# Design and Synthesis of Plasmepsin I and Plasmepsin II Inhibitors with Activity in Plasmodium falciparum-Infected Cultured Human Erythrocytes 

Daniel N öteberg, ${ }^{\dagger}$ Elizabeth Hamelink, ${ }^{\ddagger}$ J ohan Hultén, ${ }^{\dagger}$ Mats Wahlgren, ${ }^{\S}$ L otta Vrang, ${ }^{\ddagger}$ Bertil Samuelsson, $\ddagger$ and Anders Hallberg ${ }^{\dagger}$,*<br>Division of Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE - 75123 Uppsala, Sweden, Medivir AB, Lunastigen 7, SE - 14144 Huddinge, Sweden, and Karolinska Institute, MTC, Box 280,<br>SE - 17177 Stockholm, Sweden

Received May 31, 2002


#### Abstract

A series of protease inhibitors targeted at the malarial enzymes plasmepsin I and II, and encompassing a basic hydroxyethylamine transition state isostere scaffold, was prepared. The substituents in the P1' position were varied and the biol ogical activities expressed in $\mathrm{K}_{\mathrm{i}}$-values ranged from 60 to $>2000 \mathrm{nM}$. A more than 4 -fold selectivity for either of the plasmepsins could be achieved. All of the active compounds exhibited high preference for the plasmepsins over cathepsin D, the most closely related human protease. A few active compounds were shown to inhibit parasite growth in cultured infected human erythrocytes. An ED $\mathrm{D}_{50}$ value as low as 1.6 $\mu \mathrm{M}$ was observed for one of the inhibitors despite $\mathrm{K}_{\mathrm{i}}$ values of 115 nM (PIm I) and 121 nM (PIm II).


## Introduction

Malaria is one of the leading causes of morbidity and mortality in the tropics. The parasitic disease afflicts hundreds of millions of people and causes 0.7 to 2.7 million deaths per year. ${ }^{1}$ Nearly all of the fatal cases are caused by Plasmodium falciparum. New efficient therapy is urgently needed since the parasite's resistance to conventional antimalarials such as chloroquine is increasing at an alarming rate. ${ }^{2}$ In fact, some $P$. falciparum strains have now been identified that are resistant to all known antimalarial drugs, giving rise to a need for new macromolecular targets for malaria therapy. The plasmepsin aspartyl proteases of P. falciparum, hemogl obin-degrading enzymes located in the acidic parasite food vacuole, have been recognized recently as promising targets for drug intervention.3,4 In 1996 the crystal structure of plasmepsin II complexed with pepstatin A was published. ${ }^{5}$ In a subsequent structure-based design process, ${ }^{5}$ with pepstatin A as lead, a series of phenylalanine-statin analogues were synthesized, and among these, the peptidic picoline derivative $\mathbf{1}$ exerted an impressive inhibitory activity $\left(\mathrm{K}_{\mathrm{i}}=0.56 \mathrm{nM}\right)$ and a 38 -fold selectivity over the structurally very similar human aspartyl protease cathepsin $D\left(K_{i}=21 \mathrm{nM}\right)$ (Figure 1). This compound inhibited the growth of P. falciparum in culture, although with modest activity. As deduced from a frequency analysis of a large encoded combinatorial library containing the statine core structure, ${ }^{6,7}$ a $\beta$-branched carbon is strongly preferred in the P2 position and a hydrophobic side-chain, such as a benzyl or isobutyl group, in the P1 position of a plasmepsin II inhibitor (Figure 2). In addition it has been suggested that the P2 and P3 substituents impart selectivity to statine-

[^0]based inhibitors, and the most potent inhibitor in the encoded library, compound 2, exhibited a $K_{i}$ value of 50 nM and a 6 -fold selectivity over cathepsin D. More recently Ellman's group used several iterative focused libraries to identify a series of very potent and selective plasmepsin II inhibitors: these lack the branched aliphatic $\mathbf{P} 2$ substituent present in $\mathbf{1}$ and $\mathbf{2}$ and contain a hydroxyethylamine core structure. ${ }^{8}$ One of the most promising inhibitors from these libraries, compound 3 (a druglike molecule with an acceptable molecular weight) inhibited plasmepsin II and cathepsin D with $K_{i}$ values of 4.3 nM and 63 nM , respectively. This compound and two structurally related potent inhibitors bearing amine groups were, in addition, found to be moderately more potent against plasmepsin I than plasmepsin II and were determined to have $1-2 \mu \mathrm{M} \mathrm{IC} 50$ values for inhibition of parasite growth in cultured parasite-infected human erythrocytes.

We were attracted by the high potency and selectivity of $\mathbf{1}$ and $\mathbf{3}$ and by the finding of Ellman's group that large P1' substituents are readily accommodated in the flexible S1' site of plasmepsin II. We decided to examine the bi oactivity of compounds with the generic structure 4. Compared to 1 , which exhibits a high plasmepsin II/ cathepsin D selectivity, these compounds are characterized by (a) a transition state mimicking scaffold, comprising a basic secondary amine, (b) one prime side ami no acid residue to minimize the size and the peptidic nature of the inhibitor, and (c) large P1' substituents.

We herein report inhibitors with $\mathrm{K}_{\mathrm{i}}$-values in the 60130 nM range exhibiting selectivity for plasmepsin II $\left[\mathrm{K}_{\mathrm{i}}(\mathrm{Plm} \operatorname{I}) / \mathrm{K}_{\mathrm{i}}(\mathrm{Plm}\right.$ II) $>4]$ or alternatively selectivity for plasmepsin I $\left[K_{i}(\right.$ Plm II $) / K_{i}($ Plm I) $>4]$. These inhibitors are devoid of activity in the cathepsin $D$ assay.

## Chemistry

Thetarget compounds 6, 11a-g, 16a-d, and 17a-d were prepared as outlined in Schemes 1-4. The hy-


1, $\mathrm{K}_{\mathrm{i}}$ PIm II, $0.56 \mathrm{nM} ; \mathrm{K}_{\mathrm{i}}$ Cat D, 21 nM


3, $\mathrm{K}_{\mathrm{i}}$ PIm II, 4.3 nM ; $\mathrm{K}_{\mathrm{i}}$ Cat $\mathrm{D}, 63 \mathrm{nM}$


2, $\mathrm{K}_{\mathrm{i}}$ Plm II, $50 \mathrm{nM} ; \mathrm{K}_{\mathrm{i}}$ Cat D, 320 nM

4. Generic structure of new inhibitors

Figure 1.

## Scheme $1^{\text {a }}$




6, $8 \%$ overall
a Reagents and conditions: (i) TBTU, DIEA, DMF, 2 h , rt; (ii) piperidine-DMF (1:4), 5 min , rt; (iii) t-BuOH, $24 \mathrm{~h}, 70^{\circ} \mathrm{C}$; (iv) TFA$\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1), 10 \mathrm{~min}$, rt ; (v) picolinic acid, TBTU, DIEA, DMF, $1 \mathrm{~h}, \mathrm{rt}$; (vi) h$v$, DMF, 3 h , rt .


Figure 2. Strucural requirements of a hydroxyethylaminebased inhibitor of plasmepsin I and plasmepsin II.
droxyethylamine transition-state mimicking fragment was prepared by selective ring-opening of the chiral epoxide $5,{ }^{9}$ with protected amino acids either on solid phase or in solution.

In the initial experiments we utilized solid-phase synthesis techniques and compound $\mathbf{6}$, which lacks the valine residue, was selected as the first target molecule. F moc-protected leucine was coupled to a photosensitive linker attached to tentagel usingTBTU as the coupling agent (Scheme 1). ${ }^{10,11}$ The F moc-group was removed by treatment with pi peridine and the resulting free amine was allowed to react with the epoxide 5 , which was prepared by the method of Romeo and Rich. ${ }^{9}$ After subsequent removal of the Boc group with TFA, the liberated primary amine was coupled with picolinic acid.

Cleavage from the resin by UV-light delivered 6, which was then purified by preparativeHPLC. The total yield for the reaction sequence was $8 \%$. This low yield was accounted for by a predominant, competing acylation of the internal secondary amine rather than the terminal primary amine. Attempts were therefore made to protect the secondary amine either with a trifluoroacetyl or a F moc group prior to the reaction with the picolinic acid, but no significant improvement of the total yield was effected by these methods. The outcome from the sol id-phase synthesis was not satisfying, and therefore for the preparation of $\mathbf{1 1 a - g}, \mathbf{1 6 a - d}$, and 17a-d, solution chemistry was employed as an alternative. The epoxide 5 was warmed to $50^{\circ} \mathrm{C}$ with the amino acid amides $\mathbf{7 a - g}$ in 2-propanol overnight to deliver the Bocderivatives 8a-g (Scheme 2). The secondary amines were subsequently protected with the Cbz-group to give the compounds $9 \mathbf{a}-\mathbf{g}$. After acid-mediated removal of the Boc-group, the resulting primary amines were coupled with Boc-protected valine using TBTU as the coupling agent to afford $\mathbf{1 0 a}-\mathbf{g}$. After deprotection of the Boc group of the amines followed by coupling with pi colinic acid, the Cbz-protecting group was removed by catalytic hydrogenation using $\mathrm{Pd} / \mathrm{C}$ and ammonium

Scheme $\mathbf{2 a}^{a}$


$$
\begin{array}{ll}
\text { 7-11a } \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3} & \text { 7-11e } \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{2}=\mathrm{H} \\
\text { 7-11b } \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} & \text { 7-11f } \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{2}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br} \\
\text { 7-11c } \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{L}-\mathrm{C}_{6} \mathrm{H}_{5} & 7-11 \mathrm{~g} \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{2}-m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OTf}
\end{array}
$$

a Reagents and conditions: (i) 2-propanol, overnight, $50^{\circ} \mathrm{C}$; (ii) $\mathrm{Cbz}-\mathrm{Cl}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ (1:1), $30 \mathrm{~min}, \mathrm{rt}$; (iii) $\mathrm{HCl}, \mathrm{EtOAc}, 15 \mathrm{~min}$, rt; (iv) BocValOH, TBTU, DIEA, DMF, 2 h , rt ; (v) picolinic acid, TBTU, DIEA, DMF, 1 h , rt; (vi) ammonium formate, Pd-C, EtOH, 1 h , rt; (vii) TfOH , anisole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}$, rt.

## Scheme $3^{a}$


${ }^{\text {a }}$ Reagents and conditions: (i) $\mathrm{AcCl}-\mathrm{MeOH}$ (1:4), overnight, rt; (ii) $\mathrm{NH}_{3}$ (sat.), MeOH , overnight, rt; (iii) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}, \mathrm{THF}-$ $\mathrm{H}_{2} \mathrm{O}$ (1:1), overnight, rt; (iv) N -phenyltrifluoromethanesulfonimide, $\mathrm{K}_{2} \mathrm{CO}_{3}$, triethylamine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}$, reflux.
formate in ethanol. Alternatively, the deprotection could be conducted by acidic hydrolysis using triflic acid in methylene chloride, with anisole as a scavenger. All reactions employed to obtain 11a-g proceeded in fair to good yields. Two of the target compounds, the p-bromo derivative 11f and the m-trifluoromethanesulfonyloxy derivative $\mathbf{1 1 g}$ were used for further functionalizations.

The starting material p-bromophenylalanine amide (7f) was prepared from p-bromophenylalanine by the formation of the methyl ester, followed by treatment with ammonia-saturated methanol in $98 \%$ total yield. Them-(trifluoromethanesulfonyloxy)phenylalanine amide ( $\mathbf{7 g}$ ) was synthesized from commercially available DL-m-tyrosine (Scheme 3). After resolution according to the method of Tong et al, ${ }^{12}$ the pure L-amino acid $\mathbf{1 2}$ was esterified using acetyl chloride in methanol, and the primary amide 13 was formed using ammonia in methanol. The primary amine function of 13 was Bocprotected, and the phenol function was thereafter transformed into the triflate ester using N-phenyltri-
fluoromethanesulfonimide, potassium carbonate, and triethylamine in methylene chloride to afford $\mathbf{1 5}$ in 89\% yield. Removal of the Boc-group delivered $\mathbf{7 g}$ used directly for ring-opening of the epoxide 5.

For the preparation of $16 \mathbf{a}-\mathbf{d}$ and $17 \mathbf{a}-\mathbf{d}$ with biphenyl-extended P1' groups, microwave-promoted Suzuki couplings were conducted. ${ }^{13,14}$ Thus, 11f and 11g were reacted with four randomly chosen substituted phenylboronic acids (Scheme 4). For the synthesis of 16a-d, a mixture of dimethoxyethane, ethanol and water was used as solvent. With $\mathbf{1 1 g}$ as reactant, used for the synthesis of $\mathbf{1 7 a}-\mathbf{d}$, the water was not used in the solvent mixture to avoid the unwanted hydrolysis of the triflate ester that otherwise occurred under the extreme flash heating conditions in the microwave cavity.
While investigating this Suzuki coupling with the Z-group still attached to the secondary amine, a spontaneous hydantoin ring formation was found to occur smoothly under the basic conditions empl oyed. ${ }^{15,16}$ This reaction was utilized for the synthesis of 18 and 19: also potential plasmepsin inhibitors (Scheme5). The coupled product from the deprotected compound 10e and picolinic acid was stirred in ethanol with two equival ents of cesium carbonate for 1 h at room temperature, to give compound 18 in $45 \%$ total yield. A subsequent Suzuki coupling with phenylboronic acid using the same conditions as above gave compound 19 in 15\% yield. The structural determination of 18 was performed using selective decoupling, COSY, HETCOR, COLOC, and selective INEPT NMR experiments.
Biological Evaluation. To evaluate the enzyme inhibitory effects of compounds 6, 11a-g, 16a-d, and 17a-d plasmepsin I (Plm I), plasmepsin II (Plm II), and human cathepsin D (Cat D) were used. The results are summarized in Table 1. A picolinoyl (6) or Boc group (not shown) in the P 2 position gave inactive inhibitors. An N-terminal P3 picolinic residue and valine at P2 enabled a series of compounds to be examined where the P1' group had been altered (11a-g, 16a-d, and 17a-d). As demonstrated by the results obtained, appreciable activity is obtained only after incorporation

Scheme $4^{\text {a }}$

a Reagents and conditions: (i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}, \mathrm{DME}, \mathrm{H}_{2} \mathrm{O}, 20 \mathrm{~min}, 140{ }^{\circ} \mathrm{C}$, microwave irradiation. (ii) $\mathrm{Pd}^{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}, \mathrm{DME}, 20 \mathrm{~min}, 140{ }^{\circ} \mathrm{C}$, microwave irradiation.

