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We have created quantitative structure-activity relationship (QSAR) models describing the
interaction of a series of 54 organic compounds with four melanocortin (MC) receptor subtypes,
MC1, MC3, MC4, and MC5. In addition to traditional QSAR analysis, we applied our recently
developed proteo-chemometrics approach. Proteo-chemometrics is based on the combined
analysis of series of receptors and ligands, wherein descriptions of ligands, proteins, and so-
called ligand-protein cross-terms are correlated with interaction activities. The compounds
were characterized by structural descriptors, including three-dimensional grid-independent
descriptors (GRINDs), topological descriptors, and geometrical descriptors. Description of
receptors was obtained by computing the receptors’ amino acid sequence identities. Both the
QSAR and proteo-chemometrics approaches resulted in models with essentially the same
statistical significance: the cross-validated correlation coefficient q2 for the proteo-chemometric
model being 0.71, while for the QSAR models the q2s were 0.75, 0.68, 0.63, and 0.71 for the
MC1, MC3-5 receptor, respectively. However, the proteo-chemometrics modeling provided more
detailed information about receptor-ligand interactions and determinants for receptor subtype
selectivity than did QSAR.

Introduction
Melanocortin (MC) receptors are members of the

G-protein-coupled receptor (GPCR) superfamily. Five
different subtypes of the MC receptors, MC1-5, have
been cloned to date in mammals.1 Physiological roles
for melanocortin receptors include pigment regulation
(MC1), adrenal gland control (MC2), regulation of sexual
and feeding behaviors (MC3 and MC4), exocrine gland
control (MC5), and regulation of the immune system
(MC1 and MC3).1-3 The natural ligands for melanocortin
receptors include melanocyte stimulating hormones
(MSH), adrenocorticotropic hormone (ACTH), and ago-
uti and agouti-related peptide, all of which are peptides
with various chain lengths. These natural ligands show
different MC receptor selectivity. For example, while the
MC2 receptors bind only ACTH,4 the MC1 and MC3-5
receptors interact with both ACTH and MSHs.1-3

The potential of using the MC receptors as targets
for novel drugs5 has prompted the need of compounds
with high specificity for particular MC receptor sub-
types. Unfortunately, natural melanocortin peptides do
not show unique MC receptor subtype selectivity, and
they are not suited for therapeutic applications due to
their large molecular weight and susceptibility to
enzymatic degradation. Large efforts are currently
concentrated on the design of organic compounds show-
ing high selectivity and affinity for MC receptor sub-
types. However, quite a few successes have so far been
reported.5

In two preceding papers we reported a series of 55
N-alkylamino acids and other organic compounds, some
of which showed sub-micromolar affinities for the four
MSH peptide binding MC receptors (i.e., MC1, MC3-5).6,7

Moreover, recently we developed proteo-chemometrics,
which is a new technology suited for analysis of drug-
receptor interactions.8,9 Contrary to the traditional
QSAR approaches that aim to correlate description of
ligands with affinity toward one particular target recep-
tor, proteo-chemometrics considers many targets and
ligands simultaneously. Thus, proteo-chemometrics take
advantage of the properties of both the receptors and
the ligands, allowing one to explain ligand-receptor
binding and selectivity, and analyze the ligands’ inter-
actions with sets of receptors.

Our previous proteo-chemometrics studies were per-
formed on chimeric melanocortin, R1-adrenergic re-
ceptors,8-10 and on a wide set of different G-protein-
coupled receptors for amines.11 In all cases we succeeded
in creating very robust models that gave insights into
the ligand-receptor interactions. Moreover, these mod-
els were capable to delineate determinants of impor-
tance for creation of the ligands’ affinities for series of
related receptors and those of importance for creation
of the ligands’ selectivites.

The goal of present study was to develop predictive
structure-activity models for small molecular weight
compounds active on melanocortin receptors. To this end
we compared models that used (1) uniresponse QSAR
(one response variable, i.e., separate analysis of binding
to each receptor), (2) multiresponse QSAR (several
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response variables), and (3) proteo-chemometrics ap-
proaches. Despite the fact that the present data set
included only four receptors (contrasting our previous
proteo-chemometrics studies that included large sets of
receptors), the best modeling approach turned out to be
proteo-chemometrics. We therefore used it for interpret-
ing properties, required for ligand recognition of each
of the four MC receptor subtypes.

