Structure–Activity Relationships of Dimethindene Derivatives as New M₂-Selective Muscarinic Receptor Antagonists

Thomas M. Böhme,[†] Christine Keim,[‡] Kai Kreutzmann,[‡] Matthias Linder,[§] Theo Dingermann,[§] Gerd Dannhardt,*,† Ernst Mutschler,‡ and Günter Lambrecht‡

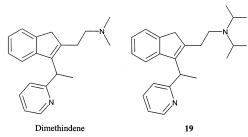
Institute of Pharmacy, Johannes Gutenberg-University of Mainz, Staudinger Weg 5, D-55099 Mainz, Germany, and Department of Pharmacology and Pharmaceutical Biology, Biocenter Niederursel, University of Frankfurt, Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany

Received April 2, 2002

A series of 2,3-disubstituted indenes, which are analogues of the widely used histamine H_1 receptor antagonist dimethindene, have been synthesized and studied as muscarinic and histamine receptor antagonists. The affinities of these compounds for the five human muscarinic receptor subtypes (M_1-M_5) and for human histamine H_1 receptors were determined in radioligand binding studies using membranes from transfected Chinese hamster ovary (CHO) cells and [³H]*N*-methylscopolamine ([³H]NMS). The results demonstrate that the diisopropyl analogue **19** has a similar high affinity as (S)-dimethindene at M_2 receptors ((S)-dimethindene: $pK_i = 7.52$; (-)-19: $pK_i = 7.37$) with an improved selectivity pattern ((S)-dimethindene: $M_2/M_1 = 6$ -fold, $M_2/M_3 = 5$ -fold, $M_2/M_4 = 10$ -fold, $M_2/M_5 = 25$ -fold; (-)-**19**: $M_2/M_1 = 36$ -fold, $M_2/M_3 = 96$ -fold, $M_2/M_4 = 42$ -fold, $M_2/M_5 = 275$ -fold). In addition, compound (-)-19 showed 35-fold lower affinity at histamine H₁ receptors ($pK_i = 5.61$) than (S)-dimethindene ($pK_i = 5.61$) 7.16). Another interesting compound is the fluoroethyl derivative **20** ($pK_i/M_2 = 7.49$), which also exhibits a higher M₂ selectivity ($M_2/M_1 = 19$ -fold; $M_2/M_3 = 22$ -fold; $M_2/M_4 = 13$ -fold; $M_2/M_2 = 12$ -fold; M_2/M_2 $M_5 = 62$ -fold) than (S)-dimethindene. Unfortunately, compound **20** also shows a high affinity for histamine H₁ receptors ($pK_i = 8.14$). The compound with the highest affinity for M₂ receptors $(pK_i = 7.91)$, the dimethylaminomethylene analogue **31**, displayed only a small preference for M_2 receptors. In conclusion, compound (-)-19 might be useful to test the hypothesis that blockade of muscarinic M_2 receptors in the brain is a viable mechanism by which to produce improved cognition. This second-generation dimethindene analogue might also be the starting point for the development of M_2 -selective muscarinic antagonists useful for quantifying M_2 receptors in the central nervous system with positron emission tomography imaging.

Introduction

Muscarinic receptors are present in the central and peripheral nervous system as well as in organs innervated by the autonomic nervous system. These receptors play an important role in a wide range of different functions such as central control of movement and cognition as well as in the peripheral control of smooth muscle tone and glandular secretion. Due to their wide distribution, the use of nonselective antagonists as therapeutics involves potential side effects, which could be avoided with subtype-selective compounds.


The interest in muscarinic receptors arose with the discovery of the pharmacological profile of pirenzepine, which shows M_1 receptor subtype selectivity. Four muscarinic receptor subtypes (M₁, M₂, M₃, and M₄) were subsequently characterized pharmacologically by the use of selective antagonists,^{1,2} and five distinct subtypes (M_1-M_5) were cloned.³ These developments have made it possible to specifically target the blockade of one muscarinic receptor subtype. Currently, pirenzepine is used for the inhibition of gastric acid secretion in the treatment of peptic ulcers.⁴ An M₂ antagonist might be useful in the treatment of bradycardia,⁵ and an M₃ selective compound in the treatment of obstructive airways diseases.⁶ Another possible indication for an M₂ and/or M₃ antagonist could be urinary incontinence,⁷ and an M₄ antagonist may be useful to treat tremor in patients with Parkinson's disease.⁸

Alzheimer's disease (AD) is a chronic cognitive disorder, characterized by the progressive degeneration of cholinergic neurons that project from the basal forebrain to the cerebral cortex and hippocampus.⁹ AD is currently treated with inhibitors of acetylcholinesterase, such as donepezil, which enhance the acetylcholine concentration in the synaptic cleft by impeding its enzymatic breakdown.¹⁰ Another possible mechanism for augmenting central cholinergic activity is to increase acetylcholine release by blockade of inhibitory presynaptic M₂ autoreceptors in the CNS,11 making a selective M2 receptor antagonist useful in the treatment of AD.¹² Such centrally acting M₂ antagonists may improve cognition without the side effects associated with other cholinergic approaches provided there is sufficient selectivity for the M₂ subtype. Nonselective muscarinic antagonists such as scopolamine are known to produce cognitive deficits. Very few compounds with the requi-

^{*} Address correspondence to: Prof. Dr. G. Dannhardt, Johannes Gutenberg-Universität Mainz, Staudinger Weg 5, D-55099 Mainz, Germany. Tel. +49 (0)6131 3925742. Fax +49 (0)6131 3923062. dannhardt@uni-mainz.de.

[†] Johannes Gutenberg-University of Mainz. [‡] Department of Pharmacology, University of Frankfurt.

[§] Pharmaceutical Biology, University of Frankfurt.

Figure 1.

site selectivities are known, and many of these do not penetrate into the brain to an appreciable extent.¹² Particularly, M_2/M_1 selectivity is crucial since the drug of interest should not functionally counteract its own presynaptic action by blocking postsynaptic M_1 receptors, which mediate the acetylcholine effect.

Brains from AD patients show a number of typical histopathologic alterations, e.g. axonal loss in the hippocampus and cortex. Due to their presynaptic location the density of M_2 receptors might therefore be reduced in these regions.¹³ A labeled M_2 -selective muscarinic antagonist suitable for positron emission tomography (PET) might therefore also be used as a diagnostic tool to provide information about the density of M_2 receptors in the brain.^{14–16}

Racemic dimethindene maleate (Figure 1) is a histaminic H₁ receptor antagonist, which penetrates readily into the brain.¹⁷⁻¹⁹ It was also shown to possess antimuscarinic activities by inhibiting the contractile responses to carbachol in guinea-pig ileum.²⁰ In an effort to explore its affinity for muscarinic receptor subtypes, the enantiomers of dimethindene, including the racemate, were examined in functional as well as in binding studies at native muscarinic receptor subtypes M₁-M₄.¹⁵ The results of these studies demonstrated that (S)dimethindene is a potent M₂-selective muscarinic receptor antagonist (guinea-pig atrium and rabbit vas deferens: $pA_2 = 7.86/7.74$; rat heart: $pK_i = 7.78$) with lower affinities for the muscarinic M₁ (rabbit vas deferens/rat duodenum: $pA_2 = 6.83/6.36$; NB-OK1-cells: $pK_i = 7.08$), M₃ (guinea-pig ileum/guinea pig trachea: $pA_2 = 6.92/6.96$; rat pancreas: $pK_i = 6.70$) and M_4 receptors (rat striatum: $pK_i = 7.00$). The (S)-enantiomer of dimethindene was more potent (up to 41-fold) than the (R)-isomer in all muscarinic assays. On the other hand, the (S)-isomer showed a lower affinity for histamine H_1 receptors in guinea-pig ileum (pA₂ = 7.48) than the (*R*)-enantiomer ($pA_2 = 9.42$).

The aim of the present study was to synthesize analogues of dimethindene in order to increase affinity and selectivity at muscarinic M_2 receptors as well as to diminish the binding toward histamine H_1 receptors. Structural modifications were made through functional group substitution on the indene phenyl ring and at the chiral center of the dimethindene molecule. Derivatives with different basic side chains were also evaluated. The new derivatives were examined for their affinities to human recombinant muscarinic M_1-M_5 and histamine H_1 receptors in radioligand binding studies. All chiral compounds, except dimethindene and **19**, were tested as racemates. (*R*)- and (*S*)-dimethindene were used as reference drugs.¹⁵

Chemistry

The compounds **6-37** shown in Table 1 were prepared by the synthetic routes illustrated in Scheme 1-3.

In Scheme 1, diethyl malonate was reacted with commercially available benzyl chlorides 1a-h. 4-Methylthiobenzyl chloride 1i was prepared following the procedure of Pines et al.²¹ The benzyl malonic diethyl esters 2a-i were alkylated with commercially available (2chloroethyl)dialkylamines to give the tertiary amines 3a-p. The (2-chloroethyl)dialkylamines 41a and 41bwere prepared from the corresponding alcohol, which were treated with thionyl chloride.

Saponification of the corresponding malonic esters yielded the amino acids 4a-p. The ring closure reaction was carried out in polyphosphoric acid (PPA) to give the indanone-1 derivatives **5a**-**p**. Treatment of **5a**-**p** with the lithium salts of different commercially available picolines, 2-ethyl-pyridine and 2-benzyl-pyridine formed tertiary alcohols, which were refluxed in HCl (20%) and yielded the indenes 6-19, 22-25, 27, 28, and 39. 2-Isopropylpyridine (45) was synthesized from 2-ethylpyridine by deprotonation and subsequent alkylation with methyl iodide. Compound 45 was used to synthesize compound 26 by addition to compound 5a and elimination of water. Treatment of commercially available 1-(bromoethyl)benzene with lithium gave the corresponding lithium compound, to which compound 5a was added to give the phenyl-substituted compound **30**.

Reduction of compound **5a** with sodium borohydride and dehydration with hydrochloric acid gave compound **38**, which in turn gave compound **29** by alkylation of the lithium salt with 3-chloromethylpyridine. Compound **39** was debenzylated by hydrogenation in the presence of formic acid to yield the secondary amine **40**, which was converted by alkylation to the tertiary amines **20** and **21**.

The indanone intermediates **43** and **44** (Scheme 2) were synthesized under standard Mannich reaction conditions.^{22–24} Treatment of **43** and **44** with the lithium salt of 2-ethylpyridine and subsequent reflux in HCl (20%) gave **31** and **32**, respectively, as illustrated in Scheme 2.

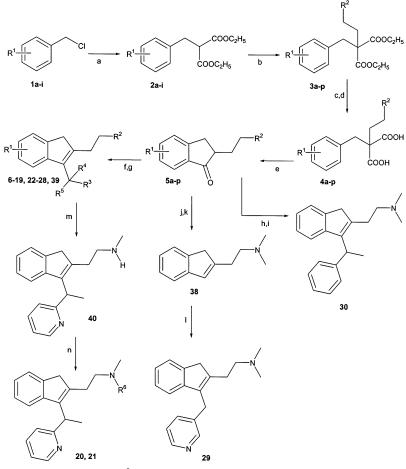
The compounds **33**–**37** were prepared via the general synthesis outlined in Scheme 3. To synthesize compounds **33**–**37**, treatment of commercially available indene with commercially available oxalylbromide neat, followed by addition of commercially available dimethylaminoethylamine or dimethylaminoethanol, gave the corresponding amides and esters **42a** and **42b**, respectively. Treatment of **42a,b** with butyllithium formed the anion, which was alkylated with different chloromethyl pyridines to give the compounds **33–37**.