## Scheme $5^{a}$



10e


18

a Reagents and conditions: (i) TFA $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:4), 15 min , rt ; (ii) picolinic acid, TBTU, DIEA, DMF ; (iii) $2 \mathrm{~h}, \mathrm{rt}$; $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}$, 1 h , rt; (iv) $\mathrm{PhB}(\mathrm{OH})_{2}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}, \mathrm{DME}, 20 \mathrm{~min}$, $140{ }^{\circ} \mathrm{C}$, microwave irradiation.
of a large group in the P1' position. To illustrate this, even a phenylalanine residue at this position exhibits a very high $\mathrm{K}_{\mathrm{i}}$ value in PIm I, PIm II in addition to the Cat D assays (11c). Also substitution with D-Phenylalanine yields essentially inactive inhibitors (11d). In contrast, substitutions in the 4-position of the phenyl group of phenylalanine with a bromine, a phenyl group, or with three differently substituted phenyl groups delivered inhibitors with activity both in the PIm I and PIm II assays ( $\mathbf{1 1 e}$ and $\mathbf{1 6 a}-\mathbf{d}$ ). Furthermore, some of these compounds showed approximately 10 - to 20 -fold selectivity in these assays as compared to Cat D. Substitution with phenyl groups in the 3-position, rather than in the 4-position, provided derivatives with
lower inhibitory activities in the PIm I assay (17a-d). One compound (17c) exhibited a 4 -fold selectivity for PIm II over PIm I. Four compounds, 11f, 16b, 16c, and 17c were selected for studies of their ability to inhibit the growth of $P$. falciparum in infected red blood cells. The results are summarized in Table 1. Furthermore one compound, the biphenyl 16a was subjected to an uptake study in Caco-2 cells and the result is presented in Table 1.

## Discussion

The cleavage of the peptide bond is proposed to go via a tetrahedral intermediate bound to a protonated form of one of the aspartic acids in the active site of an aspartic protease. This mechanism is consistent with pH kinetics. ${ }^{17}$ Prior to cleavage of the scissile bond, protonation of the substrate occurs on nitrogen, and then the generated zwitterionic intermediate collapses and liberates the products. Among all of the tetrahedral intermediate mimics previously disclosed, the noncyclic hydroxyethyl secondary amine transition state isostere in 4, first exploited by Tucker for the design of HIV protease inhibitors, ${ }^{18}$ seemed particularly attractive. Incorporating such an isostere should allow the protonated nitrogen to interact favorably with one of the catalytically active aspartic acids in PIm I and PIm II, respectively, as deduced by modeling. Furthermore it is anticipated that the presence of a basic nitrogen in plasmepsin inhibitors should be especially attractive considering the acidic environment in the vacuoles where the hemoglobin digestion occurs.

As demonstrated in Table 1 an expansion of the P1'-side-chain results in increased affinity for the aforementioned enzymes. The most marked effect is observed when hydrogen in the para position in compound 11d is exchanged with bromine (11f). This manipulation leads to more than a 20 -fold increase in PIm I inhibitory activity. In the PIm II assay this change has a lesser effect, thus 11 f is a moderately selective PIm I inhibitor.

The rigid biphenyl substituents in 16a-c seem to be accommodated easily in the flexible S1' pocket of both PIm I and II and the high selectivity ratio versus cathepsin D is retained. With one exception (16d) these compounds tend to be slightly more potent as PIm I

Table 1


Table 1 (Continued)
(

[^1]inhibitors than as Plm II inhibitors. The observation that the substitution with an o-methoxy group as in 16d rendered an inhibitor with 6-fold lower activity in the Plm I assay as compared to 16a, while the activity against Plm II was less affected (3-fold) suggested to us that fine-tuning of substituents in proximity to the bond between the aromatic rings could allow selective Plm II inhibitors to be made. Attachment of the omethoxyphenyl ring to the 3 rather than 4-position of
the P1' phenylalanine residue provided an inhibitor, 17d, with poor potency against both plasmepsins. The triflate, compound 11g, from which 17d was derived is also a selective PIm I inhibitor, although with only moderate potency $\left(\mathrm{K}_{\mathrm{i}}=469 \mathrm{nM}\right)$. A comparison of the parent biphenyls 16a (para) and 17a (meta) reveals that 16a is almost 2 times more active versus plasmepsin I, while the opposite is true for 17a, which is more active in the plasmepsin II assay. Potency was gained by the
introduction of the meta amino group to 17a (to give 17c) and the selectivity versus PIm II was even more pronounced.

Thus it seems likely that further manipulation in the P1' site of the inhi bitors might give access to inhibitors with fair activity and with moderate selectivity for either one of the plasmepsins. With the assumption that inhibitors of the generic structure 4 have similar binding interactions in the nonprime side of both plasmepsins, the results herein suggest, that the character of the S1' site of PIm I and PIm II differs considerably. In Figure 2, the characteristic features of hydroxyethylamine based PIm I/PIm II inhibitors are depicted.

With the objective of assessing whether partially selective inhibition of PIm I or PIm II has an impact on the parasite growth in infected red blood cells, we compared the structurally and physicochemi cally simiIar aniline-based inhibitors 16c and 17c. The dual PIm I/PIm II inhibitor 16c resulted in $77 \%$ inhibition at 5 $\mu \mathrm{M}$, while a $69 \%$ inhibition was obtained with the somewhat less potent and more selective PImI inhibitor
17c at the same concentration. The inhibitor 11f, which exhibited the greatest PIm I/PIm II selectivity in the series achieved only $35 \%$ inhibition at $5 \mu \mathrm{M}$. Although many factors determine the outcome in blood cell assays, these results suggest that inhibition of PIm II might have a greater impact on parasite growth than inhibition of PIm I. However, it should be kept in mind that the parasite has an additional eight aspartyl proteases in its genome, of which at least two are both expressed and active in the hemoglobin degrading process. ${ }^{19,20}$ The function of the other proteases remains partly unclear, but the compounds discussed herein might interact with any of these in addition to interacting with Plm I and PIm II. To assess the effect of the aniline amino group on activity, $\mathbf{1 6 c}$ (solubility at $\mathrm{pH} 7.5>6 \mu \mathrm{M}$ ) was compared to the equipotent but more lipophilic plasmepsin inhibitor 16b (solubility at $\mathrm{pH} 7.5>6 \mu \mathrm{M}$ ), with both having similar molecular weights. The latter suppressed parasite growth completely at $5 \mu \mathrm{M}$ with an $E D_{50}$ of $1.6 \mu \mathrm{M}$ determined. The high potency in the infected blood assay is remarkable considering the $\mathrm{K}_{\mathrm{i}}$ values of 115 nM (Plm I) and 121 nM (Plm II) in the enzyme assays.

One of the inhibitors in the series, the parent compound 16a (solubility at $\mathrm{pH} 7.5=\sim 25 \mu \mathrm{M}$, structurally similar to 16b) was selected for an absorption study in Caco-2 cells. Good cell penetration was observed, suggesting that compounds containing the scaffold 4 might be suitable candidates for further development. ${ }^{21}$

## Conclusion

In summary it has been demonstrated that rigid biphenyl side-chains furnish suitable extended P1' substituents for the S1' sites of both plasmepsin I and II. These biphenyls were prepared by fast microwavepromoted Suzuki couplings. While the S1' site of PIm II seems to be able to accommodate both 3- and 4-substituted derivatives, the data suggests that 4-substituted derivatives are preferred in the S1' site of PIm I, suggesting large steric differences in the S1' sites of the two plasmepsins. We believe that access to selective plasmepsin inhibitors will provide valuable research tools for future efforts to elucidate the significance of
the various aspartyl proteases in the lifecycle of $P$. falciparum. Although all compounds reported herein are less potent than $\mathbf{1}$ and $\mathbf{3}$ as plasmepsin II inhibitors, the relatively good activity observed on infected blood cells (e.g., 16b, ED $50=1.6 \mu \mathrm{M}$ ) despite only moderate activity in the enzyme assays is encouraging and suggests that further optimization of inhibitors of the generic structure 4 would be fruitful.

## Experimental Section

Plasmepsin Assay and $\mathbf{K}_{\mathbf{i}}$ Determination. Pro-plasmepsin II was a generous gift from Helena Danielson (Department of Biochemistry, U ppsala University, Uppsala, Sweden), and the expression and purification of plasmepsin I will be published elsewhere (manuscript in preparation). Human liver cathepsin D was purchased from Sigma-Aldrich, Sweden. The activities of plasmepsin I (PIm I), plasmepsin II (PIm II) and cathepsin D was measured essentially as described earlier, ${ }^{8}$ using a total reaction volume of $100 \mu \mathrm{~L}$. The concentration of pro-PIm II was 3 nM , the amount of PIm I was adjusted to give similar catalytic activity, and $50 \mathrm{ng} / \mathrm{mL}$ pro-cathepsin D was used. The pro-sequence of PIm II was cleaved off by preincubation in the assay reaction buffer ( 100 mM sodium acetate buffer [pH 4.5], $10 \%$ glycerol, and $0.01 \%$ Tween 20) at room temperature for 40 min , and Cathepsin D was activated by incubation in the same reaction buffer at $37^{\circ} \mathrm{C}$ for 20 min . The reaction was initiated by the addition of $3 \mu \mathrm{M}$ substrate (DABCYL-Glu-Arg-NlePheLeu-Ser-Phe-Pro-EDANS, AnaSpec Inc, San J ose, CA) and hydrolysis was recorded as the increase in fluorescence intensity over a 10 min time period, during which the rate increased in a linear fashion with time.

Stock solutions of inhibitors in DMSO were serially diluted in DMSO and added directly before addition of substrate, giving a final DMSO concentration of $1 \%$.
$\mathrm{IC}_{50}$ values were obtained by assuming competitive inhibition and fitting a Langmuir isotherm ( $\left.\mathrm{v}_{\mathrm{i}} / \mathrm{v}_{0}=1 /\left(1+[1] / / \mathrm{C}_{50}\right)\right)$ to the dose response data (Grafit), where $\mathrm{v}_{\mathrm{i}}$ and $\mathrm{v}_{0}$ are the initial velocities for the inhibited and uninhibited reaction respectively and $[1]$ is the inhibitor concentration. ${ }^{22}$ The $K_{i}$ was subsequently calculated by using $\mathrm{K}_{\mathrm{i}}=\mathrm{IC}_{50} /\left(1+[\mathrm{S}] / \mathrm{K}_{\mathrm{m}}\right)^{23}$ and a $K_{m}$ value determined according to Michael is-Menten.

The P. falciparum-Infected Erythrocyte Assay was performed as earlier described by DesJ ardins et al. ${ }^{24}$ The Caco-2 cell Penetration Assay was performed as earlier described by Artursson and Karlsson. ${ }^{21}$