Results and Discussion

Data Set. Ki values for a series of 55 organic
compounds for the MC1, MC3, MC4, and MC5 receptor
subtypes were obtained from two of our preceding
papers.6,7 The Kis had been estimated using radioligand
binding on recombinant human receptors. The sub-
stances contained moieties that mimicked amino acids
of the core sequence of melanocortin peptides12 (Phe-
Arg-Trp). Thus, all compounds included at least two of
the benzene/naphthalene, amino/guanidine, and indole
groups. Some of the compounds contained, in addition,
imidazole, dimethoxyphenyl, chlorodimethoxyphenyl,
methylindole, or other moieties. Affinities (expressed as
the negative logarithm of the Ki values, pKis) for the
four MC receptors covered a range of more than three
logarithmic units; the most active compounds showing
sub-micromolar Kis. In some cases no binding had been
observed up to a 0.5 mM concentration of the compound,
or the Ki values had been reported to be >1 mM. In
these cases we assigned pKi ) 3 (i.e., the Ki being set to
1 mM) for the sake of the modeling. The structures and
pKis of the most active compound of the series are shown
in Figure 1.

Description of Organic Compounds. 3D struc-
tures of compounds were created and characterized by
three descriptor blocks, namely: (1) GRid INdependent
Descriptors (GRINDs)13 calculated by Almond 2.0,14 (2)
topological, and (3) geometrical descriptors calculated
by Dragon 1.11.15

GRINDs are novel 3D descriptors that characterize
the ability of a molecule to form energetically favorable
interactions with selected pharmacophore pairs. A major
advantage of GRINDs is that they do not require spatial
alignment of compounds.

Besides the GRINDs, we computed two additional
blocks of descriptor variables that represented, respec-
tively, topological and geometrical descriptors. The
topological descriptor block comprised 68 conformation-
ally independent 2D descriptors related to topology,
connectivity, atomic composition, molecular size, and
shape. The geometrical descriptor block comprised 18
descriptors that depended on molecular geometry (see
Todeschini and Consonni16).

Removal of Correlated Descriptors of Organic
Compounds. Correlation coefficients for all pairs of
descriptor variables for the organic compounds were
evaluated in order to identify highly correlated descrip-
tors, i.e., to detect redundancy in the data set. Such
redundancy might lead to overexploitation of a chemical
property in the explanation of the dependent variable.
Hence, the removal of some highly correlated variables,
or scaling them down relative to the other variables,
might be helpful in development of a model.17,18 Inspec-
tion of the descriptor data identified strong correlation
among a large set of topological (and a few geometrical)

descriptors. For 41 of these descriptors, the squared
correlation coefficients (r2) to ISIZ (molecular size index)
were over 0.8. This thus indicates that a large portion
of these topological descriptors merely describes the size
of a molecule while quite little information is present
on other properties. A similar examination of GRINDs
showed a presence of strong correlation of descriptors
representing the same molecular interaction at neigh-
boring distance ranges. These findings prompted us to
apply block scaling prior to any further analysis (see
Experimental Section for details).

Description of Receptors. Proteo-chemometrics is
based on the use of a single affinity variable, although
the binding to several targets is studied. This is possible
by utilizing not only descriptors characterizing the
ligands, but also by using a physicochemical description
of receptors, and by deriving ligand-receptor cross-
terms. In the present study, four receptor subtypes had
been studied: MC1, MC3-5; the sequence identities of
their transmembrane regions are shown in Table 1. (The
location of the TM regions was as in ref 19). The small
number of receptors of the present study, when com-
pared to our earlier studies, suggested that little benefit
could be gained by using an extensive set of descriptors
based on the receptor sequence physicochemical proper-
ties. We here therefore elected to describe the MC

Figure 1. Structures and binding affinities of the most active
compounds for each MC receptor subtype. The highest binding
affinities were shown for the MC1 receptor by compounds 11b6

and 16c;6 11b was the most active compound of the series on
the MC5 receptor. MK-557 was the highest affinity binder to
the MC3 receptor, while 11e6 was the highest affinity binder
to the MC4 receptor.
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receptors with only four variables based on the receptor
sequence identity (SI) of the four MC receptor subtypes
(Table 1).