Results and Discussion

New dimethindene analogues were synthesized in order to identify derivatives with improved M_2 selectivity and affinity as compared with the parent compound. The affinities of the new derivatives for the five human muscarinic receptor subtypes (M_1-M_5) and for histamine H_1 receptors were determined in radioligand binding studies using membranes from transfected Chinese hamster ovary (CHO) cells and [³H]NMS and [³H]mepyramine, respectively, as radioligands.²⁵ All chiral compounds, except dimethindene and **19**, were

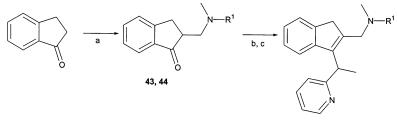
								pKi			
compd ^b	\mathbb{R}^{1}	\mathbf{R}^{2} c	\mathbb{R}^3	\mathbb{R}^4	$\mathbf{R}^{5\mathrm{d}}$	M1	\mathbf{M}_2	M_3	M_4	\mathbf{M}_5	formula [€]
$(R)-(-)-Dim^{k}$	H	$(CH_2)_2 N(CH_3)_2$	CH ₃	H	2-pyridyl	5.73 ± 0.03	5.91 ± 0.05	5.47 ± 0.04	5.41 ± 0.01	5.57 ± 0.03	$C_{20}H_{24}N_2 \cdot C_{4}H_4O_4$
(S)-(+)-Dim	H	(CH ₂) ₂ N(CH ₃) ₂	CH ₃	H	2-pyridyl	++ -	7.52 ± 0.05	- 11	++ -	6.12 ± 0.03	$C_{20}H_{24}N_2 \cdot C_4H_4O_4$
0 r	5-CH3	(CH2)2IN(CH3)2	CH3		2-pyridyl	0./9 ± 0.14	$5./1 \pm 0.14$	2.00 ± 0.22	5.49 ± 0.22	3.23 ± 0.10	
- 0	5-Cl		CH3		2-pyriuyi 2-myridyl	Η +	0.39 ± 0.10^{-1}	Н +	3.01 ± 0.33^{-1}	0.00 ± 0.10	
	5-SMP	(CH _a) _a N(CH _a) _a	CH.	: 1	2-pyridyl	+	+ +	+ +	+ +	+ +	C201123CHV2 C414-04 Cai Hao NoS+C4H, O++O 09H, O
10	5-F	(CH ₉) ₉ N(CH ₃) ₉	CH.	H	2-pvridyl	+	++	++	++	5.98 ± 0.04	ConHastNorCAHAOA
11	6-CH ₃	(CH ₂) ₂ N(CH ₃) ₂	CH ₃	H	2-pvridvl	6.25 ± 0.02	H	+	5.85 ± 0.03	5.84 ± 0.05	C21H26N2.C4H4O4.0.05H2Of
12	6-OMe	$(CH_2)_2^{\circ}N(CH_3)_2^{\circ}$	CH_3	Н	2-pyridyl		-++	++	5.38 ± 0.02	+	$C_{21}H_{26}N_{2}O\cdot C_4\dot{H}_4\dot{O}_4$
13	6-CI	$(CH_2)_2 N(CH_3)_2$	CH ₃	Η	2-pyridyl	6.82 ± 0.04	7.48 ± 0.05	7.02 ± 0.03	6.48 ± 0.04	+	$C_{20}H_{23}CIN_2 \cdot C_4H_4O_4$
14	6-CI	$(CH_2)_2 N(CH_3)_2$	CH2CH3	Η	2-pyridyl	6.65 ± 0.11	6.97 ± 0.07	6.55 ± 0.05	6.08 ± 0.10	6.11 ± 0.03	$C_{21}H_{25}CIN_2 \cdot C_4H_4O_4$
15	Η	(CH2)2piperidino	CH_3	Η	2-pyridyl	5.72 ± 0.10	6.07 ± 0.09	5.75 ± 0.07	5.72 ± 0.15		$C_{23}H_{28}N_2 \cdot C_4H_4O_4 \cdot 0.16H_2O$
16	Н	(CH2)2morpholino	CH_3	Η	2-pyridyl	5.36 ± 0.10	5.84 ± 0.13	5.56 ± 0.09	5.38 ± 0.12	+	$C_{22}H_{26}N_2O \cdot C_4H_4O_4$
17	Η	(CH2)2pyrrolidino	CH_3	Η	2-pyridyl	++	6.40 ± 0.09	+	+	5.70 ± 0.03	$C_{22}H_{26}N_2 \cdot C_4H_4O_4 \cdot 0.66H_2O$
18	Н	$(CH_2)_2 N(C_2H_5)_2$	CH_3	Η	2-pyridyl	$+\!\!+\!\!$	7.35 ± 0.14	6.02 ± 0.06	6.34 ± 0.07	5.68 ± 0.03	$C_{22}H_{28}N_2 \cdot C_4H_4O_4$
19	Η	$(CH_2)_2 N(CH(CH_3)_2)_2$	CH_3	Η	2-pyridyl	++	$\textbf{7.60}\pm\textbf{0.11}$	++	6.13 ± 0.07	5.66 ± 0.04	$C_{24}H_{32}N_2 \cdot C_7H_8SO_3$
(+)-19	Η	$(CH_2)_2 N(CH(CH_3)_2)_2$	CH_3	Η	2-pyridyl	5.23 ± 0.11	++	-++	++	5.29 ± 0.06	$C_{24}H_{32}N_2$
(-)-19	Η	(CH2)2N(CH(CH3)2)2	CH_3	Η	2-pyridyl	$+\!\!+\!\!$	7.37 ± 0.18	5.39 ± 0.05	5.75 ± 0.03	4.93 ± 0.04	$C_{24}H_{32}N_2$
20	Η	$(CH_2)_2NCH_3(CH_2)_2F$	CH_3	Η	2-pyridyl	++	-++	++	6.36 ± 0.04	5.70 ± 0.02	$C_{21}H_{25}FN_2 \cdot C_4H_4O_4$
21	Η	(CH ₂) ₂ NCH ₃ CH(CH ₃) ₂	CH_3	Η	2-pyridyl	6.06 ± 0.03	+H	5.74 ± 0.02	H	5.66 ± 0.04	$C_{22}H_{28}N_2 \cdot C_4H_4O_4$
22	Н	$(CH_2)_3N(CH_3)_2$	CH_3	Н	2-pyridyl	6.05 ± 0.08	++	++	5.77 ± 0.06	5.49 ± 0.05	$C_{21}H_{26}N_2 \cdot C_4H_4O_4$
23	H	$(CH_2)_2 N(CH_3)_2$	CH ₂ CH ₃	H	2-pyridyl	+	7.01 ± 0.10	++ -	6.18 ± 0.08	6.17 ± 0.04	$C_{21}H_{26}N_2 \cdot C_4H_4O_4$
24	H	$(CH_2)_2 N(CH_3)_2$	(CH ₂) ₂ CH ₃	Ξ	2-pyridyl	6.61 ± 0.07	6.17 ± 0.10	6.20 ± 0.06	-11	6.52 ± 0.06	$C_{22}H_{28}N_2 \cdot C_4H_4O_4$
25	H	$(CH_2)_2 N(CH_3)_2$	phenyl	H	2-pyridyl	7.36 ± 0.07	6.64 ± 0.03	7.17 ± 0.07	6.89 ± 0.07	7.18 ± 0.09	$C_{25}H_{31}N_2 \cdot C_4H_4O_4 \cdot H_2O_4$
26	Ξ	$(CH_2)_2 N(CH_3)_2$	CH ₃	CH3	2-pyridyl	7.28 ± 0.06	7.81 ± 0.03	-11 -	7.09 ± 0.05	6.43 ± 0.07	$C_{21}H_{26}N_2 \cdot C_4H_4O_4$
27	H	$(CH_2)_2 N(CH_3)_2$	H	H	2-pyridyl	5.80 ± 0.04	6.63 ± 0.07	5.81 ± 0.06	++	5.44 ± 0.05	$C_{19}H_{22}N_2 \cdot C_4H_4O_4$
58	H;	$(CH_2)_2 N(CH_3)_2$	H	Ηï	4-pyridyl	5.37 ± 0.07	5.17 ± 0.05	4.93 ± 0.09	5.08 ± 0.13	4.99 ± 0.05	$C_{19}H_{22}N_2 \cdot C_4H_4O_4 \cdot 0.07H_2O_6$
29	H	$(CH_2)_2 N(CH_3)_2$	Н	H	3-pyridyl	H	5.27 ± 0.12	5.09 ± 0.10	5.13 ± 0.09	5.10 ± 0.06	$C_{19}H_{22}N_2 \cdot C_4H_4O_4$
30	H	$(CH_2)_2 N(CH_3)_2$	CH ₃	H	phenyl	6.80 ± 0.12	++ -	++ -	++ -	6.51 ± 0.13	$C_{21}H_{25}N\cdot C_4H_4O_4$
31	I;	CH ₂ N(CH ₃) ₂	CH ₃	I;	2-pyridyl	Η·	7.91 ± 0.07	7.50 ± 0.05	++ •	7.06 ± 0.04	$C_{19}H_{22}N_{2}C_4H_4O_4$
32	Ξ¦	CH2NCH3CH(CH3)2	CH ₃	Ξ¦	z-pyridyl	6.64 ± 0.04	7.29 ± 0.02	++ -	6.22 ± 0.02	$c_{0.0} \pm c_{0.0}$	$C_{21}H_{24}N_{28}$
33	H:	$CO_2(CH_2)_2N(CH_3)_2$	H:	I:	2-pyridyl		++ •	5.05 ± 0.04	4.83 ± 0.06	4.76 ± 0.03	$C_{20}H_{22}N_{2}O_{2}\cdot 2C_{4}H_{4}O_{4}\cdot 0.42H_{2}O_{2}$
34	I :	CU2(CH2)2N(CH3)2	I :	I :	3-pyridyl	00.0 ± 0.00	$20.0 \pm 22.c$	$c_{0.0} \pm e_{0.0}$	4.88 ± 0.02	4.95 ± 0.04	C20H22N2U2·2C4H4U4·U.16H2U
35	H	CONH(CH ₂) ₂ N(CH ₃) ₂	H	H	2-pyridyl		+1 -	4.62 ± 0.20	4.57 ± 0.30	4.34 ± 0.27	$C_{20}H_{23}N_{3}O \cdot C_{4}H_{4}O_{4} \cdot 0.13H_{2}O$
36	Н	CONH(CH ₂) ₂ N(CH ₃) ₂	Н	Н	3-pyridyl	+	+	++	$4.33\pm\!0.03$	4.18 ± 0.05	$C_{20}H_{23}N_{3}O \cdot 2C_{4}H_{4}O_{4}$
37	Η	CONH(CH ₂) ₂ N(CH ₃) ₂	Н	Η	4-pyridyl	4.27 ± 0.09	$4.03\pm0.25^{\rm i}$	3.87 ± 0.08	$4.06\pm0.06^{\rm i}$	$4.38\pm0.02^{\rm h}$	$C_{20}H_{23}N_{3}O \cdot 2C_4H_4O_4$
^a Data are gi	ven as me	cans \pm SD of at least three $-$ N substituted minoridim	experiments	erform	ed in duplica	tte. ^b All chiral c	compounds wer	e used as racen	nates except din	nethindene and	^a Data are given as means ± SD of at least three experiments performed in duplicate. ^b All chiral compounds were used as racemates except dimethindene and 19 . ^c Morpholino = N-substituted
results agreed t	to within :	\pm 1N-substituted piperituit \pm 0.4% of the theoretical ve	e, pyronume alues. ^f Mixtur	- IN-SUL	ners, 6-meth	yldimethinden	o-, 4-pyriuyi — ie (80%) and 4-n	z-, 3- or 4-suu nethyldimethir	surureu pyruur idene (20%). ^g C	ie. ^o compound compound was r	Inorproduct, protruction – to-substituted production – to-substituted pyrtonane. z_{2} , 5-, 9-, 4-pyrtuyt – z_{2} , 5- or 4-substituted pyrtune. Compounds were analyzed for C_{1} for T_{2} , T_{1} , the results agreed to within $\pm 0.4\%$ of the theoretical values. ⁴ Mixture of isomers, 6-methyldimethindene (80%) and 4-methyldimethindene (20%). ^g Compound was purified by flash chromatography.
ⁱ Hill coefficien	ts signific	ⁱ Hill coefficients significantly different from unity. ^j (+)-Dim = (+)-dimethindene. $k^{i}(-)$ -Dim = (-)-dimethindene.	/. ^j (+)-Dim =	(+)-din	nethindene.	k'(-)-Dim = (-)-dimethindene	, ,		-	

à


ം

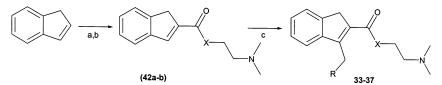
г Г С

г R³


ъ

Scheme 1^a

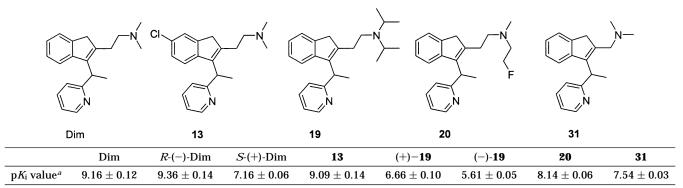
^{*a*} (a) Diethyl malonate, Na, EtOH, Δ ; (b) NaH, R²-(CH₂)_x-Cl, toluene, Δ ; (c) NaOH, Δ ; (d) CH₃COOH, 0 °C; (e) PPA, Δ ; (f) 2-picolyl-R³, R, ⁴ BuLi, ether, -78 °C; (g) HCl (20%), Δ ; (h) (1-bromoethyl)benzene, Li, ether, 25 °C; (i) HCl (20%), Δ ; (j) NaBH₄, EtOH, Δ ; (k) HCl concentrated, acetic acid, Δ ; (l) BuLi, ether, 3-chloromethylpyridine, -78 °C; (m) Pd/H₂, HCOOH, methanol; (n) K₂CO₃, Hal-alkyl, acetone.