General Procedures. All microwave reactions were conducted in heavy-walled glass Smith process vials sealed with aluminum crimp caps fitted with a silicon septum. The microwave heating was performed in a Smith Synthesizer single-mode microwave cavity producing continuous irradiation at 2450 MHz (Personal Chemistry AB, Uppsala, Sweden). Reaction mixtures were stirred with a magnetic stirring bar during the irradiation. The temperature, pressure, and irradiation power were monitored during the course of the reaction. After completed irradiation, the reaction tube was cooled with high-pressure air until thetemperature had fallen below $39^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on aJ EOL J NM-EX 270 spectrometer at 270.2 and 67.8 MHz , respectively, or on a J EOL J NM-EX400 spectrometer at 399.8 and 100.5 MHz, respectively. Chemical shifts are reported as $\delta$ values (ppm) indirectly referenced to TMS by the solvent residual signal. Optical rotations were obtained on a PerkinElmer 241 polarimeter. Specific rotations ( $[\alpha]_{\mathrm{D}}$ ) are reported in deg/dm, and the concentration (c) is given in $\mathrm{g} / 100 \mathrm{~mL}$ in the specified solvent. Elemental analysis were performed by Mikro Kemi AB, Uppsala, Sweden. Flash column chromatography was performed on Merck silica gel 60, $0.04-0.063 \mathrm{~mm}$. Thin-layer chromatography was performed using aluminum sheets precoated with silica gel $60 \mathrm{~F}_{254}$ ( 0.2 mm ; E. Merck) and visualized with UV light and ninhydrin. Analytical RP-LC-MS was performed on a Gilson HPLC system with a Zorbax SB-C8, $5 \mu \mathrm{~m} 4.6 \times 50 \mathrm{~mm}$ (Agilent technologies) column, with a Finnigan AQA quadropole mass spectrometer, at a flow rate
of $1.5 \mathrm{~mL} / \mathrm{min}$. Preparative RP-LC-MS was performed on Gilson HPLC system with a Zorbax SB-C8, 5 $\mu \mathrm{m} 21.2 \times 150$ mm (Agilent technologies) column, with a Finnigan AQA quadropole mass spectrometer, at a flow rate of $15 \mathrm{~mL} / \mathrm{min}$.
(2S,5S,6R)-3-Aza-5-hydroxy-2-isobutyl-7-phenyl-6-(picolylamino) heptanoyl Amide (6). P-linker 1 ( 0.2 g , loading $0.16 \mathrm{mmol} / \mathrm{g}$ ), ${ }^{10,11} \mathrm{~F} \mathrm{mocLeuOH}(54 \mathrm{mg}, 0.16 \mathrm{mmol}$ ), TBTU ( 52 $\mathrm{mg}, 0.16 \mathrm{mmol}$ ), and DIEA ( $54 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$ ) were suspended in a Teflon test tube. DMF ( 5 mL ) was added, and the mixture was allowed to stand for 2 h at room temperature with an occasional mixing. The solvent was filtered off, and the solid phase was washed three times with DMF ( 5 mL ) and then suspended in $20 \%$ piperidine in DMF ( 5 mL ) for 5 min . This solution was filtered off, and another 5 mL of $20 \%$ piperidine in DMF was added and filtered off after 5 min . The solid phase was washed three times with DMF ( 5 mL ) and three times with $\mathrm{MeOH}(5 \mathrm{~mL})$. (2R,3S)-3-[N-(tert-butyloxycarbonyl)amino]-1,2-epoxy-4-phenylbutane ( $5,0.42 \mathrm{~g}, 0.32 \mathrm{mmol})^{9}$ and t-BuOH ( 5 mL ) were added, and the mixture was shaken for 24 h at $70^{\circ} \mathrm{C}$. The solvent was filtered off, and the solid phase was washed three times with MeOH , three times with DMF, and twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and TFA (1:1) was added, and the mixture was allowed to stand for 10 min . The solvents were filtered off, and the solid phase was washed three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and three times with DMF. Picolinic acid ( $5.8 \mathrm{mg}, 48 \mu \mathrm{~mol}$ ), TBTU ( $16 \mathrm{mg}, 48 \mu \mathrm{~mol}$ ), DIEA ( $1.6 \mu \mathrm{~L}$, $96 \mu \mathrm{~mol}$ ), and DMF ( 5 mL ) were added, and the mixture was allowed to stand for 1 h at room temperature. The sol vent was filtered off, and the solid phase was washed three times with DMF ( 5 mL ), twice with $\mathrm{MeOH}\left(5 \mathrm{~mL}\right.$ ), and twice with $\mathrm{CH}_{2-}$ $\mathrm{Cl}_{2}(5 \mathrm{~mL})$. DMF ( 15 mL ) was added to the solid phase, and it was subjected to UV-light for 3 h . The solid phase was filtered away and washed three times with DMF ( 5 mL ) and three times with MeOH ( 5 mL ), the solvents were pooled and evaporated, and the residue was purified by HPLC (Vydac C18, $22 \times 250 \mathrm{~mm}$, particle size $10 \mu \mathrm{~m}$, gradient $20 \% \rightarrow 60 \%$ AcCN in $0.1 \%$ TFA (aq), 30 min ) to give $6(6.4 \mathrm{mg}, 8 \%)$, as a white solid. 6: $[\alpha]^{22}{ }_{\mathrm{D}}=-51.3\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.91-1.18\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.59-1.87(\mathrm{~m}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}\right), 2.83-3.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} 4 \mathrm{H}_{2}\right.$ and $\left.\mathrm{C} 7 \mathrm{H}_{2}\right), 3.76-$ 3.90 (m, 1 H, C5H ), 4.04-4.19 (m, 1 H, C6H ), 4.28-4.51 (m, 1 $\mathrm{H}, \mathrm{C} 2 \mathrm{H}), 7.10-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.50-7.67$ (m, $1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}$ on pyridine), 7.88-8.11 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ and C 4 H on pyridine), $8.58-8.72$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). ${ }^{13} \mathrm{C}$ NMR ( 100.5 MHz , $\mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 2.4,23.0,25.7,38.5,40.7,50.6,54.8,60.4,68.5$, $123.3,127.7,128.1,129.5,130.3,138.9,139.0,149.8,150.2$, 166.9, 171.4. Anal. ( $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 0^{5} \mathrm{H}_{2} \mathrm{O}$ ) C, H, N.
(2S,5S,6R )-3-Aza-6-[(tert-butyloxycarbonyl)amino]-5-hydroxy-2-methyl-7-phenylheptanoyl Amide (8a). Alanine amide ( $7 \mathrm{a}, 120 \mathrm{mg}, 1.36 \mathrm{mmol}$ ) and epoxide 5 ( 180 mg , 0.67 mmol ) were dissolved in 2-propanol ( 20 mL ) and refluxed overnight. The mixture was cooled, the solvent was removed by evaporation, and the product was purified by column chromatography (EtOAc-MeOH 9:1) to give 8a ( $149 \mathrm{mg}, 68 \%$ ) as a white powder. 8a: $[\alpha]^{22}{ }_{\mathrm{D}}=-25.5\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.12-1.50(\mathrm{~m}, 12 \mathrm{H}), 2.43-2.76(\mathrm{~m}$, $2 \mathrm{H}), 2.80-2.99(\mathrm{~m}, 2 \mathrm{H}), 3.06-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.70(\mathrm{~m}, 1$ H), 3.70-3.93 (m, 1 H$), 5.10-5.23(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.07 (br s, 1 H ), 7.12-7.35 (m, 5 H ). ${ }^{13} \mathrm{C}$ NMR ( 67.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 19.5,28.3,38.6,51.9,53.7,58.1,69.9,79.4,126.3$, 128.4, 129.3, 138.2, 156.1, 178.5. Anal. ( $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}$ ) C, H, N.
(2S,5S,6R )-3-Aza-3-(benzyloxycarbonyl)-6-[(tert-butyl-oxycarbonyl)amino]-5-hydroxy-2-methyl-7-phenylheptanoyl Amide (9a). The secondary amine 8a ( $26 \mathrm{mg}, 74.0$ $\mu \mathrm{mol}$ ) was suspended in a mixture of THF and water (1:1, 20 $\mathrm{mL}) . \mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{mg}, 84.7 \mu \mathrm{~mol})$ and $\mathrm{Z}-\mathrm{Cl}(38 \mathrm{mg}, 0.223 \mathrm{mmol})$ were added, and the mixture was stirred at room temperature for 30 min , extracted twice with EtOAc, dried, filtered, and evaporated. The product was purified by column chromatography (toluene-EtOAc 1:2) to give 9 a ( $34 \mathrm{mg}, 98 \%$ ) as a white powder. 9a: $[\alpha]^{22} \mathrm{D}=-52.1\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.15-1.60(\mathrm{~m}, 12 \mathrm{H}), 2.67-2.95(\mathrm{~m}, 2 \mathrm{H})$, $3.16-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.83(\mathrm{~m}, 1 \mathrm{H})$,
3.83-4.04 (m, 1 H), 4.17-4.38 (m, 1 H), 4.98-5.20 (m, 2 H), 6.25-6.40 (m, 1 H), 7.10-7.43 (m, 10 H). Anal. ( $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6}$ ) C, H,N.
(2S,5S,6R )-3-Aza-3-(benzyloxycarbonyl)-6-\{[(tert-butyl-oxycarbonyl)-L-valinyl]amino\}-5-hydroxy-2-methyl-7phenylheptanoyl Amide (10a). The protected primary amine 9a ( $91 \mathrm{mg}, 0.156 \mathrm{mmol}$ ) was stirred in EtOAc saturated with $\mathrm{HCl}(5 \mathrm{~mL})$ for 15 min . A saturated aqueous solution of $\mathrm{NaHCO}_{3}$ was added until $\mathrm{pH}>6$, and the organic phase was dried, filtered, and evaporated. The residue was dissolved in DMF ( 1.5 mL ). BocValOH ( $87 \mathrm{mg}, 0.400 \mathrm{mmol}$ ), TBTU (128 $\mathrm{mg}, 0.399 \mathrm{mmol})$, and DIEA ( $137 \mu \mathrm{~L}, 0.800 \mathrm{mmol}$ ) were added, and the mixture was stirred for 2 h at room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added, and the mixture was washed with aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{M}, 10 \mathrm{~mL})$, dried, filtered, and evaporated. The product was purified by column chromatography (tolueneEtOAc 1:2) to give 10a ( $80 \mathrm{mg}, 72 \%$ ) as a white powder. 10a: $[\alpha]^{22}{ }_{\mathrm{D}}=62.1\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $0.63-1.00(\mathrm{~m}, 6 \mathrm{H}), 1.28-1.58(\mathrm{~m}, 12 \mathrm{H}), 1.83-2.05(\mathrm{~m}, 1 \mathrm{H})$, 2.71-3.00 (m, 2 H), 3.01-3.25 (m, 1 H), 3.36-3.58 (m, 1 H), $3.70-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.88-4.25(\mathrm{~m}, 3 \mathrm{H}), 4.96-5.20(\mathrm{~m}, 2 \mathrm{H})$, 7.07-7.41 (m, 10 H ). Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R )-3-Aza-5-hydroxy-2-methyl-7-phenyl-6-[(pi-colyl-L-valinyl)amino]-heptanoyl Amide (11a). The protected primary amine 10a ( $80 \mathrm{mg}, 0.137 \mathrm{mmol}$ ) was stirred in EtOAc saturated with $\mathrm{HCl}(5 \mathrm{~mL})$ for 15 min . A saturated aqueous solution of $\mathrm{NaHCO}_{3}$ was added until $\mathrm{pH}>6$, and the organic phase was dried, filtered, and evaporated. The residue was dissolved in a mixture of DMF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,1.5 \mathrm{~mL})$. Picolinic acid ( $18 \mathrm{mg}, 0.146 \mathrm{mmol}$ ), TBTU ( $46 \mathrm{mg}, 0.143 \mathrm{mmol}$ ), and DIEA ( $49 \mu \mathrm{~L}, 0.294 \mathrm{mmol}$ ) were added, and the mixture was stirred for 2 h at room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added, and the mixture was washed with aqueous $\mathrm{NaHCO}_{3}$ ( $1 \mathrm{M}, 10 \mathrm{~mL}$ ), dried, filtered, and evaporated. The peptide coupling product was purified by column chromatography (EtOAc) and dissolved in a saturated solution of ammonium formate in ethanol ( $95 \%, 5 \mathrm{~mL}$ ). Palladium on active carbon ( $10 \%, 5 \mathrm{mg}$ ) was added, and the mixture was stirred at room temperature for 2 h , filtered through Celite, evaporated, and freeze-dried to give 11a ( $42.4 \mathrm{mg}, 68 \%$ ) as a white solid. 11a: $[\alpha]^{22} \mathrm{D}=-57.7\left(\mathrm{c}=1.1, \mathrm{CH}_{3} \mathrm{OH}\right),{ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 0.85\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Val}-\mathrm{CH}_{3}\right), 0.99(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, Val-CH3 $), 1.55\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{3}\right), 1.98-2.20(\mathrm{~m}, 1$ H, Val $\left.-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.74-3.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} 4 \mathrm{H}_{2}\right.$ and $\left.\mathrm{C} 7 \mathrm{H}_{2}\right), 3.73-$ 3.95 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}$ ), 3.95-4.11 (m, $1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ ), 4.11-4.22 (m, 1 $\mathrm{H}, \mathrm{C} 2 \mathrm{H}), 4.22-4.40(\mathrm{~m}, 1 \mathrm{H}$, Val-CHNH), 6.88-7.03 (m, 1 H , $\mathrm{p}-\mathrm{CH}), 7.03-7.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{m}-\mathrm{CH}), 7.18-7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{o}-\mathrm{CH})$, 7.51-7.70 (m, $1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}$ on pyridine), $7.92-8.07$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ on pyridine), 8.07-8.20 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), 8.59-8.86 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). ${ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta$ $17.1,18.7,19.91,32.22,38.36,50.51,54.61,57.34,60.70,69.30$, $123.3,127.3,128.0,129.3,130.3,138.9,139.3,149.8,150.4$, 166.2, 173.4, 173.8. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R )-3-Aza-6-[(tert-butyloxycarbonyl)amino]-2-isobutyl-5-hydroxy-7-phenylheptanoyl Amide (8b). Compound $\mathbf{8 b}$ ( $91 \mathrm{mg}, 83 \%$ ) was prepared from leucine amide ( $\mathbf{7 b}$, $200 \mathrm{mg}, 1.54 \mathrm{mmol}$ ) and epoxide 5 ( $73 \mathrm{mg}, 0.273 \mathrm{mmol}$ ) using the same procedure as in the synthesis of $\mathbf{8 a} . \mathbf{8 b}:[\alpha]^{22}{ }_{\mathrm{D}}=$ -30.9 ( $\mathrm{c}=0.6, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.80-$ 1.01 (m, 6H), 1.33 (s, 9H), 1.60-1.82 (m, 1H), 2.45-2.74 (m, $2 \mathrm{H}), 2.79-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.98-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.68$ (m, 1 H), 5.95-5.12 (m, 1 H$), 5.79$ (br s, 1 H$), 6.9$ (br s, 1 H ), 7.12$7.40(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 21.8,23.2,24.8$, $28.3,38.7,42.9,51.9,53.6,61.2,69.9,79.5,126.4,128.4,129.3$, 138.2, 156.1, 178.3. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R)-3-Aza-3-(benzyloxycarbonyl)-6-[(tert-butyl-oxycarbonyl)amino]-2-isobutyl-5-hydroxy-7-phenylheptanoyl Amide (9b). Compound 9b ( $135 \mathrm{mg}, 100 \%$ ) was prepared from $8 \mathbf{b b}(100 \mathrm{mg}, 0.254 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(35 \mathrm{mg}, 0.253$ mmol), and $\mathrm{Z}-\mathrm{Cl}$ ( $130 \mu \mathrm{~L}, 0.911 \mathrm{mmol}$ ) using the same procedure as in the synthesis of 9a. 9b: $[\alpha]^{22}{ }_{\mathrm{D}}=-65.0$ ( $\mathrm{C}=$ $\left.0.4, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.79-1.08(\mathrm{~m}, 6 \mathrm{H})$, $1.44(\mathrm{~s}, 9 \mathrm{H}), 1.51-1.77(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.79-$ 3.02 (m, 2 H), 3.02-3.33 (m, 1 H), 3.53-3.85 (m, 2H), 3.85-
4.15 (m, 2 H ), 4.86-5.38 (m, 3 H), 5.55-7.00 (m, 2 H), 7.067.50 ( $\mathrm{m}, 10 \mathrm{H}$ ). Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R )-3-Aza-3-(benzyloxycarbonyl)-6-\{[(tert-butyl-oxycarbonyl)-L-valinyl]amino\}-2-isobutyl-5-hydroxy-7phenylheptanoyl Amide (10b). Compound 10b (87 mg, 59\%) was prepared from 9b ( $124 \mathrm{mg}, 0.235 \mathrm{mmol}$ ), BocValOH (51 $\mathrm{mg}, 0.235 \mathrm{mmol}$ ), TBTU ( $75 \mathrm{mg}, 0.234 \mathrm{mmol}$ ), and DIEA ( 80 $\mu \mathrm{L}, 0.467 \mathrm{mmol}$ ) using the same procedure as in the synthesis of 10a. 10b: $[\alpha]^{22} \mathrm{D}=-74.0\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.70-1.10(\mathrm{~m}, 12 \mathrm{H}), 1.37-1.75(\mathrm{~m}, 11 \mathrm{H})$ 1.96-2.16 (m, 2 H), 2.80-2.24 (m,3H), 3.53-3.82 (m, 1 H), $3.82-4.27(\mathrm{~m}, 4 \mathrm{H}), 4.72-5.29(\mathrm{~m}, 2 \mathrm{H}), 5.29-6.88(\mathrm{~m}, 3 \mathrm{H})$, 7.06-7.48 (m, 10 H ). Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R)-3-Aza-2-isobutyl-5-hydroxy-7-phenyl-6-[(pi-colyl-L-valinyl)amino]heptanoyl Amide (11b). Compound 11b ( $48 \mathrm{mg}, 50 \%$ ) was prepared from 10b ( $122 \mathrm{mg}, 0.195$ mmol ), picolinic acid ( $24 \mathrm{mg}, 0.195 \mathrm{mmol}$ ), TBTU ( $62 \mathrm{mg}, 0.193$ mmol), and DIEA ( $66 \mu \mathrm{~L}, 0.386 \mathrm{mmol}$ ) using the same procedure as in the synthesis of 11a. 11b: $[\alpha]^{22}{ }_{D}=-53.4$ ( $c=$ $0.9, \mathrm{MeOH}$ ), ${ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 0.70-1.28$ ( $\mathrm{m}, 12$ $\left.\mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.45-1.73\left(\mathrm{~m}, 2 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}\right), 1.74-1.92(\mathrm{~m}$ $\left.1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}\right), 2.03-2.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Val}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.68-$ $2.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 7 \mathrm{H}_{2}\right), 2.80-3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 4 \mathrm{H}_{2}\right), 3.21-3.38(\mathrm{~m}$ $1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}), 3.76-4.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}), 4.12-4.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2 \mathrm{H})$, $4.32-4.60(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, Val-CHNH), 6.88-7.13 (m, 1 H, p-CH), 7.13-7.20 (m, $2 \mathrm{H}, \mathrm{m}-\mathrm{CH}$ ), $7.20-7.50$ (m, $2 \mathrm{H}, \mathrm{o}-\mathrm{CH}$ ) 7.56-7.80 (m, 1 H, C5H on pyridine), 7.99-8.12 (m, 1 H, C4H on pyridine), 8.12-8.39 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), 8.71-8.85 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). ${ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 18.6$, 20.0, 23.0, 25.9, 32.4, 38.7, 42.9, 51.8, 54.6, 60.4, 61.5, 70.8 $123.3,127.2,128.0,129.2,130.3,138.9,139.5,149.8,150.4$, 166.1, 173.5, 177.2. Anal. ( $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ ) C, H, N.
(2S,5S,6R )-3-Aza-6-[(tert-butyloxycarbonyl)amino]-5-hydroxy-2,7-diphenylheptanoyl Amide (8c). Compound 8c ( $260 \mathrm{mg}, 63 \%$ ) was prepared from phenylglycine amide (7c, $435 \mathrm{mg}, 2.90 \mathrm{mmol}$ ) and epoxide $5(263 \mathrm{mg}, 1.00 \mathrm{mmol})$ using the same procedure as in the synthesis of 8a except the product was purified by recrystallization from 2-propanol. 8c: $[\alpha]^{22} \mathrm{D}$ $=+20.0\left(\mathrm{c}=1.0, \mathrm{MeOH}-\mathrm{CHCl}_{3} \mathrm{1:1}\right) ; \mathrm{mp} 214-215^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD} 9: 1$ ) $\delta 1.29(\mathrm{~s}, 9 \mathrm{H}), 2.42-2.63(\mathrm{~m}$ 2 H), 2.68-2.88 (m, 2 H), 3.57-3.80 (m, 2 H), 3.95-4.12 (m, 1 $\mathrm{H}), 7.01-7.38(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CD}_{3}-$ OD 9:1) $\delta 28.1,38.4,51.7,53.9,67.0,69.7,79.4,126.1,127.1$, 128.1, 128.2, 128.6, 129.1, 138.1, 138.5, 156.2, 175.9. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R )-3-Aza-3-(benzyloxycarbonyl)-6-[(tert-butyl-oxycarbonyl)amino]-5-hydroxy-2,7-diphenylheptanoyl Amide (9c). Compound 9c ( $270 \mathrm{mg}, 85 \%$ ) was prepared from $8 \mathrm{c}(240 \mathrm{mg}, 0.58 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(160 \mathrm{mg}, 1.16 \mathrm{mmol})$, and $\mathrm{Z}-\mathrm{Cl}$ ( $91 \mu \mathrm{~L}, 0.64 \mathrm{mmol}$ ) using the same procedure as in the synthesis of 9a. 9c: $[\alpha]^{22}{ }_{\mathrm{D}}=-40.8\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.31(\mathrm{~s}, 9 \mathrm{H}), 2.60-2.90(\mathrm{~m}, 3 \mathrm{H}), 3.25-$ $3.49(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.70(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.91-$ 5.19 (m, 2 H), 5.35-5.65 (m, 1 H), 5.85-7.54 (m, 2 H), 6.817.41 (m, 15 H ). Anal. ( $\left(\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$
(2S,5S,6R )-3-Aza-3-(benzyloxycarbonyl)-6-\{[(tert-butyl-oxycarbonyl)-L-valinyl]amino\}-5-hydroxy-2,7-diphenylheptanoyl Amide (10c). Compound 10c ( 280 mg , 95\%) was prepared from 9c ( $250 \mathrm{mg}, 0.457 \mathrm{mmol}$ ), BocValOH ( 109 mg , 0.503 mmol ), TBTU ( $161 \mathrm{mg}, 0.503 \mathrm{mmol}$ ), and DIEA ( $175 \mu \mathrm{~L}$ 1.01 mmol ) using the same procedure as in the synthesis of 10a. 10c: $[\alpha]^{22}{ }_{\mathrm{D}}=-67.7\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.50-0.93(\mathrm{~m}, 12 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.80-2.12(\mathrm{~m}, 1$ H), 2.60-2.99 (m, 4 H), 3.10-3.41 (m, 1 H), 3.60-3.95 (m, 3 H), 4.80-5.20 (m, 2 H), 5.26-5.57 (m, 1 H), 5.76-6.15 (m, 2 H), 6.38-6.67 (m, 1 H ), 6.85-7.38 (m, 15 H$)$. Anal. $\left(\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{7}\right)$ C, H, N.
(2S,5S,6R )-3-Aza-5-hydroxy-2,7-diphenyl-6-[(picolyl-L-valinyl)amino]-heptanoyl Amide (11c). Compund 11c (120 $\mathrm{mg}, 60 \%$ ) was prepared from 10c ( $250 \mathrm{mg}, 0.387 \mathrm{mmol}$ ), picolinic acid ( $52 \mathrm{mg}, 0.426 \mathrm{mmol}$ ), TBTU ( $137 \mathrm{mg}, 0.426$ mmol), and DIEA ( $145 \mu \mathrm{~L}, 0.851 \mathrm{mmol}$ ) using the same procedure as in the synthesis of 11a. 11c: $[\alpha]^{22} \mathrm{D}=-7.9$ ( $\mathrm{c}=$ $0.8, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.80(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$,