Ligand-Receptor Cross-Terms. Ligand-receptor
recognition depends on the complimentarity of the
properties of two interacting moieties. This is something
that cannot be described by a linear combination of
ligand and receptor descriptors. In proteo-chemometrics
the nonlinearity is accounted for by computing ligand-
receptor cross-terms.8-11 Accordingly, we here obtained
cross-terms by multiplying mean centered descriptors
of organic compounds and receptors, giving one ad-
ditional descriptor block comprising 4 × 343) 1372
variables.

Conventional QSAR Modeling. Descriptors were
correlated to the binding data using partial least-
squares projection to latent structures (PLS).17 PLS
allows a simultaneous analysis of several Ys in a single
model (‘multiresponse model’), as well as creation of
separate models for each of the Ys. (In our case, Y
variables corresponded to pKis of compounds’ binding
to MC1, MC3, MC4, and MC5 receptors). In the case Ys
are strongly correlated (squared correlation coefficient
R2 being >0.5), multiresponse modeling may result in
a more stable model.18,20 On the other hand, indepen-
dent modeling of each Y might allow one to explain
better the uniqueness of each response, and it allows
more flexibility in the model building. In the current
data set, the r2 values for the correlation of the binding
affinity (pKi) variables for the four MC receptor subtypes
ranged from 0.45 (MC1 to MC5) to 0.69 (MC1 to MC3).
We therefore created models using both approaches.
Simultaneous PLS modeling using four Ys resulted in
a five component model with the fraction of explained
variation of X and Y (r2X and r2Y) of 0.79 and 0.78,
respectively. The predictive ability was assessed by
cross-validation,21,22 the fraction of the predicted Y-
variation (q2) being 0.60. For the sake of information,
r2X, r2Y, and q2 may vary between 0 and 1, but negative
q2 values can also be encountered, indicating nonpre-
dictive models.20 In QSAR modeling comprising biologi-
cal data it is generally considered acceptable if q2 is
higher than 0.4.23 For the sake of model interpretability
the margin r2Y - q2 should be as small as possible,
preferably not exceeding 0.2.20

r2Y and q2 values for particular Ys are shown in Table
2 alongside with results of separate modeling of binding
to each receptor. When separate models were built, four-
dimensional models were obtained in all cases, with r2Xs
ranging 0.756 to 0.764. As can be seen from Table 2,
similar q2 values were obtained for the multiresponse
model and the uniresponse models, with the exception
for the MC5 receptor, where uniresponse modeling
seemed to produce a more predictive model.

To improve models, we applied variable selection by
removing variables with unstable regression coefficients

(see Experimental Section for details). Comparison of
q2 values after variable selection shows an advantage
for uniresponse modeling, with an exception of MC1,
where both approaches performed equally well.

Models were also validated by response permutations,
as described.22 Validation gave negative q2 intercepts
for all cases. These results thus indicate that predictive
models could not be obtained with the data randomized
and give further validity to the models and the selected
descriptors of compounds.

Proteo-chemometric Modeling. Proteo-chemomet-
ric models were built by PLS modeling using the
descriptor blocks for compounds, and the receptor
descriptor and receptor-compound cross descriptor blocks.
The initial model described r2Y ) 0.76 of the variance
in Y with a predictive capacity q2 ) 0.66. After variable
selection the improved models had r2Y ) 0.80 and q2 )
0.75. The final model was based on 230 X variables, from
which 22 were topological, 12 geometrical, 117 GRIND,
77 ligand-receptor cross-descriptors, as well as SIMC1
and SIMC3.

Cross-validation of the final model was also performed
so that all four observations of each ligand were
included in the same cross-validation group. Thus, when
the affinity of a compound was predicted for a particular
receptor, no information was available for the binding
of the compound to any other of the MC receptors.
Despite this the cross-validation gave the very high q2

value 0.71. The small difference between the thus
estimated q2 ) 0.71 and the r2Y ) 0.80 of the model is
noteworthy (cf. Figure 2 panels A and B).

