 6 \mathrm{H}_{2} \mathrm{O}$ $(430 \mathrm{mg}, 1.59 \mathrm{mmol})$ in ethanol ( 100 mL ) and water ( 10 mL ) was refluxed for 4 h under an argon atmosphere. Removal of iron dust by filtration followed by evaporation and purification by silica gel column chromatography provided the amorphous title compound in $92 \%$ yield: ${ }^{1} \mathrm{H}$ NMR, FABMS, IR.

N-(4-Cyanophenyl)-4-(6-hydroxy-7-methoxy-4-quinazol-inyl)-1-piperazinecarboxamide (16a). A suspension of 16i ( $0.40 \mathrm{~g}, 0.81 \mathrm{mmol}$ ) and $10 \% \mathrm{Pd} / \mathrm{C}(0.10 \mathrm{~g}$, containing $50 \%$ water) in ethanol ( 30 mL ) and water ( 1 mL ) was hydrogenated for 4 h under a stream of hydrogen at $50^{\circ} \mathrm{C}$. Addition of chloroform, filtration through Celite, and evaporation provided the title compound ( $0.28 \mathrm{~g}, 0.69 \mathrm{mmol}$ ) in $86 \%$ yield: $\mathrm{mp} 199-$ $202{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot\right.$ $\left.1.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(6-Ethoxy-7-methoxy-4-quinazolinyl)-N-(4-phenoxy-phenyl)-1-piperazinecarboxamide (16b). (1) To an icecooled sol ution of isovanillic acid (2) ( $4.3 \mathrm{~g}, 25.6 \mathrm{mmol}$ ) in DMF ( 50 mL ) was slowly added potassium carbonate ( $10.6 \mathrm{~g}, 76.7$ mmol ) and then benzyl bromide ( $6.01 \mathrm{~mL}, 50.5 \mathrm{mmol}$ ). The reaction mixture was stirred overnight under argon atmosphere at room temperature and poured into water. Then NaCl was added. The resulting precipitate was collected, washed with water, and dried to provide 3-benzyl oxy-4-methoxybenzoic acid benzyl ester ( $8.06 \mathrm{~g}, 23.2 \mathrm{mmol}$ ) in $91 \%$ yield. (2) To a $-15^{\circ} \mathrm{C}$ solution of 3-benzyloxy-4-methoxybenzoic acid benzyl ester ( $42.2 \mathrm{~g}, 121 \mathrm{mmol}$ ) in acetic anhydride ( 400 mL ) was added fuming nitric acid ( $9.71 \mathrm{~mL}, 243 \mathrm{mmol}$ ). After the reaction mixture was stirred for 3 h at room temperature, it was poured into ice-water and neutralized with sodium hydroxide solution. The resulting precipitate was collected, washed with water, and dried to provide 5-benzyloxy-4-methoxy-2-nitrobenzoic acid benzyl ester ( $49.5 \mathrm{~g}, 126 \mathrm{mmol}$ ) in quantitative yield: ${ }^{1} \mathrm{H}$ NMR, FABMS. (3) A mixture of 5-benzyloxy-4-methoxy-2-nitrobenzoic acid benzyl ester (49.5 $\mathrm{g}, 126 \mathrm{mmol})$, iron dust ( $39.7 \mathrm{~g}, 711 \mathrm{mmol}$ ), and $\mathrm{FeCl}_{3}(1.00 \mathrm{~g})$ in ethanol ( 100 mL ), acetic acid ( 400 mL ), and water ( 20 mL ) was heated at $80^{\circ} \mathrm{C}$ for 4 h under argon atmosphere. Removal of iron dust by filtration, evaporation, and addition of ethanol provided 2-amino-5-benzyloxy-4-methoxybenzoic acid benzyl ester (4) ( $21.2 \mathrm{~g}, 58.4 \mathrm{mmol}$ ). Purification of the filtrate by silica gel column chromatography also provided $4(12.3 \mathrm{~g}, 33.9$ mmol ). The combined yield of 4 was $73 \%$ : ${ }^{1} \mathrm{H}$ NMR, FABMS. (4) A solution of $4(20.2 \mathrm{~g}, 55.6 \mathrm{mmol})$ in formamide ( 120 mL )
was heated at $190^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was cooled to room temperature and poured into water. Then NaCl was added. The resulting precipitate was collected, washed with water, and dried to provide 6-benzyloxy-7-methoxy-4(3H)quinazol one (6) ( $19.4 \mathrm{~g}, 68.8 \mathrm{mmol}$ ) in quantitative yield. (5) A solution of $6(18.4 \mathrm{~g}, 65.2 \mathrm{mmol})$ in phosphorus trichloride $(180 \mathrm{~mL})$ was refluxed for 3 h . The reaction mixture was evaporated and twice azeotroped with toluene. The resulting residue was dissolved in dichloromethane, washed with brine, dried over anhydrous sodium sulfate, and evaporated to provide 6-benzyloxy-4-chloro-7-methoxyquinazol ine (8) (17.4 $\mathrm{g}, 57.9 \mathrm{mmol}$ ) in $89 \%$ yield. (6) The mixture of 8 ( $17.4 \mathrm{~g}, 57.8$ mmol ) and N -tert-butoxycarbonyl piperazine ( $16.1 \mathrm{~g}, 86.4 \mathrm{mmol}$ ) in tetrahydrofuran ( 250 mL ), chloroform ( 50 mL ), and triethylamine ( $36.3 \mathrm{~mL}, 260 \mathrm{mmol}$ ) was stirred overnight at room temperature. After further addition of N -tert-butoxycarbonyl piperazine ( $5.4 \mathrm{~g}, 28.9 \mathrm{mmol}$ ) followed by stirring overnight, the reaction mixture was evaporated and suspended in water, and then NaCl was added. The resulting precipitate was collected, washed with water, and dried to provide 4-(6-benzyloxy-7-methoxy-4-quinazolinyl)-1-piperazinecarboxylic adid tert-butyl ester (10) ( $22.8 \mathrm{~g}, 50.6 \mathrm{mmol}$ ) in $88 \%$ yield: ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. (7) A suspension of $\mathbf{1 0}(14.6 \mathrm{~g}, 32.4 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(3.00 \mathrm{~g}$, containing $50 \%$ water) in ethanol ( 400 mL ) was hydrogenated for 5 h at $50^{\circ} \mathrm{C}$ under hydrogen stream. After removal of catalyst by filtration through Celite and evaporation, the resulting residue was recrystallized from methanol to provide 4-(6-hydroxy-7-methoxy-4-quinazol inyl)-1-piperazinecarboxylic acid tert-butyl ester (12) (9.24 g, 25.7 mmol) in $79 \%$ yield: $\mathrm{mp} 243-244{ }^{\circ} \mathrm{C}(\mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. (8) To a mixture of $12(8.00 \mathrm{~g}, 22.2 \mathrm{mmol})$ and potassium carbonate ( $1.72 \mathrm{~g}, 12.4$ mmol ) in DMF ( 30 mL ) was added iodoethane ( $1.24 \mathrm{~mL}, 12.4$ mmol ). The reaction mixture was stirred overnight under argon atmosphere at room temperature and poured into water. Then NaCl was added. The resulting precipitate was collected, washed with water, dried, and purified with silica gel column chromatography to provide 4-(6-ethoxy-7-methoxy-4-quinazol-inyl)-1-piperazinecarboxylic acid tert-butyl ester ( $3.28 \mathrm{~g}, 18.2$ mmol) in $82 \%$ yield: ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. (9) The title compound was obtained from 4-(6-ethoxy-7-methoxy-4-quinazol-inyl)-1-piperazinecarboxylic acid tert-butyl ester and 4-phenoxyphenyl isocyanate by procedure $B$ in 100\% yield: mp 213-214 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1 \mathrm{H}} \mathrm{NMR}, \mathrm{FABMS}$, IR. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Benzyl-4-(6-ethoxy-7-methoxy-4-quinazolinyl)-1-piperazinethiocarboxamide (16c). 86\% yield from 4-(6-ethoxy-7-methoxy-4-quinazolinyl)-1-piperazinecarboxylic acid tertbutyl ester and benzyl isothiocyanate by procedure B ; $\mathrm{mp} 170-$ $171{ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}\right)$ C, H, N.

4-(7-Methoxy-6-propoxy-4-quinazolinyl)-N-(4-phenoxy-phenyl)-1-piperazinecarboxamide (16d). 95\% yield from 4-(7-methoxy-6-propoxy-4-quinazol inyl)-1-piperazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS), which was synthesized from 12 and 1-iodopropane by the same procedure as that of 16b (step 8) in $82 \%$ yield, and 4-phenoxyphenyl isocyanate by procedure B ; $\mathrm{mp} 195-196{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. ( $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{4}$ ) C, H, N.

4-(6-Allyloxy-7-methoxy-4-quinazolinyl)-N-(4-phenoxy-phenyl)-1-piperazinecarboxamide (16e). 84\% yield from 4-(6-allyloxy-7-methoxy-4-quinazolinyl)-1-piperazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS), which was synthesized from $\mathbf{1 2}$ and allylbromide by the same procedure as that of 16b (step 8) in quantitative yield, and 4-phenoxyphenyl isocyanate by procedure B ; $\mathrm{mp} 172-173{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\right.$ ${ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ ); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(7-Methoxy-6-propargyloxy-4-quinazolinyl)-N-(4-phen-oxyphenyl)-1-piperazinecarboxamide (16f). 53\% yield from 4-(7-methoxy-6-propargyloxy-4-quinazol inyl)-1-piperazinecarboxylic acid tert-butyl ester ( ${ }^{1}$ H NMR, FABMS, Anal.), which was synthesized from 12 and propargylbromide by the same procedure as that of $\mathbf{1 6 b}$ (step 8) in quantitative yield,
and 4-phenoxyphenyl isocyanate by procedure B; mp 224-225 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}\right)$ C, $\mathrm{H}, \mathrm{N}$.

4-(6-Cyanomethoxy-7-methoxy-4-quinazolinyl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (16g). 41\% yield from 4-(6-cyanomethoxy-7-methoxy-4-quinazol inyl)-1-pi perazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS, Anal.), which was synthesized from 12 and bromoacetonitrile by the same procedure as that of 16b (step 8) in quantitative yield, and 4-phenoxyphenyl isocyanate by procedure B ; mp 167-168 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$, N.

4-(6-B utoxy-7-methoxy-4-quinazolinyl)-N-(4-phenoxy-phenyl)-1-piperazinecarboxamide (16h). $96 \%$ yield from 4-(6-butoxy-7-methoxy-4-qui nazolinyl)-1-piperazi necarboxylic acid tert-butyl ester ( ${ }^{1}$ H NMR, FABMS, Anal.), which was synthesized from 12 and 1-iodobutane by the same procedure as that of 16b (step 8) in quantitative yield, and 4-phenoxyphenyl isocyanate by procedure B ; mp $190-191{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\right.$ $\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H} N M R$, FABMS, IR. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}$, H, N.