Scheme 2^a

31, 32

^{*a*} (a) Paraformaldehyde, N(CH₃)R¹, ethanol, Δ ; (b) 2-ethylpyridine; BuLi, THF, -78 °C; (c) HCl (20%), Δ .

Scheme 3^a


^{*a*} (a) Oxalyl bromide, Δ ; (b) 2-dimethylaminoethanol, *N*,*N*-dimethylethane-1,2-diamine resp., THF, Δ ; (c) BuLi, THF, chloromethylpyridine, -78 °C.

investigated as racemates. The respective pK_i values are listed in Tables 1 and 2. Unless stated otherwise, all tested compounds behaved as competitive inhibitors of radioligand binding with competition curves indicating

the existence of one single binding site, the Hill coefficients being not significantly different from unity.

Our initial studies explored the effects of substituting the indene moiety of dimethindene at position 5 and 6

^a Values are means + SD of at least three independent experiments performed in duplicate.

with electron-withdrawing and electron-donating groups (6-14). All compounds, except 13, synthesized with a substituent at positions 5 or 6 showed lower affinity and selectivity toward M₂ receptors ($pK_i = 5.71-6.97$) than (S)-dimethindene. Analogue 10, which contains a fluorine atom, produced the smallest decrease in affinity among the 5-substituted derivatives. Comparing the fluoro-analogue 10 with compounds 6-9 suggests that the bulk of the substituent has the highest impact on receptor binding. Compound 13, which is substituted with chlorine, demonstrates that this lipophilic electronwithdrawing atom at position 6, in contrast to position 5 (compound 8), did not significantly affect the affinity for M_1-M_5 receptors. Taken together, the functional group variation at positions 5 and 6 of the indene moiety of dimethindene was found to decrease the affinity and selectivity at muscarinic receptors (6-12, 14). Only compound 13 with a chloro-substituent in position 6 maintained affinity for muscarinic receptors.

On the basis of the assumption that the basic tertiary amine moiety in muscarinic antagonists is important for binding to muscarinic receptors,²⁶ cyclic (**15–17**) as well as acyclic (18-21) tertiary amine derivatives of dimethindene were synthesized. Compounds 15-17 had affinities for M₁-M₅ receptors lower than those of the acyclic analogues 18-21 (up to 45-fold). In comparison to (S)-dimethindene, compound 20 showed a significant improvement in M₂-selectivity maintaining high affinity for M₂ receptors (20: $pK_i - M_2 = 7.49$, M₂/M₁ = 19fold, $M_2/M_3 = 22$ -fold, $M_2/M_4 = 13$ -fold, $M_2/M_5 = 62$ fold). In general, (S)-dimethindene displayed a higher affinity than the (R)-enantiomer in all muscarinic assays. However, their stereoselectivity ratios were found to be different at the five recombinant muscarinic receptor subtypes, being greatest at M₂ receptors (40fold). The same holds true for compound 19 (stereoselectivity ratio at $M_2 = 14$), the (-)-enantiomer being the eutomer at $M_{1-}M_4$ receptors, but the distomer at M_5 receptors. However, the affinity of (+)- and (-)-19 for M₅ receptors and the stereoselectivity ratio (2.3-fold) are low and should therefore not be considered as an unusual finding of reverse stereoselectivity between receptor subtypes. Thus, it is tempting to speculate that the compound (-)-19 has the (S)-configuration. However, further experiments are needed to clarify this issue. Compound (-)-19 exhibited a similar high affinity for the M₂ receptor ($pK_i = 7.37$) as (S)-dimethindene $(pK_i) = 7.52$), but an improved selectivity profile [(S)dimethindene = M_2/M_1 : 6-fold, M_2/M_3 : 5-fold, M_2/M_4 :

10-fold, M_2/M_5 : 25-fold; (-)-**19** = M_2/M_1 : 36-fold, M_2/M_3 : 96-fold, M_2/M_4 : 42-fold, M_2/M_5 : 275-fold]. Whereas (*R*)-dimethindene had similar affinities for the five muscarinic receptor subtypes, (+)-**19** (the distomer) is still an M_2 -selective muscarinic antagonist.

The p K_i values of racemic **19** (Table 1) should be lower by at most 0.3 log unit than the p K_i values of the high affinity enantiomer of **19** at M₁-M₅ receptors, due to the presence of 50% of the low affinity enantiomer in the racemic mixture. Unfortunately, this was not found. In fact, the affinity of (±)-**19** for M₁-M₅ receptors is on average 4-fold higher than expected (Table 1). However, this discrepancy is not due to chemical impurities of the compounds under study (see Experimental Section), and further experiments are needed to clarify this issue.

The length of the tertiary amine side chain was varied in compounds **22**, **31**, and **32**. While the analogue **22** with an aminopropyl side chain showed a 6-fold decreased M₂-affinity along with a lower selectivity compared to (*S*)-dimethindene, compound **31** with an aminomethyl chain displayed the highest affinity toward the M₂ receptor among all derivatives examined. Unfortunately, the M₂-selectivity of **31** is lower than that of the parent compound. To restore the selectivity while maintaining the affinity, analogue **32**, bearing a methylisopropylaminomethyl moiety, was synthesized. This compound showed indeed a similar affinity profile as (*S*)-dimethindene.

In comparison to (*S*)-dimethindene, compounds **33**– **37** showed a decrease in affinity at the muscarinic receptors up to 3090-fold. Each of these derivatives has either an ester or an amide group introduced into the molecule. The lengthening of these compounds by two atoms in comparison to dimethindene might be responsible for the substantial loss in affinity. However, the introduction of a polar group can drastically alter the physical properties of a compound and might also have a dramatic impact on binding to muscarinic receptors.

The impact on affinity of an altered heteroaromatic system was investigated by testing the phenyl analogue (**30**) and the achiral 3- and 4-pyridyl derivatives **28** and **29**. The phenyl derivative **30** showed similar M_1 and M_{3-5} affinities as (*S*)-dimethindene while the M_2 -affinity decreased 9-fold, resulting in a nonselective muscarinic antagonist. The affinity of the compounds **28** and **29** for M_2 receptors was 23- and 29-fold, respectively, lower than that of their achiral parent compound **27**. As a result, the M_2 -selectivity was completely lost. Taken

together, the pyridyl nitrogen seems to specifically interact with the M_2 receptor protein, since the presence as well as the position of the heteroaryl nitrogen has a major impact on affinity and selectivity.

To examine the effect of the substitution of the chiral center of dimethindene on selectivity and affinity, analogues 23-26 were synthesized. The chiral compound 23, which contains an ethyl substituent instead of methyl, showed lower affinity (2-fold) and selectivity at the M₂ receptors. The derivatives with a propyl substituent (24) or a phenyl group (25) were found to be M₁-selective compounds. The achiral analogue 26 had a 2-fold higher affinity at M₂ receptors than (*S*)-dimethindene but showed less subtype selectivity.

The pharmacologically most interesting derivatives, **13**, (+)-**19**, (-)-**19**, **20**, and **31**, were investigated for their affinities at recombinant histamine H_1 receptors and compared with the results that were obtained for (*R*)- and (*S*)-dimethindene (Table 2).

The affinity estimates of (R)- and (S)-dimethindene at recombinant human histamine H1 receptors (Table 2; $pK_i/(R) = 9.36$; $pK_i/(S) = 7.16$) were found to be very similar to that reported by Pfaff et al.,¹⁵ using a functional guinea-pig ileum assay. In contrast with muscarinic receptors (Table 1) the (\tilde{R}) -enantiomer proved to be the eutomer at histamine H₁ receptors, being 158-fold more potent than the (S)-configured stereoisomer. Accordingly, these results demonstrate an inverse stereoselectivity and imply that the stereochemical requirements of the muscarinic receptors and histamine H₁ receptors, respectively, are different for the enantiomers of dimethindene, being most stringent at H₁ receptors. Such an inverse stereoselectivity for recognition of histamine H_1 and muscarinic M_1-M_4 receptors has also been found for the enantiomers of compound 19 (Table 2). As a result, (-)-19 has a 14fold higher affinity for muscarinic M₂ receptors than (+)-**19**, but (+)-**19** is the eutomer at histamine H₁ receptors. As far as M₂ receptor specificity is concerned, the data show that (-)-19 is an M₂-selective muscarinic antagonist possessing a 58-fold lower affinity for histamine H₁ receptors. It is noteworthy, that the M_2 versus H_1 receptor specificity of (S)-dimethindene is much lower than that of (-)-19 (only 2-fold). This is due to the fact that the affinity for muscarinic M2 receptors did not change significantly by replacing the two N-methyl groups of (S)-dimethindene by two isopropyl substituents [(-)-19], whereas the affinity for histamine H₁ receptors decreased significantly by a factor of 35. Taken together, the analysis of the individual enantiomers of compound 19 resulted in (-)-19 with improved M_2 subtype selectivity and M₂ receptor specificity.

The chloro-substituted dimethindene analogue **13** showed about the same high affinity for histamine H_1 receptors as the (*R*)-enantiomer of the parent compound, whereas introduction of a fluoroethyl moiety (**20**) or shortening the aminoethylene chain to one methylene group (**31**) reduced affinity for H_1 receptors 17- and 66-fold, respectively.

In conclusion, this study has generated the diisopropyl derivative (–)-**19**, which has the same high affinity for muscarinic M_2 receptors as the parent compound, (*S*)-dimethindene. However, compound (–)-**19** exhibits an improved M_2 receptor selectivity (at least 36-fold) and M_2/H_1 receptor specificity (58-fold). It is also noteworthy that (-)-**19** is more selective for M_2 versus M_1 and M_{3-5} receptors than any so-called M_2 -selective antagonists recommended by the muscarinic receptor Committee on Receptor Nomenclature and Drug Classifications of the International Union of Pharmacology.²⁵ The antagonists recommended include methoctramine, himbacine and tripitramine. The second generation dimethindene analogue (–)-**19** might become the starting point for the development of M₂-selective muscarinic receptor antagonists useful as diagnostic tools for quantifying M₂ receptors in the central nervous system with positron emission tomography imaging, and to test the hypothesis that muscarinic M₂ receptor antagonists show beneficial effects in the treatment of cognitive disorders. Due to the abundant presence of muscarinic M_1 and histamine H_1 receptors in the brain, the high M₂ versus M₁ (H₁) selectivity (specificity) of compound (-)-19 is of special importance. In particular, the M_2 versus M₁ receptor selectivity may guarantee that such a compound does not counteract its acetylcholine releasing action via blockade of presynaptic autoreceptors by inhibition of postsynaptic M₁ receptors.²⁷

It is significant that dimethindene is a lipophilic compound, both enantiomers of which were able to penetrate into the brains of healthy human volunteers.^{17–19} In addition, it has been shown by Radler and Blaschke that differences in metabolism of the (R)- and (S)enantiomers do not influence the ease with which they cross the blood brain barrier.²⁸ Although the same type of investigation has not been carried out with (+)- or (-)-**19**, it seems likely that the enantiomers of **19** behave similarly due to their close chemical relationship to dimethindene. Further experiments are needed to address this point.

Experimental Section

High-field nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Unity 200 MHz Spectrometer or Bruker Unity 400 MHz Spectrometer. All chemical shifts are reported in ppm downfield relative to the residual signal of the deuterated solvent (CHCl₃, δ 7.26). All spectra were obtained in CDCl₃. Infrared spectra were determined on a Perkin-Elmer 299 IR spectrophotometer. Elemental analysis for carbon, hydrogen, and nitrogen were determined on a Carlo Erba Strumentazione, model 1106 elemental analyzer and are within 0.4% of theory unless noted otherwise. Mass spectra were obtained by using a Varian CH 7a or MAT 311 A mass spectrometer. Melting points were determined on a Dr. Tottoli (Buechi) melting point apparatus and are uncorrected. All target compounds were crystallized as salts of maleic acid $(C_4H_4O_4)$ or toluenesulfonic acid except compounds (-)-19, (+)-19, and 32.

Resolution of the Racemate 19 and Purity. Separation of the enantiomers (-)-**19** and (+)-**19** was performed on a GILSON/ABIMED HPLC (Sampling Injector 231 XL, UV/Vis-Detector 119, Fraction Collector 202). The column was MERCK Chiralpak ADH33, 250 mm \times 4.6 mm. The eluent was acetonitrile: 2-propanol:heptane 50:3:4 + 0.1 diethylamine. The flow rate was: 1 mL/min. The retension times were 3.76 min for (-)-**19** and 4.20 for **(+)19**. (-)-**19** and (+)-**19** showed no impurities.

Determination of Optical Rotation of (–)-19 and (+)-19. The optical rotation of the enantiomers was determined on a PerkinElmer Polarimeter Model 343 in chloroform solution (c = 0.0023 mol/L, 20 °C), result: ±90.1°.

