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It has been shown that the rate-limiting step in the production of â-amyloid peptide (Aâ) is
the proteolytric cleavage of the membrane-bound â-amyloid precursor protein (APP) by
â-secretase (BACE). Since the accumulation of Aâ has been implicated as one of the key events
in the progression of Alzheimer’s disease, BACE has become an important therapeutic target.
Recently, two crystal structures of BACE cocrystallized with the inhibitors OM99-2 and OM00-3
were published by Tang and co-workers. In addition, the Ghosh group has published binding
data on a series of inhibitors based on their initial lead, OM99-2. Using this set as a basis, we
have developed a model for the binding affinity of these ligands to BACE using the linear
interaction energy method. The best binding affinity model for the full set of ligands had a
RMSD of 1.10 kcal/mol. The best model excluding the two charged ligands had a RMSD of
0.87 kcal/mol.

Introduction
The accumulation of â-amyloid peptide (Aâ) has been

implicated as one of the key events in the progression
of Alzheimer’s disease.1 This peptide is produced through
the proteolytric cleavage of the membrane-bound â-amy-
loid precursor protein (APP) by â- and γ-secretases.
Since â-secretase (â-site APP cleaving enzyme, BACE)
has been shown to be the rate-limiting step in the
production of Aâ in vivo,2 it has become a target for drug
discovery.3-6 Tang and co-workers have determined the
crystal structure of BACE complexed with two eight-
residue peptides, OM99-2 (Ki ) 1.6 nM) (Figure 1) and
OM00-3 (Ki ) 0.32 nM).7,8 On the basis of these leads,
the Ghosh group synthesized a series of related inhibi-
tors and determined Ki values.9

We have used this series to investigate building a
binding affinity model. The ability to predict ligand-
protein binding affinities has obvious utility in drug
discovery. As a result, several methods have been
developed for addressing this difficult problem.10 These
techniques represent a tradeoff between computational
time and accuracy. At one extreme are free-energy
perturbation calculations .11 These types of simulations
are theoretically rigorous and as a result can produce
quite accurate binding energy predictions. However,
they entail extensive computer time and are not practi-
cal when even a moderate number of compounds need
to be tested. On the other end of the spectrum are
scoring functions. These functions are derived from
empirical fits to an array of simplified energy terms that
are meant to capture the key contributions to ligand-
protein binding.12-19 Because of these simplifications,
the errors in the binding energies can be quite high, but
these methods are extremely fast and thus well suited
to high-volume screening of compound databases.

As a compromise between accuracy and computa-
tional speed, A° qvist and co-workers developed the linear

interaction energy (LIE)20 method, which has been
successfully applied to many systems with errors on the
order of 1 kcal/mol.21-36 At the heart of this method is
the assumption that the free energy of binding can be
derived from considering only the two end points of the
thermodynamic cycle of ligand binding. Simulations are
carried out for the ligand free in solution and bound to
a protein (still in the presence of solvent). In the original
formulation of the method, molecular dynamics (MD)
simulations were performed for each state to obtain the
average (denoted by 〈...〉) intermolecular van der Waals
(vdw) and electrostatic (elec) interactions (U). The
binding free energy (∆Gbind) was then derived using the
following formula,

where the ∆ term indicates the change in energy from
the ligand free and bound states (Ubound - Ufree). The
van der Waals term was included to capture the
nonelectrostatic contributions and was not meant to be
a calculation of the actual energy contribution to ∆G.
Instead, it is assumed that the nonpolar terms are
correlated to the van der Waals interaction. As a result,
the adjustable parameter, R, which is determined by
fitting to experimental data, was included.

Since the publication of the original paper, A° qvist and
others have explored several variants of the method.
Much of this work has focused on investigating the
transferability of the R and â parameters, as well as the
need for adding a third parameter to the fit. For
example, in later publications, A° qvist proposed a case-
dependent â parameter (based on the charge and
number of hydroxyl groups).37 In addition, several other
groups have made use of a third parameter in the fit,
as first proposed by Jorgensen and co-workers,

where ∆SASA is the change in the solvent accessible
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surface area.38 A detailed statistical analysis of these
fits, as well as other variants of the LIE method, has
been reported by Wall et al.39

In this paper, we focus on the application of the LIE
method to the set of BACE inhibitors outlined previ-
ously. Particular attention is paid to the effects of the
protein charge state and residue-based electrostatic
cutoff relative to the quality of the derived binding
affinity model.