Val-CH3 $), 0.98\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right.$, Val- $\left.\mathrm{CH}_{3}\right), 2.08-2.32(\mathrm{~m}, 1$ $\left.\mathrm{H}, \mathrm{Val}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.53-2.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 7 \mathrm{H}_{2}\right), 2.74-3.01(\mathrm{~m}, 2$ $\left.\mathrm{H}, \mathrm{C} 4 \mathrm{H}_{2}\right), 3.59-3.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}), 4.05-4.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H})$, 4.13 (s, $1 \mathrm{H}, \mathrm{C} 2 \mathrm{H}$ ), 4.34 (dd, J = 7.3, 1 H, Val-CHNH), 6.31 (br s, $1 \mathrm{H}, \mathrm{NH}$ ) , 6.78-6.91 (m, $1 \mathrm{H}, \mathrm{NH}$ ), 6.91-7.00 (m, 1 H p-CH), 7.00-7.20 (m, $5 \mathrm{H}, 5 \mathrm{Ar}-\mathrm{H}$ ), 7.20-7.40 (m, $5 \mathrm{H}, 4 \mathrm{Ar}-\mathrm{H}$ and NH), $7.40-7.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 7.76-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}$ on pyridine), $8.05-8.20$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ on pyridine), $8.35-8.50$ (m, $1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), $8.50-8.66$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). ${ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 18.0,19.6,30.5,38.3,51.9,52.7$, $59.2,67.3,70.1,122.3,126.1,126.5,127.4,128.2,128.8,129.2$, 137.3, 137.9, 138.8, 148.3, 149.0, 164.5, 170.9, 175.3. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R )-3-Aza-2-benzyl-6-[(tert-butyloxycarbonyl)-amino]-5-hydroxy-7-phenylheptanoyl Amide (8d). Compound 8c ( $78 \mathrm{mg}, 48 \%$ ) was prepared from phenylalanine amide ( $\mathbf{7 d}, 100 \mathrm{mg}, 0.609 \mathrm{mmol}$ ) and epoxide 5 ( $100 \mathrm{mg}, 0.380$ mmol ) using the same procedure as in the synthesis of $\mathbf{8 a}$. 8d: $[\alpha]^{22}{ }_{\mathrm{D}}=-86.1\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ( 270 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.55-2.68(\mathrm{~m}, 2 \mathrm{H})$, 2.70-2.98 (m, 3 H), 3.12-3.25 (m, 1 H), 3.25-3.39 (m, 1 H), 3.40-3.56 (m, 1 H), 3.71-3.85 (m, 1 H), 4.95-5.12 (m, 1 H), 5.85 (br s, 1 H ), 7.0 (br s, 1 H ), 7.13-7.42 (m, 10 H ). ${ }^{13} \mathrm{C}$ NMR (67.8 MHz, CDCl ${ }_{3}$ ) $\delta 28.3,38.7,39.3,51.8,53.8,63.8,69.4$, 79.4, 126.4, 126.9, 128.4, 128.8, 129.0, 129.3, 137.4, 138.1, 156.0, 176.8. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R )-3-Aza-2-benzyl-3-(benzyloxycarbonyl)-6-[(tert-butyloxycarbonyl)amino]-5-hydroxy-7-phenylheptanoyl Amide (9d). Compound 9d (158 mg, 92\%) was prepared from 8d ( $131 \mathrm{mg}, 0.307 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(64 \mathrm{mg}, 0.463$ mmol ) and Z-CI ( $130 \mu \mathrm{~L}, 0.911 \mathrm{mmol}$ ) using the same procedure as in the synthesis of 9a. 9d: $[\alpha]^{22}{ }_{\mathrm{D}}=-151.7$ ( $\mathrm{c}=0.9$, $\mathrm{CHCl}_{3}$ ) ; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.05-1.5(\mathrm{~m}, 9 \mathrm{H})$, 2.12-2.4 (m, 1 H), 2.54-2.87 (m, 2 H), 3.01-3.28 (m, 3H), $3.41-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.99(\mathrm{~m}, 1 \mathrm{H}), 4.0-4.23(\mathrm{~m}, 1 \mathrm{H})$, 5.01-5.35 (m, 2 H), 6.14-6.30 (m, 1 H), 6.9-7.55 (m, 15 H). Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R )-3-Aza-2-benzyl-3-(benzyloxycarbonyl)-6-\{[(tert-butyloxycarbonyl)-L-valinyl]amino\}-5-hydroxy-7phenylheptanoyl Amide (10d). Compound $\mathbf{1 0 d}$ ( $79 \mathrm{mg}, 73 \%$ ) was prepared from 9d ( $92 \mathrm{mg}, 0.164 \mathrm{mmol}$ ), BocValOH ( 36 $\mathrm{mg}, 0.166 \mathrm{mmol}$ ), TBTU ( $58 \mathrm{mg}, 0.181 \mathrm{mmol}$ ), and DIEA ( 57 $\mu \mathrm{L}, 0.333 \mathrm{mmol}$ ) using the same procedure as in the synthesis of 10a. 10d: $[\alpha]^{22}{ }_{\mathrm{D}}=-132.9\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.62-0.91(\mathrm{~m}, 6 \mathrm{H}), 1.13-1.57(\mathrm{~m}, 10 \mathrm{H})$, 1.77-1.98 (m, 1 H), 2.19-2.46 (m, 1 H), 2.61-2.90 (m, 2 H), 2.95-3.23 (m, 2 H), 3.70-4.23 (m, 4 H), 5.01-5.30 (m, 2 H), $6.85-7.53(\mathrm{~m}, 15 \mathrm{H})$. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{7} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R)-3-Aza-2-benzyl-5-hydroxy-7-phenyl-6-[(pico-Iyl-L-valinyl)amino]heptanoyl Amide (11d). Compound 11d ( $46 \mathrm{mg}, 86 \%$ ) was prepared from 10d ( $66 \mathrm{mg}, 99.9 \mu \mathrm{~mol}$ ), picolinic acid ( $24 \mathrm{mg}, 97.5 \mu \mathrm{~mol}$ ), TBTU ( $62 \mathrm{mg}, 99.7 \mu \mathrm{~mol}$ ), and DIEA ( $66 \mu \mathrm{~L}, 0.199 \mathrm{mmol}$ ) using the same procedure as in the synthesis of 11a. 11d: $[\alpha]^{22} \mathrm{D}=-45.8(c=0.6, \mathrm{MeOH})$, ${ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 0.76-1.08\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right.$ ), 1.94-2.18 (m, $\left.1 \mathrm{H}, \mathrm{Val}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.50-2.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2 \mathrm{CH}_{2}\right)$, 2.72-3.13 (m, 4 H, C4H $\mathrm{H}_{2}$ and $\left.\mathrm{C} 7 \mathrm{H}_{2}\right), 3.42-3.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{H})$, 3.68-3.90 (m, 1 H, C6H), 4.07-4.23 (m, 1 H, Val-CHNH), 4.26-4.42 (m, 1 H, C2H), 6.85-6.99 (m, 1 H, p-CH), 7.007.12 (m, 2 H, m-CH), 7.12-7.50 (m, 7 H, 7 Ar-H), 7.48-7.65 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}$ on pyridine), $7.90-8.04$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ on pyridine), 8.05-8.19 (m, $1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), 8.55-8.70 (m, $1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). ${ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 18.6$, 20.0, 32.4, 38.7, 39.9, 52.1, 54.6, 60.3, 64.6, 71.1, 123.3, 127.1, 127.9, 129.2, 129.6, 130.3, 130.5, 138.0, 138.9, 139.6, 149.7, 150.4, 166.0, 173.3, 177.0. Anal. ( $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ ) C, H, N.
(2R,5S,6R )-3-Aza-2-benzyl-6-[(tert-butyloxycarbonyl)-amino]-5-hydroxy-7-phenylheptanoyl Amide (8e). Compound $8 \mathbf{e}(0.60 \mathrm{~g}, 54 \%)$ was prepared from d-phenylalanine amide ( $7 \mathrm{e}, 0.94 \mathrm{~g}, 5.7 \mathrm{mmol}$ ) and epoxide $5(0.68 \mathrm{~g}, 2.6 \mathrm{mmol})$ using the same procedure as in the synthesis of 8a. 8e: $[\alpha]^{22}$ D $=-7.6\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.11-$ 1.29 (m, 1 H), $1.40(\mathrm{~s}, 9 \mathrm{H}), 2.43-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.74-3.03(\mathrm{~m}$, 3 H), 3.03-3.22 (m, 1 H), 3.22-3.42 (m, 1 H), 3.47-3.70 (m, 1
$\mathrm{H}), 3.78-3.97(\mathrm{~m}, 1 \mathrm{H}), 5.04-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.00 (br s, 1 H), 7.11-7.48 (m, 10 H ). ${ }^{13} \mathrm{C}$ NMR (100.5 M Hz, $\left.\mathrm{CDCl}_{3}\right) \delta 28.2,38.6,39.1,51.5,53.5,64.1,70.1,79.3,126.2$, $126.8,128.3,128.6,129.0,129.2,137.2,138.2,156.1,176.73$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2R,5S,6R )-3-Aza-2-benzyl-3-(benzyloxycarbonyl)-6-[(tert-butyloxycarbonyl)amino]-5-hydroxy-7-phenylheptanoyl Amide (9e). Compound 9e ( $0.55 \mathrm{~g}, 73 \%$ ) was prepared from $8 \mathbf{e}(0.57 \mathrm{~g}, 0.98 \mathrm{mmol})$ using the same procedure as in the synthesis of 9a. 9e: $[\alpha]^{22} \mathrm{D}=+12.8\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.13-1.70(\mathrm{~m}, 9 \mathrm{H}), 2.77-3.00(\mathrm{~m}$, $2 \mathrm{H}), 3.00-3.56(\mathrm{~m}, 5 \mathrm{H}), 3.56-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.98(\mathrm{~m}, 1$ H), 4.55-4.78 (m, 1 H), 4.85-5.48 (m, 3H), 6.89-7.67 (m, 16 H). Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2R ,5S,6R )-3-Aza-2-benzyl-3-(benzyloxycarbonyl)-6-\{[(tert-butyloxycarbonyl)-L-valinyl]amino\}-5-hydroxy-7phenylheptanoyl Amide (10e). Compound 10e ( $0.43 \mathrm{~g}, 70 \%$ ) was prepared from $9 \mathbf{e}(0.52 \mathrm{~g}, 0.164 \mathrm{mmol})$ using the same procedure as in the synthesis of 10a. 10e: $[\alpha]^{22} \mathrm{D}=+1.3$ ( $\mathrm{c}=$ $0.5, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.58-0.98(\mathrm{~m}, 6 \mathrm{H})$, $1.26-1.53(\mathrm{~m}, 10 \mathrm{H}), 1.85-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.61-3.04(\mathrm{~m}, 4 \mathrm{H})$, 3.04-3.31 (m, 2 H), 3.63-4.06 (m, 4 H), 4.39-4.63 (m, 1 H), 4.75-5.11 (m, 2 H), 5.11-5.33 (m, 1 H), 6.85-7.53 (m, 17 H). Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{7} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$
(2R,5S,6R)-3-Aza-2-benzyl-5-hydroxy-7-phenyl-6-[(pi-colyl-L-valinyl)amino]heptanoyl Amide (11e). Compound $\mathbf{1 1 e}(0.24 \mathrm{~g}, 75 \%)$ was prepared from $\mathbf{1 0 e}(0.40 \mathrm{~g}, 0.61 \mathrm{mmol})$ using the same procedure as in the synthesis of 11a. 11e: $[\alpha]^{22}{ }_{\mathrm{D}}=-33.4\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.77\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Val}-\mathrm{CH}_{3}\right), 1.00(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, Val- $\mathrm{CH}_{3}$ ), 2.05-2.35 (m, $\left.1 \mathrm{H}, \mathrm{Val}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.45(\mathrm{dd}, \mathrm{J}=8.3$, $11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}$ ), 2.64 (dd, J $=5.4,12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}$ ), 2.71-2.95 (m, 3H, C4H and C7H 2 ), 2.95-3.20 (m, 1 H, C4H), 3.20-3.40 (m, 1 H, C5H ), 3.47-3.70 (m, 1 H, C6H ), 4.06-4.21 ( $\mathrm{m}, 1 \mathrm{H}$, Val-CHNH), 4.28 (dd, J $=6.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2 \mathrm{H}$ ), 6.13 (br s, $1 \mathrm{H}, \mathrm{NH}$ ), 6.85-7.61 (m, $13 \mathrm{H}, 10 \mathrm{Ar}-\mathrm{H}$ and 3 NH ), 7.71-7.94 (m, 1 H, C5H on pyridine), 8.00-8.20 (m, 1 H, C4H on pyridine), 8.30-8.50 (m, $1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), 8.50-8.66 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). ${ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 17.7$, $19.5,30.1,38.0,38.8,51.1,52.1,59.2,64.0,70.0,122.2,125.6$, 126.1, 126.6, 126.7, 128.2, 128.5, 129.1, 137.1, 137.4, 137.76, 148.3, 148.8, 164.7, 171.1, 176.4. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
p-L-Bromophenylalanine Amide (7f). p-Bromophenylalanine ( $2.00 \mathrm{~g}, 8.19 \mathrm{mmol}$ ) was suspended in methanol ( 60 mL ). Acelyl chloride ( 30 mL ) was added slowly under ice cooling, and the mixture was stirred overnight at room temperature and evaporated. The solid residue was dissolved in EtOAc ( 30 mL ), washed with aqueous saturated $\mathrm{NaHCO}_{3}$, dried, filtered, and evaporated. The crude residue was stirred overnight with ammonia saturated methanol ( 200 mL ), evaporated, and purified by crystallization from MeOH -ether to give $\mathbf{7 f}$ ( 1.96 g , $98 \%$ ) as white crystals. $7 \mathrm{f}:[\alpha]^{22}{ }_{\mathrm{D}}=+14.0$ ( $\mathrm{c}=1.1, \mathrm{MeOH}$ ), mp 153-5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 2.71-2.88$ (dd, J $=7.26,13.36 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-3.04(\mathrm{dd}, \mathrm{J}=6.10,13.36 \mathrm{~Hz}, 1$ H), 3.49-3.60 (dd, J $=6.27,7.42,1 \mathrm{H}), 7.10-7.23(\mathrm{~m}, 2 \mathrm{H})$, $7.40-7.52(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.67.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 41.8,57.2$, 121.5, 132.4, 138.2, 179.3. Anal. ( $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}$ ) C, H, N
(2S,5S,6R )-3-Aza-2-(p-bromobenzyl)-6-[(tert-butyloxy-carbonyl)amino]-5-hydroxy-7-phenylheptanoyl Amide (8f). Compound 8 ( $1.01 \mathrm{~g}, 62 \%$ ) was prepared from $8 f(1.00$ $\mathrm{g}, 0.609 \mathrm{mmol})$ and epoxide $5(0.85 \mathrm{~g}, 3.23 \mathrm{mmol})$ using the same procedure as in the synthesis of 8a. 8f: $[\alpha]^{22}{ }_{D}=-22.1$ $\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.29(\mathrm{~s}, 9 \mathrm{H})$, 1.46-1.92 (m, 1 H), 2.30-2.60 (m, 2 H), 2.60-2.87 (m, 3H), 2.87-3.05 (m, 1 H$), 3.05-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.47(\mathrm{~m}, 1 \mathrm{H})$, 3.47-3.82 (m, 1 H), 4.80-5.02 (m, 1 H), 5.80 (br s, 1 H), 6.87 (br s, 1 H), 6.93-7.08 (m, 2 H), 7.08-7.29 (m, 5H), 7.29-7.42 $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 28.4,38.8,50.8,51.9$, 53.8, 63.9, 69.9, 79.7, 120.9, 126.5, 128.6, 129.4, 130.9, 131.9, 136.4, 138.2, 156.2, 176.6. Anal. ( $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{BrN}_{3} \mathrm{O}_{4}$ ) C, H, N.
(2S,5S,6R)-3-Aza-3-(benzyloxycarbonyl)-2-(p-bromoben-zyl)-6-[(tert-butyloxycarbonyl)amino]-5-hydroxy-7-phenylheptanoyl Amide (9f). Compound 9 ( $1.05 \mathrm{~g}, 99 \%$ ) was
