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The aim of this study was to investigate whether easily calculated and comprehended molecular
surface properties can predict drug solubility and permeability with sufficient accuracy to allow
theoretical absorption classification of drug molecules. For this purpose, structurally diverse,
orally administered model drugs were selected from the World Health Organization (WHO)’s
list of essential drugs. The solubility and permeability of the drugs were determined using
well-established in vitro methods in highly accurate experimental settings. Descriptors for
molecular surface area were generated from low-energy conformations obtained by conforma-
tional analysis using molecular mechanics calculations. Correlations between the calculated
molecular surface area descriptors, on one hand, and solubility and permeability, on the other,
were established with multivariate data analysis (partial least squares projection to latent
structures (PLS)) using training and test sets. The obtained models were challenged with
external test sets. Both solubility and permeability of the druglike molecules could be predicted
with high accuracy from the calculated molecular surface properties alone. The established
correlations were used to perform a theoretical biopharmaceutical classification of the WHO-
listed drugs into six classes, resulting in a correct prediction for 87% of the essential drugs. An
external test set consisting of Food and Drug Administration (FDA) standard compounds for
biopharmaceutical classification was predicted with 77% accuracy. We conclude that PLS models
of easily comprehended molecular surface properties can be used to rapidly provide absorption
profiles of druglike molecules early on in drug discovery.

Introduction

Computer-based models of different complexity have
been proposed as high-capacity filters in identifying poor
oral absorption of druglike molecules at an early stage
in drug discovery.1,2 These models are often based on
the well-established nonlinear relationship between the
passive membrane permeability of drug molecules and
the extent of their absorption after oral administration
to humans.3,4 However, the models do not take into
account that the compounds also need sufficient water
solubility in order to permeate the membrane. It has
been argued that in modern drug discovery, good
aqueous solubility is a more important determinant for
oral drug absorption than is good membrane perme-
ability.1,5,6 Therefore, computer-based absorption models
that take both aqueous drug solubility and permeability
into account are warranted.

The realization that passive membrane permeability
can be described by molecular properties made it
possible to develop rapid computational models based
on fairly simple molecular descriptors, such as lipophi-
licity, polar surface area, hydrogen bond count, and the
number of rotatable bonds.3,7-12 Surprisingly, simple
molecular descriptors can also be used to provide models
of aqueous drug solubility.13-15 It should therefore be

possible to combine such theoretical models in order to
obtain more accurate information on the relative im-
portance of these two parameters for oral drug absorp-
tion.

An experimental system for classification of drugs
based on their aqueous solubility and membrane per-
meability was in fact recently implemented by the Food
and Drug Administration (FDA).16 This system, which
is named the biopharmaceutics classification system
(BCS), was originally implemented to waive clinical
studies of generic high-permeability/high-solubility drugs.
The original BCS categorizes drugs into four different
classes based on combinations of high/low solubility and
high/low permeability.17 Therefore, in contrast to the
rule of five,1 which flags a potential absorption or
solubility problem, a theoretical BCS would provide
information about whether a compound is solubility- or
permeability-limited. Thus, a computer-based BCS model
would provide a more informative screening filter for
the absorption properties of compound libraries in drug
discovery.

Previously, we showed that the simple and easily
comprehended molecular surface area descriptor polar
surface area (PSA) could be used as a predictor of
intestinal drug permeability.18,19 Since then, PSA has
found wide application as an absorption predictor in
drug discovery.20,21 More recently, we showed that
multivariate analysis of multiple molecular surface area
descriptors can be used as more accurate predictors of
rather different molecular properties, such as aqueous
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solubility22 and Caco-2 permeability.23 We named the
new surface area descriptors resulting from this analy-
sis the “partitioned total surface areas” (PTSAs). The
computer models based on PTSAs were rapidly gener-
ated and are easy to interpret. However, since separate
compound datasets were used in the various studies of
solubility and permeability predictions, it still remained
to be investigated whether PTSA predictions hold when
the same dataset is analyzed for such different absorp-
tion-related properties as solubility and permeability.
We believe that only high-quality datasets should be
used for this purpose, since it is likely that PTSA models
established from less accurately determined experimen-
tal data for solubility and permeability will result in less
predictive power.

If sufficiently accurate, PTSA modeling of solubility
and permeability could be used for computer-based
classification of drugs according to their absorption
properties. We hypothesized that simultaneous predic-
tion of drug solubility and permeability based on mo-
lecular surface areas would allow a simple, but more
accurate, theoretical biopharmaceutical absorption clas-
sification of drugs than the rule of five1 or similar
models.24 Such theoretical protocols should be of great
value to the medicinal chemist during lead optimization
(Figure 1).

Our strategy was to perform experimental determina-
tions with high precision on smaller but relevant
datasets (Figure 2), rather than in the screening mode
on a larger dataset, to obtain reliable data for computer
modeling. Literature data on large datasets were not
considered an option because of the large interlabora-
tory variability in Caco-2 permeability coefficients4 and
in aqueous solubility values presented in various data-
bases.25 Therefore, we first experimentally determined
the aqueous solubility and intestinal epithelial perme-
ability of a series of structurally diverse drugs26 (Figure
3), using highly accurate methods. We used the experi-
mental data to build PTSA models for theoretical
prediction of aqueous solubility and membrane perme-

ability (Figure 4) and challenged the obtained PTSA
models with external test sets obtained in-house.22,23,27-29

Finally, these PTSA models were used for theoretical
biopharmaceutical absorption classification of the drugs
in our dataset as well as in an external dataset recom-
mended by the FDA.

Results and Discussion

In this study, we have experimentally determined
reliable and accurate solubility and permeability values
by using the same experimental conditions for all
compounds. By this strategy, we could be confident in
the quality of the experimental data used in the
development of predictive models for these absorption
properties and for the biopharmaceutical absorption
classification of drugs. Moreover, we evaluated the
PTSA models by using external test sets. An important
criterion for these tests was that the experimental data
of the external test set should be of the same quality as
the data used to build the models. An investigation of
the literature shows that Caco-2 permeability deter-
mined in different laboratories can differ 10-fold in the
Papp value.4 The same is true for solubility values
determined with different methods.30 In our compiled
external test set for solubility, where intrinsic solubility
was determined using either pSOL or the small-scale
shake-flask method, the R2 of the methods was 0.96
(data not shown). Therefore, it is not realistic to assume
a correlation of R2 ) 1.0 within a matrix consisting of
compiled datasets.