Computational Details

Simulations were performed on a set of 12 ligands
that comprise a series of BACE inhibitors synthesized
by Ghosh et al. (Table 1 and Figure 2).9 These ligands
were designed on the basis of the crystal structure of a
potent BACE inhibitor, OM99-2 (eight-residue peptide,
Ki ) 1.6 nM). Since to a large extent they all preserve
the backbone structure of the original peptide, the initial
docked position of the ligands without X-ray structures
was obtained by analogy to the OM99-2 bound confor-
mation. Only two ligands in the series, OM00-3 and
OM99-2, are charged (Figure 2). Experimental binding
affinities in the form of Ki’s have been published. This

set covers a 6.7 kcal/mol range. One of the ligands from
the series (compound 11) was not used in building the
model. However, its predicted binding affinity is dis-
cussed in the Results section.

The energy calculations were carried out using the
Liaison package from Schrödinger Inc.40 This imple-
mentation of LIE makes use of a surface-generalized
Born (SGB) continuum solvation model,41 a procedure
that was first suggested by Zhou et al.42 All charges are
treated using the OPLS-AA force field.43 In this imple-
mentation of the force field, no bond angle or stretch

Figure 1. Crystal structure of OM99-2 bound to BACE (a).
Figure b highlights some of the charged residues in the binding
pocket.

Table 1. BACE Inhibitors Designed by Ghosh and
Coworkers9 a

a This series was developed on the basis of the crystal structure
of OM99-2 bound to â-secretase.
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parameters exist for the sulfone group. As a result,
sulfonamide values were substituted for the missing
sulfone parameters. The validity of these parameters
has been confirmed by comparing bond distances and
angles from B3LYP/6-31G*-optimized sulfone and sul-
fonamide groups (done by Schrödinger Inc.).44 From
these calculations, it was determined that no additional
sulfone parameters were necessary.

Two methods were employed for obtaining the aver-
age LIE energies. In the first procedure, a conjugate
gradient minimization was performed, followed by col-
lection of the LIE energies. This procedure was carried
out using a 10 and 15 Å residue-based cutoff as well as
with no cutoff. In the second procedure, the conjugate
gradient minimization was followed by a hybrid Monte
Carlo (HMC) step that employed 20 ps of heating (before
collecting the LIE energies), a sample target tempera-
ture of 300 K, and 30 ps of sampling for the LIE energies
(total simulation time ) 50 ps). For this set of HMC
simulations, the time step was 0.002 ps, there were five
MD steps per HMC cycle, and energies were sampled
every 10 steps. Some representative plots of the average
LIE energies versus time are shown in Figures 3 and 4
(the full set of plots is provided in the Supporting
Information). For both the noncharged (Figure 3) and
charged ligands (Figure 4), 50 ps is more than adequate
to obtain converged energies. In most cases, converged
energies are obtained with shorter HMC runs (20 ps
total simulation time, 10 ps heating, and 10 ps of
sampling). However, for consistency, 50 ps was used for
each ligand. For all the simulations, protein residues
beyond 10 Å from the binding pocket (as defined by
ligand OM00-3) were frozen. Given the use of the
continuum solvation model, the SASA term used in eq
2 is replaced by the cavity term of the continuum
solvation model. The final equation used for fitting is

Least-squares fits, based on singular value decomposi-
tion, to this equation were done using the Liaison
package.

In this version of the Liaison package (FirstDiscovery
v2.0), the SGB contribution to offsetting electrostatic
interactions truncates at 12 Å. As a result, electrostatic
interactions between atoms pairs that are greater than

12 Å apart are not shielded by solvent. This fact, along
with the emphasis placed by A° qvist on the importance
of the charge state of the system, requires that careful
attention be paid to which residues are charged.45 For
comparison, three different variants of charge neutral-
ization were employed (using the protein preparation
utility provided by Schrödinger Inc.). In method I, all
residues within 9.6 Å of compound 1, as well as residues
that formed salt bridges (defined by a 3.5 Å cutoff), were
left charged. Residues outside this range were then
adjusted to make the overall charge of the protein
neutral. This resulted in a +3 charge within the 9.6 Å
shell around compound 1. For method II, all residues
outside of 12 Å from OM00-3 were neutralized and all
residues within 6.5 Å of OM00-3 were charged. Residues
between 6.5 and 12 Å of OM00-3 were then adjusted to
give an overall neutral charge for the protein. For
method III, only Asp228 and Arg235 were charged. In
all cases, the protonation state of the catalytic aspartic
acids (Asp228 and Asp32) was set so as to have a net
charge of -1. This is consistent with studies of HIV-1
protease to which BACE has a similar pH rate pro-
file.46,47 The choice of which Asp to protonate was guided
by the crystal structure of OM99-2. Given the position
of the OM99-2 hydroxyl group, the most favorable
hydrogen-bonding interactions are obtained by pro-
tonating Asp32. In this configuration, the OH of Asp32
can act as a hydrogen bond donor and the negatively

Figure 2. Structures of peptide BACE inhibitors: OM99-2
and OM00-3.