prepared from $8 f(0.85 \mathrm{~g}, 1.68 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(212 \mathrm{mg}, 2.00$ mmol ), and Z-Cl ( $0.50 \mathrm{~mL}, 4.62 \mathrm{mmol}$ ) using the same procedure as in the synthesis of 9a. 9f: $[\alpha]^{22} \mathrm{D}=-175.0$ ( $\mathrm{c}=$ $0.4, \mathrm{CHCl}_{3}$ ); ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.08-1.45$ ( $\mathrm{m}, 9$ H), 2.21-2.40 (m, 1 H), 3.00-3.42 (m, 4 H), 3.45-3.66 (m, 1 H), $3.79-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.24(\mathrm{~m}, 1 \mathrm{H}), 5.00-5.38(\mathrm{~m}, 2$ H), $6.80-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.52(\mathrm{~m}, 12 \mathrm{H})$. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{38^{-}}\right.$ $\left.\mathrm{BrN}_{3} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R)-3-Aza-3-(benzyloxycarbonyl)-2-(p-bromoben-zyl)-6-\{[(tert-butyloxycarbonyl)-L-valinyl]amino\}-5-hy-droxy-7-phenylheptanoyl Amide (10f). Compound 10f $(0.554 \mathrm{~g}, 52 \%)$ was prepared from 9 ( $0.90 \mathrm{~g}, 1.43 \mathrm{mmol}$ ), BocValOH ( $0.375 \mathrm{~g}, 1.73 \mathrm{mmol}$ ), TBTU ( $0.555 \mathrm{~g}, 1.73 \mathrm{mmol}$ ), and DIEA ( $0.590 \mathrm{~mL}, 3.45 \mathrm{mmol}$ ) using the same procedure as in the synthesis of 10a except 10f was purified by recrystallization from MeOH -ether. 10f: $[\alpha]^{22} \mathrm{D}=-172.9$ ( $\mathrm{c}=1.0$, $\mathrm{CHCl}_{3}-\mathrm{MeOH} 1: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}-\mathrm{CDCl}_{3} \mathrm{1}: 1$ ) $\delta 0.85-1.04(\mathrm{~m}, 6 \mathrm{H}), 1.65(\mathrm{~s}, 9 \mathrm{H}), 2.01-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.40-$ $2.62(\mathrm{~m}, 1 \mathrm{H}), 2.88-3.09(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.37-$ $3.63(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.98-4.33(\mathrm{~m}, 3 \mathrm{H}), 5.01-$ $5.50(\mathrm{~m}, 2 \mathrm{H}), 6.95-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.69(\mathrm{~m}, 12 \mathrm{H})$. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{BrN}_{4} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R)-3-Aza-2-(p-bromobenzyl)-5-hydroxy-7-phen-yl-6-[(picolyl-L-valinyl)amino]heptanoyl Amide (11f). The protected primary amine $10 f(0.200 \mathrm{mg}, 0.269 \mathrm{mmol})$ was stirred in EtOAc saturated with $\mathrm{HCl}(5 \mathrm{~mL})$ for 15 min . A saturated aqueous solution of $\mathrm{NaHCO}_{3}$ was added until pH > 6 , and the organic phase was dried, filtered, and evaporated. The residue was dissolved in a mixture of DMF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $1: 1,1.5 \mathrm{~mL}$ ). Picolinic acid ( $40 \mathrm{mg}, 0.325 \mathrm{mmol}$ ), TBTU ( 0.104 $\mathrm{g}, 0.324 \mathrm{mmol})$, and DIEA ( $0.11 \mathrm{~mL}, 0.643 \mathrm{mmol}$ ) were added, and the mixture was stirred for 2 h at room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added, and the mixture was washed with aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{M}, 10 \mathrm{~mL})$, dried, filtered, and evaporated. The peptide coupling product was purified by column chromatography (EtOAc) and dissolved in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. Anisole ( $0.29 \mathrm{~g}, 2.69 \mathrm{mmol}$ ) and triflic acid ( $1.00 \mathrm{~g}, 6.72 \mathrm{mmol}$ ) were added, and the mixture was stirred att room temperature for 5 min . Saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added until pH > 6 , and the organic phase was dried, filtered, and evaporated. The product was purified by column chromatography ( $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} 9: 1$ ) to give $\mathbf{1 1 f}(0.112 \mathrm{~g}, 68 \%)$ as a white solid. 11f: $[\alpha]^{22}{ }_{\mathrm{D}}=-37.7\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; ${ }^{1 \mathrm{H}} \mathrm{NMR}(270 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD} 9: 1$ ) $\delta 0.74\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Val}-\mathrm{CH}_{3}\right), 0.79$ $(\mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, Val-CH3$), 1.98-2.15(\mathrm{~m}, 1 \mathrm{H}$, Val$\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.53$ (dd, J $\left.=8.7,12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}\right), 2.60(\mathrm{dd}$, $\mathrm{J}=4.6,12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}), 2.72(\mathrm{dd}, \mathrm{J}=8.8,13.7 \mathrm{~Hz}, 1 \mathrm{H}$, C7H ), 2.81 (dd, J $=6.6,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 7 \mathrm{H}$ ), 2.84 (dd, J = 7.1, $13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ ), 2.93 (dd, J $=6.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ ), 3.43-3.49 (m, 1 H, C5H), 3.62-3.71 (m, 1 H, C6H ), 4.01-4.10 ( $\mathrm{m}, 1 \mathrm{H}$, Val-CHNH), 4.14-4.25 (m, 1 H, C2H), 6.86-6.93 (m, $1 \mathrm{H}, \mathrm{p}-\mathrm{CH}$ ), 6.98-7.13 (m, 6 H, 6 Ar-H), 7.28-7.36 (m, 2 H , Ar-H meta to CBr), 7.37-7.45 (m, $1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}$ on pyridine), $7.77-$ 7.85 (m, $1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ on pyridine), 8.00-8.07 (m, $1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), $8.48-8.54$ (m, $1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). ${ }^{13} \mathrm{C}$ NMR ( 67.8 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.9,19.4,30.3,37.9,38.3,51.5,52.6,59.8$, 63.51, 70.2, 120.7, 122.2, 126.5, 128.2, 129.1, 130.9, 131.6, 136.0, 137.4, 137.8, 148.3, 148.8, 164.6, 171.1, 176.1. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{BrN}_{5} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R)-3-Aza-5-hydroxy-7-phenyl-2-(p-phenylben-zyl)-6-[(picolyl-L-valinyl)amino]heptanoyl Amide (16a). In a microwave test tube were mixed compound 11 f ( 44 mg , $72 \mu \mathrm{~mol})$, phenyl boronic acid ( $26 \mathrm{mg}, 0.213 \mathrm{mmol}$ ), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ( $1.6 \mathrm{mg}, 2.3 \mu \mathrm{~mol}$ ), aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 0.11 \mathrm{~mL}, 0.22 \mathrm{mmol})$, EtOH ( 0.3 mL ), DME ( 1.2 mL ), and $\mathrm{H}_{2} \mathrm{O}(0.9 \mathrm{~mL})$. The test tube was heated in a microwave oven to $140{ }^{\circ} \mathrm{C}$ for 20 min and cooled, and the solvents were evaporated. The residue was dissolved in a mixture of water, ACCN , and formic acid (10: $10: 1,2 \mathrm{~mL}$ ) and then filtered and purified by preparative HPLC (Zorbax C8, $20 \times 150 \mathrm{~mm}$, particle size $5 \mu \mathrm{~m}$ ) using a gradient ( $\mathrm{H}_{2} \mathrm{O}-\mathrm{AcCN}(0.1 \%$ formic acid) $95: 5 \rightarrow 4: 6$ ) over a period of 30 min . The fractions containing the pure product (measured with MS) were pooled and freeze-dried to give 16a ( $19 \mathrm{mg}, 43 \%$ ) as a white solid. 16a: $[\alpha]^{22}{ }_{\mathrm{D}}=-30.4$ ( $\mathrm{c}=0.6$,
$\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.71(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, Val- $\mathrm{CH}_{3}$ ), 0.83 (dd, J $=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Val}-\mathrm{CH}_{3}$ ), 2.11-2.33 (m, $\left.1 \mathrm{H}, \mathrm{Val}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.56-2.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2 \mathrm{CH}_{2}\right), 2.79-2.91$ (m, $2 \mathrm{H}, \mathrm{C}_{2}$ 2), 2.97 (dd, J $\left.=8.1,13.5 \mathrm{HZ}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}\right), 3.15$ (dd, J $=6.1,13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}), 3.50-3.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{H})$, 3.64-3.84 (m, $1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}), 4.09-4.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Val}-\mathrm{CHNH}), 4.33$ (dd, J $=6.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2 \mathrm{H}), 6.02-6.20$ (br s, $1 \mathrm{H}, \mathrm{NH}$ ), 6.76-7.66 (m, 17 H, $14 \mathrm{Ar}-\mathrm{H}$ and 3 NH ), 7.79-7.91 (m, 1 H , C5H on pyridine), $8.08-8.20$ (m, $1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ on pyridine), 8.358.50 (m, $1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), $8.50-8.63$ (m, $1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). ${ }^{13} \mathrm{C}$ NMR (100.5 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 17.8,19.6,30.2,38.1$, 38.5, 51.4, 52.7, 59.4, 63.7, 69.6, 122.3, 126.2, 126.4, 126.7, 126.8, 126.9, 127.0, 127.4, 127.6, 128.4, 128.5, 128.8, 129.2, 129.6, 129.7, 136.1, 137.4, 137.5, 137.7, 139.8, 140.5, 148.3, 149.0, 164.8, 171.1, 175.8. Anal. $\left(\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 1.3 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N.
(2S,5S,6R )-3-Aza-2-[p-(p-methylphenyl)benzyl]-5-hy-droxy-7-phenyl-6-[(picolyl-L-valinyl )ami no]heptanoyl Amide (16b). Compound 16b ( $21 \mathrm{mg}, 46 \%$ ) was prepared from $11 \mathrm{f}(44 \mathrm{mg}, 72 \mu \mathrm{~mol}$ ) and 4-methylphenylboronic acid ( 26 mg , 0.19 mmol ) using the same procedure as in the synthesis of 16a. 16b: $[\alpha]^{22}{ }_{\mathrm{D}}=-39.9\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.85\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Val}-\mathrm{CH}_{3}\right), 0.91(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 3 \mathrm{H}$, Val- $\mathrm{CH}_{3}$ ), 2.14-2.20 (m, $\left.1 \mathrm{H}, \mathrm{Val}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.20(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.60-2.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{2}\right), 2.77-3.01(\mathrm{~m}, 3$ $\mathrm{H}, \mathrm{C} 4 \mathrm{H}$ and $\mathrm{C} 7 \mathrm{H}_{2}$ ), 3.08-3.22 (m, $\left.1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}\right), 3.41-3.55(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{C} 5 \mathrm{H}), 3.59-3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}), 4.05-4.22(\mathrm{~m}, 1 \mathrm{H}$, ValCHNH), 4.32 (dd, J $=6.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2 \mathrm{H}$ ), 5.78-5.98 (br s, $1 \mathrm{H}, \mathrm{NH}), 6.64-6.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 6.85-6.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH})$, 6.99-7.09 (m, 1 H, Ar-H ), 7.09-7.19 (m, $4 \mathrm{H}, 4 \mathrm{Ar}-\mathrm{H}), 7.19-$ 7.39 (m, $4 \mathrm{H}, 4 \mathrm{Ar}-\mathrm{H}), 7.48-7.60(\mathrm{~m}, 5 \mathrm{H}, 4 \mathrm{Ar}-\mathrm{H}, \mathrm{NH}), 7.78-$ 7.91 (m, $1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}$ on pyridine), 8.07-8.22 (m, $1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ on pyridine), $8.33-8.49$ (m, $1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), 8.53-8.67 (m, $1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). ${ }^{13} \mathrm{C}$ NMR (100.5 M Hz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.7$, 19.6, 21.1, 30.1, 38.2, 38.9, 51.5, 52.6, 59.3, 63.9, 69.7, 122.3, 126.3, 126.5, 126.8, 127.2, 127.4, 128.4, 128.6, 129.2, 129.5, 136.1, 136.8, 137.4, 137.7, 139.7, 148.3, 149.1, 164.7, 170.9, 176.2. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{HCOOH}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R)-3-Aza-2-[p-(m-aminophenyl)benzyl]-5-hy-droxy-7-phenyl-6-[(picolyl-L-valinyl)amino]heptanoyl Amide (16c). Compound 16c ( $13 \mathrm{mg}, 28 \%$ ) was prepared from 11f ( $46 \mathrm{mg}, 75 \mu \mathrm{~mol}$ ) and 3-aminophenyl boronic acid ( 42 mg , 0.31 mmol ) using the same procedure as in the synthesis of 16a except the HPLC gradient was changed $\left(\mathrm{H}_{2} \mathrm{O} \quad(0.1 \%\right.$ $\mathrm{HCOOH}) \rightarrow \mathrm{H}_{2} \mathrm{O}-\mathrm{AcCN}$ 7:3 (0.1\% HCOOH)). 16c: $[\alpha]^{22}{ }_{\mathrm{D}}=$ -22.2 (c $=0.5, \mathrm{CHCl}_{3}-\mathrm{MeOH} 1: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{CD}_{3} \mathrm{OD} 1: 1$ ); $\delta 0.87\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Val}-\mathrm{CH}_{3}\right), 0.93(\mathrm{~d}, \mathrm{~J}=$ $\left.6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Val}-\mathrm{CH}_{3}\right)$ ), 1.27 (br s, $2 \mathrm{H}, \mathrm{ArNH}_{2}$ ), 2.18-2.33 (m, 1 H, Val- $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.55-2.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{2}\right), 2.77-3.01$ ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ ), 3.01-3.27 (m, $1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ ), 3.27-3.48 (m, $1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}), 3.48-3.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}), 4.00-4.20(\mathrm{~m}, 1 \mathrm{H}$, Val-CHNH ), 4.20-4.38 (m, 1 H, C2H ), 5.40-5.61 (br s, 1 H, NH), 6.29-6.52 (m, 1 H, Ar-H), 6.55-6.80 (m, 1 H, Ar-H), 6.80-7.00 (m, $2 \mathrm{H}, 2$ Ar-H), 7.00-7.33 (m, $8 \mathrm{H}, 6 \mathrm{Ar}-\mathrm{H}, 2$ NH ) , $7.33-7.65(\mathrm{~m}, 4 \mathrm{H}, 3 \mathrm{Ar}-\mathrm{H}, \mathrm{NH}), 7.72-7.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}$ on pyridine), $7.96-8.22$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ on pyridine), 8.22-8.45 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), $8.45-8.66$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). ${ }^{13} \mathrm{C}$ NMR ( $100.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 17.0,30.1,36.5$, 36.6, 49.4, 52.4, 58.7, 61.6, 67.6, 113.3, 114.1, 116.6, 121.5, 125.6, 126.2, 126.6, 127.5, 128.4, 128.9, 133.1, 137.0, 140.0, $140.8,146.5,147.8,148.3,164.40,171.4,171.8$. Anal. ( $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{4}$. $\left.\mathrm{H}_{2} \mathrm{O} \cdot 0.8 \mathrm{HCOOH}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R )-3-Aza-5-hydroxy-2-[p-(o-methoxyphenyl)-benzyl]-7-phenyl-6-[(picolyl-L-valinyl)amino]heptanoyl Amide (16d). Compound 16d ( $18 \mathrm{mg}, 38 \%$ ) was prepared from 1lf ( $45 \mathrm{mg}, 74 \mu \mathrm{~mol}$ ) and 2-methoxyphenyl boronic acid ( 34 mg , 0.22 mmol ) using the same procedure as in the synthesis of 16a. 16d: $[\alpha]^{22}{ }_{\mathrm{D}}=-41.9\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.87\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Val}-\mathrm{CH}_{3}\right), 0.93(\mathrm{dd}, \mathrm{J}=6.8$ $\mathrm{Hz}, 3 \mathrm{H}$, Val- $\mathrm{CH}_{3}$ ), 2.11-2.32 (m, 1 H , Val- $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$ ), 2.51$2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2-\mathrm{CH}_{2}\right), 2.70-2.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 4 \mathrm{H}\right.$ and $\left.\mathrm{C} 7 \mathrm{H}_{2}\right)$, $3.16-3.30$ (dd, J $=5.4,13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}), 3.47-3.51(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{C} 5 \mathrm{H}), 3.51-3.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00-$ 4.14 (m, 1 H, Val-CHNH ), 4.22-4.42 (dd, J $=6.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}$,