General Procedure for the Preparation of Maleic Acid Salts. To a solution of tertiary amine (1 mmol) in absol ethanol (1 mL) was added maleic acid (1 mmol) in absol ethanol (1 mL). The clear solution was kept at 5 $^{\circ}$ C overnight. The white precipitate was filtered and washed with a mixture of cold absol ethanol and ether (1:1).

Procedure for the Preparation of Toluenesulfonic Acid Salt of 19. To a solution of **19** (1 mmol) in absol ethanol (1 mL) was added toluenesulfonic acid (1 mmol) in absol ethanol (1 mL). The clear solution was kept at 5 °C for 1 month. The white precipitate was filtered and washed with a mixture of cold absol ethanol and ether (1:1).

(4-Chloromethylphenyl) Methyl Sulfide (1i).²¹ To a stirred suspension of $AlCl_3$ (61.4 g, 0.46 mol) in 1,2-dichloromethane (200 mL) was added dropwise dimethoxymethane (18.2 g, 0.24 mol) over 30 min at 5 °C. Then, methyl phenyl sulfide (24.8 g, 0.2 mol) was added under the same conditions. The reaction mixture was stirred for 6 h at RT while crystals precipitated. The suspension was kept below 25 °C with an ice bath and stirred vigorously while adding ice chips (250 g). The organic layer was separated and the water layer extracted with 1,2-dichloroethane (2 × 100 mL). The combined organic layers were washed with cold water (30 mL), dried (Na₂SO₄), and evaporated to give a dark oil. The oil was used without further purification.

2-(4-Methylbenzyl)malonic Acid Diethyl Ester (2a). Sodium (0.1 mol, 2.3 g) was dissolved in 100 mL of dry ethanol, and diethyl malonic acid ester (8 g, 0.1 mol) was added dropwise at 50 °C to give a clear solution. To this solution was added dropwise 4-methylbenzyl chloride (0.1 mol, 26.4 g), and the reaction mixture was refluxed for 1 h. The precipitated sodium chloride was filtered, the ethanol was evaporated, and the residue was purified by distillation to give a colorless oil (11.8 g, 45%). ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.18 (t, J = 7.3 Hz, 6H), 2.28 (s, 3H), 3.12 (t, J = 7.3 Hz, 2H), 3.60 (t, J = 7.3 Hz, 1H), 4.12 (q, J = 7 Hz, 4H), 7.02 (m, 4H). MS: 264.1 (40%, [M⁺⁺]).

The following analogues were prepared using the procedure outlined for **2a** above.

2-(4-Methoxybenzyl)malonic acid diethyl ester (2b): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.20 (t, J = 7.2 Hz, 6H), 3.11 (d, J = 7.8 Hz, 2H), 3.58 (t, J = 7.8 Hz, 1H), 3.76 (s, 3H), 4.14 (q, J = 7.2 Hz, 4H), 6.80 (A,A', 2H), 7.11 (B,B', 2H).

2-(4-Chlorobenzyl)malonic acid diethyl ester (2c): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.16 (t, J = 7.3 Hz, 6H), 3.12 (d, J = 7.6 Hz, 2H), 3.57 (t, J = 7.6 Hz, 1H), 4.12 (q, J = 7.3 Hz, 4H), 7.06 (A,A', 2H), 7.16 (B,B', 2H). MS: 284.2 (37%, [M⁺⁺]).

2-(4-Methylsulfanylbenzyl)malonic acid diethyl ester (2d): ¹H NMR (CDCl₃, 200 MHz, $\delta\delta$ [ppm]) = 1.19 (t, *J* = 7.3 Hz, 6H), 2.44 (s, 3H), 3.15 (d, *J* = 7.8 Hz, 2H), 3.58 (t, *J* = 7.8 Hz, 1H), 4.14 (q, *J* = 7.3 Hz, 4H), 7.08–7.22 (m, 4H).

2-(4-Fluoro-benzyl)-malonic acid diethyl ester (2e): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.20 (t, J = 7.2 Hz, 6H), 3.14 (d, J = 7.6 Hz, 2H), 3.58 (t, J = 7.6 Hz, 1H), 4.13 (q, J = 7.2 Hz, 4H), 6.90–7.17 (m, 4H).

2-(3-Methylbenzyl)malonic acid diethyl ester (2f): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.21 (t, J = 7.3 Hz, 6H), 2.3 (s, 3H), 3.17 (d, J = 7.6 Hz, 2H), 3.62 (t, J = 7.6 Hz, 1H), 4.15 (q, J = 7.3 Hz, 4H), 7.0–7.19 (m, 4H). MS: 264.1 (41%, [M•+]).

2-(3-Methoxybenzyl)malonic acid diethyl ester (2 g): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.20 (t, J = 7.3 Hz, 6H), 3.16 (d, J = 7.8 Hz, 2H), 3.63 (t, J = 7.8 Hz, 1H), 3.76 (s, 3H), 419 (q, J = 7.3 Hz, 4H), 6.70–6.80 (m, 3H), 7.10–7.25 (m, 1H). MS: 280.1 (68%, [M*+]).

2-(3-Chlorobenzyl)malonic acid diethyl ester (2h): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.20 (t, J = 7.3 Hz, 6H), 3.16 (d, J = 7.6 Hz, 2H), 3.60 (t, J = 7.6 Hz, 1H), 4.15 (q, J = 7.3 Hz, 4H), 7.00–7.23 (m, 4H). MS: 284 (58%, [M+]).

2-Benzyl-2-[2-(dimethylamino)ethyl]malonic acid diethyl ester (3a). To a refluxing suspension of sodiumhydride (1.2 g, 50 mmol) in toluene (500 mL) was added dropwise 2-benzylmalonic acid diethyl ester (12.6 g, 50 mmol). The reaction mixture was refluxed for 1 h to give a clear yellow solution. (2-Chloroethyl)dimethylamine (5.4 g, 50 mmol) was added dropwise, and the reaction mixture was refluxed for 6 h. The resulting suspension was extracted with HCl (5%) (3 \times 50 mL). The aqueous layers were combined, basified with NH₄OH (pH > 10), and extracted with ether (3 \times 50 mL). The combined organic layers were dried (Na₂SO₄) and concentrated to yield a yellow oil (9.2 g, 85%) ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.24 (t, *J* = 7.3 Hz, 6H), 1.91–1.97 (m, 2H), 2.20 (s, 6H), 2.27–2.34 (m, 2H), 3.18 (s, 2H), 4.18 (q, *J* = 7.3 Hz, 1H), 7.05–7.23 (m, 5H).

The following analogues were prepared using the procedure outlined for ${f 3a}$ above.

2-[2-(Dimethylamino)ethyl]-2-(4-methylbenzyl)malonic acid diethyl ester (3b): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.25 (t, J = 7.3 Hz, 6H), 1.94 (t, J = 7.5 Hz, 2H), 2.18 (s, 6H), 2.3 (s, 3H), 2.31 (t, J = 7.5 Hz, 2H), 3.18 (s, 2H), 4.18 (q, J = 7.3 Hz, 1H), 6.92–7.10 (A,A', B,B', 4H). MS: 335.1 (3%, [M⁺⁺]).

2-[2-(Dimethylamino)ethyl]-2-(4-methoxybenzyl)malonic acid diethyl ester (3c): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.22 (t, J = 7.3 Hz, 6H), 1.94 (t, J = 7.2 Hz, 2H), 2.18 (s, 6H), 2.28 (t, J = 7.2 Hz, 2H), 3.16 (s, 2H), 3.75 (s, 3H), 4.18 (q, J = 7.3 Hz, 4H), 6.74 (A,A', 2H), 6.97 (B,B', 2H).

2-(4-Chloro-benzyl-2-[2-(dimethylamino)ethyl]malonic acid diethyl ester (3d): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.24 (t, J = 7.3 Hz, 6H), 1.95 (t, J = 8 Hz, 2H), 2.18 (s, 6H), 2.28 (t, J = 8 Hz, 2H), 3.21 (s, 2H), 4.15 (q, J = 7.3Hz, 4H), 7.04 (A,A', 2H), 7.19 (B,B', 2H). MS: 355.2 (4%, [M*+]).

2-[2-(Dimethylamino)ethyl]-2-(4-methylsulfanylbenzyl)malonic acid diethyl ester (3e): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.23 (t, J = 7.3 Hz, 6H), 1.92–1.99 (m, 2H), 2.22 (s, 6H), 2.33 (m, 2H), 2.43 (s, 3H), 3.18 (s, 2H), 4.16 (q, J = 7.3 Hz, 4H), 7.04–7.36 (m, 4H).

2-[2-(Dimethylamino)ethyl]-2-(4-fluorobenzyl)malonic acid diethyl ester (3f): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.21 (t, J = 7.3 Hz, 6H), 1.88–1.97 (m, 2H), 2.21 (s, 6H), 2.25–2.33 (m, 2H), 3.20 (s, 2H), 4.13 (q, J = 7.3 Hz, 4H), 6.87–7.10 (m, 4H).

2-[2-(Dimethylamino)ethyl]-2-(3-methylbenzyl)malonic acid diethyl ester (3 g): IR (NaCl, ν [cm⁻¹]) = 1730 (C=O).

2-[2-(Dimethylamino)ethyl]-2-(3-methoxybenzyl)malonic acid diethyl ester (3h): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.20 (t, J = 7.3 Hz, 6H), 1.88–1.95 (m, 2H), 2.16 (s, 6H), 2.24–2.31 (m, 2H), 3.16 (s, 2H), 3.72 (s, 3H), 4.11 (q, J =7.3 Hz, 4H), 6.60–6.72 (m, 3H), 7.06–7.14 (m, 1H).

2-(3-Chloro-benzyl)-2-[2-(dimethylamino)ethyl]malonic acid diethyl ester (3i): IR (NaCl, ν [cm⁻¹]) = 1725 (C=O).

2-Benzyl-2-[2-(N-benzyl-N-methylamino)ethyl]malonic acid diethyl ester (3j): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.19 (t, J = 7.3 Hz, 6H), 2.00 (m, 2H), 2.20 (s, 3H), 2.41 (m, 2H), 3.16 (s, 2H), 3.48 (s, 2H), 4.12 (q, J = 7.3 Hz, 4H), 6.95–7.21 (m, 10H).

2-Benzyl-2-[2-(diisopropylamino)ethyl]malonic acid diethyl ester (3k): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 0.94 (d, J = 6.8 Hz, 12H), 1.22 (t, J = 7.3 Hz, 6H), 1.85–1.93 (m, 2H), 2.35–2.43 (m, 2H), 2.92–2.98 (m, 2H), 3.23 (s, 2H), 4.16 (q, J = 7.3 Hz, 4H), 7.13–7.26 (m, 5H).

2-Benzyl-2-[2-(diethylamino)ethyl]malonic acid diethyl ester (3l): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 0.98 (t, J = 7.1 Hz, 6H), 1.21 (t, J = 7.2 Hz, 6H) 1.93 (t, J = 7.7 Hz, 2H), 2.50 (q, J = 7.1 Hz, 4H), 2.44–2.55 (m, 2H), 3.23 (s, 2H), 4.17 (q, J = 7.2 Hz, 4H), 7.07–7.25 (m, 5H).

2-Benzyl-2-(2-piperidin-1-ylethyl)malonic acid diethyl ester (3m): MS: 361.1 (7%, [M*+]).

2-Benzyl-2-(2-morpholin-4-ylethyl)malonic acid diethyl ester (3n): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.24 (t, J = 7.3 Hz, 6H), 1.96 (t, J = 7.2 Hz, 2H), 2.35–2.41 (m, 6H), 3.24 (s, 2H), 3.66 (t, J = 4.5 Hz, 4H), 7.05–7.25 (m, 5H), 4.20 (q, J = 7.3 Hz, 4H). MS: 363.3 (1%, [M⁺⁺]).

2-Benzyl-2-(2-pyrrolidin-1-yl-ethyl)malonic acid diethyl ester (30): ¹H NMR (CDCl₃, 400 MHz, δ [ppm]) = 1.20 (t, J = 7.3 Hz, 6H), 1.72 (bs, 4H), 1.98–2.02 (m, 2H), 2.45–2.50 (m, 6H), 3.22 (s, 2H), 4.14 (q, J = 7.3 Hz, 4H), 7.07–7.23 (m, 5H). MS: 347.1 (2%, [M⁺⁺]).

2-Benzyl-2-[2-(dimethylamino)propyl]malonic acid diethyl ester (3p): MS: 335.2 (0.2%, [M⁺⁺]). **2-Benzyl-2-[2-(dimethylamino)ethyl]malonic Acid (4a).** A solution of **3a** (33.5 g, 0.1 mol), NaOH (14 g, 0.35 mol), ethanol (100 mL) and water (50 mL) were refluxed for 4 h. The resulting suspension was evaporated and the residue dissolved in water (50 mL). Acetic acid was added dropwise while cooling (5 °C) until a white solid was formed. The solid product was filtered, washed with cold water (2×30 mL) and ethanol (20 mL), and dried in a vacuum oven at 50 °C for 2 days to give a white-yellow solid (20.4 g, 77%).