Comparison of Proteo-chemometric and Con-
ventional QSAR Models. The proteo-chemometric and
conventional QSAR models were compared by calculat-
ing the standard deviation of error of calculation (SDEC)
and standard deviation of error of prediction (SDEP).24

By contrast to r2Y and q2, which are measures relative
to the initial sums of squares, SDEC and SDEP are
expressed in pKi units and can therefore be used to
compare the accuracy of the different modeling ap-

Table 1. Sequence Identity of the Transmembrane Regions of
Human Melanocortin Receptor Subtypes (location of TM
regions is as in ref 19)

MC1 MC3 MC4 MC5

MC1 1 0.56 0.57 0.53
MC3 0.56 1 0.68 0.72
MC4 0.57 0.68 1 0.72
MC5 0.53 0.72 0.72 1

Table 2. Goodness of Fit (r2Y) and Predictive Ability (q2) of
QSAR Models

multiresponse model uniresponse models

r2Y q2 r2Y a q2 a r2Y q2 r2Y a q2 a

MC1 0.83 0.66 0.84 0.75 0.83 0.67 0.85 0.75
MC3 0.78 0.58 0.76 0.62 0.81 0.61 0.81 0.68
MC4 0.73 0.52 0.70 0.55 0.78 0.56 0.80 0.63
MC5 0.74 0.56 0.72 0.57 0.85 0.65 0.83 0.71

a Obtained after variable selection.

Figure 2. Correlation of calculated versus observed pKi values
(panel A; r2Y ) 0.80) and predicted versus observed pKi values
(panel B; q2 ) 0.71) derived from the proteo-chemometric
model.
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proaches. Comparisons of proteo-chemometric and tra-
ditional QSAR models are shown in Table 3. As can be
seen from the table, both the conventional and proteo-
chemometric approaches resulted in models with good
predictive ability. The slightly lower SDECs for QSAR
models, and the larger margin between SDEC and
SDEP compared to the proteo-chemometric model, may
indicate that more of the variance was explained by
chance correlations in the traditional QSAR. The proteo-
chemometric model is therefore more reliable, e.g., for
interpretations. Moreover, the proteo-chemometric model
was useful for explaining the selectivity of the com-
pounds, which proved to be based on a relatively small
number of cross-descriptors (see below), while in the
QSAR models the affinity differences became accumu-
lated from all descriptors. Accordingly the proteo-
chemometric model was straightforward to interpret in
terms of selectivity, compared to the QSAR model,
where distinct factors responsible for selectivity were
difficult to isolate.

Interpretation of the Proteo-chemometric Model.
The PLS coefficients of proteo-chemometric model were
used to assess the properties of the compounds, which
were important for their affinity to each studied MC
receptor subtype. We performed this analysis separately
for GRIND and topological/geometrical descriptors.

Interpretation of GRINDs. In Figure 3, panel A,
the PLS coefficients of the GRIND descriptors are
plotted versus the distance between the molecular
interaction field (MIF) nodes. As seen, each of the six
types of MIF probe-pairs are plotted separately. Panels
B-E show the contribution for each MC receptor
accumulated from GRINDs and their cross-terms with
SI descriptors. Shown is the change in calculated pKi
value for the particular receptor if the value of GRIND
descriptor of a compound is increased by 1 unit. In
Figure 3 positive values represent properties that
contribute favorably for creating the compounds’ affini-
ties, whereas negative ones identify properties having
a negative influence.

In Figure 3 the PLS coefficients that correspond to
interactions over small distances describe the impor-
tance of the presence or absence of particular pharma-
cophores. As can be seen from Figure 3A, hydrophobic
groups are required for high affinity binding. This was
found to be due to extremely high values for short
distance DRY-DRY descriptors in molecules containing
one or several naphthalene moieties. By contrast, groups
favorably interacting with the N1 field seem rather to
have a negative influence. High values of N1-N1
descriptors could be attributed to the presence of an
amide group, while low values were due to the lack of
H-bond acceptors in a molecule. Thus, according to the

model, the presence of an amide group is not required
for binding to MC receptors.

Coefficients for descriptors derived from MIFs sepa-
rated by a larger distance were useful to judge the
spatial arrangement of pharmacophores. Very large
positive values were seen for DRY-DRY fields at dis-
tances <9 Å, for O-O fields at a distance from 5 to 8 Å,
and for DRY-O fields at a distance from 10 to 13 Å.
Further clues to the interpretation of the importance
of these fields could be obtained by tracing the GRINDs
to the MIFs surrounding particular molecules. For
example, shown in Figure 4 are two compounds 11b6

and 16c6 that show sub-micromolar affinities for the
MC1 receptor. The high affinity of 11b can mainly be
explained by hydrophobic interactions, while the high
affinity of 16c is to a much larger extent explained by
the two major clusters of descriptors in the O-O and
DRY-O correlograms that show high positive coef-
ficients.

