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Reduction of Peptide Character of HIV Protease Inhibitors That Exhibit
Nanomolar Potency against Multidrug Resistant HIV-1 Strains
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Novel HIV protease inhibitors containing a hydroxyethylamine dipeptide isostere as a transition
state-mimic king structure were synthesized by combining substructures of known HIV protease
inhibitors. Among them, TYA5 and TYB5 were proven to be not only potent enzyme inhibitors
(Ki = 0.12 nM and 0.10 nM, respectively) but also strong anti-HIV agents (ICs; = 9.5 nM and
66 nM, respectively), even against viral strains with multidrug resistance. Furthermore,
insertion of an (E)-alkene dipeptide isostere at the P,—P, position of TYB5 led to development
of a purely nonpeptidic protease inhibitor, TYB1 (K; = 0.38 nM, ICsy = 160 nM).

Introduction

Disclosure of the molecular mechanism relevant to
each step of the HIV-1 life cycle has led to development
of many types of anti-HIV agents. The multiple drug-
combination chemotherapy, “highly active anti-retrovi-
ral therapy (HAART)”, which involves a combination of
reverse transcriptase inhibitors and protease inhibi-
tors,'=9 has dramatically improved the clinical treat-
ment of individuals with HIV-infection or AIDS. How-
ever, there still remain several serious problems includ-
ing the emergence of viral strains with multidrug
resistance, significant adverse effects and high costs.1°
Many HIV protease inhibitors also have the disadvan-
tage of low bioavailability due to their peptide character.
All HIV protease inhibitors that have been clinically
used to date, contain one or more amide bonds. Discov-
ery and development of novel potent HIV protease
inhibitors that are active against multidrug resistant
viral strains and have excellent biostability and bio-
availability, are required for HAART. By combining
substructure units of known HIV protease inhibitors,
we have derived novel potent inhibitors that are effec-
tive even against multidrug resistant viruses. Subse-
quently, in an effort to improve bioavailability by
developing inhibitors that contain no amide bonds, an
(E)-alkene dipeptide isostere (EADI)!! was introduced
into the above inhibitors. The 3D structure of this (E)-
alkene peptide mimic (bond length, bond angle, and
rigidity) closely resembles that of the parent amide.
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Chemistry

The efficacy of hydroxyethylamine dipeptide isosteres
(HDIs)!2 as backbone replacements of amide bonds in
the position P;—Py- of aspartyl protease inhibitors has
been well documented. Several target compounds con-
taining an HDI transition state-mimic were designed
based on structural information derived from reported
HIV protease inhibitors. Among them, TYA5 (7) has a
decahydroisoquinoline unit, which was used in saquina-
virz3 and nelfinavir,” at the Py—P» position, and a b-S-
(2-naphthyl)cysteine unit, which was used in Lilly's
compounds,® at the P,—P3 position (Figure 1). TYB5
(14) has a sulfonamide unit, which was used in am-
prenavir,® at the P —Py» position, and a b-S-(2-naphth-
yl)cysteine unit at the P,—P3 position. Starting with a
known, optically active epoxy amine 1,314716 TYA5 (7)
and TYB5 (14) were synthesized as diastereomeric
sufoxides using general procedures illustrated in Scheme
1 (see Supporting Information). Target compounds
23a,b (TYA1 and TYAZ2), in which the amide bonds at
the P1—P5 position of compound 7 were replaced by (E)-
alkenes, were synthesized using the (p-Ser, L-Phe)-type
EADI [Cbz-p-Ser-y[(E)-CH=CH]-L-Phe-OBu!] 15 (see
Supporting Information)!” according to Scheme 2 in
company with their sulfone derivatives 24a,b (TYA3
and TYA4). Stereochemistry at the Cy-carbon of dia-
stereomers 23a,b and 24a,b has yet to be determined.
Compound 29a (TYBL1), in which the amide bond at the
P1—P2 position of compound 14 was replaced by an (E)-
alkene, and its 2R isomer 29b (TYB2) were synthesized
using epoxy compounds 20a,b according to Scheme 3.
Stereochemistry at the C,-carbon of diastereomers
29a,b is based on X-ray analysis of 27b. 23a,b and
29a,b are all comprised of sufoxide diastereomixtures.
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Figure 1. Structures of saquinavir, nelfinavir, amprenavir, Lilly’'s compound and our initial target compounds, TYA5 and TYB5.
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BOP, DIPEA, HOBY; (iv) 4 M HCI in 1,4-dioxane; (v) MsCl, DIPEA,; (vi) NalOyg; (vii) isobutylamine; (viii) p-nitrobenzenesulfonyl chloride,