2-[2-(Dimethylamino)ethyl]indan-1-one (5a). 4a (13.25 g, 50 mmol) was added to polyphosphoric acid (80 g) at 90–120 °C with overhead stirring. After the addition, the resulting brown reaction mixture was heated to 140-150 °C and stirred for 20 min at this temperature range. The reaction was quenched with the cautious addition of ice chips, neutralized with K₂CO₃ (2 M), and basified with NaOH (3 M). The mixture was extracted with ether (3 × 100 mL), washed with water (100 mL), dried (Na₂SO₄), and evaporated to give a yellow oil (4.2 g, 41%) ¹H NMR (CDCl₃, 200 MHz, d δ [ppm]) = 1.59–1.64 (m, 1H), 2.10–2.16 (m, 1H), 2.23 (s, 6H), 2.39–2.45 (m, 2H), 2.69–2.75 (m, 1H), 2.79 (dd, ²J = 17.3 Hz, J = 4.4 Hz, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.69 (d, J = 7.4 Hz, 1H), 7.69 (d, J = 7.4 Hz, 1H), 7.69 (d, J = 7.4 Hz, 1H), MS: 203.2 (4%, [M*+]).

The following analogues were prepared using the procedure outlined for **5a** above.

2-[2-(Dimethylamino)ethyl]-6-methylindan-1-one (**5b):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.39–1.57 (m, 1H), 1.99–2.13 (m, 1H), 2.15 (s, 6H), 2.30 (s, 3H), 2.31–2.40 (m, 2H), 2.70 (dd, ²J = 17.4 Hz, J = 4.4 Hz, 1H), 3.21 (dd, ²J = 17.4 Hz, J = 9.3 Hz, 1H), 7.24–7.44 (m, 3H).

2-[2-(Dimethylamino)ethyl]-6-methoxyindan-1-one (5c): MS: 233.2 (25%, [M⁺⁺]).

6-Chloro-2-[2-(dimethylamino)ethyl]indan-1-one (5d): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.45–1.59 (m, 1H), 2.00–2.15 (m, 1H), 2.13 (s, 6H), 2.24–2.32 (m, 2H), 2.61– 2.67 (m, 1H), 2.68–2.78 (m, 1H), 3.21 (dd, ²J = 17.5 Hz, J = 9 Hz, 1H), 7.24–7.54 (m, 3H).

2-[2-(Dimethylamino)ethyl]-6-methylsulfanylindan-1one (5e): IR (NaCl, ν [cm⁻¹]) = 1700 (C=O).

2-[2-(Dimethylamino)ethyl]-6-fluoroindan-1-one (5f): IR (NaCl, ν [cm⁻¹])) = 1710 (C=O).

2-[2-(Dimethylamino)ethyl]-5-methylindan-1-one (5 g): MS: 217 (5%, [M*+]).

2-[2-(Dimethylamino)ethyl]-5-methoxyindan-1-one (5h): IR (NaCl, ν [cm⁻¹]) = 1700 (C=O).

5-Chloro-2-[2-(dimethylamino)ethyl]indan-1-one (5i): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.51–1.65 (m, 1H), 2.03–2.13 (m, 1H), 2.18 (s, 6H), 2.25–2.41 (m, 2H), 2.65–2.73 (m, 1H), 2.75–2.82 (m, 1H), 3.29 (dd, ²*J* = 17.4 Hz, *J* = 4.4 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.40 (s, 1H), 7.63 (d, *J* = 8.1 Hz, 1H). MS: 239.1 (0.4%) and 237.1 (1%) [M^{*+}].

2-(2-Morpholin-4-ylethyl)indan-1-one (5j): IR (NaCl, ν [cm⁻¹]) = 1695 (C=O).

2-(2-Pyrrolidin-1-ylethyl]indan-1-one (5k): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.63–1.75 (m, 5H), 2.10–2.22 (m, 1H), 2.47–2.61 (m, 6H), 2.62–2.71 (m, 1H), 2.81 (dd, ²*J* = 17.4 Hz, *J* = 4.4 Hz, 1H), 3.32 (dd, ²*J* = 17.4 Hz, *J* = 9.4 Hz, 1H), 7.28–7.78 (m, 4H).

2-(2-Piperidin-1-ylethyl]indan-1-one (51): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.31–1.45 (m, 6H), 1.58–1.69 (m, 1H), 2.02–2.14 (m, 1H), 2.28–2.40 (m, 6H), 2.54–2.68 (m, 1H), 2.76 (dd, ²*J* = 17 Hz, *J* = 4.3 Hz, 1H), 3.24 (dd, ²*J* = 17 Hz, *J* = 7.9 Hz, 1H), 7.27–7.68 (m, 4H). MS: 242.9 (10%, [M⁺⁺]).

2-[2-(Diethylamino)ethyl]indan-1-one (5m): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 0.99 (t, J = 7.1 Hz, 6H), 1.52–1.66 (m, 1H), 2.06–2.21 (m, 1H), 2.45–2.56 (m, 4H), 2.55–2.68 (m, 3H), 2.78 (dd, ²J = 17.4 Hz, J = 4.4 Hz, 1H), 3.31 (dd, ²J = 17.4 Hz, J = 9.3 Hz, 1H), 7.28–7.77 (m, 4H).

2-[2-(Diisopropylamino)ethyl]indan-1-one (5n): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.00 (m, 12H), 1.47–1.54 (m, 1H), 2.09–2.16 (m, 1H), 2.59 (m, 2H), 2.77–2.86 (m, 2H), 3.02–

3.08 (m, 2H), 3.34 (dd, ${}^{2}J = 18.5$ Hz, J = 8.3 Hz, 1H), 7.30–7.75 (m, 4H).

2-[2-(Benzylmethylamino)ethyl]indan-1-one (50): IR (NaCl, ν [cm⁻¹]) = 1705 (C=O).

2-[2-(Dimethylamino)propyl]indan-1-one (5p): IR (NaCl, ν [cm⁻¹]) = 1705 (C=O).

Dimethyl{2-[5-methyl-3-(1-pyridin-2-ylethyl)-1*H*-inden-2-yl]ethyl}amine (6). To a solution of 2-ethylpyridine (2.35 g, 22 mmol) in dry ether (40 mL) was added 1.6 M butyllithium (12.5 mL, 20 mmol) at -78 °C under nitrogen and stirred for 2 h at this temperature. To the dark red solution, 5b (2.18 g, 10 mmol) was added dropwise and stirred overnight at RT. The reaction was quenched with cold water, washed with saturated NaHCO₃ (2×50 mL) and extracted with HCl (20%) $(2 \times 25 \text{ mL})$. The water layer was refluxed for 1 h, cooled to RT, basified with NH₄OH sol. and extracted with ether (3 \times 50 mL). The ether was dried (Na₂SO₄) and evaporated to leave a brown oil. This oil was purified by flash chromatography eluting with toluene: acetone: methanol: NH4OH concentrated 60:30:8:2, to yield a yellow oil (1.94 g, 63%). ¹H NMR (CDCl₃, 400 MHz, δ [ppm]) = 1.75 (d, J = 7.2 Hz, 3H), 2.22 (s, 3H), 2.25 (s, 6H), 2.37-2.52 (m, 2H), 2.61-2.74 (m, 2H), 3.33 (s, 2H), 4.45 (q, J = 7.2 Hz, 1H), 6.85-7.51 (m, 6H), 8.60 (d, J = 4.8 Hz, 1H). MS: 306.1 (44%, [M+]). Anal. (C21H26N2+C4H4O4+ 0.1H₂O) C, H, N, mp 117-118 °C.

The following analogues were prepared using the procedure outlined for ${\bf 6}$ above.

{**2-[5-Methoxy-3-(1-pyridin-2-ylethyl)-1***H***-inden-2-yl]-methyl**}**dimethylamine (7):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.74 (d, J = 6.8 Hz, 3H), 2.28 (s, 6H), 2.47–2.54 (m, 2H), 2.67–2.76 (m, 2H), 3.32 (s, 2H), 3.65 (s, 3H), 4.44 (q, J = 6.8 Hz, 1H), 6.58–6.63 (m, 2H), 7.05–7.24 (m, 3H), 7.46–7.54 (m, 1H), 8.59 (d, J = 4.9 Hz, 1H). MS: 322.2 (1%, [M⁺⁺]). Anal. (C₂₁H₂₆N₂O·C₄H₄O₄) C, H, N, mp 117–118 °C.

{2-[5-Chloro-3-(1-pyridin-2-ylethyl)-1*H*-inden-2-yl]methyl}dimethylamine (8): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.72 (d, J = 7.3 Hz, 3H), 2.23 (s, 6H), 2.41–2.48 (m, 2H), 2.59–2.67 (m, 2H), 3.34 (s, 2H), 4.43 (q, J = 7.3 Hz, 1H), 6.96–7.19 (m, 5H), 7.46–7.50 (m,1H), 8.59 (d, J = 4.5 Hz, 1H). MS: 326.0 (16%, [M⁺⁺]). Anal. (C₂₀H₂₃ClN₂·C₄H₄O₄) C, H, N, mp 118–119 °C.

Dimethyl{2-[5-methylsulfanyl-3-(1-pyridin-2-ylethyl)-1*H***-inden-2-yl]ethyl}amine (9): ¹H NMR (CDCl₃, 200 MHz, \delta [ppm]) = 1.74 (d, J = 7.3 Hz, 3H), 2.32 (s, 6H), 2.35 (s, 3H), 2.49–2.77 (m, 4H), 3.35 (s, 2H), 4.45 (q, J = 7.3 Hz, 1H), 6.96–7.26 (m, 5H), 7.48–7.55 (m, 1H), 8.60 (d, J = 4.8 Hz, 1H). Anal. (C₂₁H₂₆N₂S·C₄H₄O₄·0.02H₂O) C, H, N, mp 97–98 °C.**

{**2-[5-Fluoro-3-(1-pyridin-2ylethyl)-1***H***-inden-2-yl]ethyl**}**dimethylamine (10):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.72 (d, J = 7.2 Hz, 3H), 2.23 (s, 6H), 2.45–2.53 (m, 2H), 2.66–2.74 (m, 2H), 3.32 (s, 2H), 4.43 (q, J = 7.2 Hz, 1H), 6.67– 6.76 (m, 2H), 7.01–7.23 (m, 3H), 7.46–7.54 (m, 1H), 8.59 (d, J = 4.9 Hz, 1H). Anal. (C₂₀H₂₃FN₂·C₄H₄O₄) C, H, N, mp 131– 132 °C.

{**3-[6-Methyl-3-(1-pyridin-2-ylethyl)-1***H***-inden-2-yl]-ethyl**}**dimethylamine (11):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.72 (d, J = 7.2 Hz, 3H), 2.22 (s, 3H), 2.26 (s, 6H), 2.42–2.49 (m, 2H), 2.63–2.70 (m, 2H), 3.34 (s, 2H), 4.43 (q, J = 7.2 Hz, 1H), 6.85–7.49 (m, 6H), 8.60 (d, J = 4.8 Hz, 1H). Anal. (C₂₁H₂₆N₂·C₄H₄O₄·0.05H₂O) C, H, N, mp 120–121 °C.

{**3-[6-Methoxy-3-(1-pyridin-2-ylethyl)-1***H***-inden-2-yl]-ethyl**}**dimethylamine (12):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.72 (d, J = 7.5 Hz, 3H), 2.26 (s, 6H), 2.42–2.49 (m, 2H), 2.63–2.70 (m, 2H), 3.34 (s, 2H), 3.75 (s, 3H), 4.43 (q, J = 7.5 Hz, 1H), 6.58–6.64 (m, 1H), 6.86–6.90 (m, 1H), 6.95–6.96 (m, 1H), 7.03–7.09 (m, 1H), 7.13–7.17 (m, 1H), 7.44–7.52 (m, 1H), 8.60 (d, J = 4.8 Hz, 1H). Anal. (C₂₁H₂₆N₂O·C₄H₄O₄) C, H, N, mp 119–120 °C.

{**2-[6-Chloro-3-(1-pyridin-2-ylethyl)-1***H*-inden-2-yl]ethyl}dimethylamine (13): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.72 (d, J = 7.3 Hz, 3H), 2.23 (s, 6H), 2.41–2.48 (m, 2H), 2.59–2.67 (m, 2H), 3.34 (s, 2H), 4.44 (q, J = 7.3 Hz, 1H), 6.87–6.95 (m, 1H), 7.00–7.17 (m, 3H), 7.31 (m, 1H), 7.46– 7.50 (m, 1H), 8.59 (d, J = 4.5 Hz, 1H). Anal. (C₂₀H₂₃ClN₂· C₄H₄O₄) C, H, N, mp 115–116 °C.