Aqueous Drug Solubility. The measured solubility
values ranged from 11 ng/mL (tamoxifen) to >20 mg/
mL (ergonovine and zidovudine), a range of more than
6 log units (Table 1). A surprisingly good correlation (R2

) 0.94, RMSE (root-mean-square error) ) 0.38 log units)
was obtained between the solubility values measured
at 25 and 37 °C (Figure 5). These results suggest that
solubility values measured in this temperature interval
can be used to approximate aqueous solubility at physi-
ological temperature (i.e., 37 °C).

A theoretical solubility model based on PTSAs was
generated from the experimental solubility values pre-
sented in Table 1. Three principal components contain-
ing information mainly connected to molecular descrip-
tors for nonpolar atoms and size were extracted (Figure
6), which resulted in an excellent model for prediction
of aqueous drug solubility (R2 ) 0.93, RMSEtr (RMSE
of training set) ) 0.37 log units; see also Table 2). The
predominant descriptors selected by the PLS analysis
(Figure 6c) were those restricting solubility, which is
in agreement with previous findings.22 This supports our
hypothesis that nonpolar surface areas are general
molecular descriptors for aqueous drug solubility. The
selection of nonpolar surface areas can be interpreted
from the solvation theory:31,32 If the nonpolar surface
area of a molecule, and therefore its hydrophobicity,
increases, the dissolution capacity of the compound in
an aqueous environment will be decreased. Further, the
selection of the size descriptor reflects the energy
penalty involved in breaking the tight structure of water
in order to form cavities with a large enough volume to
accommodate the molecules. Only one descriptor for
hydrogen bonding, the surface area of double-bonded
oxygen, correlated positively with aqueous drug solubil-

Figure 1. Flow chart of the experimental and computational
studies.
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ity. A carbonyl oxygen is a strong hydrogen bond
acceptor, and the selection of this descriptor may reflect
the importance of hydrogen bonding to the water
molecules.

Since lipophilicity is an important descriptor included
in many solubility models,22,33,34 we expanded the
solubility study with a PLS analysis of all the calculated
surface properties and the lipophilicity descriptor (ClogP)
to investigate whether the solubility model could be
improved by incorporating a readily calculated octanol-

Figure 2. Chemical structures of the WHO-listed drugs used for training and testing the model: 1, acyclovir; 2, amiloride; 3,
amitriptyline; 4, amoxicillin; 5, atropine; 6, chlorpromazine; 7, ciprofloxacin; 8, desipramine; 9, doxycycline; 10, ergonovine; 11,
erythromycin; 12, ethinyl estradiol; 13, folinic acid; 14, indomethacin; 15, methotrexate; 16, phenazopyridine; 17, primaquine;
18, promethazine; 19, tamoxifen; 20, theophylline; 21, verapamil; 22, warfarin; and 23, zidovudine.

Figure 3. Heterogeneity of the selected dataset investigated
by principal component analysis (PCA). The scores of the first
two principal components (t1 and t2) describing 55% of the
diversity in the descriptor space are shown. All molecular
descriptors were used as input matrix.66 The dataset covered
all four quadrants of the PCA plot, showing that the selected
series of compounds was heterogeneous. The outlier in this
plot (desipramine) is well described by the other principal
components extracted in the analysis. None of the 23 com-
pounds were identified as outliers in the x space.

Figure 4. Examples of partitioned total surface areas (PTSAs)
included in the multivariate data analysis. Nonpolar surface
area (NPSA) originating from carbon atoms (Csp, Csp2, Csp3,
and hydrogen atoms bound to carbon atoms) and polar surface
area (PSA) originating from oxygen atoms (single-bonded
oxygen, double-bonded oxygen, and hydrogen atoms bound to
oxygen) are identified. The PTSAs represent the surface areas
of each type of atom calculated with MAREA.61
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water partition coefficient. In the variable selection in
the PLS analysis, the ClogP descriptor could be excluded
without the model losing predictive power, which we
interpreted as the molecular surface areas alone contain
sufficient information regarding lipophilicity. To confirm
this, we predicted the lipophilicity using the surface area
descriptors selected to predict solubility (Figure 7). We

found that these descriptors explained ClogP with 90%
accuracy (R2 ) 0.90, Q2 ) 0.84).

The developed PTSA model for solubility was evalu-
ated by applying an external test set of 33 com-
pounds22,27-29 (Figure 6d). The compounds were found
to fit in the property space defined by the compounds
selected from the World Health Organization (WHO)’s
list,35 since no large outliers in the x space were found
(see Supporting Information). The PTSA model resulted
in fair predictions (RMSEext ) 1.05, statistical outliers
probenecid and piroxicam excluded). One reason for the
less accurate prediction of some of the compounds may
be that the solid-state properties are not described well
enough by the PTSAs obtained by the variable selection
using the training set. Consequently, the conclusion of
this test is that the solubility model can be used for

Table 1. Experimentally Determined Propertiesa

compd pKa log Poct -log S0, 25 °C (M) S class
Caco-2

(×106 cm/s) a-b/b-a
Papp
class

exptl
BCS

1 acyclovir 9.23, 2.34 -1.80 2.24 ( 0.01 l 0.12 ( 0.01 0.60 l IV
2 amiloride 8.67 -0.26 2.87 ( 0.02 h 0.32 ( 0.04 0.91 i V
3 amitriptyline 9.49b 4.62 5.19 ( 0.51b l 125.70 ( 7.57 1.34 h II
4 amoxicillin 9.53, 7.31, 2.60 <-2.00 2.17 ( 0.02 l 0.18 ( 0.01 1.72 l IV
5 atropine 9.66b 1.64 1.61 ( 0.10 h 19.50 ( 1.37 1.10 h I
6 chlorpromazine 9.3c 5.40 5.27 ( 0.17b l 72.70 ( 2.30 1.46 h II
7 ciprofloxacin 8.66, 6.15 -1.08 3.73 ( 0.01 l 7.62 ( 2.55 0.26 h II
8 desipramine 10.08 3.79 3.81 ( 0.04 h 101.17 ( 2.47 0.97 h I
9 doxycycline 11.54, 8.85, 7.56, 3.21 0.52 2.35 ( 0.03 h 2.23 ( 0.21 0.46 h I