EtsN; (ix) Zn, AcOH.
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a Reagents: (i) TsClI, pyridine; (ii) 2-naphthalenethiol, NaH; (iii) 4 M HCI in 1,4-dioxane; (iv) isobutylchloroformate, DIPEA,; (v) CH2Ny;
(vi) NaBHy4, H20; (vii) 0.5 M KOH in EtOH; (viii) N-(tert-butyl)-decahydroisoquinolinehydroxamide; (ix) TFA, thioanisole; (x) MsCl, DIPEA,

(xi) NalQOg.

Biological Results and Discussion

The anti-HIV activity of compounds, TYA5 and TYB5,
was determined based on the inhibition of HIV-1-
induced cytopathogenicity in MT-2 cells (described in

Supporting Information).’® TYA5 showed potent anti-
HIV activity (Table 1). This potency was greater than
those of saquinavir and amprenavir, which have been
clinically used. TYBS also showed potent activity. It was
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Table 1. Anti-HIV Activity, Cytotoxicity, and HIV Protease
Inhibitory Activity of the Synthetic Compounds

Table 2. Anti-HIV Activity of TYA5, TYB5, and TYB1 against
HIV-1 Clinical Isolates

compd (no.) ICso (NM)2  CCsp (uM)P Sle Ki (nM)e
TYA1L (23a) >1000 NT NT
TYA2 (23b) >1000 NT NT
TYA3 (24a) >1000 NT NT
TYAA4 (24b) >1000 NT NT
TYAS (7) 95+03 3.9+0.19 410 0.12
TYBL1 (29a) 160 + 40 80+11 58 0.38
TYB2 (29b) >1000 NT NT
TYB5 (14) 66 + 2 33+12 500 0.10
AZT 27+9 >100 NT
saquinavir 17+ 3 11+3 650 0.19
amprenavir 36 +11 >100 NT
indinavir NTd NT 0.28

a3 1Cso values are based on the inhibition of HIV-induced
cytopathogenicity in MT-2 cells. ® CCsp values are based on the
reduction of the viability of mock-infected MT-2 cells. All data with
standard deviation are the mean values for at least three
independent experiments. Data without standard deviation are
derived from the value for one experiment. ¢ Selectivity index (SI)
is shown as CCso/ICso. 9 NT: not tested. ¢ K; values are based on
HIV-1 protease inhibitory activity.

noted that both TYA5 and TYB5 exhibited high selec-
tivity indexes (Sls) as comparable to that of saquinavir.

Next, the anti-HIV activities of TYA5 and TYB5 were
determined against multidrug resistant (MDR) strains
as measured by the inhibition of HIV p24 antigen
expression in peripheral blood mononuclear cells (PBMC)
(described in Supporting Information).'® TYB5 showed
nearly equivalent activity against three MDR strains
as against a wild-type strain, HIViospre. A reverse
transcriptase inhibitor, AZT, and the reported protease
inhibitors, saquinavir and amprenavir, showed 12—40-
fold reduced potency against the three MDR strains as
compared to against HIViospre (Table 2). TYAS also
exhibited effective activity (half potency) against MDR
strains, except for HIV;s.. The structure of TYAS was
based on the combination of a decahydroisoquinoline
unit derived from saquinavir and a b-S-(2-naphthyl)-
cysteine unit used in Lilly’'s compounds. The TYB5
structure was derived by combining a sulfonamide unit
from amprenavir with a b-S-(2-naphthyl)cysteine unit.
TYAS and TYB5 are effective against MDR strains,
while saquinavir and amprenavir exhibited low efficacy.
By combining structural subunits from known inhibi-

wild type 1Cso (NM) (fold change)® MDRP
compd (no.) H|V104pre HIVTm HIVum HIV;s.
TYAS (7) 1542 34+4(2x) 32+£4(2x) 220+ 40 (15x)