4-(6-B enzyloxy-7-methoxy-4-qui nazolinyl)-N-(4-cy-anophenyl)-1-piperazinecarboxamide (16i). Quantitative yield from 10 and 4-cyanophenyl isocyanate by procedure $B$; mp 120-121 ${ }^{\circ} \mathrm{C}$ (EtOAC); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[7-Methoxy-6-(2-methoxyethoxy)-4-quinazolinyl]-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (16j). 69\% yield from 4-[7-methoxy-6-(2-methoxyethoxy)-4-qui nazolinyl]-1-piperazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS, Anal.), which was synthesized from 12 and bromoethylmethyl ether by the same procedure as that of $\mathbf{1 6 b}$ (step 8) in 63\% yield, and 4-phenoxyphenyl isocyanate by procedure $B$; mp 197-198 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{5}\right)$ C, H, N.

N-(4-Cyanophenyl)-4-[7-methoxy-6-(2-methoxyethoxy)-4-quinazolinyl]-1-piperazinecarboxamide (16k). 46\% yield from 4-[7-methoxy-6-(2-methoxyethoxy)-4-quinazolinyl]-1-piperazinecarboxylic acid tert-butyl ester and 4-cyanophenyl isocyanate by procedure B ; $\mathrm{mp} 188-189{ }^{\circ} \mathrm{C}(E t O A c) ;{ }^{1} \mathrm{H} N M R$, FABMS, IR. Anal. ( $\left.\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[7-Methoxy-6-(2-methoxyethoxy)-4-quinazolinyl]-N-(3,4-methylenedioxybenzyl)-1-piperazinethiocarboxamide (16I). 69\% yiel d from 4-[7-methoxy-6-(2-methoxyethoxy)-4-quinazol inyl]-1-pi perazinecarboxylic acid tert-butyl ester and 3,4-methylenedi oxybenzyl isothiocyanate by procedure B; mp 85-86 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{i} \mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, $\mathrm{FABMS}, ~ I R$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[7-Methoxy-6-(2-oxopropoxy)-4-quinazolinyl]-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (16m). 13\% yield from 4-[7-methoxy-6-(2-oxopropoxy)-4-quinazolinyl]-1piperazinecarboxylic acid tert-butyl ester, which was synthesized from 12 and chloroacetone in the presence of potassium iodide by the same procedure as that of 16b (step 8) in 83\% yield, and 4-phenoxyphenyl isocyanate by procedure B; ${ }^{1} \mathrm{H}$ NMR, FABMS.

N-(4-Cyanophenyl)-4-(7-methoxy-6-methoxycarbonyl-methoxy-4-quinazolinyl)-1-piperazinecarboxamide (16n). 87\% yield from 4-(7-methoxy-6-methoxycarbonyloxy-4-quinazoli-nyl)-1-piperazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS), which was synthesized from 12 and methyl bromoacetate by the same procedure as that of $\mathbf{1 6 b}$ (step 8) in 77\% yield, and 4-cyanophenyl isocyanate by procedure B; mp $206-207^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{5}{ }^{\circ}\right.$ $\left.0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(4-Cyanophenyl)-4-(7-methoxy-6-carboxymethoxy-4-quinazolinyl)-1-pi perazinecarboxamide (160). Hydrolysis of $\mathbf{1 6}$ n with lithium hydroxide monohydrate in THF and water provided the title compound in quantitative yield: ${ }^{1} \mathrm{H} N M R$.

4-(6-Methanesulfonyloxy-7-methoxy-4-quinazolinyl)-N-(4-phenoxyphenyl)-1-pi perazinecarboxamide (16p): 100\% yield from 4-(7-methoxy-6-methanesulfonyloxy-4-quina-zolinyl)-1-piperazinecarboxylic acid tert-butyl ester (1H NMR, FABMS, IR), which was synthesized from 12 and methane-
sulfonyl chloride by the same procedure as that of 16b (step 8) in 65\% yield, and 4-phenoxyphenyl isocyanate by procedure B ; mp 228-229 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. ( $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}$ ) C, H, N.

N-Benzyl-4-(6-methanesulfonyloxy-7-methoxy-4-quin-azolinyl)-1-piperazinethiocarboxamide (16q). 97\% yield from 4-(7-methoxy-6-methanesulfonyloxy-4-quinazolinyl)-1piperazinecarboxylic acid tert-butyl ester and benzyl isothiocyanate by procedure B ; mp $76-80{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \cdot 0.25^{\text {i }} \mathrm{Pr}_{2} \mathrm{O}\right) \mathrm{C}$, H, N.

4-(7-Ethoxy-6-methoxy-4-quinazolinyl)-N-(4-phenoxy-phenyl)-1-piperazinecarboxamide (17a). (1) 4-Benzyloxy-3-methoxybenzoic acid benzyl ester was obtained by the same procedure as that of $\mathbf{1 6 b}$ (step 1) from vanillic acid in $96 \%$ yield. (2) 4-Benzyloxy-5-methoxy-2-nitrobenzoic acid benzyl ester was obtained by the same procedure as that of 16b (step 2) from 4-benzyloxy-3-methoxybenzoic acid benzyl ester in quantitative yield. (3) 2-Amino-4-benzyloxy-5-methoxybenzoic acid benzyl ester (5) was obtained by the reduction of 4-ben-zyloxy-5-methoxy-2-nitrobenzoic acid benzyl ester with zinc dust in acetic acid at room temperature in 97\% yield. (4) 7-Benzyloxy-6-methoxy-4(3H)-quinazol one (7) was obtained by the same procedure as that of 16b (step 4) from 5 in $87 \%$ yield. (5) 7-Benzyloxy-4-chloro-6-methoxyquinazoline (9) was obtai ned by the same procedure as that of 16b (step 5) from 7 in 92\% yield. (6) 4-(7-Benzyloxy-6-methoxy-4-quinazolinyl)-1pi perazinecarboxylic acid tert-butyl ester (11) was obtained by the same procedure as that of 16b (step 6) from 9 in 93\% yield: IR. (7) 4-(7-Hydroxy-6-methoxy-4-quinazolinyl)-1-piperazinecarboxylic acid tert-butyl ester (13) was obtained from 11 by the same procedure as that of 16b (step 7) in 90\% yield: mp, ${ }^{1} \mathrm{H}$ NMR, FABMS, IR, Anal. (8) The title compound was obtained in 100\% yield from 4-(7-ethoxy-6-methoxy-4-quinazoli-nyl)-1-piperazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, IR ), which was synthesized from 13 and iodoethane by the same procedure as that of $\mathbf{1 6 b}$ (step 8) in $91 \%$ yield, and 4-phenoxyphenyl isocyanate by procedure $\mathrm{B}: \mathrm{mp} 174-175{ }^{\circ} \mathrm{C}(\mathrm{EtOAc})$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Benzyl-4-(7-ethoxy-6-methoxy-4-quinazolinyl)-1-piperazinethiocarboxamide (17b). 97\% yield from 4-(7-ethoxy-6-methoxy-4-quinazolinyl)-1-pi per azi necar boxylic acid tertbutyl ester and benzyl isothiocyanate by procedure B; mp 168$169{ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}\right)$ C, H, N.

4-(6-Methoxy-7-propoxy-4-quinazolinyl)-N-(4-phenoxy-phenyl)-1-piperazinecarboxamide (17c). 76\% yield from 4-(6-methoxy-7-propoxy-4-quinazol inyl)-1-piperazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS, Anal.), which was synthesized from 13 and 1-iodopropane by the same procedure as that of 16b (step 8) in $87 \%$ yield, and 4 -phenoxyphenyl isocyanate by procedure B ; mp $162-163^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\right.$ $\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H} N M R, F A B M S, I R$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(7-I sopropoxy-6-methoxy-4-quinazolinyl)-N-(4-phen-oxyphenyl)-1-piperazinecarboxamide (17d). 100\% yield from 4-(7-isopropoxy-6-methoxy-4-quinazol inyl)-1-piperazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, IR), which was synthesized from 13 and 2-iodopropane by the same procedure as that of $\mathbf{1 6 b}$ (step 8) in quantitative yield, and 4 -phenoxyphenyl isocyanate by procedure B ; $\mathrm{mp} 157-160^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(7-Allyloxy-6-methoxy-4-quinazolinyl)-N-(4-phenoxy-phenyl)-1-piperazinecarboxamide (17e). 48\% yield from 4-(7-allyloxy-6-methoxy-4-quinazolinyl)-1-piperazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS), which was synthesized from 13 and allyl bromide by the same procedure as that of 16b (step 8) in $50 \%$ yield, and 4-phenoxyphenyl isocyanate by procedure B ; $\mathrm{mp} 140-141{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(6-Methoxy-7-propargyloxy-4-quinazolinyl)-N-(4-phen-oxyphenyl)-1-piperazinecarboxamide (17f). 39\% yield from 4-(6-methoxy-7-propargyloxy-4-quinazol inyl)-1-piperazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS), which was synthesized from $\mathbf{1 3}$ and propargyl bromide by the same
procedure as that of $\mathbf{1 6 b}$ (step 8) in 46\% yield, and 4-phenoxyphenyl isocyanate by procedure B ; $\mathrm{mp} 202-204{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\right.$ $\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}$, H, N.

4-(7-B utoxy-6-methoxy-4-quinazolinyl)-N-(4-phenoxy-phenyl)-1-piperazinecarboxamide (17g). 77\% yield from 4-(7-butoxy-6-methoxy-4-quinazol inyl)-1-piperazi necarboxylic acid tert-butyl ester ( ${ }^{1}$ H NMR, FABMS, Anal.), which was synthesized from 13 and 1-iodobutane by the same procedure as that of 16b (step 8) in 91\% yield, and 4-phenoxyphenyl isocyanate by procedure B; mp 197-198 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H} N \mathrm{NR}$, FABMS, IR. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[6-Methoxy-7-(2-methoxyethoxy)-4-quinazolinyl]-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (17h). Quantitative yield from 4-[6-methoxy-7-(2-methoxyethoxy)-4-quina-zolinyl]-1-piperazinecarboxylic acid tert-butyl ester (1HNMR, FABMS), which was synthesized from 13 and bromoethylmethyl ether by a procedure similar to that of 16b (step 8) using sodium hydride instead of potassium carbonate in 57\% yield, and 4-phenoxyphenyl isocyanate by procedure B; mp $168-169{ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{5}\right)$ C, H, N.