C2H ), 5.83-6.03 (br s, $1 \mathrm{H}, \mathrm{NH}$ ), 6.68-6.81 (m, $1 \mathrm{H}, \mathrm{NH}$ ), 6.85-7.39 (m, $12 \mathrm{H}, 11 \mathrm{Ar}-\mathrm{H}$ and NH), 7.30-7.53 (m, $3 \mathrm{H}, 2$ Ar-H and NH ), 7.73-7.86 (m, 1 H, C5H on pyridine), 8.028.21 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ on pyridine), 8.33-8.46 (m, $1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), $8.46-8.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}\right.$ on pyridine). ${ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.8,19.6,30.3,38.3,38.9,51.5,52.7$, 55.5, 59.2, 63.7, 69.2, 111.1, 120.8, 122.3, 126.3, 126.4, 126.8, 128.4, 128.6, 128.7, 128.8, 129.2, 129.9, 129.9, 133.9, 135.6, 136.0, 137.4, 137.7, 148.3, 149.1, 156.3, 164.7, 170.9, 176.3. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot 1.6 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
m-L-Tyrosine Amide (13). Compound 13 ( $0.25 \mathrm{~g}, 84 \%$ ) was prepared from m-tyrosine ( $\mathbf{1 2}, 0.30 \mathrm{~g}, 1.66 \mathrm{mmol})^{12}$ according to the method for the preparation of $\mathbf{7 f}$ except $\mathbf{1 3}$ was purified by column chromatography (EtOAc-MeOH 4:1) to give $\mathbf{1 3}$ as a colorless glue. 13: $[\alpha]^{22}{ }_{\mathrm{D}}=+5.2(\mathrm{c}=1.2, \mathrm{MeOH}),{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 2.63-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.90-3.09(\mathrm{~m}, 1 \mathrm{H})$, 3.49-3.64 (m, 1 H), 6.57-6.96 (m, 3H), 6.99-7.27 (m, 1 H). ${ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 42.4,57.2,114.9,117.2,121.4$, 130.5, 140.2, 158.7, 179.5. Anal. ( $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 0.7 \mathrm{H}_{2} \mathrm{O}$ ) C, H, N.
$\mathbf{N}$-(tert-Butyloxycarbonyl)-m-L-Tyrosine Amide (14). The primary amine $\mathbf{1 3}(0.36 \mathrm{~g}, 2.0 \mathrm{mmol}), \mathrm{Boc}_{2} \mathrm{O}(0.88 \mathrm{mg}, 4.0$ $\mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.34,4.0 \mathrm{mmol})$ were suspended in a mixture of water and THF ( $1: 1,30 \mathrm{~mL}$ ) and stirred overnight. The mixture was extracted with EtOAc ( 30 mL ), and the organic phase was dried, filtered, and evaporated. The product was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} 9: 1\right)$ to give $\mathbf{1 4}(0.43 \mathrm{~g}, 77 \%)$ as a white powder. 14: $[\alpha]^{22}{ }_{\mathrm{D}}=+21.8$ ( $\mathrm{c}=1.0, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.38(\mathrm{~s}, 9 \mathrm{H})$, 2.77-3.10 (m, 2 H), 4.30-4.49 (m, 1 H ), 5.48-5.70 (m, 1 H), 6.44 (br s, 1 H), 6.55-6.83 (m, 4 H), 6.98-7.16 (m, 1 H). ${ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz} \mathrm{CDCl}_{3}$ ) $\delta 28.2,38.3,55.4,80.5,114.3,116.2$, 121.0, 129.7, 137.8, 155.8, 156.5, 175.1. Anal. ( $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ ) C, H, N.
N-(tert-Butyloxycarbonyl)-m-(trifluoromethanesulfo-nyloxy)-L-phenylalanineamide (15). Compound 14 (0.760 $\mathrm{g}, 2.71 \mathrm{mmol}$ ), N -phenyltrifluoromethanesulfonimide ( 1.94 g , $5.43 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.75 \mathrm{~g}, 5.43 \mathrm{mmol})$, and triethylamine ( 1.88 $\mathrm{mL}, 13.56 \mathrm{mmol})$ were refluxed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ for 30 min . The mixture was washed with water, dried, filtered, and evaporated. The product was purified by column chromatography to give $15(1.00 \mathrm{~g}, 89 \%)$ as a white powder. 15: $[\alpha]^{22}{ }_{\mathrm{D}}=$ $+1.63\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.41(\mathrm{~s}$, $9 \mathrm{H}), 2.93-3.31(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.59(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.37$ ( $\mathrm{m}, 1$ $\mathrm{H}), 5.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.00-7.56(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 28.2,37.9,54.8,80,5,118.7$ (q, J = 320 Hz ), 119.8, 122.3, 129.5, 130.3, 139.8, 149.5, 155.4, 173.2. Anal. ( $\left.\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,55,6R)-3-Aza-6-[(tert-butyloxycarbonyl)amino]-5-hydroxy-7-phenyl-2-[m-(trifluoromethanesulfonyloxy)benzyl]heptanoyl Amide ( 8 g ). Compound 15 ( $0.32 \mathrm{~g}, 0.78$ $\mathrm{mmol})$ was dissol ved in a mixture of TFA and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,10$ mL ), and the mixture was stirred for 15 min and evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed twice with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (aq, 1 M ). The organic phase was dried, filtered, and evaporated. The residue and epoxide 5 ( $0.15 \mathrm{~g}, 0.57 \mathrm{mmol}$ ) were reacted according to the procedure as in the synthesis of 8a to give $8 \mathrm{~g}(0.26 \mathrm{~g}, 79 \%) .8 \mathrm{~g}:[\alpha]^{22} \mathrm{D}=-3.0\left(\mathrm{c}=1.6, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.46-1.92(\mathrm{~m}, 1$ H), 2.47-2.73 (m, 2 H), 2.73-3.02 (m, 3 H), 3.02-3.21 (m, 1 H), $3.21-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.98(\mathrm{~m}, 1$ H), 4.77-5.00 (m, 1 H), 5.60 (br s, 1 H ), 6.78 (br s, 1 H ), 7.03$7.48(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.1,38.5,51.6$, $53.7,63.3,69.7,79.3,118.5(\mathrm{q}, \mathrm{J}=321 \mathrm{~Hz}), 119.5,122.0,126.2$, 128.3, 129.1, 130.3, 138.1, 140.3, 149.4, 150.1, 176.3. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R)-3-Aza-3-(benzyloxycarbonyl)-6-[(tert-butyl-oxycarbonyl)amino]-5-hydroxy-7-phenyl-2-[m-(trifluoromethanesulfonyloxy)benzyljheptanoyl Amide (9g). Compound $9 \mathbf{g}(0.25 \mathrm{~g}, 78 \%)$ was prepared from $8 \mathbf{g}(0.26 \mathrm{~g}, 0.45$ $\mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(96 \mathrm{mg}, 0.90 \mathrm{mmol})$, and $\mathrm{Z}-\mathrm{Cl}(0.13 \mathrm{~mL}, 0.90$ mmol ) using the same procedure as in the synthesis of 9 a . 9g: $[\alpha]^{22}{ }_{\mathrm{D}}=-140.6\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CD}_{3}-\right.$ OD) $\delta 1.05-1.45(\mathrm{~m}, 9 \mathrm{H}), 2.22-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.88(\mathrm{~m}$, 2 H), 3.08-3.37 (m, 3H), 3.43-3.66 (m, 1 H), 3.80-4.05 (m, 1
H), 4.10-4.29 (m, 1 H), 4.92-5.35 (m, 2 H), 6.89-7.51 (m, 14 H). Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R )-3-Aza-3-(benzyloxycarbonyl)-6-\{[(tert-butyl-oxycarbonyl)-L-valinyl]amino\}-5-hydroxy-7-phenyl-2-[m(trifluoromethanesulfonyloxy)benzyl]heptanoyl Amide ( $\mathbf{1 0 g}$ ). Compound $\mathbf{1 0 g}(0.17 \mathrm{~g}, 93 \%)$ was prepared from $\mathbf{9 g}$ ( 0.16 $\mathrm{g}, 0.23 \mathrm{mmol}$ ), BocValOH ( $49 \mathrm{mg}, 0.23 \mathrm{mmol}$ ), TBTU ( 72 mg , 0.23 mmol ), and DIEA ( $77 \mu \mathrm{~L}, 0.46 \mathrm{mmol}$ ) using the same procedure as in the synthesis of 10a. 10g: $[\alpha]^{22}{ }_{\mathrm{D}}=-162.4$ (c $\left.=0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}-\mathrm{CDCl}_{3} 1: 1$ ) $\delta 0.54-$ 0.94 (m, 6H), 1.45 (s, 9 H ), 1.81-2.01 (m, 1 H$), 2.21-2.45$ (m, 1 H), 2.61-2.90(m, 2 H), 2.98-3.50(m,3H), 3.73-4.10 (m, 3 H), 4.10-4.30 (m, 1 H), 4.99-5.35 (m, 2 H), 6.42-6.60 (m, 1 H), 6.95-7.51 (m, 14 H ). Anal. ( $\mathrm{C}_{38} \mathrm{H}_{47} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}$ ) C, H, N.
(2S,5S,6R)-3-Aza-5-hydroxy-7-phenyl-6-[(picolyl-L-vali-nyl)amino]-2-(m-(trifluoromethanesulfonyloxy)benzyl)heptanoyl Amide (11g). Compound 11g ( $60 \mathrm{mg}, 51 \%$ ) was prepared from $\mathbf{1 0 g}(0.14 \mathrm{~g}, 0.17 \mathrm{mmol})$, picolinic acid ( 23 mg , 0.19 mmol ), TBTU ( $61 \mathrm{mg}, 0.19 \mathrm{mmol}$ ), and DIEA ( $62 \mu \mathrm{~L}, 0.38$ mmol ) using the same procedure as in the synthesis of 11a. 11g: $[\alpha]^{22} \mathrm{D}=-44.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ( 270 MHz , $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD} 9: 1$ ) $\delta 0.78\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Val}-\mathrm{CH}_{3}\right), 0.83$ $\left(\mathrm{d}, \mathrm{J}=6.8,3 \mathrm{H}, \mathrm{Val}-\mathrm{CH}_{3}\right), 2.03-2.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Val}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$, 2.51-2.69 (m, 2 H, C2-CH2), 2.76 (dd, J $=8.6,13.9 \mathrm{~Hz}, 1 \mathrm{H}$, C 7 H ), 2.84 (dd, J $=6.8,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 7 \mathrm{H}$ ), 2.73-3.21 (m, 2 $\left.\mathrm{H}, \mathrm{C} 4 \mathrm{H}_{2}\right), 3.48-3.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}), 3.67-3.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H})$, 4.04-4.14 (m, 1 H, Val-( $\left.\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 4.14-4.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2 \mathrm{H})$, 6.91-7.00 (m, 1 H, Ar-H), 7.00-7.22 (m, 6 H, Ar-H ), 7.227.39 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.82-7.72(\mathrm{~m}, 12 \mathrm{H}, 9 \mathrm{Ar}-\mathrm{H}$ and 3 NH ), 7.40-7.49 (m, 1 H , C5H on pyridine), 7.79-7.88 (m, 1 H , C4H on pyridine), $8.04-8.12$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), 8.52-8.59 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.8$, $19.5,30.2,38.5,51.6,52.5,59.2,63.5,70.4,118.6$ (q, J $=321$ $\mathrm{Hz}), 119.5,122.2,126.2,126.5,128.2,129.1,129.4,130.2$, $137.4,137.8,140.5,148.3,148.8,149.4,164.6,171.0,176.1$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S,5S,6R )-3-Aza-5-hydroxy-7-phenyl-2-(m-phenylben-zyl)-6-[(picolyl-L-valinyl)amino]heptanoyl Amide (17a). In a microwave test tube were mixed compound $\mathbf{1 1 g}$ ( 31 mg , $46 \mu \mathrm{~mol}$ ), phenylboronic adid ( $17 \mathrm{mg}, 0.213 \mathrm{mmol}$ ), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ $(1.6 \mathrm{mg}, 2.3 \mu \mathrm{~mol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(59 \mathrm{mg}, 0.18 \mathrm{mmol}), \mathrm{EtOH}(0.5 \mathrm{~mL})$, and DME $(2.0 \mathrm{~mL})$. The solvents were heated in a microwave oven to $140{ }^{\circ} \mathrm{C}$ for 20 min and cooled, and the solvents were evaporated. The residue was dissolved in a mixture of water, AcCN, and formic acid (10:10:1, 2 mL ), filtered, and purified by preparative HPLC (Zorbax C8, $20 \times 150 \mathrm{~mm}$, particle size $5 \mu \mathrm{~m}$ ) using a gradient ( $\mathrm{H}_{2} \mathrm{O}-\mathrm{AcCN} 95: 5 \rightarrow 4: 6$ ) over a period of 20 min . The fractions containing the pure product (measured with MS) were pooled and freeze-dried to give 17a ( $9 \mathrm{mg}, 31 \%$ ) as a white solid. 17a: $[\alpha]^{22} \mathrm{D}=-28.7\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 0.61-0.96\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{Val}-\mathrm{CH}_{3}\right.$ ), 1.93$2.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Val}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.72-3.06\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} 2 \mathrm{CH}_{2}\right.$ and $\mathrm{C} 7 \mathrm{CH}_{2}$ ), 3.06-3.25 (m, $\left.1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}\right), 3.36-3.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H})$, 3.90-4.24 (m, 4 H, Val-CHNH, C2H, C5H, and C6H), 6.857.00 (m, 1 H, Ar-H ), 7.00-7.60 (m, 13 H, 13 Ar-H ), 7.60-7.75 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}$ on pyridine), $7.75-7.93$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ on pyridine), $8.35-8.50$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), $8.50-8.63$ (m, $1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). Anal. $\left(\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot 3.7 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{HCOOH}\right)$ C, H, N.