10 ergonovine 6.91 1.62 >1.21 h 6.81 ( 0.32 1.15 h I
11 erythromycin 8.80 2.70 3.14 ( 0.24 h 1.13 ( 0.04 0.72 i V
12 ethinyl estradiol 10.41b 3.42 3.95 ( 0.12b h 378.33 ( 27.74 0.87 h I
13 folinic acid 10.15, 4.56, 3.10b,d <1.50 >2.85 h 0.03 ( 0.004 1.25 l III
14 indomethacin 4.14 3.51 5.20 ( 0.07b l 109.33 ( 4.16 2.55 h II
15 methotrexate 5.39, 4.00, 3.31d 0.54 4.29 ( 0.04 l 0.03 ( 0.009 1.24 l IV
16 phenazopyridine 5.15 3.05 4.24 ( 0.02 l 284.79 ( 16.33 1.10 h II
17 primaquine 9.99, 3.74b 2.72 2.77 ( 0.03 h 176.74 ( 39.99 2.17 h I
18 promethazine 9.00b 4.05 4.39 ( 0.02 h 167.67 ( 20.11 1.43 h I
19 tamoxifen 8.45 5.26 7.55 ( 0.21b l >20.00 ( 0.94e 0.48 h II
20 theophylline 8.55d 0.00 1.38 ( 0.02 h 66.87 ( 2.31 1.30 h I
21 verapamil 9.07b 4.33 4.67 ( 0.03 l 155.33 ( 17.95 1.25 h II
22 warfarin 4.82b 3.54 4.74 ( 0.03 l 58.60 ( 3.96 0.73 h II
23 zidovudine 9.53 0.13 >1.13 h 6.13 ( 0.20 0.70 h I

a Lipophilicity (log Poct) is given as the distribution between octanol and water. Solubility (log S0 at 25 °C) and Caco-2 cell monolayer
permeability are given as the mean ( 1 standard deviation. The ratios of transport in the absorptive (a-b) to the secretory (b-a) routes
and the classification as high (h), intermediate (i), or low (l) are shown. b The values have been determined using a cosolvent and
extrapolation to 0% (w/w) cosolvent. c The pKa value was taken from Sirius Technical Application Notes (Vol 1, 1995). d The pKa values
were determined with the D-PAS equipment (Sirius Analytical Instruments, Forrest Row, East Sussex, U.K.). e Despite pretreatment of
the plastics with either concentrated tamoxifen solutions or BSA, we were not successful in complete inhibition of binding of tamoxifen
to plastics. Therefore, the tamoxifen permeability data were regarded as qualitative.

Table 2. Statistics of in Silico Modelsa

solubility model permeability model

R2 0.93 0.93
Q2 0.88 0.83
RMSEtr 0.37 (n ) 14) 0.35 (n ) 13)
RMSEte 0.76 (n ) 6) 0.99 (n ) 9)
RMSEext 1.05 (n ) 31) 0.85 (n ) 26)
NPSAunsat -0.81 ni
Odbl 0.25 -0.32
NPSAtot -0.34 -0.01
%Hneutral 0.05 0.23
SA -0.27 -0.21
%Cl -0.38 ni
PSA ni -0.31
H-N ni -0.25
H-O ni -0.13
S ni -0.28
constant -2.67 -3.49
a Statistics from the multivariate data analysis represented by

the coefficient of determination (R2), the leave-one-out cross-
validated R2, Q2, and the root-mean square error (RMSE) of
training sets, test sets, and external test sets (RMSEtr, RMSEte,
and RMSEext, respectively). The number of compounds is given in
parentheses. The qualitatively measured values were not included
in the RMSE calculations. The coefficients obtained from the
multivariate data analysis performed in Simca are shown (ni )
not included in the final model). The following descriptors were
selected for description of solubility and permeability, respectively:
unsaturated and total NPSA (NPSAunsat, NPSAtot), total surface
area (SA), polar surface area (PSA), surface area of hydrogen
atoms bound to nitrogen and oxygen atoms (H-N, H-O), surface
area of sulfur and double-bonded oxygen atoms (S, Odbl), and
fraction of surface area covered by chloride atoms and electroneu-
tral hydrogen atoms (%Cl, %Hneutral).

Figure 5. Correlation between solubility values determined
at 25 and 37 °C resulted in an R2 of 0.94 and an RMSE of
0.38 log units. In most cases, the standard deviation (SD) is
too small to be seen in the figure. Only one of the compounds,
amitriptyline, showed a large SD in its determined solubility
value.
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predictions of solubility but that the predictive power
could be improved using an expanded training set.

At a first glance, our results seem to disagree with
previous research that indicates that hydrophilic, rather
than hydrophobic, descriptors are the most important
molecular predictors of aqueous solubility.14,36 This
disagreement can be explained by the fact that the polar
atoms in a molecule can affect drug solubility in one of
two ways. Some polar atoms form energetically favor-
able hydrogen bonds with water, while others partici-
pate in strong intermolecular interactions within the
crystal lattice. If the stabilization provided by the crystal
bonds is beneficial to the molecule, the aqueous solubil-
ity will decrease, an effect described by the van’t Hoff
equation. Therefore, the same type of polar atom may
either promote or prevent aqueous drug solubility,
depending on its position in the 3D molecular structure
of the compound.

Drug Permeability. The measured Papp coefficients
ranged from 3 × 10-8 (folinic acid and methotrexate) to
4 × 10-4 cm/s (ethinyl estradiol), or more than 4 log
units (Table 1). Any bias contributed by the unstirred
aqueous boundary layer was minimized by efficient
stirring of the Caco-2 medium. When this procedure was
used, the Papp values could be approximated to the true
cellular permeability coefficients (Pc).23 Most compounds
had a less than 2-fold difference in Papp in the apical to
basolateral (a-b) direction compared with that in the
basolateral to apical direction (b-a) and were therefore
considered to be mainly passively transported (Table 1).

Ciprofloxacin showed a 3.7-fold difference in the b-a
direction compared with that in the a-b direction.
However, a previous study in our laboratory showed
that the ciprofloxacin b-a efflux contributes quantita-
tively only in the b-a direction, and hence, the transport
rate in the absorptive (a-b) direction is concentration-
independent.23

As for the solubility data, a theoretical model based
on PTSAs was generated from the experimental Papp
values presented in Table 1. The resulting permeability
model (R2 ) 0.93, RMSEtr ) 0.35 log units; see also
Table 2) was based on three principal components
containing information mainly connected to molecular
descriptors for polar atoms and size (Figure 8). The
accuracy of this model was comparable to that of a
previous model, generated from a different, structurally
diverse dataset.23 The negative correlation between the
polar descriptors and permeability has been interpreted
as a result of an increase in desolvation energy occurring
when molecules enter the hydrophobic membrane in-
terior from the aqueous surroundings.10,37 The size of
the molecule is negatively correlated to the permeability
because of the steric hindrance to diffusion across the
cell membrane, which is caused by the ordered mem-
brane structure.37 Therefore, the larger the molecule,
the greater the steric hindrance to diffusion through the
cell membrane.