4-[6-Methoxy-7-(2-methoxyethoxy)-4-quinazolinyl]-N-(3,4-methylenedioxybenzyl)-1-piperazinethiocarboxamide (17i). 78\% yield from 4-[6-methoxy-7-(2-methoxyethoxy)-4-quinazol inyl]-1-pi perazinecarboxylic acid tert-butyl ester and 3,4-methylenedioxybenzyl isothiocyanate by procedure B; mp $153-156{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[7-(2-Ethoxyethoxy)-6-methoxy-4-quinazolinyl]-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (17j). 67\% yield from 4-[7-(2-ethoxyethoxy)-6-methoxy-4-quinazolinyl]-1-piperazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS), which was synthesized from 13 and 2-bromoethylethyl ether by a procedure similar to that of $\mathbf{1 6 b}$ (step 8) in the presence of potassium iodide in 74\% yield, and 4-phenoxyphenyl isocyanate by procedure B ; mp $182-183{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(6-Methoxy-7-methyl-4-quinazolinyl)-N-(4-phenoxy-phenyl)-1-piperazinecarboxamide (17k). 31\% yield from 6-methoxy-7-methyl-4-(1-piperazinyl)quinazoline (TOFMS), which was synthesized from 4-chloro-6-methoxy-7-methylquinazol ine ${ }^{43}$ in $77 \%$ yield, and 4-phenoxyphenyl isocyanate by procedure A ; mp $188-189{ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Benzyl-4-(6-methoxy-7-methyl-4-quinazolinyl)-1-piperazinethiocarboxamide (171). 37\% yield from 6-methoxy-7-methyl-4-(1-piperazinyl)quinazoline and benzyl isothiocyanate by procedure A ; mp 185-186 ${ }^{\circ} \mathrm{C}$ (EtOAC); ${ }^{1} \mathrm{H} N M R$, FABMS, IR. Anal. ( $\left.\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{OS} \cdot 0.25 \mathrm{H}_{2} \mathrm{O} \cdot 0.25 \mathrm{EtOAc}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(6,7-Diethoxy-4-quinazolinyl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (32a). 21\% yield from 6,7-di-ethoxy-4-(1-piperazinyl)quinazoline, which was synthesized from 4-chloro-6,7-diethoxyquinazoline ${ }^{44}$ in quantitative yield, and 4-phenoxyphenyl isocyanate by procedure A; mp 187-190 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}$, FABMS, IR. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{4}\right)$ C, H, N.

N-Benzyl-4-(6,7-diethoxy-4-quinazolinyl)-1-piperazinethiocarboxamide (32b). 97\% yield from 6,7-diethoxy-4-(1piperazinyl)quinazoline and benzyl isothiocyanate by procedure A; mp 134-136 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(6,7-Dibenzyloxy-4-quinazolinyl)-N-(4-phenoxyphen-yl)-1-piperazinecarboxamide (32c). 65\% yield from 6,7-dibenzyloxy-4-(1-pi perazinyl)quinazoline (TOFMS), which was synthesized from 6,7-dibenzyloxy-4-chloroquinazoline ${ }^{44}$ in 74\% yield, and 4-phenoxyphenyl isocyanate by procedure A; mp 137-138 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{39} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(6,8-Dimethoxy-4-quinazolinyl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (33a). 86\% yield from 6,8-di-methoxy-4-(1-piperazinyl)quinazoline, which was synthesized from 4-chloro-6,8-dimethoxyquinazol ine ${ }^{45}$ in quantitative yield,
and 4-phenoxyphenyl isocyanate by procedure A; mp 109-110 ${ }^{\circ} \mathrm{C}$ (EtOAC); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$, N.

4-(7,8-Dimethoxy-4-quinazolinyl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (33b). 65\% yield from 7,8-dimeth-oxy-4-(1-piperazinyl)quinazoline, which was synthesized from 4-chloro-7,8-dimethoxyquinazoline ${ }^{43}$ in $77 \%$ yield, and 4-phenoxyphenyl isocyanate by procedure A ; mp 189-190 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
$\mathbf{N}$-(4-Phenoxyphenyl)-4-(6,7,8-trimethoxy-4-quinazoli-nyl)-1-piperazinecarboxamide (34a). 55\% yield from 6,7,8-trimethoxy-4-(1-piperazinyl)quinazoline, which was synthesized from 4-chloro-6,7,8-trimethoxyquinazoline ${ }^{45}$ in quantitative yield, and 4-phenoxyphenyl isocyanate by procedure A; mp 83$84{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H} N M R$, FABMS, IR. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5}{ }^{\circ}\right.$ $\left.0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(6,7-Dimethoxy-2-methyl-4-quinazolinyl)-N-(4-phen-oxyphenyl)-1-piperazinecarboxamide (34b). 93\% yield from 6,7-dimethoxy-2-methyl-4-(1-piperazinyl)quinazol ine(TOFMS), which was synthesized from 4-chloro-6,7-dimethoxy-2methylquinazoline ${ }^{44}$ in $87 \%$ yield, and 4-phenoxyphenyl isocyanate by procedure A; mp $146-147{ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H} N M R$, FABMS, IR. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(2-Chloro-6,7-dimethoxy-4-quinazolinyl)-N-(4-phen-oxyphenyl)-1-piperazinecarboxamide (34c). The title compound was synthesized from 4-(2-chloro-6,7-dimethoxy-4-quinazolinyl)-1-piperazi necarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS) in 73\% yield as described in general synthetic procedure B ; $\mathrm{mp} 178-179^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}$, FABMS, IR. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{ClN}_{5} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(6,7-Dimethoxy-2-morpholino-4-quinazolinyl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (34d). (1) A mixture of 4-(2-chloro-6,7-dimethoxy-4-qui nazol inyl)-1-piperazinecarboxylic acid tert-butyl ester ( $1.22 \mathrm{~g}, 2.99 \mathrm{mmol}$ ) and morphorine ( $1.30 \mathrm{~mL}, 4.90 \mathrm{mmol}$ ) in N-methyl pyrrolidone ( 15 mL ) was heated at $140^{\circ} \mathrm{C}$ for 3 h . After the reaction mixture was cooled to room temperature and poured into water, NaCl was added. The resulting precipitate was collected, washed with water, and dried to provide 4-(6,7-dimethoxy-2-morphol ino-4-quinazol inyl)-1-piperazinecarboxylic acid tert-butyl ester ( $851 \mathrm{mg}, 1.85 \mathrm{mmol}$ ) in $62 \%$ yield. (2) The title compound was obtained from 4-(6,7-dimethoxy-2-morpholino-4-quinazoli-nyl)-1-pi perazinecarboxylic acid tert-butyl ester by procedure B in $79 \%$ yield; $m p 114-116{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{CPr}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H} N M R$, FABMS, IR. Anal. ( $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{5} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ ) C, H, N.

4-(6,7-Methylenedioxy-4-quinazolinyl)-N-(4-phenoxy-phenyl)-1-piperazinecarboxamide (35a). 85\% yield from 6,7-methyl enedioxy-4-(1-piperazinyl)quinazoline (TOFMS), which was synthesized from 4-chloro-6,7-methylenedioxyquinazoline ${ }^{44}$ in $91 \%$ yield, and 4-phenoxyphenyl isocyanate by procedure A; mp 206-207 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-Benzyl-4-(6,7-methylenedioxy-4-quinazolinyl)-1-piperazinethiocarboxamide (35b). 99\% yield from 6,7-meth-ylenedioxy-4-(1-piperazinyl)quinazoline and benzyl isothiocyanate by procedure A ; $\mathrm{mp} 176-177{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. ( $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ ) C, $\mathrm{H}, \mathrm{N}$.