Further inspection of compound 11b (Figure 4) re-
veals that interactions corresponding to ranges of posi-
tive coefficients in the DRY-DRY coefficient plots
represents the hydrophobic fields around its two naph-
thalene groups, which according to the model contrib-
utes positively to affinity. Interactions at distances over
14-16 Å in 11b involve a weaker field next to the
guanidine. For compound 16c DRY-DRY interactions

Table 3. Comparison of Standard Deviation of Errors of
Calculation (SDEC) and Standard Deviation of Errors of
Prediction (SDEP) of QSAR and Proteo-chemometric Models

QSAR models proteo-chemometric model

SDEC SDEP SDEC SDEP SDEPa

MC1 0.44 0.57 0.49 0.53 0.56
MC3 0.31 0.41 0.36 0.40 0.44
MC4 0.36 0.48 0.38 0.42 0.45
MC5 0.33 0.43 0.35 0.40 0.44

a Rearranged cross-validation groups.

Figure 3. Contribution of GRIND descriptors for explaining
ligand-receptor affinity in the proteo-chemometric model for
the interaction of 54 organic compounds with melanocortin
receptors MC1, MC3-5. Panel A represent the PLS regression
coefficients of GRIND descriptors. Panels B-E show the sum
of the PLS coefficients of GRIND descriptors and their cross-
terms with SI descriptors multiplied with the actual values
of the SI descriptor for the indicated MC receptor. The vertical
separators between MIF pairs represent a distance of between
0 and 24.8 Å. Increments on the Y-axes represent the change
of affinity by 0.02 pKi units, when descriptor variables are
changed by one standard deviation (see text for further
details).
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over long distances are completely absent, while they
are present in several other compounds with moderate
affinity that share distantly situated aromatic moieties.
From these observations it can be concluded that a too
distant location of aromatic rings does not contribute
positively to affinity.

In the current data set higher than average values of
the shortest distance O-O field descriptors were due
to the presence of an indole or guanidine group. For
several compounds interactions of the indole with the
O probe is augmented by spatially closely situated
amide nitrogen. According to the model, such a combi-
nation shows some negative influence. Moreover, guani-
dine is lacking in several active compounds, while it is
present in all nonbinders in the data set. Instead, a
positive effect on affinity is indicated by the interaction
of a molecule with O nodes situated 5-8 Å from each
other. For 16c this corresponds to the O field next to
the indole together with the O field shown in front of
the molecule (Figure 4). A very positive effect to the
affinity of 16c is also related to the O field next to the
indole group that is linked with the hydrophobic field
below the naphthalene group. (This field is also impor-
tant for MC1 selectivity of the compound). Similarly, a
link between the O and N1 fields next to the indole
group, with the O field around the very distantly located
(16-18 Å) amino function appears to be important for
both the affinity and MC1 receptor selectivity of 16c.

Careful comparisons of the coefficient plots for par-
ticular receptors (panels B-E of Figure 3) reveal clear
determinants for MC1/MC5 selectivity. Thus, MC1/MC5
selectivity is associated with large MIF values at the
distantly situated O and N1 probe node couples (one of
them, as a rule, being located next to the indole).
Moreover, MC1/MC3 selectivity is mainly explained by
the DRY-DRY field descriptors at distances <4 Å.
Thus, the mere presence of a naphthalene group is not
sufficient for creating affinity for the MC3 receptor,
although it strongly contributes to MC1 receptor bind-
ing. A fairly large number of descriptors explain binding
selectivity for the MC4 receptor. For example, interac-
tions with the N1 probe give no negative influence on
binding, as it does for binding to the MC1 receptor,
whereas a negative factor is a close location of hydro-
phobic and H-bond donor groups (interaction with
DRY-O field nodes at a distance <8 Å).

Interpretation of Topological/Geometrical and
SI Descriptors. PLS coefficients for the geometrical
and topological descriptors of the proteo-chemometric
model are shown in Figure 5. The largest negative
coefficients were computed for such geometrical descrip-
tors as molecular eccentricity and electrotopological
variation, while the largest positive coefficients occurred
for E-state topological parameter, mass weighted radius
of gyration and span (these latter two are highly
correlated parameters). For topological descriptors, the
largest negative coefficient was obtained for Randic
shape, a parameter that characterizes the size of the
molecule and its degree of skeletal branching. Thus,
small and unbranched molecules are predicted to show
lower affinity. A large negative coefficient was also
assigned to average atomic composition, a parameter
related to molecular complexity in terms of atom types.
Thus, a high fraction of heteroatoms in a molecule is
unfavorable. Instead, benzene likeliness of a molecule
(BLI index; Figure 5) is a favorable property.