{**2-[6-Chloro-3-(1-pyridin-2-ylpropyl)-1***H***-inden-2-yl]-ethyl**}**dimethylamine (14):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 0.93 (t, J = 7.4 Hz, 3H), 2.30 (s, 6H), 2.44–2.81 (m, 6H), 3.39 (s, 2H), 4.13–4.21 (m, 1H), 7.01–7.31 (m, 5H), 7.42–7.51 (m, 1H), 8.58 (d, J = 4.8 Hz, 1H). Anal. (C₂₁H₂₅ClN₂· C₄H₄O₄) C, H, N, mp 119–120 °C.

2-{**1**-[**2**-(**2**-**Piperidin-1**-ylethyl)-1*H*-inden-2-yl]ethyl}pyridine (15): ¹H NMR (CDCl₃, 400 MHz, δ [ppm]) = 1.41– 1.44 (m, 2H), 1.60 (quint, 4H), 1.75 (d, J = 7.3 Hz, 3H), 2.44– 2.57 (m, 6H), 2.72–2.77 (m, 2H), 3.37 (s, 2H), 4.47 (q, J = 7.3Hz, 1H), 6.99–7.08 (m, 4H), 7.16 (m, 1H), 7.35 (m, 1H), 7.47 (m, 1H), 8.59 (d, J = 4.9 Hz, 1H). MS: 332.1 (2%, [M⁺⁺]). Anal. (C₂₃H₂₈N₂·C₄H₄O₄·0.16H₂O) C, H, N, mp 114–115 °C.

 $\begin{array}{l} \textbf{4-}\{\textbf{-2-}[\textbf{3-}(\textbf{1-Pyridin-2-ylethyl})\textbf{-}1\textit{H-inden-2-yl}]\textbf{ethyl}\} \\ \textbf{morpholine (16): } ^{1}\text{H} NMR (CDCl_3, 200 \text{ MHz}, \delta [ppm]) = 1.78 \\ (d, J = 7.3 \text{ Hz}, 3\text{H}), 2.47-2.60 (m, 6\text{H}), 2.70-2.79 (m, 2\text{H}), \\ 3.41 (s, 2\text{H}), 3.71 (t, J = 5.9 \text{ Hz}, 4\text{H}), 4.48 (q, J = 7.3 \text{ Hz}, 1\text{H}), \\ 7.0-7.21 (m, 5\text{H}), 7.33-7.40 (m, 1\text{H}), 7.48-7.52 (m, 1\text{H}), 8.61 \\ (d, J = 4.5 \text{ Hz}, 1\text{H}). \text{ MS: } 334.3 (2\%, [M^{\star+}]). \text{ Anal. } (C_{22}\text{H}_{26}\text{N}_2\text{O} \cdot C_4\text{H}_4\text{O}_4) \text{ C}, \text{H}, \text{N}, \text{mp } 119-120 \ ^{\circ}\text{C}. \end{array}$

2-{-**1**-[**2**-(**3**-**Pyrrolidin**-**1**-**ylethyl**)-**1***H*-**inden**-**2**-**yl**]**ethyl**}-**pyridine (17):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.72–1.80 (m, 7H), 2.57–2.82 (m, 8H), 3.40 (s, 2H), 4.48 (q, J = 7.4 Hz, 1H), 6.98–7.11 (m, 4H), 7.17–7.20 (m, 1H), 7.34–7.39 (m, 1H), 7.48–7.53 (m, 1H), 8.60 (d, J = 6.3 Hz, 1H). Anal. (C₂₂H₂₆N₂·C₄H₄O₄·0.66 H₂O) C, H, N, mp 131–132 °C.

Diethyl{2-[3-(1-pyridin-2-ylethyl)-1*H***-inden-2-yl]ethyl}amine (18):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.04 (t, J= 7.6 Hz, 6H), 1.75 (d, J = 7.3 Hz, 3H), 2.56 (q, J = 7.6 Hz, 4H), 2.51–2.74 (m, 4H), 3.39 (s, 2H), 4.48 (q, J = 7.3 Hz, 1H), 7.00–7.11 (m, 4H), 7.14–7.17 (m, 1H), 7.33–7.40 (m, 1H), 7.46–7.52 (m, 1H), 8.59 (d, J = 4.5 Hz, 1H). Anal. (C₂₂H₂₈N₂· C₄H₄O₄) C, H, N, mp 90–91 °C.

Diisopropyl{**2-[3-(1-pyridin-2-ylethyl)-1***H***-inden-2-yl]-ethyl**}**amine (19):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.04 (m, 12H) 1.77 (d, J = 7.3 Hz, 3H), 2.62 (m, 4H), 3.06 (m, 2H), 3.41 (s, 2H), 4.46 (q, J = 7.3 Hz, 1H), 7.00–7.22 (m, 5H), 7.33–7.37 (m, 1H), 7.43–7.48 (m, 1H), 8.59 (d, J = 3.9 Hz, 1H). Anal. (C₂₄H₃₂N₂·C₇H₈SO₃) C, H, N. Exact mass (C₂₄H₃₃N₂+·C₇H₇SO₃⁻): 349.2638 ± 1.2 ppm, mp 175–176 °C.

Dimethyl{**3-[5-methyl-3-(1-pyridin-2-ylethyl)-1***H***-inden-2-yl]propyl**}**amine (22):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.20–1.27 (m, 2H), 1.73 (d, J = 7.2 Hz, 3H), 2.26 (s, 6H), 2.43–2.51 (m, 2H), 2.66–2.74 (m, 2H), 3.36 (s, 2H), 4.44 (q, J = 7.2 Hz, 1H), 6.99–7.26 (m, 6H), 7.49–7.57 (m, 1H), 8.61 (d, J = 4.8 Hz, 1H). Anal. (C₂₁H₂₆N₂·C₄H₄O₄) C, H, N, mp 149–150 °C.

Dimethyl{**2-[3-(1-pyridin-2-ylpropyl)-1***H***-inden-2-yl]-ethyl**}**amine (23):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 0.93 (t, J = 7.4 Hz, 3H), 2.27 (s, 6H), 2.43–2.78 (m, 6H), 3.39 (s, 2H), 4.15–4.23 (m, 1H), 7.03–7.47 (m, 7H), 8.58 (d, J = 4.8 Hz, 1H). Anal. (C₂₁H₂₆N₂·C₄H₄O₄) C, H, N, mp 118–119 °C.

Dimethyl{**2-[3-(1-pyridin-2-ylbutyl)-1***H***-inden-2-yl]-ethyl**}**amine (24):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 0.94 (t, J = 7.2 Hz, 3H), 1.24–1.39 (m, 2H), 2.09–2.23 (m, 2H), 2.29 (s, 6H), 2.42–2.53 (m, 2H), 2.71–2.86 (m, 2H), 3.40 (s, 2H), 4.27–4.34 (m, 1H), 7.01–7.50 (m, 7H), 8.57–8.60 (d, J = 4.8 Hz, 1H). Anal. (C₂₂H₂₈N₂·C₄H₄O₄) C, H, N, mp 107–108 °C.

Dimethyl{**2-[3-(phenylpyridin-2-ylmethyl)-1***H***-inden-2-yl]ethyl**}**amine (25):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 2.13 (s, 6H), 2.25–2.33 (m, 2H), 2.52–2.61 (m, 2H), 3.43 (s, 2H), 5.82 (s, 1H), 6.79–7.38 (m, 11H), 7.51–7.60 (m, 1H), 8.58 (d, *J* = 4.5 Hz, 1H). MS: 91.1 (100%, [C₇H₇*+]). Anal. (C₂₅H₃₁N₂* C₄H₄O₄·H₂O) C, H, N, mp 146–147 °C.

Dimethyl{**2-[3-(1-methyl-1-pyridin-2-ylethyl)-1***H***-inden-2-yl]ethyl**}**amine (26):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.81 (s, 6H), 2.28 (s, 6H), 2.50–2.58 (m, 2H), 2.84–2.92 (m, 2H), 3.44 (s, 2H), 6.46 (d, J = 7.3 Hz, 1H), 6.85–7.50 (m, 6H), 8.59 (d, J = 4.8 Hz, 1H). Anal. (C₂₁H₂₆N₂·C₄H₄O₄) C, H, N, mp 128–129 °C. **Dimethyl[2-(3-pyridin-2-ylmethyl-1***H***-inden-2yl)ethyl]amine (27):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 2.34 (s, 6H), 2.55–2.63 (m, 2H), 2.76–2.84 (m, 2H), 3.41 (s, 2H), 4.09 (s, 2H), 7.05–7.52 (m, 7H), 8.52 (d, J=4.9 Hz, 1H). MS: 278.4 (0.1%, [M•+]). Anal. (C₁₉H₂₂N₂•C₄H₄O₄) C, H, N, mp 139–140 °C.

Dimethyl[2-(3-pyridin-4-ylmethyl-1*H***-inden-2yl)ethyl]amine (28):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 2.22 (s, 6H), 2.40–2.50 (m, 2H), 2.63–2.73 (m, 2H), 3.41 (s, 2H), 3.90 (s, 2H), 6.96–7.20 (m, 5H), 7.37–7.43 (m, 1H), 8.42 (d, J = 4.9 Hz, 2H). Anal. (C₁₉H₂₂N₂·C₄H₄O₄·0.07H₂O) C, H, N, mp 147–148 °C.

Dimethyl[3-(1-pyridin-2-ylethyl)-1*H***-inden-2-ylmethyl]amine (31):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.75 (d, *J* = 7.3 Hz, 3H), 2.24 (s, 6H), 3.34 (d, ²*J* = 14 Hz, 1H), 3.40 (d, ²*J* = 14 Hz, 1H), 3.51 (s, 2H), 4.59 (q, *J* = 7.3 Hz, 1H), 7.05-7.16 (m, 5H), 7.39-7.41 (m, 1H), 7.48 (dt, *J* = 7.8 Hz, ⁴*J* = 1.9 Hz, 1H), 8.60 (d, *J* = 4.4 Hz, 1H). Anal. (C₁₉H₂₂N₂·C₄H₄O₄) C, H, N, mp 162-163 °C.

Isopropylmethyl[3-(1-pyridin-2-ylethyl)-1*H*-inden-2ylmethyl]amine (32). ¹H NMR (CDCl₃, 400 MHz, δ [ppm]) = 1.06 (d, J = 6.8 Hz, 6H), 1.75 (d, J = 6.8 Hz, 3H), 2.19 (s, 3H), 2.98 (sept, J = 6.8 Hz, 1H), 3.50 (s, 2H), 3.56 (s, 2H), 4.58 (q, J = 6.8 Hz, 1H), 7.05–7.16 (m, 5H), 7.36–7.53 (m, 2H), 8.58–8.60 (m, 1H). Anal. (C₂₁H₂₄N₂) C, H, N, oil.

Benzylmethyl{**2-[[3-(1-pyridin-2-ylethyl)-1***H***-inden-2yl]ethyl}amine (39**): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.72 (d, J = 7.3 Hz, 3H), 2.28 (s, 3H), 2.58–2.77 (m, 4H), 3.33 (s, 2H), 3.56 (s, 2H), 4.43 (q, J = 7.3 Hz, 1H), 7.03–7.49 (m, 12H), 8.58 (d, J = 4.9 Hz, 1H).

Methyl{**2-[3-(1-pyridin-2-ylethyl)-1***H***-inden-2yl]ethyl**}**amine (40).** To a solution of **39** (4.8 g, 12.7 mmol) in ethanol (30 mL) was added formic acid (95%) (2.5 g, 51 mmol). This solution was added to freshly activated palladium on charcoal (10%) (0.72 g) in ethanol (20 mL) and stirred for 12 h under H₂. The catalyst was filtered and the solvent evaporated to leave an orange oil. The oil was purified by flash chromatography (silica gel) eluting with toluene:acetone:methanol: NH₄OH concentrated 60:30:8:2 to give a yellow oil (1.68 g, 47.6%). ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.75 (d, J = 7.3 Hz, 3H), 2.45 (s, 3H), 2.73–2.85 (m, 4H), 3.38 (s, 2H), 4.50 (q, J = 7.3 Hz, 1H), 6.96–7.16 (m, 4H), 7.25 (d, J = 7.8 Hz, 1H), 7.31–7.38 (m, 1H), 7.54 (dt, J = 7.3 Hz, ⁴J = 2 Hz, 1H), 8.54 (d, J = 4.9 Hz, 1H).