The developed PTSA model for permeability was
evaluated by applying an external test set of 27 com-
pounds23 (Figure 8d). For this test set, some outliers

Figure 6. PLS models for in silico prediction of solubility. (a) Solubility predicted from PTSAs and composite surface areas: 9
) training set, 0 ) test set, and 4 ) qualitatively measured compounds (folinic acid, >0.7 mg/mL; ergonovine and zidovudine,
>20 mg/mL). (b) Loading plot showing the interrelationship of the surface properties as descriptors of solubility. The selected
composite surface areas were the following: unsaturated and total nonpolar surface area (NPSAunsat, NPSAtotal), the fraction of
neutral hydrogen atoms (%Hneutral), and the total surface area (SA). The selected PTSAs were the following: surface areas of
double-bonded oxygen atoms (Odbl) and fraction of chloride atoms (%Cl). (c) Variable importance on projection (VIP) plot showing
the importance of each descriptor in the prediction of aqueous drug solubility. Nonpolar descriptors (shown in black) influenced
the model more than did polar descriptors (shown in gray). (d) External test set22,27-29 predicted from the PTSA model: 9 )
training set, 0 ) external test set. Two statistical outliers (piroxicam and probenecid) were identified in the PLS prediction.
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were identified when fitting them to the property space
defined by the compounds selected from the WHO’s list
(see Supporting Information).35 However, the PTSA
model resulted in good predictions, with only one
statistical outlier (RMSEext ) 0.85, mannitol excluded).
We speculate that the permeability model is useful for
predictions even outside the property space of the
selected training set because of the robustness of used
descriptors (i.e., PSA, NPSA, and SA). To summarize,
by using external test sets, we showed that the selected
training set used in the development of solubility and
permeability models was better at predicting perme-
ability than solubility.

Biopharmaceutical Classification. Several expres-
sions that take both drug solubility and permeability
into account have been developed.5,38,39 One of the
simplest of these is the BCS, originally proposed by the
FDA. Various BCSs have previously been applied as
qualitative screening tools for drug absorption in drug

discovery and development.16,40,41 In this study, we used
a BCS containing six categories, according to which
solubility was classified as “high” or “low”16 and perme-
ability was classified as “low”, “intermediate”, or “high”.41

In our mind, this classification provides a better tool
for absorption ranking of compounds in drug discovery
than does the strict permeability classification provided
by the FDA.16 Moreover, since a theoretical BCS incor-
porates models for both solubility and permeability, a
more complete theoretical absorption profile can be
obtained than from permeability predictions alone.
Early information on solubility or permeability problems
will strongly influence the strategy for drug develop-
ment, for instance, with regard to choice of pharmaceu-
tical dosage form. If information on these absorption
characteristics is obtained and used early in drug
discovery, the number of candidate drugs with formula-
tion problems will decrease.

The experimentally determined dose-adjusted solubil-
ity values showed that 12 of the registered essential
drugs (56%) were sorted as highly soluble whereas as
many as 11 (44%) of the compounds showed poor
solubility characteristics (Figure 9a). The compounds
were found to be distributed between all three perme-
ability classes, but only four of the compounds displayed
low permeability (Table 1). Consequently, the drugs in
this dataset were better optimized for permeability than
for solubility. This agrees with the conclusion by Lip-
inski et al. that the selection of drug candidates is biased
toward molecular properties giving good permeability
as opposed to good solubility characteristics.1 The
combination of experimentally determined solubility
and permeability data showed that the 23 compounds
were distributed into five out of the six biopharmaceu-
tical classes. As many as nine drugs (39%) in the dataset
showed both high solubility and high permeability and
were therefore sorted into BCS class I (Table 1, Figure
9a).

Next, we investigated whether the theoretical solubil-
ity and permeability models could be used to classify
the WHO drugs,35 using the experimental classification
as a reference. To our knowledge, only one preliminary
theoretical biopharmaceutical classification has been
published previously.24 First, we performed a qualitative
classification in order to discriminate class I compounds
from compounds with solubility and/or permeability
problems. As described above, the experimental clas-
sification had identified 14 compounds that had solubil-
ity and/or permeability problems (BCS classes II-VI)
(Table 1). Twelve of these (86%) were correctly identified
using our PTSA models (Table 3, Figure 9b). However,
two compounds (acyclovir and amitriptyline) were incor-
rectly classified as BCS class I compounds, that is, as
false positives. In comparison, the rule of five, a com-
monly used theoretical screening tool for rapid assess-
ment of permeability and solubility problems,1 predicted
that only 4 out of the 14 compounds (29%) would show
solubility and/or permeability problems.

We thereafter performed a complete biopharmaceu-
tical classification, where we sorted the compounds into
classes I-VI according to their predicted solubility and
permeability. Twenty out of the 23 compounds (87%)
were sorted correctly into their respective class. The
three compounds that were wrongly classified were

Figure 7. Molecular surface areas selected for solubility
prediction as descriptors for lipophilicity (ClogP). (a) Correla-
tion between ClogP, calculated with the ClogP program from
BioByte, and ClogP predicted from the surface area of double-
bonded oxygen atoms (Odbl), the fraction of hydrogen bound to
nonpolar atoms (%Hneutral), the total and unsaturated nonpolar
surface area (NPSAtot, NPSAunsat), the total surface area (SA),
and the fraction of surface area of chloride atoms (%Cl). (b)
Variable importance on projection (VIP) plot showing the
importance of each descriptor in the prediction of ClogP.
Surface properties for nonpolar and polar atoms are shown in
black and gray, respectively.
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amitryptiline, acyclovir, and doxycycline. Amitriptyline
was falsely predicted with regard to its solubility
characteristics. However, amitriptyline showed a large
standard deviation in its experimentally determined
solubility value at 25 °C. The predicted solubility value
was within the experimental error (Figure 5), providing
an explanation for the erroneous prediction. The PTSA
models classified acyclovir as a high-solubility/high-
permeability drug, but the experimental values of both
properties were low. Moreover, the theoretical values
of solubility and permeability for doxycycline classified
this as a low-solubility/intermediate-permeability drug,
while the experimentally determined values of both
properties were high. We speculate that the false
predictions for acyclovir and doxycycline mean that
these compounds were not correctly represented in our
training set. To overcome this kind of false prediction
by in silico models and to develop more generally
applicable models, larger datasets covering larger parts
of the structural space will be needed in the develop-
ment of models.