The majority of topological descriptors with moderate
positive coefficients, however, contribute jointly in the
model, as indicated by their clustering in the loading
plots (data not shown). As expected, these parameters
(which relate to molecular size) show some positive
correlation with affinity.

As can be seen from Figure 5, only a few significant
cross-descriptor terms involving topological/geometrical
descriptors were retained in the model. This can actu-
ally be an advantage as these descriptors are less
intuitive than the GRIND descriptors, when new struc-
tures are to be designed.

The final proteo-chemometric model retained SIMC1
and SIMC3 descriptors, while SIMC4 and SIMC5 were
discarded. It therefore seems that the somewhat higher
than average affinity of the series of studied compounds
for MC1 receptor and lower for MC3 is partially ex-
plained by specific ligand-receptor interactions and
partially by receptor properties alone.

Use of the Proteo-chemometric Model for Pre-
diction of New Compounds. To demonstrate the use
of the proteo-chemometric model for design of new
compounds, we created a virtual compounds library by
including, replacing, and modifying selected substitu-
ents on the most active compounds in the data set. The
affinities of the resulting structures were subsequently

Figure 4. DRY molecular interaction field of compound 11b, and DRY (yellow) and O (green) molecular interaction fields of
compound 16c. Lines connect the node couples used for calculation of GRINDs.
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predicted using the proteo-chemometric model. Using
this approach many structures were found for which the
model predicted increased affinity. Here just a few such
examples are given. Thus, for example, inspection of
GRIND fields and PLS coefficients showed that the
molecular interactions, which could be associated with
the R-amino group of the arginine residue of compound
11b contributed little to affinity. Thus, it seems unlikely
that this group is involved in hydrogen bonding with
the MC receptors. This prompted us to make predictions
for structures where the amino function was located
farther from the aromatic moieties and closer to the
guanidine. Indeed, according to the model, replacement
of the amino group with aminoethyl led to an increase
in the predicted affinity for all the four MC receptor
subtypes by approximately 0.2 pKi units. Replacement
of the amino group by guanidine improved the predicted
affinity for the MC1 receptor further, the increase
amounting to 0.4 pKi units, whereas the predicted
affinities for the other receptor subtypes remained
unchanged. Replacing the amino group by 3-indole and
5-imidazole (Figure 6) led to even larger predicted
increases of the affinity for the MC1 receptor (up to 1
pKi unit), due to augmented DRY molecular interaction
field and changes in molecular geometry.

Conclusion

In this study we evaluated conventional QSAR and
proteo-chemometric approaches for the analysis of the
binding of organic compounds to melanocortin receptor
subtypes. Both approaches provided models showing
good correlations and good predictive abilities. It shall
be noted that the modeling accuracy, with SDEP values
ranging from 0.3 to 0.5 pKi units, was close to the
accuracy of the biological measurements.

For the QSAR modeling, we found that separate
models for each MC receptor performed better than
when all receptors were included in a single model. The
difference in predictive ability of these two variants of
QSAR models became obvious after the improvement
of models by variable selection. The better performances
of separate models was not surprising as the binding
affinity profiles for receptor subtypes were significantly
different. However, the proteo-chemometrics approach
allowed us to create a model where all the receptors
were included in a single model, and this model showed
at least as good predictive ability as the separate QSAR
models. Moreover, the proteo-chemometric model re-
vealed some determinants that were important for the
differences in the MC receptors’ recognition of com-
pounds that could not have been revealed from the
QSAR model. It seems thus quite promising that good
proteo-chemometric models can be created, despite the
fact that we had here included only four different wild
type receptor subtypes. Increasing the number of recep-
tors would of course allow a more detailed description
of the receptor properties and might lead to further
improvements in the models. Studies in this direction
are highly warranted (cf. refs 10, 11).