∆Gbind ) R〈∆Uvdw〉 + â〈∆Uelec〉 + γ∆cav (3)

Figure 3. Average LIE energy terms for structure 6 versus
MD time. These are the energies following a 20 ps MD
equilibration time. Plot a is for the free state and plot b is for
the bound state.
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charged Asp228 can act as a hydrogen bond acceptor to
the OM99-2 hydroxyl group. Of course, it is impossible
to know the protonation state unambiguously. However,
as long as a consistent protonation state is chosen, there
should be little effect on the derived binding affinity
model because all of the ligands used in this training
set preserve the same binding motif at the catalytic site.

Results

As stated previously, two major factors that influence
the energy terms in the LIE equation are the treatment
of the protein charge state and the sampling method
used to obtain the average energies. Much work has
been published surrounding these two issues, so a
careful investigation of the models as a function of these
parameters was undertaken. Toward this goal, six LIE
calculations were performed to isolate the different
effects. A summary of the fits to eq 3 can be found in
Table 2. Although the RMSD values for each model are
comparable, some of the derived models have aspects
that are not intuitive. In two out of the six models, the
cavity term has a negative coefficient. Of the remaining
four models, a significant deviation from the linear
response approximation occurs. The â coefficient is
much lower than the theoretical value of 0.5-0.33. The
contribution of each of the simulation parameters to
these fits is outlined below.

Sampling Method. Using protein preparation method
I, we used two different sampling procedures in deter-
mining the LIE average energies (Table 3). For this set
of ligands it was found that the conformation space
search provided by the HMC method did not produce a
significantly better fit to the experimental binding
energies than simple minimization (1.101 kcal/mol for
HMC versus 1.107 kcal/mol for minimization; see Figure
5). This is due in large part to the level of accuracy of
the starting bound conformations. As was noted in the
Computational Details, all the ligands to some extent
preserve the backbone structure of OM99-2. Therefore,
we were able to prepare starting conformations that had
a high probability of being near the global minimum
structures for the bound ligands.

Electrostatic Term. The difficulty in treating the
electrostatic energy term has been well noted in the
literature and is not particular to the LIE method. The
variability of this term as a function of the protein
preparation method is illustrated in Table 4 for the
BACE inhibitors. The calculation of this term can be
broken down into two factors: the protein charge

Figure 4. Average LIE energy terms for OM99-2 (charged
ligand) versus MD time. These are the energies following a
20 ps MD equilibration time. Plot a is for the free state and
plot b is for the bound state.

Table 2. Summary of the Fits to Eq 3 Using Different Protein
Preparation Methods and Cutoffs for Nonbonded Interactionsa

method R â γ RMSD

A protein prep. ) method I
sampling ) minimization
cutoff ) 10 Å

0.041 0.033 1.372 1.492

B protein prep. ) method I
sampling ) minimization
cutoff ) 15 Å

0.229 0.060 -2.682 1.107

C protein prep. ) method I
sampling ) minimization
cutoff ) none

0.019 0.034 1.768 1.446

D protein prep. ) method I
sampling ) HMC
cutoff ) 15 Å

0.239 0.042 -2.422 1.101

E protein prep. ) method II
sampling ) minimization
cutoff ) 15 Å

0.055 0.015 1.240 1.511

F protein prep. ) method III
sampling ) minimization
cutoff ) 15 Å

0.052 0.015 1.287 1.474

a The best fit (based on RMSD) is obtained using protein
preparation method I and a cutoff of 15 Å.

Figure 5. Comparison of the experimental versus calculated
∆Gbind for two different sampling methods: minimization and
HMC. For both procedures, protein preparation method I and
a 15 Å cutoff were used. The compound numbers for ligands
with high errors are noted on the plot.
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preparation method and the cutoff used for the non-
bonded interactions.