To further evaluate the usefulness of the combina-
tions of PTSA models in biopharmaceutical classifica-
tion, we used the recommended set of reference drugs
listed in the FDA guidelines.16 This list includes 16
drugs, out of which three compounds (amoxicillin,
theophylline, and verapamil) were excluded because
they overlapped our dataset. The theoretical classifica-
tion of this external test resulted in a correct prediction
for 10 out of the 13 compounds (77%) (Table 4). Anti-
pyrine and methyldopa were falsely predicted with
regard to their solubility properties. Atenolol was

predicted as a highly permeable compound but has
shown low permeability in experiments. The theoretical
permeability model was generated for compounds that
are using the transcellular route. Atenolol has been
found to use the paracellular route,42,43 which might be
the reason for the false prediction. However, none of the
compounds in the external test set were falsely pre-
dicted with regard to both the solubility and the
permeability characteristics.

As we have shown in the analysis of solubility,
permeability, and biopharmaceutical properties, the
PTSA models developed in this work have both advan-
tages and some disadvantages. We have identified that
calculated surface areas can be successfully used for
prediction of two of the major properties influencing oral
drug absorption, namely, solubility and permeability.
Theoretical descriptors obtained from a single compu-
tational approach contain sufficient information for
prediction of these absorption characteristics. Moreover,
static surface areas are as successful as the dynamic
surface areas when applied in these predictions, result-
ing in less time needed for the generation of descrip-
tors.23,44 In a screening mode, by use of any fairly well
generated conformation, the time range for generation
of descriptors would be milliseconds per structure. The
obtained PTSA models have so far been built on fairly
small datasets, which have been challenged with larger
test sets with positive results. However, for the models
to be generally applicable in the drug discovery setting,
a larger structural diversity has to be investigated. The
major limitation now is the generation of reliable,
accurate experimental data for a large, structural

Figure 8. PLS models for in silico prediction of permeability. (a) Permeability predicted from PTSAs and composite surface
areas: 9 ) training set, 0 ) test set, and 4 ) qualitatively measured tamoxifen (Papp > 20 × 10-6 cm/s). (b) Loading plot showing
the interrelationship of the surface properties as descriptors of drug permeability in Caco-2 cell monolayers. The selected composite
surface areas were the following: polar surface area (PSA), total nonpolar surface area (NPSAtotal), the fraction of neutral hydrogen
atoms (%Hneutral), and the total surface area (SA). The selected PTSAs were the following: surface areas of double-bonded oxygen
(Odbl), hydrogen atoms bound to nitrogen (H-N), hydrogen atoms bound to oxygen (H-O), and sulfur atoms (S). (c) Variable
importance on projection (VIP) plot showing the influence of each descriptor on the permeability model. Polar surface properties
(shown in gray) were more important for the model than nonpolar surface properties (shown in black). (d) External test set23

predicted from the PTSA model: 9 ) training set, 0 ) external test set. Only one statistical outlier, mannitol, was identified in
the PLS prediction.
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diverse dataset, which preferably should comprise sev-
eral hundreds of compounds. This work will be time-
consuming in any experimental setting, and therefore,
such data have not yet been published. However, it is
not until we obtain these kinds of data that we can
address the issue of general applicability. Nevertheless,
we conclude that our results are sufficiently promising
to stimulate further investigations of PTSAs as rapid
and transparent alternative descriptors in property-
based drug design.45

Conclusions
In this paper, we present a new, rapid approach to

theoretical biopharmaceutical classification of drug
compounds, which has the capacity to significantly
accelerate the absorption ranking of compound libraries
in drug discovery. Our results show that multivariate
data analysis of easily comprehended molecular surface
descriptors provides computational tools for the predic-
tion of both aqueous drug solubility and drug perme-
ability. Surface areas related to the nonpolar part of the
molecule resulted in good predictions of solubility,
whereas surface areas describing the polar parts of the
molecule resulted in good predictions of permeability.
We tentatively conclude that these models will be useful
for early indications regarding the absorption profiles
of compound libraries at very early stages in drug
discovery. Future studies based on larger datasets with

reliable experimental data will further improve the
general applicability of these computational protocols.
Our results support the idea that simple in silico models
can be assembled into more advanced physiological
models that better predict oral drug absorption.46

Materials and Methods

Dataset. The 23 compounds used for model building were
selected from the 10th revision of the World Health Organi-
zation’s model list of essential drugs.35 The selection criteria
used were the following: (a) the drugs should be structurally
(Figure 2), physicochemically (Figure 3), and therapeutically
diverse;47 (b) the compounds should be stable in the pH range
used for the solubility titration; (c) the conformational prefer-
ences of the molecules should be possible to analyse using
molecular mechanics calculations; and (d) the compounds
should be mainly passively transported through the Caco-2
cell monolayers or display a concentration-independent ab-
sorption in vivo. Four of the compounds have been suggested
to be actively transported (erythromycin,48,49 verapamil,50

folinic acid, and methotrexate51), although the clinical signifi-
cance of the active transport in vivo is not clear for some of
the compounds studied. However, these compounds were kept
in the dataset to increase the structural diversity by including
compounds with large size and polarity, factors that are more
often associated with active rather than passive transport. It
was hoped that this would result in models more useful for
the drug discovery settings, where it is warranted for the
investigation of large structural space and the passive trans-
port of druglike compounds.

Except for [14C]-erythromycin, which was bought from NEN
Life Science Products, Inc. (Boston, MA), and [3H]-tamoxifen,
which was bought from Amersham Pharmacia Biotech (Upp-
sala, Sweden), the compounds used in this study were a gift
from Charles Brownell at the FDA (MD). Amiloride, amitrip-
tyline, chlorpromazine, desipramine, doxycycline, phenazopy-
ridine, promethazine, and verapamil were used as their
corresponding HCl salts. The maleate of ergonovine and the
sulfate of atropine were used. Folinic acid was used as its
corresponding calcium salt.

External Test Sets. Owing to the large variability in
solubility and permeability data found in the literature,4,25,30

our own in-house datasets were used as external test sets for
the solubility and permeability models. Apparent permeability
(Papp) values published by Stenberg and co-workers23 were used
as an external test set for permeability, while our published
intrinsic solubility values22,27-29 were compiled and used as an
external test set for solubility.