(2-Fluoroethyl)methyl{2-[3-(1-pyridin-2-ylethyl)-1*H*inden-2-yl]ethyl}amine (20). To a suspension of K₂CO₃ (1.4 g, 10 mmol) in acetone (20 mL) was added **40** (1.39 g, 5 mmol) and 1-bromo-2-fluoro-ethan (0.63 g, 5 mmol). The reaction mixture was refluxed for 4 h. The suspension was filtered and the solvent was evaporated to leave a yellow oil. This oil was purified by flash chromatography (silica gel) eluting with toluene: acetone: methanol: NH₄OH concentrated 60:30:8:2 to give a yellow oil (0.48 g, 29%). ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.75 (d, *J* = 7.3 Hz, 3H), 2.35 (s, 3H), 2.60–2.74 (m, 4H), 2.74 (dt, *J*_{HF} = 27.3 Hz, *J*_{HH} = 4.9 Hz, 2H), 3.39 (s, 2H), 4.47 (q, *J* = 7.3 Hz, 1H), 4.53 (dt, *J*_{HF} = 47.3 Hz, *J*_{HH} = 4.9 Hz, 2H), 7.02–7.11 (m, 4H), 7.17 (d, *J* = 7.8 Hz, 1H), 7.49 (dt, *J* = 7.3 Hz, ⁴*J* = 2 Hz, 1H), 8.59 (d, *J* = 4.9 Hz, 1H). Anal. (C₂₁H₂₅FN₂·C₄H₄O₄) C, H, N, mp 118–119 °C.

The following analogue was prepared using the procedure outlined for **20** above.

Isopropyl-methyl-{2-[3-(1-pyridin-2-yl-ethyl)-1*H*-inden-2-yl]ethyl}-amine (21): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.00 (d, J = 6.8 Hz, 6H), 1.76 (d, J = 6.8 Hz, 3H), 2.25 (s, 3H), 2.56–2.74 (m, 4H), 2.87 (sept, J = 6.8 Hz, 1H), 3.39 (s, 2H), 4.47 (q, J = 6.8 Hz, 1H), 6.98–7.10 (m, 4H), 7.18 (d, J = 7.8Hz, 1H), 7.43–7.37 (m, 1H), 7.48 (dt, J = 7.3 Hz, ²J = 2 Hz, 1H), 8.58 (d, J = 4.9 Hz, 1H). Anal. (C₂₂H₂₈N₂·C₄H₄O₄) C, H, N.

Dimethyl{2-[3-(1-phenylethyl)-1*H***-indene-2-yl]ethylamine (30).** To a solution of 1-brom*o*-ethyl-benzene (3.7 g, 20 mmol) in dry ether (50 mL) was added lithium (0.14 g, 20 mmol) under nitrogen and stirred for 1 h. **5a** (4.05 g, 20 mmol) was added dropwise and the reaction mixture was stirred overnight. The suspension was quenched with ice chips. The organic layer was washed with water (2 × 30 mL) and extracted with HCl (20%) (2 × 25 mL). The water layer was refluxed for 1 h, basified with NH₄OH (pH>10), and extracted with ether (3 × 30 mL). The ether layer was dried (Na₂SO₄) and evaporated to leave a brown oil. This oil was purified by flash chromatography (silica gel) eluting with toluene: acetone: methanol: NH₄OH concentrated 60:30:8:2 to give a yellow oil (0.62 g, 21%). ¹H NMR (CDCl₃, 400 MHz, d δ [ppm]) = 1.68 (d, J = 7.2 Hz, 3H), 2.27 (s, 6H), 2.41–2.54 (m, 4H), 3.37 (s, 2H), 4.37 (q, J = 7.2 Hz, 1H), 6.96–7.36 (m, 9H). MS: 291 (0.2%, [M⁺⁺]). Anal. (C₂₁H₂₅N·C₄H₄O₄) C, H, N, mp 159–160 °C.

[2-(1*H*-Inden-2-yl)ethyl]dimethylamine (38). To a solution of **5a** (8.1 g, 40 mmol) in ethanol (100 mL) was added sodiumborohydride (0.96 g, 40 mmol) portionwise with stirring. The reaction mixture was refluxed for 2 h, concentrated in vacuo and diluted with water (150 mL). The emulsion was extracted with ether (3 × 100 mL), dried (Na₂SO₄) and evaporated to give a yellow oil of 2-[2-(dimethylamino)-ethyl]-indan-1-ole. To this oil acetic acid (90 mL) and HCl concentrated (35 mL) were added and refluxed for 90min. Most of the solvent was evaporated in vacuo, the residue diluted with water (100 mL), basified with NH₄OH (pH>10), extracted with ether (2 × 100 mL), dried (Na₂SO₄) and concentrated to give a yellow oil (7.2 g, 96%). ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 2.30 (s, 6H), 2.54–2.69 (m, 4H), 3.33 (s, 2H), 6.53 (s, 1H), 7.08–7.38 (m, 4H).

Dimethyl[2-(3-pyridin-3-ylmethyl-1H-inden-2-yl)ethyl]amine (29). To a solution of 38 (0.94 g, 5.0 mmol) in THF (50 mL) was added butyllithium 1.6 M (3.1 mL, 5.0 mmol). This mixture was stirred for 1 h at -78 °C under nitrogen. 3-Chloromethylpyridine (0.64 g, 5.0 mmol) was added, the reaction mixture was stirred for 6 h at RT and the solvent was evaporated. The residue was diluted with ether (50 mL), washed with water (2 \times 30 mL), dried (Na₂SO₄) and concentrated in vacuo to leave a brown oil. This oil was purified by flash chromatography (silica gel) eluting with toluene: acetone: methanol: NH₄OH concentrated 60:30:8:2 to give a yellow oil (0.9 g, 64%). ¹H NMR (CDCl₃, 400 MHz, δ [ppm]) = 2.27 (s, 6H), 2.47-2.51 (m, 2H), 2.70-2.74 (m, 2H), 3.41 (s, 2H), 3.90 (s, 2H), 7.04-7.17 (m, 3H), 7.22-7.25 (m, 1H), 7.38 (m, 1H), 7.44-7.47 (m, 1H), 8.39-8.41 (m, 1H), 8.53 (m, 1H). Anal. (C₁₉H₂₂N₂·C₄H₄O₄) C, H, N, mp 116-117 °C.

The following analogues were prepared using the procedure outlined for **29** above.

3-Pyridin-2-ylmethyl-1*H***-indene-2-carboxylic acid 2-(dimethylamino)ethyl ester (33):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 2.35 (s, 6H), 2.72 (t, J = 5.8 Hz, 2H), 3.76 (s, 2H), 4.39 (t, J = 5.8 Hz, 2H), 4.68 (s, 2H), 7.04–7.09 (m, 1H), 7.18– 7.34 (m, 3H), 7.44–7.56 (m, 3H), 8.51 (d, J = 4.4 Hz, 1H). Anal. (C₂₀H₂₂N₂O₂·2 C₄H₄O₄·0.42 H₂O) C, H, N, mp 134–135 °C.

3-Pyridin-3-ylmethyl-1*H***-indene-2-carboxylic acid 2-(dimethylamino)ethyl ester (34):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 2.32 (s, 6H), 2.67 (t, J = 5.8 Hz, 2H), 3.75 (s, 2H), 4.36 (t, J = 5.8 Hz, 2H), 4.46 (s, 2H), 7.10–7.59 (m, 6H), 8.41 (m, 1H), 8.61 (m, 1H). Anal. (C₂₀H₂₂N₂O₂·2 C₄H₄O₄·0.16 H₂O) C, H, N, mp 77–78 °C.

3-Pyridin-2-ylmethyl-1*H***-indene-2-carboxylic acid 2-(dimethylamino)ethyl amide (35):** ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 2.23 (s, 6H), 2.51–2.58 (m, 2H), 3.52–3.61 (m, 2H), 3.73 (s, 2H), 4.28 (s, 2H), 7.07–7.28 (m, 3H), 7.40–7.45 (m, 3H), 7.57–7.62 (m, 1H), 8.43 (d, J= 4.3 Hz, 1H), 9.85 (m, 1H). Anal. (C₂₀H₂₃N₃O·C₄H₄O₄·0.13H₂O) C, H, N, mp 114–115 °C.

3-Pyridin-3-ylmethyl-1*H***-indene-2-carboxylic acid 2-(dimethylaminoethyl) amide (36): ¹H NMR (CDCl₃, 400 MHz, \delta [ppm]) = 2.25 (s, 6H), 2.47 (t, J = 5.9 Hz, 2H), 3.42–3.47 (m, 2H), 3.67 (s, 2H), 4.47 (s, 2H), 6.54 (m, 1H), 7.10–7.13 (m, 1H), 7.24–7.27 (m, 2H), 7.32–7.35 (m, 1H), 7.43–7.45 (m, 1H), 7.62 (m, 1H), 8.37 (d, J = 3.8 Hz, 1H), 8.60 (m, 1H). Anal. (C₂₀H₂₃N₃O·2 C₄H₄O₄) C, H, N, mp 116–117 °C.**

3-Pyridin-4-ylmethyl-1*H*-indene-2-carboxylic acid 2-(dimethylamino)ethyl amide (37): ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 2.23 (s, 6H), 2.45–2.51 (m, 2H), 3.41–3.49 (m, 2H), 3.70 (s, 2H), 4.48 (s, 2H), 6.59 (m, 1H), 7.21–7.28 (m, 5H), 7.44–7.46 (m, 1H), 8.42 (m, 2H). Anal. (C_{20}H_{23}N_3O\cdot 2 C_4H_4O_4) C, H, N, mp 126–127 °C.

Benzyl(2-chloroethyl)methylamine Hydrochloride (41a). To 2-(benzyl-methyl-amino)-ethanol (40.3 g, 0.2 mol) was added dropwise HCl (15%) to pH <2. Chloroform (200 mL) was added and the emulsion was refluxed under Dean–Stark conditions until water was no longer separated. Chloroform was evaporated and to the oily residue was added dropwise thionyl chloride (35.7 g, 0.3 mol) under external ice-cooling. The reaction mixture was then refluxed for 3 h. The excess of thionyl chloride was evaporated in vacuo, the residue was washed with cold ethanol (100 mL) and dried in a vacuum oven overnight at RT to give a white solid (41.7 g, 94%). CHN theory/found (%): C: 54.76/54.82 H: 6.87/7.01 N: 6.36/6.35. (2-Chlor*o*-ethyl)-diisopropylamine (41b) was prepared by using the procedure outlined for 41a above.

1*H***·Indene-2-carboxylic Acid 2-(dimethylamino)ethyl** Ester (42a). The reagents indene (11.6 g, 100 mmol) and oxalyl bromide (10.8 g, 50 mmol) were heated neat to 90 °C for 5 h. The dark reaction mixture was cooled to RT and diluted with THF (100 mL). 2-Dimethylaminoethanol (4.45 g, 50 mmol) was added and heated to reflux for 2 min. The suspension was concentrated in vacuo, and the residue was diluted with HCl (5%) (200 mL), washed with CH₂Cl₂ (3 × 50 mL), basified with NH₄OH and extracted with CH₂Cl₂ (3 × 50 mL). The organic layer was washed with water (3 × 50 mL), dried (MgSO₄), and evaporated to leave a yellow oil (6.4 g, 56%). The product was used without further purification. 1*H*-Indene-2-carboxylic acid (2-(dimethylamino)ethyl)amide (42b) was prepared using *N*,*N*-dimethylethane-1,2-diamine in the procedure above.

2-(Dimethylaminomethyl)indan-1-one Hydrochloride (43) (Method A).²² To a solution of indan-1-one (5.3 g, 40 mmol) in ethanol (30 mL) were added paraformaldehyde (3.3 g) and dimethylamine hydrochloride (4.8 g, 60 mmol). The mixture was refluxed for 15 min. Then, two drops of concentrated HCl were added in order to dissolve the surplus paraformaldehyde, and the homogeneous mixture was allowed to stand at RT overnight. The hygroscopic white solid was filtered under nitrogen and dried in a vacuum oven at RT for 24 h (5.8 g, 64%).

2-[(Isopropylmethylamino)methyl]indan-1-one (44) (Method B).²² To a solution of indan-1-one (2.6 g, 20 mmol) in ethanol (60 mL) was added paraformaldehyde (0.6 g, 20 mmol) and isopropylmethylamine hydrochloride (2.0 g, 20 mmol). The mixture was refluxed until a homogeneous solution was formed. The addition of paraformaldehyde (0.6 g, 20 mmol) was repeated twice for a total of three additions. Concentrated HCl (1.5 mL) was subsequently added in order to dissolve the surplus paraformaldehyde. The mixture was concentrated, NaOH (2 M) (100 mL) was added and the basic layer was extracted with ether (3×100 mL). The ether layer was dried (Na₂SO₄) and concentrated in vacuo to give a yellow oil (2.65 g, 61%).