4-(6,7-Ethylenedioxy-4-quinazolinyl)-N-(4-phenoxy-phen-yl)-1-piperazinecarboxamide (36a). 91\% yield from 4-(6,7-ethylenedioxy-4-quinazol inyl)-1-pi perazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, IR), which was synthesized from 4-chloro-6,7-ethylenedioxyquinazoline ${ }^{46}$ in $49 \%$ yield, and 4-phenoxyphenyl isocyanate by procedure $\mathrm{B} ; \mathrm{mp} 227-228^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Benzyl-4-(6,7-ethylenedioxy-4-quinazolinyl)-1-piperazinethiocarboxamide (36b). 88\% yield from 4-(6,7-ethylenedioxy-4-quinazolinyl)-1-pi perazinecarboxylic acid tertbutyl ester and benzyl isothiocyanate by procedure B; mp 103$105^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Cr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. ( $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5}-$ $\left.\mathrm{O}_{2} \mathrm{~S} \cdot 1.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(4-Benzo[g]quinazolinyl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (37a). 24\% yield from 4-(4-benzo[g]quinazol inyl)-1-piperazinecarboxylic acid tert-butyl ester (¹H NMR), which was synthesized from 4-chlorobenzo[g]quinazo-
line ${ }^{47}$ in $43 \%$ yield, and 4-phenoxyphenyl isocyanate by procedure B ; $\mathrm{mp} 105-108{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{P} \mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS , IR. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
4-(4-Benzo[g]quinazolinyl)-N-benzyl-1-piperazinethiocarboxamide (37b). 42\% yield from 4-(4-benzo[g]quinazol i-nyl)-1-piperazinecarboxylic acid tert-butyl ester and benzyl isothiocyanate by procedure B; mp 187-188 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. ( $\left.\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{~S} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(1,3-Dihydro-1,3-dimethyl-2-oxo-2H-imidazo[4,5-g]-quinazolin-8-yl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (21a). (1) To a $-15{ }^{\circ} \mathrm{C}$ solution of 1,3-dihydro-2-oxo-1H -benzi midazol e-5-carboxylic acid methyl ester ${ }^{48}$ ( 7.86 g , 40.9 mmol ) in acetic anhydride ( 100 mL ) was slowly added fuming nitric acid ( $3.46 \mathrm{~mL}, 86.4 \mathrm{mmol}$ ). The mixture was stirred for 3.5 h at $0^{\circ} \mathrm{C}$ and poured into ice-water. The resulting precipitate was collected, washed with water, and dried to provide 1,3-dihydro-6-nitro-2-oxo-2H-benzimidazole-5-carboxylic acid methyl ester ( $7.78 \mathrm{~g}, 32.7 \mathrm{mmol}$ ) in $80 \%$ yield: ${ }^{1} \mathrm{H}$ NMR, FABMS. (2) To an ice-cooled solution of 1,3-dihydro-6-nitro-2-oxo-2H-benzimidazole-5-carboxylic acid methyl ester ( $7.78 \mathrm{~g}, 32.8 \mathrm{mmol}$ ) in DMF ( 100 mL ) was added $60 \%$ sodium hydride ( $3.94 \mathrm{~g}, 98.5 \mathrm{mmol}$ ). The mixture was stirred for 15 min at the same temperature, and iodomethane ( 6.13 $\mathrm{mL}, 98.5 \mathrm{mmol}$ ) was added. Then the reaction mixture was stirred for 1.5 h at room temperature and poured into water. The resulting precipitate was collected, washed with water, and dried to provide 1,3-dihydro-1,3-dimethyl-6-nitro-2-oxo2 H -benzimi dazole-5-carboxylic acid methyl ester ( $8.58 \mathrm{~g}, 32.5$ mmol ) in 99\% yield. (3) A suspension of 1,3-dihydro-1,3-dimethyl-6-nitro-2-oxo-2H-benzimidazole-5-carboxylic acid methyl ester ( $8.58 \mathrm{~g}, 32.4 \mathrm{mmol}$ ) and $10 \% \mathrm{Pd} / \mathrm{C}(1.60 \mathrm{~g}$, containing $50 \%$ water) in ethanol ( 100 mL ) was hydrogenated for 5.5 h under hydrogen stream at room temperature. After removal of catalyst by filtration through Celite, the filtrate was evaporated to provide 6 -amino-1,3-dihydro-1,3-dimethyl-2-oxo2 H -benzimidazole-5-carboxylic acid methyl ester. This compound was used for the next reaction without further purification. (4) A solution of 6-amino-1,3-dihydro-1,3-dimethyl-2-oxo-2H -benzimidazole-5-carboxylic acid methyl ester in formamide ( 100 mL ) was heated for 2 h at $190^{\circ} \mathrm{C}$. The reaction mixture was cooled to room temperature and poured into water, and then NaCl was added. The resulting precipitate was collected, washed with water, and dried to provide 1,3-dihydro-1,3-dimethyl-2H ,7H-imidazo[4,5-g]quinazol ine-2,8-dione ( $4.73 \mathrm{~g}, 20.7 \mathrm{mmol}$ ) in $64 \%$ yield in two steps. (5) The title compound was synthesized from 1,3-dihydro-1,3-dimethyl$2 \mathrm{H}, 7 \mathrm{H}$-imidazo[4,5-g]quinazoline-2,8-di one by procedure A in $73 \%$ yield via 8-chloro-1,3-dihydro-1,3-dimethyl-2-oxo-2H-imi-dazo[4,5-g]-quinazol ine and 1,3-dihydro-1,3-dimethyl-2-oxo-8-(1-piperazinyl)-2H-imidazo[4,5-g]quinazoline: mp $250-255^{\circ} \mathrm{C}$ ( $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{Pr}_{2} \mathrm{O}$ ); ${ }^{1} \mathrm{H}$ NMR, FABMS , IR. Anal. ( $\mathrm{C}_{28} \mathrm{H}_{27}{ }^{-}$ $\left.\mathrm{N}_{7} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(1,3-Dihydro-3-ethyl-1-methyl-2-oxo-2H-imidazo[4,5-g]quinazolin-8-yl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (21b). (1) To an ice-cooled solution of 24a (1.08 $\mathrm{g}, 3.75 \mathrm{mmol}$ ) in dichloromethane ( 20 mL ) were added di-tertbutyl dicarbonate ( $1.33 \mathrm{~mL}, 5.79 \mathrm{mmol}$ ) and triethylamine $(2.61 \mathrm{~mL}, 18.7 \mathrm{mmol})$. The reaction mixture was stirred overnight at room temperature, evaporated, and purified by silica gel column chromatography to provide4-(7-(ethylamino)-6-nitro-4-quinazolinyl)-1-piperazinecarboxylic acid tert-butyl ester (24b) ( $1.39 \mathrm{~g}, 3.45 \mathrm{mmol}$ ) in $92 \%$ yield: ${ }^{1} \mathrm{H}$ NMR, IR. (2) A suspension of $\mathbf{2 4 b}(1.29 \mathrm{~g}, 3.22 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.13$ g , containing $50 \%$ water) was hydrogenated for 6 h under hydrogen stream at room temperature. After removal of catalyst by filtration through Celite and evaporation, the residue was dissolved in DMF ( 20 mL ) followed by addition of CDI ( $1.05 \mathrm{~g}, 6.48 \mathrm{mmol}$ ) and triethylamine ( $2.25 \mathrm{~mL}, 16.1$ mmol ). The mixture was heated at $80^{\circ} \mathrm{C}$ for 4.5 h under argon atmosphere, cooled to room temperature, and poured into water. Then NaCl was added. The resulting precipitate was collected, washed with water, and dried to provide 4-(1,3-dihydro-3-ethyl-2-oxo-2H-imidazo[4,5-g]quinazolin-8-yl)-1-piperazinecarboxylic acid tert-butyl ester ( $1.30 \mathrm{~g}, 3.27 \mathrm{mmol}$ ) in
quantitative yield: ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. (3) To an ice-cooled solution of 4-(1,3-dihydro-3-ethyl-2-oxo-2H-imidazo[4,5-g]quin-azolin-8-yl)-1-piperazinecarboxylic acid tert-butyl ester (1.42 $\mathrm{g}, 3.57 \mathrm{mmol}$ ) in DMF ( 15 mL ) was added $60 \%$ sodium hydride ( $214 \mathrm{mg}, 14.8 \mathrm{mmol}$ ). After the mixture was stirred for 30 min at room temperature, iodomethane ( $0.44 \mathrm{~mL}, 7.07 \mathrm{mmol}$ ) was added. The reaction mixture was stirred overnight at room temperature and poured into water. Then NaCl was added. The resulting precipitate was collected, washed with water, and dried to provide4-(1,3-dihydro-3-ethyl-1-methyl-2-oxo-2H-imidazo[4,5-g]-quinazolin-8-yl)-1-piperazi necarboxylic acid tertbutyl ester (25) ( $749 \mathrm{mg}, 1.82 \mathrm{mmol}$ ) in $51 \%$ yield: ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. (4) The title compound was synthesized from 25 by procedure B in $96 \%$ yield: $\mathrm{mp} 250-251{ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1 \mathrm{H}}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{7} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Benzyl-4-(1,3-di hydro-3-ethyl-1-methyl-2-oxo-2H-im-idazo[4,5-g]quinazolin-8-yl)-1-piperazinethiocarboxamide (21c). 57\% yield from 25 and benzyl isothiocyanate by procedure B; mp 207-208 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{OS} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(1,3-Diethyl-1,3-dihydro-2-oxo-2H-imidazo[4,5-g]-quinazolin-8-yl)-N-(4-phenoxyphenyl)-1-pi perazinecarboxamide (21d). 66\% yield from 1,3-diethyl-1,3-dihydro-2-oxo-8-(1-piperazinyl)-2H-imidazo[4,5-g]quinazoline, which was synthesized from 1,3-dihydro-6-nitro-2-oxo-2H-benzimidazole-5-carboxylic acid methyl ester and iodoethane in $90 \%$ yield by a similar reaction of 21a, and 4-phenoxyphenyl isocyanate by procedure A ; $\mathrm{mp} 168-169{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{i} \mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS , IR. Anal. ( $\left.\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{7} \mathrm{O}_{3} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(1,3-Di hydro-1,3-dipropyl-2-oxo-2H-i midazo[4,5-g]-quinazolin-8-yl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (21e). $62 \%$ yield from 1,3-dihydro-1,3-dipropyl-2-oxo-8-(1-piperazinyl)-2H-imidazo[4,5-g]quinazoline (FABMS), which was synthesized from 1,3-dihydro-6-nitro-2-oxo-2H-benzimidazole-5-carboxylic acid methyl ester and 1-iodopropane in quantitative yield by a similar reaction of 21a, and 4-phenoxyphenyl isocyanate by procedure A; mp 179-180 ${ }^{\circ} \mathrm{C}$ $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{35}-\right.$ $\left.\mathrm{N}_{7} \mathrm{O}_{3} \cdot \mathrm{O}_{3} \cdot 25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(1,3-Dibutyl-1,3-dihydro-2-oxo-2H-imidazo[4,5-g]-quinazolin-8-yl)-N-(4-phenoxyphenyl)-1-pi perazinecarboxamide (21f). 50\% yield from 1,3-dibutyl-1,3-dihydro-2-oxo-8-(1-piperazinyl)-2H-imidazo[4,5-g]quinazol ine (TOFMS), which was synthesized from 1,3-di hydro-6-nitro-2-oxo-2H-benzimi-dazole-5-carboxylic acid methyl ester and 1-iodobutane in quantitative yield by a similar reaction of 21a, and 4-phenoxyphenyl isocyanate by procedure A; mp $134-136{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\right.$ $\left.\mathrm{MeOH}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{3}\right) \mathrm{C}$, H, N.

4-(3-Ethyl-1,3-dihydro-2-oxo-2H-imidazo[4,5-g]quinazo-lin-8-yl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide ( $\mathbf{2 1 g}$ ). A suspension of $\mathbf{1 g}(198 \mathrm{mg}, 0.38 \mathrm{mmol})$ and $10 \%$ Pd/C ( 30 mg , containing 50\% water) in ethanol ( 4 mL ) was hydrogenated for 7.5 h under a stream of hydrogen at room temperature. After removal of catalyst by filtration through Celite and evaporation, the residue was dissolved in DMF (10 mL ) followed by addition of CDI ( $187 \mathrm{mg}, 1.15 \mathrm{mmol}$ ). The mixture was heated at $80^{\circ} \mathrm{C}$ for 2 h under argon atmosphere and poured into water, and the resulting precipitate was col lected, washed with water, dried, and purified by silica gel column chromatography to provide the title compound ( 66 mg , 0.13 mmol ) in $34 \%$ yield: $\mathrm{mp} 248-251^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Benzyl-4-(3-ethyl-3H-imidazo[4,5-g]quinazolin-8-yl)-1-piperazinethiocarboxamide (26). A mixture of 1i (504 $\mathrm{mg}, 1.20 \mathrm{mmol}$ ) and oxalyl chloride ( $0.13 \mathrm{~mL}, 1.49 \mathrm{mmol}$ ) in DMF ( 10 mL ) and pyridine ( $0.29 \mathrm{~mL}, 3.60 \mathrm{mmol}$ ) was stirred overnight at room temperature under argon atmosphere. The reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 5 h , cooled to room temperature, and poured into water. Then NaCl was added. The resulting precipitate was collected, washed with water, dried, and purified by silica gel column chromatography to
provide the title compound ( $284 \mathrm{mg}, 0.66 \mathrm{mmol}$ ) in $55 \%$ yield: ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{~S} \cdot 0.7 \mathrm{H}_{2} \mathrm{O} \cdot 0.1^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{O}\right) \mathrm{C}$, H, N.