The present study includes a combined use of three-
dimensional and two-dimensional descriptors and a
novel method for variable selection. A well-known
disadvantage of 3-D descriptors is their dependence on
the selected conformation. The uncertainties that could

Figure 5. PLS coefficients of topological and geometrical descriptors obtained from the proteo-chemometric model for the
interaction of 54 organic compounds with melanocortin receptors MC1, MC3-5. Abbreviations shown above and below each bar
correspond to descriptors as follows: MEC: molecular eccentricity; ESTP: E-state topological parameter; DELS: molecular
electrotopological variation; RGm: radius of gyration (mass weighted); SPAN: span radius; MAXDN: maximal electrotopological
negative variation; DDI: distance-distance index; W3D: 3D-Wiener index; SHP2: average shape profile index of order 2;
AGDD: average geometric distance degree; DDDA: distance-distance degree average; MAXDP: maximal electrotopological positive
variation; ESTP*SImc1: E-state topological parameter*Sequence identity to MC1; PW2: path/walk 2 - Randic shape; AAC: average
atomic composition index; BLI: Kier benzene-likeliness index; PJI2: 2D Petitjean shape index; VAR: variation; BAC: Balaban
centric index; BCI: Bertz molecular complexity index; x2Av: average valence connectivity index chi-2; PW5: path/walk 5 -
Randic shape; PJI2*SImc1: 2D Petitjean shape index*Sequence identity to MC1; AECC: average eccentricity; CENT:
centralization; PJI2*SImc3: 2D Petitjean shape index*Sequence identity to MC3; PCR: ratio of multiple path counts to path
counts; DECC: eccentricity deviation; PCR*SImc3: ratio of multiple path counts to path counts*Sequence identity to MC3; J:
Balaban J index; x0A: average connectivity index chi-0; ISIZ: molecular size index; x1v: valence connectivity index chi-1; S2K:
2-path Kier shape index; BLI*SImc5: Kier benzene-likeliness index*Sequence identity to MC5; x0v: valence connectivity index
chi-0; x1: connectivity index chi-1; LPRS: log of product row sums (PRS); VDA: average vertex distance degree.

Figure 6. Modified structures of 11b, designed by including
3-indole (A) or 5-imidazole (B).
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arise from the flexibility of the compounds in the current
data set were partially avoided by using a rule-based
generator of 3-D structures. However, the inclusion of
topological and geometrical descriptors allowed us to
further improve modeling quality. This could be ex-
pected, as the use of different types of descriptors would
allow one to capture a broader amount of information
on the properties of the compounds. (For a further
discussion on advantages of the combined use of differ-
ent types of descriptors see, e.g., ref 25) Still the
inspection of PLS coefficients indicates the dominating
role of GRINDs in the models.

Experimental Section
A. Generation of the 3D Structures. Structures of

investigated compounds were created using ISIS/Draw and
converted to 3D by using the Corina unit of the Tsar 3.3
software package.26 Corina generates low energy conforma-
tions that are close to the X-ray determined structures, as has
been shown by the evaluation on a series of 639 compounds.27

Optimization of the Corina structures were then performed
by energy minimization using the Cosmic utility of Tsar 3.3
(COSMIC force field), after first having derived partial charges
using Charge2 unit of Tsar 3.3.

B. GRIND Descriptors. Computing GRINDs was per-
formed by Almond 2.014 and involved several steps. First,
molecular interaction fields (MIFs) were calculated by placing
a probe group on grid points surrounding the molecule (this
was performed by program GRID28,29). We used the three
Almond default probes DRY (hydrophobic), O (carbonyl oxygen,
i.e., H-bond acceptor), and N1 (amide nitrogen, i.e., H-bond
donor), as well as the default 0.5 Å spacing between grid
points. A number of grid nodes were then selected for each
probe meeting two requirements, namely, showing highly
favorable interactions with the molecule and being situated
as far as possible from each other. The products of the energy
values for all node pairs were then calculated. Finally, the
maxima of the thus obtained values falling within specified
distance ranges (windows) for node pairs representing the
same type of MIF (i.e., DRY-DRY, O-O, and N1-N1), and
different MIFs (DRY-O, DRY-N1, O-N1) were used as
descriptors of the compounds. Two hundred grid nodes were
extracted for each probe, and a window width of 0.4 Å was
used for the generation of GRINDs. Thus, six blocks of GRINDs
(also termed auto-correlograms, cross-correlograms, or simply
correlograms) were obtained, the number of descriptors in each
correlogram being equal to the largest distance between nodes
divided by the window’s width. This resulted in total in 6 ×
62 ) 372 descriptors. However, for a fair number of GRINDs
only one or two compounds in the data set obtained nonzero
values. These descriptors were discarded, leaving 257 GRINDs
in the data set.