The effect of the nonbonded cutoff is illustrated in
Figure 6. For these studies, method I was used for the
protein preparation. Not surprisingly, the most signifi-
cant changes in the electrostatic terms occur for the
charged ligands. As a result of the 12 Å solvent cutoff
from the continuum solvation model as implemented in
the Schrödinger package, the charged groups of OM99-2
and OM00-3 are seeing unshielded (by solvent) charges
when the nonbonded cutoff is increased. The next most
significant change occurs for one of the sulfone-contain-

ing ligands (ligand 7). The sulfur atom of this group is
assigned a partial charge of 1.374, and the oxygens are
assigned a partial charge of -0.687 (OPLS-AA force
field; see Computational Details). Because of the lack
of shielding, these atoms are seeing large changes as
the nonbonded cutoff is increased.

The effect of the charged state of the protein is
illustrated in Figure 7. In this case, a nonbonded cutoff
of 15 Å was used for each of the simulations. Here again
we see that the ligands most affected by the protein
preparation are charged or have a group with a large
point charge. This example illustrates that overall
charge neutrality is not the only issue to consider when
preparing the protein. The location of the groups that
remain charged also has a significant effect. In practice,
it can be difficult a priori to determine which of the
charged residues are the most significant in terms of
their contribution. For the simulations run here, method
I allows for the most positively charged groups to
stabilize the -3 charge of OM00-3.

As was noted in the Computational Details section,
one of the ligands from Ghosh’s work was left out of the
models discussed above. According to the experimental
results, the substitution of a methyl group with CH2-
CHMe2 at the R2 position results in a change in Ki from
2.5 to 10491 nM (compounds 9 and 11 respectively).
However, no energy penalty is found in the LIE calcula-
tions (Table 5). As a result, compound 11 is predicted
to have almost the same activity (predicted ∆Gbind )

Table 3. LIE Terms for the Two Different Sampling Methodsa

ligand ∆vdwMIN ∆vdwHMC ∆elecMIN ∆elecHMC ∆cavMIN ∆cavHMC

1 -71.848 -69.016 -30.149 -26.006 -3.819 -3.891
2 -74.805 -71.983 -36.498 -33.934 -3.974 -3.997
3 -75.069 -69.321 -20.485 -30.240 -3.950 -4.160
4 -81.666 -81.394 -34.956 -43.140 -4.042 -4.156
5 -85.08 -80.797 -48.162 -34.310 -4.160 -4.319
6 -85.665 -78.067 -47.266 -45.393 -4.155 -4.194
7 -85.835 -80.091 -38.372 -41.868 -4.363 -4.386
8 -77.379 -69.956 -34.013 -38.174 -4.064 -4.121
9 -85.669 -80.743 -44.712 -34.565 -4.336 -4.431
10 -87.732 -80.758 -14.346 -34.192 -4.384 -4.446
OM99-2 -78.661 -79.414 -90.73 -89.740 -4.549 -4.437
OM00-3 -72.859 -73.425 -167.330 -198.350 -5.14 -5.296

a Both simulations were done using protein preparation method I and a 15 Å cutoff. The terms from the hybrid Monte Carlo and
minimization runs are indicated with HMC and MIN, respectively.

Table 4. Electrostatic Term for Each of the LIE Calculationsa

∆Uelec (kcal/mol) for each method

ligand A B C D E F

1 -28.665 -30.149 -30.281 -26.006 -33.518 -32.882
2 -29.762 -36.498 -24.185 -33.934 -25.503 -31.877
3 -15.263 -20.485 -20.450 -30.240 -22.478 -12.667
4 -42.372 -34.956 -35.707 -43.140 -34.767 -35.832
5 -33.104 -48.162 -33.714 -34.310 -34.779 -37.626
6 -32.835 -47.266 -35.538 -45.393 -37.505 -37.044
7 -24.968 -38.372 -14.888 -41.868 -26.594 -2.057
8 -23.554 -34.013 -23.567 -38.174 -27.010 -23.674
9 -30.196 -44.712 -36.524 -34.565 -38.457 -38.171
10 -24.524 -14.346 -20.332 -34.192 -10.835 -15.550
OM99-2 -13.490 -90.730 -25.220 -89.740 2.640 -12.430
OM00-3 -69.460 -167.330 -78.54 -198.35 -92.05 -90.82

a The details for each method are listed in Table 2.

Figure 6. Protein preparation method I was used to perform
three different LIE calculations where the nonbonded cutoff
was 10 Å, 15 Å, and no cutoff. The resulting ∆Uelec is plotted
for each ligand. Compounds containing a sulfone group are
marked with an asterisk.