4-(3-Ethyl-3H-1,2,3-triazolo[4,5-g]quinazolin-8-yl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (27). A suspension of $\mathbf{1 g}$ ( $395 \mathrm{mg}, 0.77 \mathrm{mmol}$ ) and $10 \% \mathrm{Pd} / \mathrm{C}(40 \mathrm{mg}$, containing $50 \%$ water) was hydrogenated for 7.5 h under hydrogen stream. After removal of catalyst by filtration through Celite and evaporation, the residue was dissolved in acetic acid ( 10 mL ), water ( 10 mL ), and concentrated hydrochloric acid ( 1 mL ). Sodium nitrite ( $106 \mathrm{mg}, 1.54 \mathrm{mmol}$ ) was added to the sol ution under ice cooling, and then the mixture was stirred for 4 h at the same temperature and poured into saturated aqueous sodium hydrogen carbonate. The resulting precipitate was collected, washed with water, dried, and purified by silica gel column chromatography to provide the title compound ( $119 \mathrm{mg}, 0.24 \mathrm{mmol}$ ) in $31 \%$ yield: $\mathrm{mp} 167-$ $168{ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR.
$\mathbf{N}$-(4-P henoxyphenyl)-4-(6-purinyl)-1-piperazinecarboxamide (38a). The title compound was synthesized from 4-[N-(4-phenoxyphenyl)carbamoyl]-1-pi perazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS) in $71 \%$ yield as described in general synthetic procedure C : mp $250-251^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-B enzyl-4-(6-purinyl)-1-pi perazi nethiocarboxamide (38b). 70\% yield from 4-(6-purinyl)-1-pi perazinecarboxylic acid tert-butyl ester ${ }^{49}$ and benzyl isothiocyanate by procedure B; mp 255-260 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H} N \mathrm{NR}, \mathrm{FABMS}$, IR. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{~S} \cdot \mathrm{O} .25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(2-Amino-6-purinyl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (38c). 95\% yield from 4-(2-amino-6-puri-nyl)-1-piperazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS, IR), which was synthesized from commercially available 2-amino-6-chloropurine in $44 \%$ yield, and benzyl isothiocyanate by procedure B ; mp 244-258 ${ }^{\circ} \mathrm{C}(E t O A c) ;{ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(9-Methyl-6-purinyl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (38d). 91\% yield from 4-(9-methyl-6-pur-inyl)-1-piperazinecarboxylic acid tert-butyl ester ${ }^{50}$ and 4-phenoxyphenyl isocyanate by procedure B ; mp 168-169 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(4-Phenoxyphenyl)-4-(4-pyrazolo[3,4-d]pyrimidinyl)-1-piperazinecarboxamide (39a). (1) To a refluxing suspension of commercially available 4-ami nopyrazol o[3,4-d]pyrimidine ( $420.8 \mathrm{mg}, 3.11 \mathrm{mmol}$ ) in dibromomethane ( 5 mL ) was added isoamyl nitrite ( $0.43 \mathrm{~mL}, 3.20 \mathrm{mmol}$ ). The mixture was refluxed for 3 h . After further addition of isoamyl nitrite ( 0.43 $\mathrm{mL}, 3.20 \mathrm{mmol}$ ) followed by refluxing for 3.5 h , the insoluble material was removed by filtration. The filtrate was evaporated, the resulting residue was dissolved in DMF ( 5 mL ), and then triethylamine $(2.00 \mathrm{~mL}, 14.3 \mathrm{mmol})$ and N-tert-butoxycarbonylpiperazine ( $1.00 \mathrm{~g}, 5.37 \mathrm{mmol}$ ) were added, followed by stirring overnight at room temperature. After the reaction mixture was evaporated, the resulting residue was purified by silica gel column chromatography to provide 4-(4-pyrazolo-[3,4-d]pyrimidinyl)-1-piperazi necarboxylic acid tert-butyl ester ( $20.4 \mathrm{mg}, 0.07 \mathrm{mmol}$ ) in $2 \%$ yield: ${ }^{1} \mathrm{H}$ NMR, FABMS. (2) The title compound was synthesized from 4-(4-pyrazolo[3,4-d]-pyrimidinyl)-1-pi perazinecarboxylic acid tert-butyl ester and 4-phenoxyphenyl isocyanate by procedure B in 48\% yield: ${ }^{1} \mathrm{H}$ NMR, FABMS.

4-(1-Methyl-4-1H-pyrazolo[3,4-d]pyrimidinyl)-N-(4-phen-oxyphenyl)-1-piperazinecarboxamide (39b). 81\% yield from 1-methyl-4-(1-piperazinyl)-1H-pyrazolo[3,4-d]pyrimidine, which was synthesized from 4-hydroxy-1-methyl-1H-pyrazolo-[3,4-d]pyrimidine ${ }^{50}$ in $83 \%$ yield, and 4-phenoxyphenyl isocyanate by procedure A ; mp $155-156{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(4-Phenoxyphenyl)-4-(1,3-dihydro-2-oxo-2H-imidazo-[4,5-d]pyrimidine-4-yl)-1-piperazinecarboxamide (31). (1) A mixture of commercially available 4,6-dichloro-5-nitropyrimidine (28) (1.00 g, 5.44 mmol ) and dichloromethane saturated with ammonia gas ( 50 mL ) was stirred for 1 h at room temperature and evaporated. The resulting residue was dis-
solved in DMF (10 mL), and then N-tert-butoxycarbonylpiperazine ( $1.15 \mathrm{~g}, 6.17 \mathrm{mmol}$ ) and triethylamine ( $3.59 \mathrm{~mL}, 25.8$ mmol ) were added, followed by heating at $80^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was cooled to room temperature and poured into water. Then NaCl was added. The resulting precipitate was collected by filtration, washed with water, and dried to provide 4-(6-amino-5-nitro-4-pyrimidinyl)-1-piperazinecarboxylic acid tert-butyl ester (29) ( $888 \mathrm{mg}, 2.74 \mathrm{mmol}$ ) in $50 \%$ yield: ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. (2) A suspension of 29 (888 mg, 2.74 mmol) and $10 \% \mathrm{Pd} / \mathrm{C}$ ( 200 mg , containing $50 \%$ water) was hydrogenated for 2 h at room temperature under hydrogen stream. After addition of chloroform and removal of catalyst by filtration through Celite, the filtrate was evaporated. The resulting residue was dissolved in DMF ( 10 mL ) and triethylamine ( $1.91 \mathrm{~mL}, 13.7 \mathrm{mmol}$ ). CDI ( $888 \mathrm{mg}, 5.48 \mathrm{mmol}$ ) was added, followed by heating of the mixture at $80^{\circ} \mathrm{C}$ for 4.5 h . After the reaction mixture was cooled to room temperature and poured into water, NaCl was added. The resulting precipitate was collected by filtration, washed with water, and dried to provide 4-(1,3-dihydro-2-oxo-2H-imidazo[4,5-d]pyri-midine-4-yl)-1-piperazi necarboxylic acid tert-butyl ester (30) ( $161 \mathrm{mg}, 0.50 \mathrm{mmol}$ ) in $18 \%$ yield: ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. (3) The title compound was synthesized from 30 and 4-phenoxyphenyl isocyanate by procedure $B$ in $52 \%$ yield: ${ }^{1} H$ NMR, FABMS.

N-(4-Phenoxyphenyl)-4-(6,7-dimethoxy-4-quinolyl)-1piperazinecarboxamide (40a). 57\% yield from 4-(6,7-dimethoxy-4-quinolyl)-1-piperazinecarboxylic acid tert-butyl ester, which was synthesized from 4-hydroxy-6,7-dimethoxyquinoline ${ }^{51}$ in 10\% yield, and 4-phenoxyphenyl isocyanate by procedure B ; $\mathrm{mp} 204-206{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Cr}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N.

4-(6,7-Dimethoxy-3-ethoxycarbonyl-4-quinolyl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (40b). 100\% yield from 4-(6,7-dimethoxy-3-ethoxycarbonyl-4-quinolyl)-1piperazinecarboxylic acid tert-butyl ester (mp, ${ }^{1} \mathrm{H}$ NMR, FABMS, IR, Anal.), which was synthesized from 4-chloro-6,7-dimethoxy-3-ethoxycarbonylquinoline ${ }^{52}$ in $91 \%$ yield, and 4-phenoxyphenyl isocyanate by procedure B; mp 163-164 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{iPr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Benzyl-4-(6,7-dimethoxy-3-ethoxycarbonyl-4-quin-olyl)-1-pi perazi nethiocarboxamide (40c). 100\% yield from 4-(6,7-dimethoxy-3-ethoxycarbonyl-4-quinolyl)-1-piperazinecarboxylic acid tert-butyl ester and benzyl isothiocyanate by procedure B ; $\mathrm{mp} 174-175^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-i \mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(6-Chloro-4-quinolyl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (40d). 83\% yield from 6-chloro-4-(1-piperazinyl)quinoline (FABMS), which was synthesized from 4,6dichloroquinoline ${ }^{51}$ in quantitative yield, and 4-phenoxyphenyl isocyanate by procedure A ; $\mathrm{mp} 188-189{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{i} \mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{CIN}_{4} \mathrm{O}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Benzyl-4-(6-chloro-4-quinolyl)-1-piperazinethiocarboxamide (40e). 91\% yield from 6-chloro-4-(1-piperazinyl)quinoline and 4-phenoxyphenyl isocyanate by procedure $A$; mp 173-174 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{FABMS}, ~ I R . ~ A n a l . ~$ $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{CIN}_{4} \mathrm{~S} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(4-Phenoxyphenyl)-4-(7-chloro-4-quinolyl)-1-piperazinecarboxamide (40f). 100\% yield from 7-chloro-4-(1-piperazinyl)quinoline ${ }^{53}$ and 4-phenoxyphenyl isocyanate by procedure A; mp $159-161{ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{CIN}_{4} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Benzyl-4-(7-chloro-4-quinolyl)-1-piperazinethiocarboxamide ( $\mathbf{4 0 g}$ ). 89\% yield from 7-chloro-4-(1-piperazinyl)quinoline and benzyl isothiocyanate by procedure A; mp 84$86{ }^{\circ} \mathrm{C}$ (EtOAC); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. ( $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{CIN}_{4} \mathrm{~S}$. $\left.0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(8-Chloro-4-quinolyl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (40h). 99\% yield from 8-chloro-4-(1-piperazinyl )quinoline (TOF MS), which was synthesized from 4,8dichloroquinoline ${ }^{54}$ in quantitative yield, and 4-phenoxyphenyl isocyanate by procedure A; mp 174-175 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H} N M R$, FABMS, IR. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{2} \cdot 0.25^{i} \mathrm{Pr}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(4-Phenoxyphenyl)-4-(2-trifluoromethyl-4-quinolyl)-1-piperazinecarboxamide (40i). 41\% yield from commercially available 2-trifluoromethyl-4-(1-piperazinyl)quinoline and 4-phenoxyphenyl isocyanate by procedure A; mp 203-204 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}\right) \mathrm{C}$, H, N.