2-Isopropylpyridine (45). To a solution of 2-ethyl-pyridine (16.5 g, 0.154 mol) in THF (50 mL) was added 1.6 M butyllithium (94.4 mL, 0.151 mol) at -78 °C under nitrogen and stirred for 2 h at this temperature. Iodomethane (21.4 g, 0.151mol) was added dropwise to the resulting dark red solution and stirred overnight at RT. The solvent was evaporated and the residue diluted with ether (200 mL). The organic layer was washed with water (2 × 100 mL), dried (Na₂SO₄), filtered and concentrated in vacuo to give a brown oil. The oil was purified by distillation at 153 °C with a spinning band column (13.2 g, 71%). ¹H NMR (CDCl₃, 200 MHz, δ [ppm]) = 1.27 (d, J = 6.9 Hz, 6H), 3.02 (sept, J = 6.9 Hz, 1H), 7.02–7.14 (m, 2H), 7.52–7.60 (m, 1H), 8.50 (d, J = 4.4 Hz, 1H).

Pharmacology. Muscarinic Receptor Binding Studies. Radioligand binding studies at the five cloned human muscarinic receptors stably expressed in CHO-K1 cells were performed by the methods described by Dörje et al.²⁹ and Buckley et al.³⁰ with the following modifications. Transfected CHO-K1 cells were grown in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum, 100 IU/mL penicillin G, 100 µg/mL streptomycin, 2 mM glutamine, and 0.1 mM nonessential amino acids. At confluence, they were washed, scraped into ice-cold binding buffer, and homogenized for 45 s using a Branson Sonifier. Membranes were pelleted at 30.600g, rehomogenized, and stored at -80 °C. Protein concentrations were determined according to the method of Lowry et al. $^{\rm 31}$ using a Bio-Rad protein assay kit. Final membrane protein concentrations in the assay were (mg/mL): $M_1 = 2$, $M_2 = 6$, $M_3=2,\ M_4=2,\ M_5=5.$

Binding buffer consisted of 20 mM HEPES (pH 7.4), 10 mM MgCl₂, and 100 mM NaCl. Incubations were carried out at 25 °C for 2 h with 0.2 nM [³H]NMS (78–85 Ci/mmol; Amersham International, Bucks, England). Assays were terminated by filtration through a Brandell cell harvester onto Whatman GF/B filters. Membranes were washed three times with 1 mL buffer, transferred to 3 mL of scintillant (Quickszint 2000, Zinsser Analytik, Frankfurt, Germany or Lumasafe Plus, Packard Bioscience, Dreieich, Germany), and counted in a Wallac beta counter.

Data were analyzed by a curve fitting procedure using the program GraphPad Prism. The K_i values of the test compounds were derived from IC₅₀ values using the Cheng-Prusoff equation,³² $K_i = IC_{50}/(1 + L/K_d)$, with the radioligand concentration $L=0.2\ nM$ and the following equilibrium dissociation constants K_D of [³H] NMS, determined in previous saturation binding experiments (nM): M_1 : $0.19 = M_2 = 0.33$; $M_3 = 0.17$; $M_4 = 0.10; M_5 = 0.48.$

Histamine Receptor Binding Studies. Radioligand binding studies at the human histamine H_1 receptor, stably expressed in CHO-K1 cells, were carried out as described for the muscarinic binding assay. The final membrane protein concentration was 18 μ g/mL, and nonspecific binding was determined by adding 0.1 mM terfenadine. The radioligand was [3H]mepyramine (1.0 nM; 28 Ci/mmol, Amersham Bioscience Europe, Freiburg, Germany), the equilibrium dissociation constant of which (0.84 \pm 0.09 nM) was determined in previous saturation experiments.

All affinity data (pK_i values) are presented as arithmetic means \pm SD from at least three experiments performed in duplicate.

Acknowledgment. The authors thank the Institute of Chemistry of the University of Mainz, Germany, for spectral and analytical determinations, the Fonds der Chemischen Industrie, Germany, and the Deutsche Forschungsgemeinschaft (grant number: GRK 137/2 -98 and 137/3-01) for financial support. CHO-K1 cells stably expressing cDNA encoding human histamine H₁ receptors were generously provided by Dr. R. Leurs and Dr. H. Timmermann (Free University of Amsterdam, The Netherlands).

References

- (1) Caulfield, M. P. Muscarinic Receptors Characterization, Coupling and Function. Pharmacol. Ther. 1993, 58, 319–379.
- Gross, J.; Mutschler, E.; Lambrecht, G. Evidence for muscarinic M4 receptors mediating nonadrenergic noncholinergic relaxations in rabbit anococygeus muscle. Naunyn-Schmiedeberg's Arch. Pharmacol. 1997, 356, 505-516.
 (3) Hulme, E. C.; Birdsall N. J. M.; Buckley N. J. Muscarinic
- Receptor Subtypes. Annu. Rev. Pharmacol. Toxicol. 1990, 30, 633-673.
- Stockbruegger, R. W. Antimuscarinic Drugs. Methods Find. Exp. (4)Clin. Pharmacol. 1989, 11, 79-86.
- Mandelli, G. R.; Maiorana, S.; Terni, P.; Lamperti, G.; Colibretti, (5)M. L.; Imbimbo, B. P. Synthesis of New Cardioselective M-2 Muscarinic Receptor Antagonists. Chem. Pharm. Bull. 2000, 48, 1611 - 1622
- (6) Mitsuya, M.; Mase, T.; Tsuchiya, Y.; Kawakami, K.; Hattori, H.; Kobayashi, K.; Ogino, Y.; Fujikawa, T.; Satoh, A.; Kimura, T.; Noguchi, K.; Ohtake, N.; Tomimoto, K. J-104129, a novel Muscarinic M-3 Receptor Antagonist with High Selectivity for M-3 over M-2 Receptors. Bioorg. Med. Chem. 1999, 7, 2555-2567.

- (7) Kaiser, C.; Audia, V. H.; Carter, J. P.; McPherson, D. W.; Waid, P. P.; Lowe, V. C.; Noronha-Blob, L. Synthesis and Antimusca-rinic Activity of some 1-Cycloalkyl-1-hydroxy-1-phenyl-3-(4substituted piperazinyl)-2-propanones and Related Compounds. J. Med. Chem. 1993, 36, 610-616.
- Augelli-Szafran, C. E.; Jaen, J. C.; Moreland, D. W.; Nelson, C. B.; Penvose-Yi, J. R.; Schwarz, R. D. Identification and Char-(8)acterization of M4 Selective Muscarinic Antagonists. Bioorg. Med. Chem. Lett 1998, 8, 1991–1996.
- Cuello, A. C. Alzheimer's Disease. Trends Pharmacol Sci. Suppl. (9) 1995, 16, 73.
- (10) Kasa, P.; Papp, H.; Torok, I. Donepezil Dose-Dependently Inhibits Acetylcholinesterase Activity in Various Areas and in the Presynaptic Cholinergic and the Postsynaptic Cholinozeptive Enzyme-Positive Structures in the Human and Rat Brain. Neuroscience 2000, 101, 89-100.
- (11) Baghdoyan, H. A.; Lydic, R.; Fleegal, M. A. M₂ Muscarinic Autoreceptors Modulate Acetylcholine Release in the Medial Pontine Reticular Formation. J. Pharmacol. Exp. Ther. 1998, 286, 1446-1452.
- (12) Doods, H. N. Lipophilic Muscarinic M2 Antagonists As Potential Drugs for Cognitive Disorders. Drugs Future 1995, 20, 157-164
- (13) McPherson, D. W.; Greenbaum, M.; Luo, H.; Beets, A. L.; Knapp, F. F. Evaluation of Z-(R,R)-IQNP for the potential Imaging of M2 MAChR rich Regions of the Brain and Heart. Life Sci. 2000, 66, 885-896.
- (14) Skaddan, M. B.; Kilbourn, M. R.; Snyder, S. E.; Sherman, P. S.; Desmond, T. J.; Frey, K. A. Synthesis, F-18-Labeling, and Biological Evaluation of Piperidyl and Pyrrolidyl Benzylates as in Vivo Ligands for Muscarinic Acetylcholine Receptors. J. Med. Chem. 2000, 43, 4552-4562.
- (15) Pfaff, O.; Hildebrandt, C.; Waelbroeck, M.; Hou, X.; Moser, U.; Mutschler, E.; Lambrecht, G. The (S)-(+)-Enantiomer of Dimethindene: A novel M2-selective Muscarinic Receptor Antagonist. Eur. J. Pharmacol. 1995, 286, 229-240.
- (16) Cohen, V. I.; Jin, B. Y.; McRee, R. C.; Boulay, S. F.; Cohen, E. I.; Sood, V. K.; Zeeberg, B. R.; Reba, R. C. In Vitro and In Vivo M2 Muscarinic Subtype Selectivity of Some Dibenzodiazepinones and Pyridobenzodiazepinones. Brain Res. 2000, 861, 305-315.
- (17) Nicholson, A. N.; Pascoe, P. A.; Turner, C.; Ganellin, C. R.; Greengrass, P. M.; Casy, A. F.; Mercer, A. D. Sedation and Historica U. P. Stationary and C. R. Stationary and C. R. Stationary and C. R. Stationary and Stationary an Histamine H₁-Receptor Antagonism: Studies in Man with the Enantiomers of Chlorpheniramine and Dimethindene. Br. J. Pharmacol. 1991, 104, 270-276.
- (18)Casy, A. F.; Drake, A. F.; Ganellin, C. R.; Mercer, A. D.; Upton, C. Stereochemical Studies of Chiral H-1 Antagonists of Histamine: The Resolution, Chiral Analysis, and Biological Evaluation of Four Antipodal Pairs. Chirality 1992, 4, 356-366.
- (19)Cicurel, L.; Péchadre, J. C.; Grandjean, E.; Duchêne-Marullaz, P. Comparison of the Central and Peripheral Antihistaminic Effects of Dimethindene Maleate (Fenistil) and its Enantiomers. Agents Actions 1992, C440-C443.
- (20) Sautel, M.; Toward, R.; Théraulaz-Lacroix, M.; Weitsch, A. F. Effects of Dimethindene Maleate (Fenistil) on Histaminic, Muscarinic and Serotoninergic Receptor Systems. Agents Actions 1992, C428-C430.
- (21) Pines, S. H.; Czaja, R F.; Abramson, N. L. Synthesis of Para-Pines, S. H.; Czaja, K.F.; Abramson, N. L. Synthesis of Para-Methylthiobenzyl Chloride – Case of Isomer Control in an Electrophilic Substitution. J. Org. Chem. 1975, 40, 1920–1923.
 Hoffmann, K.; Schellenberg, H. N–Substituierte 2-(Amino-Methyl)Indene und -Indane. Helv. Chim. Acta 1944, 27, 1782–
- (22)1790.
- (23) Hellmann, H.; Opitz, G Aminomethylierung. Angew. Chem. **1956**, *68*, 265–272.
- Mannich, C.; Krösche, W. Über ein Kondensationsprodukt aus (24)Formaldehyd, Ammoniak und Antipyrin. Arch. Pharm. Ber. Dtsch. Pharm Ges. 1912, 250, 647-667.
- (25) Caulfield, M. P.; Birdsall, J. M. International Union of Pharmacology. XVIII. Classification of Muscarinic Acetylcholine Receptors. Pharmacol. Rev. 1998, 50, 279-290.
- Felder, C. C.; Bymaster, F. P.; Ward, J.; DeLapp, N. Therapeutic (26)Opportunities for Muscarinic Receptors in the Central Nervous System. J. Med. Chem. **2000**, 43, 4333–4353. Carey, G. J.; Billard, W.; Binch, H.; Cohen-Williams, M.; Crosby,
- (27)G.; Grzelak, M.; Guzik, H.; Kozlowski, J. A.; Lowe, D. B.; Pond, A. J.; Tedesco, R. P.; Watkins, R. W.; Coffin, V. L. SCH 57790, a selective muscarinic receptor antagonist, releases acetylcholine and produces cognitive enhancement in laboratory animals. Eur. J. Pharmacol. 2001, 431, 189–200.
- (28) Radler, S.; Blaschke, G. Enantioselective Determination of Dimethindene in Urine after Oral Administration of Racemic Dimethindene. J. Chromatogr. Biomed. Appl. 1991, 567, 229-239.
- (29) Dörje, F.; Wess, J.; Lambrecht, G.; Tacke, R.; Mutschler, E.; Brann, M. R. Antagonist Binding Profiles of Five Cloned Human Muscarinic Receptor Subtypes. J. Pharmacol. Exp. Ther. 1991, 256, 727-733.

M₂-Selective Muscarinic Receptor Antagonists

(31) Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. I. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. Journal of Medicinal Chemistry, 2003, Vol. 46, No. 5 867

(32) Cheng, Y.-C.; Prusoff, W. H. Relationship Between the Inhibition Constant (KI) and the Concentration of Inhibitor Which Causes 50 Per Cent Inhibition (I50) of an Enzymatic Reaction. *Biochemical Pharmacology* **1973**, *22*, 3099–3108.

JM020895L