C. Preprocessing of Data. All descriptors were first mean
centered and scaled to unit variance. Moreover, to account for
differences in the number (and mutual correlation) of descrip-
tors of each type, block scaling was then applied. Thus, each
of the four variable blocks (GRIND, topological, geometrical,
and cross-descriptors) was scaled to equal variance by comput-
ing block weight as 1/sqrt(N), where N is number of variables
in the given block. Accordingly, the standard deviation of each
GRIND descriptor was set to 1/sqrt(257), the standard devia-
tion of each topological descriptor to 1/sqrt(68), the standard
deviation of each geometrical descriptor to 1/sqrt(18), and the
standard deviation of each cross-descriptor to 1/sqrt(1372).
When we elaborated models by variable selection (see below),
block-scaling weights were recalculated in order to account for
the actual number of remaining variables in each descriptor
block. Since we only had four receptor sequence identity (SI)
descriptors, the standard deviation of each of these was set to
0.2, rather than 1/sqrt(4), and were not changed during the
model elaboration. The response variables (i.e., the negative
logarithm of Ki values) were also mean centered prior to
applying any further calculations.

D. Principal Component Analysis. Principal component
analysis (PCA) was performed in order to reveal and remove
eventual outliers in the series of compounds. PCA approxi-
mates multivariate data by projecting it onto a lower dimen-
sionality variable space, called latent variables or principal
components.30 Components are computed iteratively and are
orthogonal to each other.

PCA was performed using SIMCA-P 9.0 software.21 The
number of components (dimensions) was determined using the
eigenvalue criterion, as suggested in the SIMCA manual.21

Thus, only components with a normalized eigenvalue larger
than 2 were considered significant. Using these criterion we
obtained a four-component model on our data with the
explained sums of squares r2X ) 0.78.

To identify outliers we used the distance to model
(DModX) parameter.21 One compound (16a6) significantly
surpassed the critical distance (DModX being 1.65 versus
DModXcritical(5% membership probability) ) 1.22) and was excluded
from further analysis.

E. Partial Least-Squares Projection to Latent Struc-
tures. PLS can be regarded as an extension of PCA, which
correlates two data matrixes. Thus in PLS a matrix of predictor
variables X and a matrix of responses Y are simultaneously
projected to latent variables (components), with an additional
constraint to maximize the covariance between projections of
X and Y.

PLS is insensitive to collinearity among the predictor
variables and allows one to handle data sets where the number
of variables is larger than number of observations (for an
account on the PLS method, see Wold17). The PLS analysis
was carried out using SIMCA-P 9.0.21

F. Validation of PLS Models. The goodness of fit of PLS
models was assessed by calculating the fraction of explained
variation of X and Y (r2X and r2Y). The predictive ability was
assessed by calculating the fraction of the predicted Y-variation
(q2), according to cross-validation.21,22 If not mentioned other-
wise, we used seven cross-validation groups.

Models were also validated by response permutation. In
short, models were recalculated 20 times for randomly reor-
dered Y data. r2Y and q2 were plotted as a function of
correlation coefficient between the original Y and permuted
Y. The intercepts of the regression lines (correlation coefficient
being zero) indicate the degree of overfit. A negative q2

intercept would thus indicate that original q2 values are not
obtained by chance.20

G. Improvements of Model by Variable Selection. The
PLS models were improved by removing descriptors deemed
to correlate with the responses by chance. To estimate pos-
sibility of chance correlation, we calculated standard deviation
of PLS coefficients (σcoeff) from the seven cross-validation
rounds, and the absolute value of the ratio between PLS
coefficient (coeff) and its standard deviation: |Coeff|/σcoeff. The
descriptors having the lowest |Coeff|/σcoeff values were consid-
ered least relevant and accordingly removed. A new PLS
models were elaborated excluding these variables, and in all
cases improvement of q2 were achieved. In the current study,
we iteratively excluded 20% of the remaining variables until
the q2 reached a plateau or started to decline. For models
containing several response variables instead of |Coeff|/σcoeff

value the Σ|Coeff|/Σσcoeff was used for variable selection. Block-
scaling weights were recalculated during the process in order
to account for the change of the number of remaining variables
in each descriptor block.
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