N-(4-Phenoxyphenyl)-4-(7-trifluoromethyl-4-quinolyl)-1-piperazinecarboxamide (40j). 100\% yield from 7-trifluo-romethyl-4-(1-piperazinyl)quinoline(TOFMS), which was synthesized from commercially available 4-chloro-7-trifluoroquinoline in quantitative yield, and 4-phenoxyphenyl isocyanate by procedure A; mp 163-164 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(4-Phenoxyphenyl)-4-(4-quinolyl)-1-piperazinecarboxamide (40k). 93\% yield from 4-(1-piperazinyl)quinoline, which was synthesized from 4-chloroquinoline ${ }^{51}$ in quantitative yield, and 4-phenoxyphenyl isocyanate by procedure A ; mp $145-146{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS , IR. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-Benzyl-4-(4-quinolyl)-1-piperazinethiocarboxamide (40I). $96 \%$ yield from 4-(1-piperazinyl) quinoline and benzyl isothiocyanate by procedure A ; $\mathrm{mp} 75-79{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{iPr}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{~S} \cdot 0.25 \mathrm{H}_{2} \mathrm{O} \cdot 0.25 \mathrm{P}_{2} \mathrm{O}\right)$ C, H, N.

4-(6,7-Dimethoxy-1-isoquinolyl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (41a). 87\% yield from 4-(6,7-dimethoxy-1-isoquinolyl)-1-piperazinecarboxylic acid tert-butyl ester (IR), which was synthesized from 1,3-dichloro-6,7dimethoxyisoquinoline ${ }^{55}$ in quantitative yield via 4-(3-chloro-6,7-dimethoxy-1-isoquinolyl)-1-piperazinecarboxylic acid tertbutyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS, IR) by a similar reaction of 43a (steps 1 and 2), and 4-phenoxyphenyl isocyanate by procedure B; mp 178-179 ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{i} \mathrm{Pr}_{2} \mathrm{O}\right)$; ${ }^{1 \mathrm{H}}$ NMR, FABMS , IR. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(1-I soquinolyl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (41b). 100\% yield from 4-(1-isoquinolyl)-1piperazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS, IR), which was synthesized from commercially available 1,3dichloroisoquinoline in $77 \%$ yield via 4 -(3-chloro-1-isoquinolyl)-1-pi perazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS, IR) by similar reaction of 43a (steps 1 and 2), and 4-phenoxyphenyl isocyanate by procedure B ; $\mathrm{mp} 122-123^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\right.$ ${ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ ); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(6,7-Dimethoxy-4-cinnolinyl)-N-(4-phenoxyphenyl)-1-piperazinecarboxamide (42). 73\% yield from 6,7-dimeth-oxy-4-(1-piperazinyl)cinnoline, which was synthesized from 4-chloro-6,7-dimethoxycinnoline ${ }^{56}$ in quantitative yield, and 4-phenoxyphenyl isocyanate by procedure A ; $\mathrm{mp} 165-167{ }^{\circ} \mathrm{C}$ ( $\mathrm{CHCl}_{3}{ }^{-} \mathrm{Pr}_{2} \mathrm{O}$ ); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(4-Phenoxyphenyl)-4-(1-phthalazinyl)-1-piperazinecarboxamide (43a). (1) A mixture of commercially available 1,4-dichlorophthalazine ( $2.09 \mathrm{~g}, 10.5 \mathrm{mmol}$ ), N-tert-butoxycarbonylpiperazine ( $2.35 \mathrm{~g}, 12.6 \mathrm{mmol}$ ), and triethylamine ( 7.32 $\mathrm{mL}, 52.5 \mathrm{mmol})$ in NMP $(20 \mathrm{~mL})$ was heated at $70^{\circ} \mathrm{C}$ for 2 h under argon atmosphere. The reaction mixture was cooled to room temperature and poured into water. Then NaCl was added. The resulting precipitate was collected by filtration, washed with water, dried, and purified by silica gel column chromatography to provide 4-(4-chloro-1-phthalazinyl)-1-piperazinecarboxylic acid tert-butyl ester ( $2.77 \mathrm{~g}, 7.95 \mathrm{mmol}$ ) in $76 \%$ yield: ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. (2) A suspension of 4-(4-chloro-1-phthalazinyl)-1-piperazinecarboxylic acid tert-butyl ester ( $2.30 \mathrm{~g}, 6.59 \mathrm{mmol}$ ) and $10 \% \mathrm{Pd} / \mathrm{C}(500 \mathrm{mg}$, containing $50 \%$ water) in acetic acid ( 30 mL ) was hydrogenated at $50^{\circ} \mathrm{C}$ for 3 h under hydrogen stream. After removal of catalyst by filtration through Celite and evaporation, the residue was purified by silica gel column chromatography to provide 4-(1phthal azinyl)-1-piperazinecarboxylic acid tert-butyl ester (801.6 $\mathrm{mg}, 2.55 \mathrm{mmol}$ ) in $39 \%$ yield: ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. (3) The title compound was synthesized from 4-(1-phthalazinyl)-1piperazinecarboxylic acid tert-butyl ester and 4-phenoxyphenyl
isocyanate by procedure B in $98 \%$ yield: mp 202-203 ${ }^{\circ} \mathrm{C}$ ( $\mathrm{CHCl}_{3}{ }^{-i} \mathrm{Pr}_{2} \mathrm{O}$ ); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. ( $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}$ ) C, H, N.

4-(4-Chloro-1-phthalazinyl)-N-(4-phenoxyphenyl)-1piperazinecarboxamide (43b). 100\% yield from 4-(4-chloro-1-phthalazinyl)-1-piperazinecarboxylic acid tert-butyl ester and 4-phenoxyphenyl isocyanate by procedure B ; $\mathrm{mp} 196-197{ }^{\circ} \mathrm{C}$ ( $\mathrm{CHCl}_{3}-\mathrm{i} \mathrm{Pr}_{2} \mathrm{O}$ ); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{5} \mathrm{O}_{2}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(4-Benzyl-1-phthalazinyl)-N-(4-phenoxyphenyl)-1piperazinecarboxamide (43c). 75\% yield from 1-benzyl-4-(1-pi perazinyl)phthal azine, which was synthesized from commercially available 1-benzyl-4-chlorophthalazine in quantitative yield, and 4-phenoxyphenyl isocyanate by procedure $A$; mp $100-101{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{Pr}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(4-Phenoxyphenyl)-4-(6-fluoro-4-pyrido[3,4-d]pyri-midinyl)-1-piperazinecarboxamide (44). 86\% yield from 4-(6-fluoro-4-pyrido[3,4-d]pyrimidinyl)-1-piperazinecarboxylic acid tert-butyl ester ( ${ }^{1} \mathrm{H}$ NMR, FABMS), which was synthesized from 6-fluoropyrido[3,4-d]pyrimidine-4(3H )-one ${ }^{41}$ in 58\% yield, and 4-phenoxyphenyl isocyanate by procedure B ; mp 185-186 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS. Anal. ( $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{FN}_{6} \mathrm{O}_{2}$ ) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(4-Phenoxyphenyl)-4-(4-pyrido[2,3-d]pyrimidinyl)-1-piperazinecarboxamide (45). (1) A mixture of 4-mercap-topyrido[2,3-d]pyrimidine ${ }^{57}$ ( $742 \mathrm{mg}, 4.55 \mathrm{mmol}$ ), potassium carbonate ( $755 \mathrm{mg}, 5.47 \mathrm{mmol}$ ), and iodomethane ( 0.34 mL , $5.47 \mathrm{mmol})$ in DMF ( 10 mL ) was stirred overnight at room temperature under argon atmosphere. Triethylamine (3.17 $\mathrm{mL}, 22.7 \mathrm{mmol}$ ) and N -tert-butoxycarbonylpiperazine ( 1.67 g , 8.97 mmol ) were added, followed by stirring overnight at room temperature. N -tert-Butoxycarbonylpiperazine ( $0.90 \mathrm{~g}, 4.83$ mmol ) was further added, followed by heating at $110^{\circ} \mathrm{C}$ for 3.5 h . The reaction mixture was cool ed to room temperature and poured into water, and the resulting mixture was extracted with dichloromethane. The extract was washed with brine, dried over anhydrous sodium sulfate, evaporated, and purified by silica gel column chromatography to provide 4-(4-pyrido[2,3-d]pyrimidinyl)-1-piperazinecarboxylic acid tert-butyl ester ( $1.05 \mathrm{~g}, 3.33 \mathrm{mmol}$ ) in $73 \%$ yield: ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. (2) The title compound was synthesized from 4-(4-pyrido[2,3-d]pyrimidinyl)-1-piperazinecarboxylic acid tert-butyl ester and 4-phenoxyphenyl isocyanate by procedure $B$ in $76 \%$ yield: mp $104-106^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR, FABMS, IR. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{2}\right.$. $\left.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Pharmacokinetic Studies. Pharmacokinetic Study of 1b. 1b was intravenously ( $1 \mathrm{mg} / \mathrm{kg}$, rat nos. 1-4) and orally ( $30 \mathrm{mg} / \mathrm{kg}$, rat nos. 5-7) administered to male Sprague-Dawly (SD) rats, and the plasma concentration was determined by an HPLC method. Pharmacokinetic parameters were obtained by model-independent analysis.

Pharmacokinetic Study of 16k. which was observed to have different pharmacokinetic profiles in two phenotypes (extensive metabolizers (EMs) and poor metabolizers (PMs)), was orally administered to male SD rats ( $3 \mathrm{mg} / \mathrm{kg}, \mathrm{n}=4$ ). The plasma samples withdrawn 30 min after dosing were analyzed by an HPLC method. EMs and PMs were discriminated by the presence and absence, respectively, of a characteristic peak of the metabolite observed only in EMs in HPLC. After a 1-week washout period, 16k was intravenously administered to each phenotype ( $1 \mathrm{mg} / \mathrm{kg}, \mathrm{n}=2$ ) and the plasma concentration was determined by an HPLC method. The pharmacokinetic parameters were obtained by model-independent analysis.

Acknowledgment. The technical assistance of Kumi Aoki, Miyuki Akimoto, and Chika Okitsu is acknowledged. The authors gratefully appreciate Yumiko Aono for her excellent technical assistance in chemical synthesis.