TYB5(14) 31+3 43+6(1x) 36+8(1x) 2546 (1x)
TYB1 (29a) 180 + 30 >1000 (>6x) 520 = 120 (3x) 340 + 30 (2x)

AZT 25+0.7 43 (17x) 37(15x) 64 (26x)
saquinavir 19 +4 230 £ 20 (12x) 320 £+ 2 (17x) 550 (29x)
amprenavir 20 =3 480 (24x) 530 (27x) 800 (40x)

2 ]Cso values are based on the inhibition of HIV p24 antigen
expression in PBMC. All data with standard deviation are the
mean values for at least three experiments. Data without standard
deviation are derived from the value for one experiment. ® Amino
acid substitutions in the protease-encoding region are shown in
Supporting Information.

tors, protease inhibitors with high anti-HIV activity
including against MDR HIV-1 have resulted.

Finally, work was undertaken to reduce the peptide
character of TYAS5 and TYB5. TYB1, an amide bond
mimic-containing compound based on TYBS5, having syn
geometry as in TYB5, showed moderate anti-HIV activ-
ity. Alternatively, TYA1—-4, based on TYAS5, did not
show significant activity (Table 1). (Either TYA1 or
TYA2 and either TYA3 or TYA4 are the same syn
isomers as TYAS.) It is reasonable that the anti isomer,
TYBZ2, did not show significant activity, whereas it was
not readily explainable why the anti-HIV activities of
compounds having amide bond mimics are less than
those of the corresponding amide-containing compounds.
Nonetheless, the anti-HIV activity of TYB1 was noted.
As such, the HIV protease inhibitory activities of TYAS5,
TYBS5, and TYB1 were evaluated. HIV protease activity
(the rate of enzyme reaction) was determined by use of
a surface-enhanced laser desorption/ionization (SELDI)-
MS method for quantitation of the parent peptide
substrate (see Supporting Information).192° As shown
in Table 1 (K;), the protease inhibitory activities of TYAS
and TYB5 were stronger than those of saquinavir and
crixivan.* TYA5 and TYB5 showed almost the same
protease inhibitory activity, while TYA5 showed 7-fold
higher anti-HIV activity in cells than TYB5. A suitable
correlation between protease inhibitory activity and
anti-HIV activity for these compounds was not appar-
ent. TYB1 also exhibited strong protease inhibitory
activity, although this activity was weaker than that of
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the corresponding peptidic compound TYBS5. Replace-
ment of the amide bond by an (E)-alkene at the P;—P;
position of TYB5 caused a significant decrease both in
protease inhibitory activity and in anti-HIV activity.
This suggested either that insertion of an EADI at the
P1—P> position or an increase in hydrophobicity is not
suitable. Significant loss of anti-HIV activity of TYB1
might underline the importance of the P;—P, amide
bond for interaction with the enzyme. This might also
explain the complete loss of anti-HIV activity of TYA1—
4. However, purely nonpeptidic HIV protease inhibitors
derived from substrate-based transition state-mimic
king structures have not been reported to date. TYB1
is a novel inhibitor containing no amide bonds that
possesses significant activity (K; = 0.38 nM, ICso = 160
nM). TYB1 also exhibits effective activity (a third to one-
half potency) against MDR strains, except for HIVty
(Table 2). Further modification of TYB1 might lead to
development of potent nonpeptidic inhibitors. Of note,
Rich et al. have also reported computer-assisted non-
peptidic inhibitors of aspartic peptidases.?!

In conclusion, novel HDI-containing HIV protease
inhibitors, TYA5 and TYB5, which are highly effective
even against MDR strains, have been found by combin-
ing substructure units of reported inhibitors. Further-
more, a purely nonpeptidic inihibitor TYB1 has been
developed based on TYB5.
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