The FDA recommends standard compounds for permeability
classification,16 and these compounds were used as an external
test set to evaluate the obtained theoretical biopharmaceutical
classification model. No corresponding list exists for solubility.
The hydrophilic permeability markers listed by the FDA were
excluded because they are not druglike, as were compounds
already included in the dataset used to build the models.
Therefore, the final external test set for the biopharmaceutical
classification consisted of 13 compounds: antipyrine, atenolol,
caffeine, carbamazepine, fluvastatine, furosemide, hydrochlo-
rothiazide, ketoprofen, methyldopa, metoprolol, naproxen,
ranitidine, and propranolol. For these compounds except for
antipyrine,15 caffeine,13 carbamazepine,52 and methyldopa,53

we had in-house solubility data. The solubility value for
ranitidine was used as a qualitative value; 5 mM solutions
was used for Caco-2 experiments at pH 7.4.54 This concentra-
tion corresponds to high solubility for ranitidine, and hence,
we classified ranitidine as a highly soluble compound.

Ionization Constants, Octanol-Water Partition Coef-
ficients, and Solubility Determinations. Prior to the
solubility experiment, ionization constants (pKa ) and octanol-
water partition coefficients (log Poct) were determined, as
described by Avdeef and co-workers.55 The intrinsic solubility
at 25 and 37 °C ((0.2 °C) was measured using pSOL Model 3
(pION Inc., Woburn, MA), as previously described.28 Briefly,

Figure 9. Comparison of experimental and theoretical bio-
pharmaceutical classification. The six classes are marked in
light-gray, and the compounds are numbered as in the tables.
Relative scales are used because solubility is dose-dependent
and, therefore, compound-specific. (a) Experimental determi-
nation of BCS class. The compounds were mainly distributed
through classes I (39%) and II (35%). Two compounds dis-
played intermediate permeability, and four compounds dis-
played low-permeability behavior. (b) Theoretical prediction
of the biopharmaceutical classes. Correctly predicted com-
pounds are indicated with white circles, deviations from a
single adjacent class are shown as light-gray circles, and shifts
from a distant class are shown as black circles. The BCS
classes were predicted with a success rate of 87%.
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the intrinsic solubility was determined by a pH titration of a
suspension of the drug into a clear solution. The compounds
were titrated in volumes of 1.7-17.0 mL and stirred with a
magnetic stirrer. A stream of argon bubbles further assisted
the stirring for volumes larger than 3 mL and also kept the
carbonate concentration in the solution low. The results were
analyzed with the pS software that accompanies pSOL, and
the pKa value and molecular weight were used to calculate
intrinsic solubility.27,28

The solubility of ergonovine and zidovudine was >20 mg/
mL. Since it was calculated that the absorption of these
compounds would not be restricted by solubility and since
limited amounts of the material were available, no further
attempts to quantify the solubility of these two compounds
were made. Moreover, the solubility of folinic acid was difficult
to determine using the potentiometric technique. Although
several different titration protocols were used, we were only
able to determine that the solubility was >0.7 mg/mL.
However, since folinic acid is administered only in low doses,
it was calculated that the oral absorption of folinic acid would
not be restricted by solubility. Consequently, since qualitative
data were obtained for ergonovine, zidovudine, and folinic acid,
they were excluded from the training set in the multivariate
data analysis of solubility.

Methanol was used as cosolvent in determining the pKa and
solubility of poorly soluble compounds (Table 1). In these cases,
the measurements were performed at several (three to six)
different cosolvent concentrations, ranging from 4.3 to 52 w/w
% methanol, and the intrinsic solubility was determined by
linear extrapolation of the data to 0 w/w % methanol.22

Cell Culture. Caco-2 cells obtained from American Tissue
Collection, Rockville, MD, were maintained in an atmosphere
of 90% air and 10% CO2, as described previously.56 For
transport experiments, 5 × 105 cells of passage number 94-
100 were seeded on polycarbonate filter inserts (12 mm
diameter; pore size 0.4 µm; Costar) and allowed to grow and
differentiate for 21-35 days before the cell culture monolayers
were used for transport experiments.

Caco-2 Determinations of Permeability. The intestinal
permeability of the compounds was determined from transport
rates across Caco-2 cell monolayers, as described elsewhere.3,56

In general, the drugs were dissolved in Hank’s balanced salt
solution, containing 25 mM HEPES at pH 7.4 (HBSS pH 7.4),
to give a final concentration of 0.02-6 mM, with each
concentration being nontoxic. The amount of compound dis-
solved in the transport buffer depended on its solubility, its
expected permeability, the presence of saturable active trans-
port mechanisms, and its HPLC detection limit. Transport
studies were initiated by incubating the monolayers in HBSS,
pH 7.4, at 37 °C for 20 min in a humidified atmosphere. Filter
inserts with Caco-2 cells were stirred at 500 rpm by using a
plate shaker (IKA-Schüttler MTS4) during the transport
experiments in order to obtain data unbiased by the aqueous
boundary layer.23 Permeability coefficients were determined
both in the apical to basolateral direction and in the basolat-
eral to apical direction (pH 7.4 in both chambers) in order to
determine the possible involvement of active transport mech-
anisms or efflux. Monolayer permeability to the paracellular
marker [14C]-mannitol was routinely used to investigate the
integrity of the monolayers under the experimental conditions.
The samples were analyzed by HPLC, except for erythromycin
(because of lack of chromophore) and tamoxifen (which was
below the detection limit due to poor solubility). These two
drugs were used as radioactively labeled compounds and
analyzed in a liquid scintillation counter.