(2S,5S,6R)-3-Aza-2-[m-(p-methylphenyl)benzyl]-5-hy-droxy-7-phenyl-6-[(picolyl-L-valinyl)amino]heptanoyl Amide (17b). Compound 17 b ( $18 \mathrm{mg}, 32 \%$ ) was prepared from $\mathbf{1 1 g}$ ( $61 \mathrm{mg}, 90 \mu \mathrm{~mol}$ ) and 4-methylphenylboronic acid ( 46 mg , 0.34 mmol ) using the same procedure as in the synthesis of 17a. 17b: $[\alpha]^{22}{ }_{\mathrm{D}}=-31.5\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD} 3: 1$ ) $\delta 0.72-1.14\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{Val}-\mathrm{CH}_{3}\right.$ ), $2.10-$ $2.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Val}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{2} \mathrm{CH}_{3}\right), 2.58-2.93$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{C}_{2} \mathrm{CH}_{2}\right.$ and C 7 H$), 2.93-3.20\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 4 \mathrm{H}_{2}\right.$ and C 7 H$)$, 3.51-3.70 (m, 1 H, C5H ), 3.70-3.95 (m, $1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}), 3.95-4.20$ (m, 1 H, Val-CHNH), 4.20-4.42 (m, 1 H, C2H ), 6.83-7.72 (m, $14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), $7.88-8.05$ (m, $1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ on pyridine), $8.05-8.25$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), $8.56-8.87$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). Anal. ( $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \cdot 1$. 7HCOOH ) C, H, N.
(2S,5S,6R )-3-Aza-2-[m-(m-aminophenyl)benzyl]-5-hy-droxy-7-phenyl-6-[(picolyl-L-valinyl)amino]heptanoyl Amide (17c). Compound 17c ( $8 \mathrm{mg}, 22 \%$ ) was prepared from $\mathbf{1 1 g}(41 \mathrm{mg}, 60 \mu \mathrm{~mol})$ and 3 -nitrophenylboronic acid ( 34 mg , 0.25 mmol ) using the same procedure as in the synthesis of 17a except the HPLC gradient was changed $\left(\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}-\right.$ AcCN 7:3). 17a: $[\alpha]^{22} \mathrm{D}=-28.8\left(\mathrm{c}=0.1, \mathrm{MeOH}\right.$ ), ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.85\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Val}-\mathrm{CH}_{3}\right), 0.86(\mathrm{~d}, \mathrm{~J}$ $\left.=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Val}-\mathrm{CH}_{3}\right), 1.20-1.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}$ or OH$), 1.96-$ $2.11\left(\mathrm{~m}, 1 \mathrm{H}\right.$, Val- $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.45-2.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{2} \mathrm{CH}_{2}\right), 2.76$ (dd, J $=9.4,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 7 \mathrm{H}), 2.81-2.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 7 \mathrm{H}$ and C 4 H ), 3.00 (dd, J $=7.1,12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ ), 3.31-3.42 (m, 1 H, C5H), 3.61-3.73 (m, 1 H, C2H), 4.08-4.18 (m, 1 H, ValCHNH ), 4.24-4.34 (dd, J = 7.3, 14.3 Hz, 1 H, C2H), 4.64 (br $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$ ), 6.67-6.73 (m, $\left.1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.85-6.91(\mathrm{~m}, 1 \mathrm{H}$, Ar-H), 6.91-6.96 (m, $1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.96-7.00(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H})$, 7.00-7.07 (m, $2 \mathrm{H}, \mathrm{m}-\mathrm{H}$ on C7Ph), 7.08-7.23 (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), 7.28-7.36 (m, 1 H, Ar-H), 7.39-7.48 (m, 1 H, Ar-H), 7.527.61 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}$ on pyridine), $7.90-8.01$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ on pyridine), $8.03-8.14$ (m, $1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), $8.59-8.65$ (m, $1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). Anal. $\left(\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \cdot 2 \mathrm{HCOOH}\right) \mathrm{C}$, H, N.
(2S,5S,6R)-3-Aza-5-hydroxy-2-[m-(o-methoxyphenyl)-benzyl]-7-phenyl-6-[(picolyl-L-valinyl)amino]heptanoyl Amide (17d). Compound 17d ( $16 \mathrm{mg}, 28 \%$ ) was prepared from $\mathbf{1 1 g}$ ( $60 \mathrm{mg}, 88 \mu \mathrm{~mol}$ ) and 2-methoxyphenylboronic acid ( 52 $\mathrm{mg}, 0.34 \mathrm{mmol}$ ) using the same procedure as in the synthesis of 17a. 17d: $[\alpha]^{22}=-25.5\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD} 3: 1\right) \delta 0.60\left(\mathrm{~d}, \mathrm{~J}=7.0,3 \mathrm{H}\right.$, Val- $\mathrm{CH}_{3}$ ), $0.68(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}$, Val-CH3 ), $1.80-2.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Val}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.58-2.87\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 2 \mathrm{CH}_{2}\right.$ and C 7 H$), 2.94-3.11$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 7 \mathrm{H}$ ), 3.20-3.37 (m, 2 H, C4H 2 ), 3.54-3.69 (m, 2 H , C 5 H and C 6 H ), $3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80-4.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Val}-$ CHNH and C2H), 6.75-7.32 (m, $13 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), 7.32-7.49 (m, 1 $\mathrm{H}, \mathrm{C} 5 \mathrm{H}$ on pyridine), 7.71-7.91 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ on pyridine), 7.91-8.10 (m, 1 H, C3H on pyridine), 8.36-8.54 (m, 1 H, C6H on pyridine). Anal. ( $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{HCOOH}$ ) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
(5S)-5-(p-Bromobenzyl)-1-\{(2S,3R)-2-hydroxy-4-phen-yl-3-[(picolyl-L-valinyl)amino]butyl\}imidazolidine-2,4-dione (18). The protected primary amine 7e ( $110 \mathrm{mg}, 0.148$ $\mathrm{mmol})$ was stirred in a mixture of TFA and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:4, 10 mL ) for 15 min . The solvent was removed by evaporation, and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and a saturated aqueous solution of $\mathrm{NaHCO}_{3}$. The organic phase was dried, filtered, and evaporated. The residue was dissolved in a mixture of DMF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1, 1.5 mL ). Picolinic acid (30 $\mathrm{mg}, 0.244 \mathrm{mmol}$ ), TBTU ( $71 \mathrm{mg}, 0.244 \mathrm{mmol}$ ), and DIEA ( 77 $\mu \mathrm{L}, 0.488 \mathrm{mmol}$ ) were added, and the mixture was stirred for 2 h at room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added, and the mixture was washed with aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{M}, 10 \mathrm{~mL})$, dried, filtered, and evaporated. The peptide coupling product was purified by column chromatography (EtOAc) and dissolved in absolute ethanol ( $99.5 \%, 1 \mathrm{~mL}$ ). $\mathrm{Cs}_{2} \mathrm{CO}_{3}(97 \mathrm{mg}, 0.296 \mathrm{mmol})$ was added, and the mixture was stirred at room temperature for $1 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added, and the mixture was washed with water ( $2 \times 5 \mathrm{~mL}$ ), dried, filtered, and evaporated. The residue was purified using column chromatography
 18: $[\alpha]^{22} \mathrm{D}=-28.4\left(\mathrm{c}=0.6, \mathrm{CH}_{3} \mathrm{OH}\right),{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD} 9: 1$ ) $\delta 0.70-0.87\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Val}-\mathrm{CH}_{3}\right)$, $0.87-1.00\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Val}-\mathrm{CH}_{3}\right), 2.06-2.27(\mathrm{~m}, 1 \mathrm{H}$, Val-( $\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$ ), $2.64-2.81$ (dd, J $=8.7,13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{p}-$ BrPhCH), 2.81-2.98 (dd, J = 6.6, $13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{p}-\mathrm{BrPhCH}$ ), 2.98-3.22 ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{C} 4^{\prime} \mathrm{H}_{2}$ and C1'H), 3.47-3.65 (m, $1 \mathrm{H}, \mathrm{C1} 1^{\prime} \mathrm{H}$ ), 3.73-3.90 (m, 1 H, C2'H ), 3.95-4.11 (m, 1 H, C3'H), 4.174.32 (m, 1 H, Val-CHNH), 4.40-4.54 (m, 1 H, C5H), 6.806.96 (m, 2 H, CH ortho to CBr), 6.96-7.05 (m, $1 \mathrm{H}, \mathrm{p}-\mathrm{CH}$ ), 7.05-7.19 (m, $4 \mathrm{H}, \mathrm{o}$ and $\mathrm{m}-\mathrm{CH}$ on Ph ), 7.19-7.36 (m, 2 H , CH meta to CBr), 7.36-7.53 (m, $1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}$ on pyridine), $7.73-$ 7.91 (m, $1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ on pyridine), 8.00-8.12 (m, $1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), $8.48-8.61$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 6 \mathrm{H}$ on pyridine). ${ }^{13} \mathrm{C}$ NMR ( 67.8 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.8,19.4,30.2,33.2,37.3,45.2,53.8,59.3$, $63.5,70.7,121.1,122.2,126.3,126.6,128.3,129.0,131.1,131.5$,
133.1, 137.4, 137.5, 148.2, 148.7, 156.9, 164.7, 171.6, 173.8. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{BrN}_{5} \mathrm{O}_{5} \cdot 0^{2} 7 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(5S)-1-\{(2S,3R )-2-Hydroxy-4-phenyl-3-[(picolyl-L-valinyl)amino]butyl \}-5-(p-phenylbenzyl)imidazolidine-2,4dione (19). Compound 19 ( $3.2 \mathrm{mg}, 15 \%$ ) was prepared from 18 ( $22 \mathrm{mg}, 35 \mu \mathrm{~mol}$ ) using the same procedure as in the synthesis of 17a. 19: $[\alpha]^{22} \mathrm{D}=-40.6\left(\mathrm{c}=0.2, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ( $270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD} 9: 1$ ) $\delta 0.79$ (d, J $=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, Val$\left.\mathrm{CH}_{3}\right), 0.88\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right.$, Val- $\left.\mathrm{CH}_{3}\right), 2.00-2.21(\mathrm{~m}, 1 \mathrm{H}$, Val- $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 2.60-2.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{2} \mathrm{CH}_{2}\right), 2.81-3.18(\mathrm{~m}, 3$ $\mathrm{H}, \mathrm{C}^{\prime} \mathrm{H}_{2}$ and $\mathrm{Cl}^{\prime} \mathrm{H}$ ), 3.45-3.70 (m, $2 \mathrm{H}, \mathrm{Cl}^{\prime} \mathrm{H}$ and $\left.\mathrm{C} 2^{\prime} \mathrm{H}\right)$ ), 3.85$4.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3^{\prime} \mathrm{H}\right), 4.20(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, Val-CHNH), 4.29-4.40 (m, 1 H, C5H ), 6.81-7.17 (m, 7 H, 7 Ar-H ), 7.177.53 (m, $8 \mathrm{H}, 8 \mathrm{Ar}-\mathrm{H}$ ), 7.77-7.90 (m, $1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$ on pyridine), 8.01-8.14 (m, $1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$ on pyridine), $8.44-8.58$ (m, 1 H, C6H on pyridine). ${ }^{13} \mathrm{C}$ NMR ( $67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD} 9: 1$ ) $\delta 17.8$, 19.2, 30.4, 34.2, 37.6, 44.3, 52.6, 59.4, 61.6, 68.0, 122.5, 126.1, 126.7, 127.0, 127.1, 128.1, 128.6, 129.0, 129.6, 137.4, 138.3, 139.9, 140.2, 147.6, 148.2, 157.5, 164.1, 171.3, 173.8. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{HCOOH}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Acknowledgment. We would like to express our sincere gratitude to The Swedish Research Council, the Swedish Strategic Research Foundation, and Medivir $A B$ for financing this research. We thank Personal Chemistry for providing a Smith Synthesizer.