Supporting Information Available: A listing of the NMR, MS, combustion analysis (CHN), and IR data for the
compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

## References

(1) Fretto, L. J .; Snape, A. J .; Tomlinson, J . E.; Seroogy, J . J .; Wolf, D. L.; LaRochelle, W. J.; Giese, N. A. Mechanism of PlateletDerived Growth Factor (PDGF) AA, AB, and BB Binding to Alpha and Beta PDGF Receptor. J . Biol. Chem. 1993, 268, 36253631.
(2) Heldin, C. H.; Ostman, A.; Eriksson, A.; Siegbahn, A.; ClaessonWelsh, L.; Westermark, B. Platelet-Derived Growth Factor: Isoform-Specific Signalling via Heterodimeric or Homodimeric Receptor Complexes. Kidney Int. 1992, 41, 571-574.
(3) Herren, B.; Rooney, B.; Weyer, K. A.; I berg, N.; Schmid, G.; Pech, M. Dimerization of Extracellular Domains of Platelet-Derived Growth Factor Receptors. A Revised Model of Receptor-Ligand Interaction. J. Biol. Chem. 1993, 268, 15088-15095.
(4) Stoddard, B. L.; Biemann, H. P.; K oshland, D. E., J r. Receptors and Transmembrane Signaling. Cold Spring Harbor Symp. Quant. Biol. 1992, 57, 1-15.
(5) Bonner, J. C.; Lindroos, P. M.; Rice, A. B.; Moomaw, C. R.; Morgan, D. L. Induction of PDGF Receptor-alpha in Rat Myofibroblasts during Pulmonary Fibrogenesis in Vivo. Am. J. Physiol.: Lung Cell. Mol. Physiol. 1998, 274, L72-L80.
(6) Friedman, S. L. Molecular Regulation of Hepatic Fibrosis, an Integrated Cellular Response to Tissue Injury. J. Biol. Chem. 2000, 275, 2247-2250.
(7) Gesualdo, L.; Pinzani, M.; Floriano, J . J .; Hassan, M. O.; Nagy, N. U.; Schena, F. P.; Emancipator, S. N.; Abboud, H. E. PlateletDerived Growth Factor Expression in Mesangial Proliferative Glomerulonephritis. Lab. Invest. 1991, 65, 160-167.
(8) Heldin, C. H.; Westermark, B. Platelet-Derived Growth Factor: Mechanism of Action and Possible in Vivo Function. Cell Regul. 1990, 1, 555-566.
(9) Iida, H.; Seifert, R.; Alpers, C. E.; Gronwald, R. G. K.; Phillips, P. E.; Pritzl, P.; Gordon, K.; Gown, A. M.; Ross, R.; Bowen-Pope, D. F.; J ohnson, R. J. Platelet-Derived Growth Factor (PDGF) and PDGF Receptor Are Induced in Mesangial Proliferative Nephritis in the Rat. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 6560-6564.
(10) J ohnson, R. J.; Raines, E. W.; Floege, J .; Y oshimura, A.; Pritzl, P.; Alpers, C.; Ross, R. Inhibition of Mesangial Cell Proliferation and Matrix Expansion in Glomerulonephritis in the Rat by Antibody to Platelet-Derived Growth Factor. J . Exp. Med. 1992, 175, 1413-1416.
(11) Rice, A. B.; Moomaw, C. R.; Morgan, D. L.; Bonner, J . C. Specific Inhibitors of Platelet-Derived Growth Factor or Epidermal Growth Factor Receptor Tyrosine Kinase Reduce Pulmonary Fibrosis in Rats. Am. J. Pathol. 1999, 155, 213-221.
(12) Ross, R.; Masuda, J.; Raines, E. W.; Gown, A. M.; Katsuda, S.; Sasahara, M.; Malden, L. T.; Masuko, H.; Sato, H. Localization of PDGF-B Protein in Macrophages in All Phases of Atherogenesis. Science 1990, 248, 1009-1012.
(13) Wilcox, J. N.; Smith, K. M.; Williams, L. T.; Schwartz, S. M.; Gordon, D. Platelet-Derived Growth Factor mRNA Detection in Human Atherosclerotic Plaques by in Situ Hybridization. J . Clin. Invest. 1988, 82, 1134-1143.
(14) Wong, L.; Yamasaki, G.; J ohnson, R. J.; Friedman, S. L. Induction of Beta-Platelet-Derived Growth Factor Receptor in Rat Hepatic Lipocytes during Cellular Activation in Vivo and in Culture. J. Clin. Invest. 1994, 94, 1563-1569.
(15) Yagi, M.; Kato, S.; K obayashi, Y.; K obayashi, N.; I inuma, N.; Nakamura, K.; Kubo, K.; Ohyama, S.; Murooka, H.; Shimizu, T.; Nishitoba, T.; Osawa, T.; Nagano, N. Beneficial Effects of a Novel Inhibitor of Platelet-Derived Growth Factor Receptor Autophosphorylation in the Rat with Mesangial Proliferative Glomerulonephritis. Gen. Pharmacol. 1998, 31, 765-773.
(16) Bilder, G.; Wentz, T.; Leadley, R.; Amin, D.; Byan, L.; O'Conner, B.; Needle, S.; Galczenski, H.; Bostwick, J.; K asiewski, C.; Myers, M.; Spada, A.; Merkel, L.; Ly, C.; Persons, P.; Page, K.; Perrone, M.; Dunwiddie, C. Restenosis Following Angioplasty in the Swine Coronary Artery Is Inhibited by an Orally Active PDGFReceptor Tyrosine Kinase Inhibitor, RPR101511A. Circulation 1999, 99, 3292-3299.
(17) Ferns, G. A.; Raines, E. W.; Sprugel, K. H.; Motani, A. S.; Reidy, M. A.; Ross, R. Inhibition of Neointimal Smooth Muscle Accumulation after Angioplasty by an Antibody to PDGF. Science 1991, 253, 1129-1132.
(18) Giese, N. A.; Marijianowski, M. M. H.; McCook, O.; Hancock, A.; Ramakrishnan, V.; Fretto, L. J .; Chen, C.; Kelly, A. B.; K oziol, J. A.; Wilcox, J. N.; Hanson, S. R. The Role of Alpha and Beta Platelet-Derived Growth Factor Receptor in the Vascular Response to Injury in Nonhuman Primates. Arterioscler., Thromb., Vasc. Biol. 1999, 19, 900-909.
(19) Hart, C. E.; Kraiss, L. W.; Vergel, S.; Gilbertson, D.; Kenagy, R.; Kirkman, T.; Crandall, D. L.; Tickle, S.; Finney, H.; Yarranton, G.; Clowes, A. W. PDGF $\beta$ Receptor Blockade Inhibits Intimal Hyperplasia in the Baboon. Circulation 1999, 99, 564569.
(20) Sirois, M. G.; Simons, M.; Edelman, E. R. Antisense Oligonucleotide Inhibition of PDGFR- $\beta$ Receptor Subunit Expression Directs Suppression of Intimal Thickening. Circulation 1997, 95, 669-676.
(21) Matsuno, K.; Ichimura, M.; Nakajima, T.; Tahara, K.; Fujiwara, S.; K ase, H.; Giese, N. A.; Pandey, A.; Scarborough, R. M.; Yu, J .-C.; Lokker, N. A.; Irie, J.; Tsukuda, E.; Ide, S.-i.; Oda, S.; Nomoto, Y. Potent and Selective Inhibitors of Platelet-Derived Growth Factor Receptor Phosphorylation. 1. Synthesis and Structure-Activity Relationship, and Biological Effects of a New Class of Quinazoline Derivatives. J. Med. Chem. 2002, 45, 30573066.
(22) Matsuno, K.; Nakajima, T.; Ichimura, M.; Giese, N. A.; Yu, J .C.; Lokker, N. A.; Ide, S.-i.; Oda, S.; Nomoto, Y. Potent and Selective Inhibitors of PDGF Receptor Phosphorylation. 2. Synthesis, Structure Activity Relationship, Improvement of Aqueous Solubility and Biol ogi cal Effects of 4-[4-(N-Substituted (thio)carbamoyl)-1-piperazinyl]-6,7-dimethoxyquinazoline Derivatives. J. Med. Chem. 2002, 45, 4513-4523.
(23) Matsuno, K.; Seishi, T.; Nakajima, T.; Ichimura, M.; Giese, N. A.; Yu, J.-C.; Oda, S.; Nomoto, Y. Potent and Selective Inhibitors of Platelet-Derived Growth Factor Receptor Phosphorylation. Part 4. Structure-Activity Relationships for Substituents on the Quinazoline Moiety of 4-[4-(N-Substituted (thio)carbamoyl)-1-piperazinyl]-6,7-dimethoxyquinazol ine Derivatives. Bioorg. Med. Chem. Lett. 2003, 13, 3001-3004.
(24) Matsuno, K.; Ichimura, M.; Nomoto, Y.; Fujiwara, S.; Ide, S.-i.; Tsukuda, E.; Irie, J.; Oda, S. Nitrogen-Containing Heterocyclic Compounds. PCT Int. Appl. WO9814431, April 9, 1998; Chem. Abstr. 1998, 128, 257447.
(25) Matsuno, K.; Nomoto, Y.; Ichimura, M.; Ide, S.-i.; Oda, S. Nitrogen-Containing Heterocyclic Compounds. PCT Int. Appl. WO9951582, October 14, 1999; Chem. Abstr. 1999, 131, 271888.
(26) Matsuno, K.; Nakajima, T.; Tahara, K.; Seishi, T.; Fujiwara, S.; I chimura, M.; Giese, N. A.; Yu, J.-C.; Irie, J.; Tsukuda, E.; I de, S.-i.; Oda, S.; Nomoto, Y. Synthesis and Structure Activity Relationships of PDGF Receptor Phosphorylation Inhibitor-1. Presented at the 18th Symposium on Medicinal Chemistry, 7th Annual Meeting of Division of Medicinal Chemistry, The Pharmaceutical Society of J apan, K yoto, J apan, November 25-27, 1998; Paper 2P-05.
(27) Matsuno, K.; Nakajima, T.; Tahara, K.; Fujiwara, S.; Ichimura, M.; Giese, N. A.; Yu, J .-C.; Irie, J .; Tsukuda, E.; Ide, S.-i.; Oda, S.; Nomoto, Y. Selective Inhibitor of PDGF Receptor Phosphorylation. Synthesis, Structure Activity Relationships and Biological Effects. Presented at the 217th National Meeting of the American Chemical Society, Anaheim, CA, March 21-25, 1999; Paper MEDI 61.
(28) Yu, J .-C.; Lokker, N.; H ollenbach, S.; Apatira, M.; Li, J .; Betz, A.; Sedlock, D.; Oda, S.; Nomoto, Y.; Matsuno, K.; Ide, S.; Tsukuda, E.; Giese, N. A. Efficacy of the Novel Selective PlateletDerived Growth Factor Receptor Antagonist CT52923 on CelIular Proliferation, Migration, and Suppression of Neointima Following Vascular Injury. J . Pharmacol. Exp. Ther. 2001, 298, 1172-1178.