In two instances, the experimental protocol had to be
modified in order to ensure reliable permeability data. In the
first instance, erythromycin was found to be actively secreted
at the applied concentration (i.e.,1.2 mM), probably by a
mechanism mediated by an ABC transporter such as P-
glycoprotein,48,49 and consequently, verapamil was used to
inhibit the secretion and obtain the passive permeability
coefficient. The monolayers were incubated with verapamil in
both the donor and the receiver chamber for 30 min prior to
the transport experiments. The filters were washed, and the
transport experiment was then performed in the presence of
verapamil in both the apical and the basolateral chambers.
This procedure using 200 µM verapamil reduced the transport
in the basolateral to apical direction to the same level as the
transport in the opposite direction and thus allowed the
passive permeability coefficient of the Caco-2 monolayer to
erythromycin to be determined. In the second instance, the

Table 3. Calculated Propertiesa

compd MW PSAb (Å2) NPSAb (Å2)
predicted
S classc

predicted
Papp classc

theoretical
BCSc

1 acyclovir* 225 128 133 h h I
2 amiloride 230 152 79 h i V
3 amitriptyline* 277 5 373 h h I
4 amoxicillin 365 138 260 l l IV
5 atropine* 289 52 309 h h I
6 chlorpromazine 319 8 370 l h II
7 ciprofloxacin 331 79 293 l h II
8 desipramine* 266 15 343 h h I
9 doxycycline* 462 165 264 l i VI
10 ergonovine 325 75 317 h h I
11 erythromycin 734 131 647 h i V
12 ethinyl estradiol 296 44 322 h h I
13 folinic acid* 473 225 259 h l III
14 indomethacin* 358 74 322 l h II
15 methotrexate 454 215 285 l l IV
16 phenazopyridine 213 85 178 l h II
17 primaquine 259 60 291 h h I
18 promethazine 284 5 346 h h I
19 tamoxifen 372 15 486 l h II
20 theophylline 180 74 141 h h I
21 verapamil 455 63 491 l h II
22 warfarin 308 59 301 l h II
23 zidovudine* 267 138 169 h h I

a Compounds marked with an asterisk (/) were selected as the test set by principal component analysis (PCA). For the solubility
prediction, ergonovine maleate was added to the test set, since this compound only had a qualitative measure of solubility (>20 mg/mL).
Erythromycin and tamoxifen were added to the test set of the permeability prediction, since these two compounds were analyzed differently
from the others (see “Caco-2 Determinations of Permeability”). b Static molecular surface area descriptors: polar surface area (PSA) and
nonpolar surface area (NPSA) are shown because these are the main descriptors for prediction of permeability and solubility, respectively.
c In silico models predicting high/low (h/l) solubility class (predicted S class) and high/intermediate/low (h/i/l) permeability class (predicted
Papp class), and the combination of these in biopharmaceutical classification (theoretical BCS) (Figure 9b).
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experimental protocol had to be modified because ethinyl
estradiol and tamoxifen adhered to the Transwells during the
transport experiments, as assessed by a mass balance calcula-
tion. The adsorption of ethinyl estradiol was prevented by
saturation of the nonspecific binding sites with bovine serum
albumin (BSA) (20 mg/mL) prior to the experiments. Unfor-
tunately, the BSA only partly inhibited the plastic binding of
tamoxifen. We therefore attempted to prevent the binding of
tamoxifen by preincubating the filter chambers with saturated
solutions of tamoxifen, but we did not succeed in obtaining
complete inhibition. Consequently, the permeability of tamox-
ifen was determined only qualitatively to be >2 × 10-5 cm/s.
Since it was calculated that the absorption of tamoxifen would
not be restricted by permeability, no further attempts were
made to quantify the permeability of this compound. As a
consequence of these modified protocols, both erythromycin
and tamoxifen were excluded from the training set and were
instead included in the test set in the multivariate data
analysis of permeability.

In general, the transport studies were performed under sink
conditions and the Papp coefficients were calculated from

where ∆Q/∆t is the steady-state flux (mol/s), C0 is the initial
concentration in the donor chamber at each time interval (mol/
mL), and A is the surface area of the filter (cm2). For rapidly
transported compounds, where sink conditions could not be
maintained for the full duration of the experiments, Papp was
calculated, as described previously,57 from

where CR(t) is the time-dependent drug concentration in the
receiver compartment, M is the amount of drug in the system,
VD and VR are the volumes of the donor and receiver compart-
ment, respectively, and t is the time from the start of the
interval. Papp was obtained from nonlinear regression, mini-
mizing the sum of squared residuals (∑(CR,i,obs - CR,i,calc)2),
where CR,i,obs is the observed receiver concentration at the end
of the interval and CR,i,calc is the corresponding concentration
calculated according to eq 2.57

Analytical Methods. A reversed-phase HPLC system was
used to determine the drug concentration in Caco-2 samples.
The HPLC system consisted of the following components: two
Bischoff HPLC compact pumps, model 2250, a Bischoff LC-
CaDI 22-14 integrator, a Bischoff DAD 3L-EU/3L-OU UV
detector (Bischoff Analysentechnik und -geräte GmbH, Leon-
berg, Germany), a JASCO FP-1520 fluorescence detector (Jasco
Corp., Tokyo, Japan), a Midas model 830 autosampler (Spark,
Emmen, The Netherlands), and the McDAcq32 chromatogra-
phy data system software, version 1.46 (Bischoff Analysen-
technik und -geräte GmbH, Leonberg, Germany). A C8 ana-
lytical column (50 mm × 5.6 mm) with a mean particle size of
5 µm was used. A mobile phase gradient composed of mobile
phase A containing MQ-water/acetonitrile/TFA at ratios of
99:1:0.1 and mobile phase B containing MQ-water/acetoni-
trile/TFA at ratios of 1:99:0.1 were used. During one gradient
cycle, the mobile phase was changed from 5% to 80% aceto-
nitrile during 1.5 min and was thereafter lowered to 5%
acetonitrile within 4 min. A flow rate of 2.0 mL/min and
injection volumes of 30 µL were used during the analysis.

Radioactive samples were analyzed with a liquid scintilla-
tion counter (Packard Instruments 1900CA TRI-CARB; Can-
berra Instruments, Downers Grove, IL).

Biopharmaceutical Classification. The drugs were clas-
sified into six different biopharmaceutical classes according
to their permeability41 and solubility:16 (I) high solubility/high
permeability, (II) low solubility/high permeability, (III) high
solubility/low permeability, (IV) low solubility/low perme-
ability, (V) high solubility/intermediate permeability, and (VI)
low solubility/intermediate permeability. A drug was regarded

as a highly soluble compound if the maximum dose was soluble
in 250 mL of fluid in the pH interval 1-7.5. The maximum
dose found in the Physicians’ Desk Reference58 and/or in
FASS59 was compared with the minimum solubility value at
a pH between 1 and 7.5. Permeability was defined as “low” if
it is less than 20% and as “high” if it is greater than 80% of
the given dose absorbed in humans. Drugs with fraction
absorbed (FA) data between these values were defined as
having intermediate permeability.41 The Papp values discrimi-
nating among the three permeability classes were obtained
from the correlation between drug permeability in Caco-2 cells
and FA established in our laboratory.23,60 The sigmoidal
function used was

where γ is the slope factor. This curve was used to calculate
the permeability values corresponding to FA values of 20%
and 80% (see Supporting Information).23,60

The evaluation of the models for biopharmaceutical absorp-
tion classification, using an external test set, was performed
in accordance with the limitations set by the FDA. The FDA
classifies solubility and permeability as either “high” or “low”.16

We defined low permeability in the evaluation as predicted
permeability coefficients of <1.6 × 10-6 cm/s, based on our in-
house correlation between fraction absorbed and Caco-2
permeability (see Figure 2 in Supporting Information).