Figure 7. For this set of simulations, the cutoff for the
nonbonded interactions was held at 15 Å. The protein prepara-
tion method was then varied. Compounds containing a sulfone
group are marked with an asterisk.
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-10.481 kcal/mol) as compound 9 (fitted ∆Gbind )
-9.987 kcal/mol). It is not clear whether this is a failure
of the LIE method or if there is a problem with the
experimental Ki. As can be seen in Figure 8 (binding
pocket with both compounds 9 and 11), there is signifi-
cant overlap in the constant part of each ligand and no
obvious steric hindrance for the additional bulk of the
CHMe2 group. In fact, the computed van der Waals
energy is slightly more favorable for compound 11
because of this additional group. In this case, more
sampling would not help because we would never
capture a higher-energy structure.

Cavity Term. Another issue that has been debated
in the literature is the need for a third parameter in
the LIE equation. Two issues must be considered when
adding this third parameter. First, given that many of
the systems studied to date using the LIE method have
had a small training set, the possibility of over-fitting
the data exists with the addition of a third parameter.
Second, one must be cautious when applying a linear
regression method that the correlation among terms is
kept to a minimum. For the set of Ghosh ligands, the
correlation coefficient between the cavity and electro-
static terms is 0.89. As a result, addition of the third
parameter does not add significant information to the
model. The fit using just the van der Waals and elec-
trostatic term yields:

with a RMSD of 1.202 kcal/mol (Figure 9). This is
essentially equivalent to the RMSD of 1.101 kcal/mol

found for the fit to all three terms (See Table 6 for
predicted values). This issue is discussed in more detail
by Wall.39

Charged Ligands. The literature for LIE would
suggest caution when using a training set of ligands that
differ in their overall charged state.20 For comparison,
a LIE model was also derived using only the noncharged
ligands (Figure 10). Using this more homogeneous set,
a slightly worse fit was obtained for the HMC run
(RMSD ) 1.150 kcal/mol). However the fit for the
minimization only run was improved, with the RMSD
dropping from 1.107 to 0.872 kcal/mol. It is encouraging
to note that the model containing the two charged
ligands is comparable to the model containing only
neutral ligands. Since it is possible to construct a good
model with the charged ligands present, most of the
analysis in this study was carried out for the full set.

Discussion

We have been able to successfully model a set of
BACE ligands that differ significantly in terms of their
overall charge state. Using this mixed set, a RMSD of
1.101 kcal/mol was obtained. The robustness of this
model is further illustrated by the RMSD of 1.355 kcal/
mol determined by jackknife cross-validation (Table 7).
Using this method we find that no one compound is
having a disproportionate contribution to the overall
binding affinity model. However, a closer investigation

Table 5. Comparison of LIE Terms for Compounds 9 and 11a

LIE term (kcal/mol) 9 11

∆Uvdw -80.743 -84.738
∆Uelec -34.565 -37.782
∆Ucav -4.431 -4.686

a These structures differ only in the R2 position. Compound 9
contains a methyl group, and compound 11 has a CH2CHMe2
group. Although their experimental Ki’s are drastically different,
there is very little change in the LIE terms. Both simulations were
carried out using HMC sampling, a 15 Å cutoff, and protein
preparation method I.

Figure 8. Binding pocket of BACE with compound 9 (cyan)
and compound 11 (red). According to the experimental data,
there is a significant loss in activity when the methyl group
in compound 9 is substituted with a CH2CHMe2 group (blue)
in compound 11 at the R2 position. However, from the LIE
calculations there is no penalty for the additional bulk on
compound 11. A visual inspection reveals no steric hindrance
for this group.

∆G (kcal/mol) ) 0.114〈∆Uvdw〉 + 0.0246〈∆Uelec〉 (4)

Figure 9. Comparison of the experimental versus calculated
∆Gbind for two variants of the LIE equation. Fit 1 uses the
three-parameter fit of eq 3, whereas Fit 2 is a fit using only
the van der Waals and electrostatic terms.

Table 6. Predicted Free Energies of Binding for Simulation
Method D Using Both a Two- and Three-Parameter Fit

∆Gbind (kcal/mol)

ligand 2-parameter fit 3-parameter fit experimental

1 -8.50815 -8.139 -6.38
2 -9.04178 -8.920 -7.55
3 -8.64728 -7.736 -8.16
4 -10.3415 -11.170 -9.90
5 -10.0557 -10.261 -11.30
6 -10.0178 -10.377 -10.02
7 -10.1616 -10.246 -11.02
8 -8.91523 -8.313 -7.19
9 -10.0559 -9.987 -11.81
10 -10.0484 -9.939 -11.11
OM99-2 -11.2644 -11.960 -12.06
OM00-3 -13.259 -12.983 -13.05
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of the trends of the individual terms of the LIE model
versus the binding energy does illustrate some areas
where the model merits further scrutiny.

