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Chemical feature based pharmacophore models were elaborated for angiotensin II receptor
subtype 1 (AT1) antagonists using both a quantitative and a qualitative approach (Catalyst
HypoGen and HipHop algorithms, respectively). The training sets for quantitative model
generation consisted of 25 selective AT1 antagonists exhibiting IC50 values ranging from 1.3
nM to 150 µM. Additionally, a qualitative pharmacophore hypothesis was derived from
multiconformational structure models of the two highly active AT1 antagonists 4u (IC50 ) 0.2
nM) and 3k (IC50 ) 0.7 nM). In the case of the quantitative model, the best pharmacophore
hypothesis consisted of a five-features model (Hypo1: seven points, one hydrophobic aromatic,
one hydrophobic aliphatic, a hydrogen bond acceptor, a negative ionizable function, and an
aromatic plane function). The best qualitative model consisted of seven features (Hypo2: 11
points, two aromatic rings, two hydrogen bond acceptors, a negative ionizable function, and
two hydrophobic functions). The obtained pharmacophore models were validated on a wide set
of test molecules. They were shown to be able to identify a range of highly potent AT1
antagonists, among those a number of recently launched drugs and some candidates presently
undergoing clinical tests and/or development phases. The results of our study provide confidence
for the utility of the selected chemical feature based pharmacophore models to retrieve
structurally diverse compounds with desired biological activity by virtual screening.

Introduction

The renin-angiotensin-aldosteron system (RAAS)
has a central role in the expression and modulation of
cardiovascular diseases. Renin is the enzyme that
cleaves circulating angiotensinogen, a polypeptide pro-
duced in the liver, to yield the decapeptide angiotensin
I (AI), which is cleaved into the octapeptide angiotensin
II (AII) by angiotensin-converting enzyme (ACE). An-
giotensinases lead to angiotensin III (AIII), a heptapep-
tide, and several inactive fragments. ACE inhibitors are
widely accepted therapeutics applied in regulation of
cardiovascular disorders such as hypertension, conges-
tive heart failure, and vascular disease. An unpleasant
limitation of ACE inhibitors is the cleaving of substrates
other than angiotensin I, for example, bradykinin.
Enzymatic degradation of this peptide vasodilator is
reduced by ACE inhibitors. Bradykinin may stimulate
nitric oxide (NO) synthesis and the release of prostag-
landin I2 and E2 (PGI, PGE). Thus, dry cough, an-
gioedema, aplastic anemia, conjunctivitis, headache
paresthesias, and sinus tachycardia are associated side
effects of ACE inhibitors.1 The usage of non-peptide-
selective angiotensin II (AII) subtype 1 receptor antago-
nists represents an approach to intermit cascade at the
terminal level. The angiotensin receptor (AT) family is
a member among the heptahelical G-protein coupled
receptor families and is divided into subtypes AT1, AT2,
and AT4. The AT1 receptor mediates most of the identi-
fied vascular effects of angiotensin II.2 The octapeptide

angiotensin II (Asp-Arg-Val-Tyr-Val-His-Pro-Phe) is a
potent vasoconstrictor affecting different organ systems,
e.g., kidney, blood vessels, smooth muscles, adrenal
cortex, medulla, and myocardium. Resulting effects are
release of aldosterone, catecholamines, and antidiuretic
hormone and lead to increased blood pressure.3 Since
the AT1 receptor plays a dominant role in intracellular
signaling related to blood pressure regulation, we chose
this subtype that is coupled to the Gq/11/phosphoplipase
C/inositol 1,4,5-triphosphate/cytosolic calcium channel
pathway for our investigations.4