## References

(1) Breman, J. G. The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am. Trop. Med. Hyg. 2001, 64, 1-11.
(2) Olliaro, P.; Cattani, J.; Wirth, D. Malaria, the submerged disease. J AMMA 1996, 275, 230-233.
(3) Francis, S. E.; Sullivan, D. J ., J r.; Goldberg, D. E. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu. Rev. Microbiol. 1997, 51, 97-123.
(4) Rosenthal, P. J.; Meshnick, S. R. Hemoglobin catabolism and iron utilization by malaria parasites. Mol. Biochem. Parasitol. 1996, 83, 131-139.
(5) Silva, A. M.; Lee, A. Y.; Gulnik, S. V.; Majer, P.; Collins, J .; Bhat, T. N.; Collins, P.J .; Cachau, R. E.; Luker, K. E.; Gluzman, I. Y.; Francis, S. E.; Oksman, A.; Goldberg, D. E.; Erickson, J. W. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 10034-10039.
(6) Carroll, C. D.; Patel, H.; J ohnson, T. O.; Guo, T.; Orlowski, M.; He, Z. M.; Cavallaro, C. L.; Guo, J.; Oksman, A.; Gluzman, I. Y.; Connelly, J.; Chelsky, D.; Goldberg, D. E.; Dolle, R. E. Identification of potent inhibitors of Plasmodium falciparum plasmepsin II from an encoded statine combinatorial library. Bioorg. Med. Chem. Lett. 1998, 8, 2315-2320.
(7) Carroll, C. D.; J ohnson, T. O.; Tao, S.; Lauri, G.; Orlowski, M.; Gluzman, I. Y.; Goldberg, D. E.; Doile, R. E. Evaluation of a structure-based statine cyclic diamino amide encoded combinatorial library against plasmepsin II and cathepsin D. Bioorg. Med. Chem. Lett. 1998, 8, 3203-3206.
(8) Haque, T. S.; Skillman, A. G.; Lee, C. E.; Habashita, H.; Gluzman, I. Y.; Ewing, T. J . A.; Goldberg, D. E.; Kuntz, I. D.; Ellman, J. A. Potent, low-molecular-weight non-peptide inhibitors of malarial aspartyl protease plasmepsin II. J. Med. Chem. 1999, 42, 1428-1440.
(9) Romeo, S.; Rich, D. H. Stereoselective synthesis of protected aminoalkyl epoxides. Tetrahedron Lett. 1994, 35, 4939-4942.
(10) Åkerblom, E. B.; Nygren, A. S.; Agback, K. H. Six new photolabile linkers for solid-phase synthesis. 1. Methods of preparation. Mol. Diversity 1998, 3, 137-148.
(11) Åkerblom, E. B. Six new photolabile linkers for solid-phase synthesis. 2. Coupling of various building blocks and photolytic cleavage. Mol. Diversity 1999, 4, 53-69.
(12) Tong, J. H.; Petitclerc, C.; D'I orio, A.; Benoiton, N. I. Resol ution of ring-substituted phenylalanines by the action of alphachymotrypsin on their ethyl esters. Can. J. Biochem. 1971, 49, 877-881.
(13) Larhed, M.; Lindeberg, G.; Hallberg, A. Rapid microwaveassisted Suzuki coupling on solid-phase. Tetrahedron Lett. 1996, 37, 8219-8222.
(14) Alterman, M.; Andersson, H. O.; Garg, N.; Ahlsen, G.; Loevgren, S.; Classon, B.; Danielson, U. H.; K varnstroem, I.; Vrang, L.; Unge, T.; Samuelsson, B.; Halliberg, A. Design and fast synthesis of C-terminal duplicated potent C2-symmetric P1/P1'-modified HIV-1 protease inhibitors. J. Med. Chem. 1999, 42, $3835-3844$.
(15) Lehmannn, F. Ueber die condensation von benzaldehydcyanohydrin mit urethan. Chem. Ber. 1901, 34, 370-377.
(16) Avendano Lopez, C.; Gonzalez Trigo, G. The chemistry of hydantoins. Adv. Heterocycl. Chem. 1985, 38, 177-228.
(17) Northrop, D. B. Follow the protons: A low-barrier hydrogen bond unifies the mechanisms of the aspartic proteases. Acc. Chem. Res. 2001, 34, 790-797.
(18) Tucker, T. J.; Lumma, W. C., J r.; Payne, L. S.; Wai, J. M.; De Solms, S. J.; Ğiuliani, E. A.; Darke, P. L.; Heimbach, J. C.; Zugay, J. A.; Schleif, W. A.; Quintero, J. C.; Emini, E. A.; Huff, J. R.; Anderson, P. S. A series of potent HIV-1 protease inhibitors containing a hydroxyethyl secondary amine transition state isostere: synthesis, enzyme inhibition, and antiviral activity. J. Med. Chem. 1992, 35, 2525-2533.
(19) Wyatt David, M.; Berry, C. Activity and inhibition of plasmepsin IV, a new aspartic proteinase from the malaria parasite, Plasmodium falciparum. FEBS Lett. 2002, 513, 159-162.
(20) Banerjee, R.; Liu, J.; Beatty, W.; Pelosof, L.; Klemba, M.; Goldberg, D. E. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an activesite histidine. Proc. NatI. Acad. Sci. U.S.A. 2002, 99, 990-995.
(21) Artursson, P.; Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 1991, 175, 880-885.
(22) Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis; Copeland, R. A., Ed.; 1996; p 300.
(23) Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant ( $\mathrm{K}_{\mathrm{i}}$ ) and the concentration of inhibitor which causes $50 \%$ inhibition (IC $\mathrm{C}_{50}$ ) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.
(24) Desjardins, R. E.; Canfield, C. J.; Haynes, J. D.; Chulay, J. D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother. 1979, 16, 710-718.

## J M 020951I


[^0]:    * To whom correspondence should be addressed. E-mail: andersh@ orgfarm.uu.se.
    ${ }^{\dagger}$ Uppsala University.
    $\ddagger$ Medivir AB.
    ${ }^{\S}$ Karolinska Institute.

[^1]:    ${ }^{\text {a }}$ Inhibition on P. falciparum infected red blood cells; $35 \%$ inhibition $@ 5 \mu \mathrm{M}$; solubility at $\mathrm{pH} 7.5=\sim 50 \mu \mathrm{M}$. ${ }^{\text {b }}$ Permeability in Caco-2 cells determined; Papp value $=10.3 \times 10^{-6} \mathrm{~cm} / \mathrm{s} ;^{19}$ solubility at $\mathrm{pH} 7.5=\sim 25 \mu \mathrm{M}$. ${ }^{\text {c }}$ Inhibition on P . falciparum infected red blood cells; $E D_{50}=1.6 \mu \mathrm{M}$; solubility at pH $7.5>6 \mu \mathrm{M}$. ${ }^{\text {d }}$ Inhibition on P. falciparum infected red blood cells; $77 \%$ inhibition @5 $\mu \mathrm{M}$; solubility at pH $7.5>6 \mu \mathrm{M}$. e Inhibition on P. falciparum infected red blood cells; $69 \%$ inhibition @ $5 \mu \mathrm{M}$; solubility at $\mathrm{pH} 7.5>6 \mu \mathrm{M}$.