Plots of the correlations between the experimental
∆Gbind and each term in the LIE equation are shown in
Figure 11 for the best fit (based on RMSD) model that
includes the charged ligands. One of the features
highlighted by these plots is that the two charged
ligands, OM99-2 and OM00-3, exhibit large deviations
from the linear trend as defined by the rest of the
(neutral) ligands in the set. This is particularly true for
the electrostatic term. The charged ligands both have
small van der Waals energies relative to the other
ligands, given their binding affinities. However, these
are offset by favorable electrostatics. As a result, there
are large and compensating deviations from the linear
relationship between the ∆Gbind and the van der Waals
and electrostatic terms. This raises concerns about the
validity of assuming a constant scaling factor (â) for the
electrostatic term when these highly charged ligands
are included. Many factors might be responsible for this
observation, including a breakdown in the linear re-
sponse assumption for such large changes in the charged
state of the ligands, limitations in the underlying
methods for computing the electrostatic or nonbonded
energy terms, or all of these factors. In any event, it is

clear that balancing the subtle interactions between
electrostatic and van der Waals terms poses a serious
challenge. For example, if OM00-3 is treated as a
neutral ligand, the van der Waals energy falls near the
line in Figure 11a for the other ligands. When treated
as the charged ion, the van der Waals energy is
exceptionally low (Table 8). This means that the sampled
configuration is forced into a geometrically poor fit by
the more favorable electrostatics. These results certainly
highlight the complex balance of forces (i.e., nonbonded

Figure 10. Experimental versus calculated ∆Gbind, excluding
the charged ligands (OM99-2 and OM00-3). These simulations
use protein preparation method I and a 15 Å cutoff.

Table 7. LIE and Cross Validation (Jackknife)-Predicted Free
Energies of Binding for Simulation Method Da

∆Gbind (kcal/mol)

ligand experimental LIE jackknife

1 -6.38 -8.25 -8.416
2 -7.55 -8.973 -9.057
3 -8.16 -8.605 -7.471
4 -9.90 -10.297 -11.850
5 -11.30 -9.801 -10.110
6 -10.02 -10.174 -10.433
7 -11.02 -10.197 -10.158
8 -7.19 -9.094 -8.601
9 -11.81 -9.848 -9.753
10 -11.11 -9.833 -9.784
OM99-2 -12.06 -12.888 -11.919
OM00-3 -13.05 -12.170 -12.050

RMSD 1.101 1.355
a The jackknife value for each ligand is obtained by predicting

its binding affinity from the parameters obtained by a fit to the
other ligands in the set.

Figure 11. Individual trends for the LIE energies (van der
Waals (a), electrostatic (b), cavity (c)) versus the experimental
∆Gbind. These energies are for simulation method D. The
triangles represent the values for OM00-3 and OM99-2 when
run as neutral ligands.
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and electrostatic) that must be modeled to predict the
total ∆Gbind. They also imply that the electrostatic
energy plays a dominant role in this interplay. It is
possible, but far from certain, that a more theoretically
rigorous treatment of the electrostatics would improve
this situation.

Conclusions

A predictive model for the binding affinities of the full
series â-secretase inhibitors was obtained using the LIE
method (RMSD ) 1.101 kcal/mol). By comparison, the
best model obtained where the two charged ligands were
omitted is only somewhat better with a RMSD of 0.872
kcal/mol. The model for the full set represents the best
RMSD obtained for a series of fits using different
sampling techniques and protein treatments. For this
set of inhibitors it was found that there was little
improvement in the model when HMC sampling was
used as opposed to just minimizing the docked ligands
and then collecting the LIE energy terms. This is
probably a result of the knowledge of the initial docked
position from the two crystal structures. Using this
sampling technique, we also investigated different
combinations of protein charged states and electrostatic
cutoffs. The best model was obtained using a charged
residue shell of 9.6 Å around the ligand in combination
with a 15 Å residue-based electrostatic cutoff. The
robustness of the model is well-illustrated by the 1.355
kcal/mol RMSD obtained using the leave-one-out cross
validation technique. This indicates that the fit is not
biased by any particular ligand. Given the robustness
of the model, it should be valuable in assessing new
BACE inhibitors.
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