(29) Lokker, N. A.; Sullivan, C. M.; Hollenbach, S. J.; Israel, M. A.; Giese, N. A. Platelet-Derived Growth Factor (PDGF) Autocrine Signaling Regulates Survival and Mitogenic Pathways in Glioblastoma Cells: Evidence That the Novel PDGF C and PDGF D Ligands May Play a Role in the Development of Brain Tumors. Cancer Res. 2002, 62, 3729-3735.
(30) Giese, N. A.; Lokker, N. A.; Yu, J.-C.; Matsuno, K.; Ichimura, M.; Oda, S.; Scarborough, R. M.; Pandey, A. Development of Antagonists of the Platelet-Derived Growth Factor Receptor Family. Oncol. Spectrum 2001, 2, 550-556.
(31) Leonard, N. J.; M orrice, A. G.; Sprecker, M. A. Linear Benzoadenine. A Streched-Out Analog of Adenine. J. Org. Chem. 1975, 40, 356-363.
(32) Machii, D.; Matsuno, K.; Kinoshita, I.; Nomoto, Y.; Takai, H.; Ohno, T.; Nagashima, K.; Ishikawa, T.; Yamada, K. Preparation of Imidazoquinazoline Derivatives Having Cyclic Guanosine 3',5'-M onophosphate (cGMP)-Specific Phosphoesterase Inhibitor Activity. PCT Int. Appl. WO9506648, March 9, 1995; Chem. Abstr. 1995, 123, 256749p.
(33) Pandey, A.; Volkots, D. L.; Seroogy, J. M.; Rose, J. W.; Yu, J .C.; Lambing, J. L.; Hutchaleelaha, A.; Hollenbach, S. J.; Abe, K.; Giese, N. A.; Scarborough, R. M. Identification of Orally Active, Potent, and Selective 4-Piperazinylquinazolines as Antagonists of the Platelet-Derived Growth Factor Receptor Tyrosine Kinase Family. J. Med. Chem. 2002, 45, 3772-3793.
(34) Bridges, A. J. Chemical Inhibitors of Protein Kinases. Chem. Rev. 2001, 101, 2541-2571.
(35) Rewcastle, G. W.; Denny, W. A.; Bridges, A. J.; Zhou, H.; Cody, D. R.; McMichael, A.; Fry, D. W. Tyrosine Kinase Inhibitors. 5. Synthesis and Structure-Activity Relationships for 4-(Phenyl-methyl)amino- and 4-Phenylaminoquinazolines as Potent Adenosine $5^{\prime}$-Triphosphate Binding Site Inhibitors of the Tyrosine Kinase Domain of the Epidermal Growth Factor Receptor. J. Med. Chem. 1995, 38, 3482-3487.
(36) Gazit, A.; Chen, J .; App, H.; McMahon, G.; Hirth, P.; Chen, I.; Levitzki, A. Tyrophostins IV-Highly Potent Inhibitors of EGF Receptor Kinase. Structure-Activity Relationship Study of 4-Anilidoquinazolines. Bioorg. Med. Chem. 1996, 8, 1203-1207.
(37) Bridges, A. J.; Zhou, H.; Cody, D. R.; Rewcastle, G. W.; McMichael, A.; Showalter, H. D. H.; Fry, D. W.; Kraker, A. J.; Denny, W. A. Tyrosine Kinase Inhibitors. 8. Unusually Steep Structure-Activity Relationship for 4-(3-Bromoanilino)-6,7dimethoxyquinazoline (PD153035), a Potent Inhibitor of the Epidermal Growth Factor Receptor. J. Med. Chem. 1996, 39, 267-276.
(38) Rewcastle, G. W.; Palmer, B. D.; Bridges, A. J.; Showalter, H. D. H.; Sun, L.; Nelson, J .; McMichael, A.; Kraker, A. J .; Fry, D. W.; Denny, W. A. Tyrosine Kinase Inhibitors. 9. Synthesis and Evaluation of Fused Tricydic Quinazol ine Analogues as ATP Site Inhibitors of the Tyrosine Kinase Activity of the Epidermal Growth Factor Receptor. J. Med. Chem. 1996, 39, 918-928.
(39) Myers, M. R.; Setzer, N. N.; Spada, A. P.; Persons, P. E.; Ly, C. Q.; Maguire, M. P.; Zulli, A. L.; Cheney, D. L.; Zilberstein, A.; J ohnson, S. E.; Franks, C. F.; Mitchell, K. J. The Synthesis and SAR of New 4-(N-Alkyl-N-phenyl)amino-6,7-dimethoxyquinazolines and 4-(N-Alkyl-N-phenyl) aminopyrazol o[3,4-d]pyrimidines, Inhibitors of CSF-1R Tyrosine Kinase Activity. Bioorg. Med. Chem. Lett. 1997, 4, 421-424.
(40) Rewcastle, G. W.; Palmer, B. D.; Thompson, A. M.; Bridges, A J.; Cody, D. R.; Zhou, H.; Fry, D. W.; McMichael, A.; Denny, W. A. Tyrosine Kinase Inhibitors. 10. I someric 4-[(3-Bromophenyl)-amino]pyrido[d]-pyrimidines Are Potent ATP Binding Site Inhibitors of the Tyrosine Kinase Function of the Epidermal Growth factor Receptor. J. Med. Chem. 1996, 39, 1823-1835.
(41) Takahara, E.; Nagata, O.; K ato, H.; Ohta, S.; Hirobe, M. Interindividual Differences of 4-[4-(4-Methylphenyl)-phenylmethoxy-1-piperidinyl ]butyric Acid Disposition in Rats: Possible Involvement of Genetic Polymorphism. Drug Metab. Dispos. 1994, 22, 761-769.
(42) K olodynska, Z.; Biniecki, S. Synthesis of Certain Quinazoyl and Bisquinazoyl Diamines. Acta Pol. Pharm. 1965, 21, 225; Chem. Abstr. 1965, 62, 13144g.
(43) Fujiwara, S.; Okamura, Y.; Takai, H.; Nonaka, H.; Yao, K.; K arasawa, A. Preparation of 1-Oxo-2-(4-piperidinyl)quinazoline and 1-Oxo-2-(4-piperidinylal kyl) quinazoline Derivatives Inhibiting Cellular Uptake of Adenosine. PCT Int. Appl. WO9933792, August 6, 1998; Chem. Abstr. 1998, 129, 161568.
(44) Fujiwara, S.; Machii, D.; Takai, H.; Nonaka, H.; Kase, H.; Yao, K.; Kawakage, M.; Kusaka, H.; Karasawa, A. Preparation of Quinazoline Derivatives as Adenosine Uptake Inhibitors. PCT Int. Appl. WO9419342, September 1, 1994; Chem. Abstr. 1995, 123, 143912.
(45) Takase, Y.; Saeki, T.; Watanabe, N.; Adachi, H.; Souda, S.; Saito, I. Cyclic GMP Phosphodiesterase Inhibitors. 2. Requirement of 6-Substitution of Quinazoline Derivatives for Potent and Selective Inhibitory Activity. J. Med. Chem. 1994, 37, 21062111.
(46) Arnold, L. D. Preparation of 4-Heterocyclylquinazolines as Anticancer Agents. U.S. Patent 5,736,534, April 7, 1998; Chem. Abstr. 1998, 128, 270611.
(47) Armarego, W. L. F.; Smith, J. I. C. Quinazolines. IX. Covalent Hydration in the Neutral Species of Substituted Quinazolines. J. Chem. Soc. B 1967, 449-454.
(48) Schnur, R. C.; Arnold, L. D. Preparation of Alkynyl- and AzidoSubstituted 4-Anilinoquinazolines for the Treatment of Hyperproliferative Diseases. U.S. Patent 5,747,498, May 5, 1998; Chem. Abstr. 1998, 128, 321653.
(49) J ohnston, D. B. R.; MacCoss, M.; Marburg, S.; Meurer, L. C.; Tolman, R. L. Preparation of Piperazinyl Derivatives of Purines and I sosteres as Hypoglycemic Agents. U.S. Patent 5,057,517, October 15, 1991; Chem. Abstr. 1991, 116, 214255.
(50) Cheng, C. C.; Robins, R. K. Potential Purine Antagonists. VI. Synthesis of 1-Alkyl- and 1-Aryl-4-substituted Pyrazolo[3,4-d]pyrimidines. J. Org. Chem. 1956, 21, 1240-1256.
(51) Riegel, B.; Lappin, G. R.; Adelson, B. H.;J ackson, R. I.; Albisetti, C. J., J r.; Dodson, R. M.; Baker, R. H. The Synthesis of Some 4-Quinolinols and 4-Chloroquinolines by the Ethoxymethylenemalonic Ester Method. J. Am. Chem. Soc. 1946, 68, 1264-1266.
(52) Wright, G. C.; Watson, E. J.; Ebetino, F. F.; Lougheed, G.; Stevenson, B. F.; Winterstein, A. Bickerton, R. K.; Halliday, R. P.; Pals, D. T. Synthesis and Hypotensive Properties of New 4-Aminoquinolines. J. Med. Chem. 1971, 14, 1060-1066.
(53) Agrawal, V. K.; Sharma, S. Antiparasitic Agents: Part VISynthesis of 7-Chloro-4-(4-substituted-phenylamino)- \& 7-Chloro-4-(4-substituted-piperazin-1-yl)quinolines as Potential Antiparasitic Agents. Indian J. Chem. 1987, 26B, 550-555.
(54) Morley, J. S.; Simpson, J. C. E. The Chemistry of Simple Heterocyclic Systems. Part I. Reactions of 6- and 7-Nitro-4Hydroxyquinazoline and Their Derivatives. J. Chem. Soc. 1948, 360-366.
(55) Simchen, G.; Kraemer, W. Reactions with Hydrogen Halide Adducts of Nitriles. II. Synthesis of 1,3-Dichloroisoquinolines and Structural Studies of 3-Chloro-1-(2H)-isoquinolones. Chem. Ber. 1969, 102, 3666-3678.
(56) Yarnal, S. M.; Badiger, V. V. Cinnoline Chemistry. III. Synthesis of Substitituted Phenyl Cinnolyl Sulfides, SulfoneN-Oxides, and Sulfones. Indian J. Chem. 1973, 11, 211-213.
(57) Robins, R. K.; Hitchings, G. H. Studies on Condensed Pyridine Systems. XII. Synthesis of Some 4- and 2,4-Substituted Pyrido-[2,3-d]pyrimidines. J. Am. Chem. Soc. 1955, 77, 2256-2260.
J M 020505V


[^0]:    * To whom correspondence should be addressed. Present address: Teijin Ltd., Institute for Bio-medical Research, Pharmaceutical Discovery Research Laboratories, Medicinal Chemistry Research Department, Asahigaoka 4-3-2, Hino, Tokyo, 191-8512, J apan. Phone: +81-42-586-8231. Fax: +81-42-587-5513. E-mail: k.matsuno@teijin.co.jp
    † Kyowa Hakko Kogyo Co., Ltd.
    ₹ Millennium Pharmaceuticals (the former COR Therapeutics Inc.).