Lipophilicity. Lipophilicity was calculated using the ClogP
program (version 2.0) from BioByte Corp. (Claremont, CA).

Conformational Analysis. A 1000 (amiloride) to 250 000
(erythromycin) step Monte Carlo conformational analysis was
carried out using the BatchMin program and the MM2 force
field, as implemented in MacroModel version 6.5. The confor-
mational analysis of zidovudine was performed using MMFF
instead of MM2, since the latter does not contain all the
necessary parameters. In a previous study of molecules with
a conformational flexibility comparable to that of the com-
pounds in this study, we observed that the conformational
analyses performed in a vacuum or in a simulated water
environment resulted in molecular surface areas of the same
magnitude23 (see also Supporting Information). Therefore, to
speed up the computer calculations, the conformational analy-
ses were only performed in vacuum with the compounds in
their un-ionized state. For flexible molecules, the conforma-
tional analysis was performed by two or more Monte Carlo
simulations. The global minimum conformer of each search
was then used as the starting conformation for a subsequent
conformational search. The resulting conformers from the
searches were combined, and duplicate conformers were
removed.

Papp ) ∆Q
∆t

1
AC0

(1)

CR(t) ) M
VD + VR

+ (CR,0 - M
VD + VR

) e-PappA(1/VD+1/VR)t (2)

Table 4. Biopharmaceutical Classification of Food and Drug
Administration Recommended Drugsa

substance
perm.
FDA

theor
perm.

exptl
sol.

theor
sol.

antipyrine h h h l
atenolol l h h h
caffeine h h h h
carbamazepine h h l l
fluvastatine h h l l
furosemide l l l l
hydrochlorothiazide l l h h
ketoprofen h h l l
methyldopa h h h l
metoprolol h h h h
naproxen h h l l
propranolol h h h h
ranitidine l l h h

a Experimental (exptl) and PTSA-predicted (theor) solubility
(sol.) and permeability (perm.) classification. The values are given
as “high (h)” or “low (l)” solubility/permeability.

FA ) 100

1 - ( Papp

Papp50%
)γ

(3)
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Molecular Surface Area Calculation. The static molec-
ular surface areas for the global minimum conformation
identified in the conformational analysis were calculated, since
previous studies have shown that in the analysis of not too
flexible molecules, dynamic and static surface areas correspond
well.23,44 The in-house computer program MAREA61 was used
to calculate the free surface area of each atom and the
molecular volume, using the van der Waals radii, with the
following results: sp- and sp2-hybridized carbons, 1.94 Å; sp3-
hybridized carbons, 1.90 Å; oxygen, 1.74 Å; nitrogen, 1.82 Å;
sulfur, 2.11 Å; chloride, 2.03 Å; electroneutral hydrogen, 1.50
Å; hydrogen bound to oxygen, 1.10 Å; and hydrogen bound to
nitrogen, 1.125 Å (obtained from PCMODEL, version 4.0; see
Gajewski et al.62). The surface areas were defined as previously
described.22,23 Briefly, composite properties, such as nonpolar
surface area (NPSA) and PSA, as well as PTSA descriptors,
were calculated. PSA was defined as the surface area occupied
by oxygen and nitrogen and by hydrogen atoms bound to these
heteroatoms, whereas NPSA was defined as the total surface
area (SA) minus the PSA. PTSA descriptors correspond to the
surface area of a certain type of atom. For example, the NPSA
originating from carbon atoms can be partitioned into the
surface areas of sp-, sp2-, and sp3-hybridized carbon atoms and
the hydrogen atoms bound to these carbon atoms. In a similar
way, the PSA originating from oxygen atoms can be partitioned
into the surface areas of single-bonded oxygen, double-bonded
oxygen, and hydrogen atoms bound to single-bonded oxygen
atoms (Figure 4). Both the absolute surface area and the
surface areas relative to the SA were calculated.

Data Analysis. Solubility and permeability values were
predicted by principal component analysis (PCA)63 and partial
least-squares projection to latent structures (PLS)64 using
Simca.65 Skewed descriptors were cubic-root-transformed prior
to the multivariate data analysis to avoid their being over-
weighted in the models. The PCA of the input matrix with all
of the calculated descriptors66 was used to divide the compound
dataset into a training set of 15 compounds and a test set of
8 compounds. The training set was selected to cover a
maximum range in descriptor space. This was achieved by
selecting the extreme values from the first three components
of the PCA. In the solubility model, ergonovine was shifted
from the training set to the test set, since its solubility was
too high to determine quantitatively (i.e., >20 mg/mL). Thus,
all the qualitatively determined compounds were included in
the test set for solubility. In the permeability model, tamoxifen,
which was only determined qualitatively because of its binding
to plastics, was shifted to the test set. Also, erythromycin was
shifted to the test set, since a P-glycoprotein inhibitor had to
be used to obtain the permeability coefficient of passive
transport. The number of PLS components computed was
assessed by Q2, the leave-one-out cross-validated R2, using
seven cross-validation rounds. Only PLS components resulting
in a positive Q2 were computed, and the number of principal
components was never allowed to exceed one-third of the
number of observations used in the model. The models were
refined through stepwise selection of the descriptors. Initially,
all descriptors67 were included in the PLS model. After the
first round, the descriptor with the least influence on the
prediction was deleted, and the PLS was then repeated. If the
exclusion of the least important descriptor resulted in a more
predictive model (as assessed by a higher Q2), that descriptor
was permanently left out of the model. This procedure was
repeated until no further improvement of the model could be
achieved. The predictivity of the models was assessed by
RMSE of the test set (RMSEte) and the external test set
(RMSEext). Compounds that had a residual between the
predicted and observed value of g2.5 standard deviations were
defined as statistical outliers.

The theoretical biopharmaceutical classification was based
on a combination of the multivariate data analysis of solubility
and permeability values in which the predicted solubility value
was adjusted for the maximum dose given.
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