Earlier Approaches

In the past years several 3D QSAR (quantitative
structure-activity relationship) and modeling studies
on angiotensin II and AT1 receptor antagonists have
been performed and reported in the literature.2,4-7 The
results of a homology modeling study point out that one
of the most significant interactions of AT1 antagonists
is formed by the acid function interacting with the basic
amino acid Lys 199 of the trans membrane unit 5 (TM5)
of AT1 receptors. The ionic interactions may be signifi-
cant because of their far-reaching effects. Hydrophobic
aromatic areas should be important for stabilization of
the acid-base interaction by diminishing the dielectric
effect of water.8 Moreover, three common features were
presented by 3D QSAR models identifying an electron-
rich site and two π-electron-rich sites, corresponding to
oxygen or chlorine atoms and the phenyl rings or the
sulfonamido oxygen atoms, respectively.7 The ortho
position of the acid functions also seems to be important
for twisting the biphenyl groups out of planarity.6 More
information was reported in the literature, describing
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a minimal pharmacophore, including an acidic group,
an aromatic N atom functioning as hydrogen bond
acceptor, and an alkyl side chain plus a biphenyl
spacer.9 A 3D database search for new bioisostere of
BPT (biphenylytetrazole) in order to explore new lead
structures yielded molecules featuring subnanomolar Ki
values in vitro but unfortunately nearly no biological
effect in vivo. Therefore, these new more rigid substruc-
tures containing the tricyclic dibenzo[a,d]cycloheptene
or dibenzo[b,f]oxepine moiety instead of the biphenyl
moiety are not a matter of prospective interest.10

A powerful approach in virtual drug design is the
automated generation of pharmacophore models within
the Catalyst software package11 using two different
algorithms (HipHop and HypoGen), as a large number
of successful applications in medicinal chemistry clearly
demonstrates.12-30 Debnath has recently reported the
development of pharmacophore models from a series of
inhibitors of mycobacterium avium complex dihydro-
folate reductase (MAC DHFR) and human dihydrofolate
reductase (h-DHFR). The model was validated on three
structurally diverse classes of compounds that show

activity against MAC DHFR.31 Pharmacophore models
are of special interest when experimental data on the
biologically relevant conformations of the selected com-
pounds are absent (for example, atomic coordinates
derived from X-ray crystallographic studies of protein-
ligand complexes are missing, e.g., G-protein coupled
receptors).

The aim of this study was to build pharmacophore
models based on common chemical features of com-
pounds that exhibit high antagonistic binding quality
to the AT1 receptor site. Using such a model, one should
be able to retrieve structures from 3D molecular data-
bases currently in the clinical development phase or
even launched or to retrieve structures that can be used
as new potentially active candidates.

General Methology
Training Set Selection and Conformational Mod-

els. Twenty-five compounds forming the training
set9,32-34 were used to generate HypoGen hypotheses
featuring quantitative predictive character. Structures
are reported below in Table 1.

Table 1. Chemical Structuresa of 25 Training Set Moleculesb Used To Form HypoGen Pharmacophore Hypotheses

a All 2D chemical structures were produced with the ISIS/Draw, version 2.1 drawing program.52 b Detailed information of synthesis
and biological data is reported elsewhere.9
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The selection of training set members is a key step
in automated pharmacophore generation. The con-
structed pharmacophore model apparently can be as
good as the information of data input.35 Some guidelines
for 3D QSAR model generation in Catalyst must be
respected. The minimum number of molecules to ensure
statistical significance of pharmacophores computed in
the HypoGen algorithm is 16; the activity data should
span over 4-5 orders of magnitude. The most active
compound available must be included, and each order
of magnitude should be represented by at least three
compounds. Each compound should provide new struc-
tural information. The activity data, in this case IC50
in µM must be directly comparable i.e., derived from
an equivalent analytical method, similar species, and
similar tissue. In this study, the activity data were
taken from different scientific groups that used equiva-
lent binding assays. A series of angiotensin II subtype
1 receptor antagonists (now termed as AT1 antagonists)
were tested in rat adrenal cortical microsomes prepara-
tions for their inhibitory effects on the specific binding
of angiotensin II. Binding assays are reported in detail
elsewhere.9,32-34 All structures were built and mini-
mized within the Catalyst software package, and con-
formational analysis for each molecule was implemented
using the Poling algorithm. Poling is a method for
promoting conformational variation that forces similar
conformers away from each other. Conclusively, poling
improves the coverage of the conformational space.36-38

The settings in conformer generation were 250 as the
maximum number of conformers, best quality genera-
tion type, and an energy range of 20 kcal/mol beyond
the calculated potential energy minimum. All other
parameters used were kept at their default settings.
This should ensure an exhaustive characterization of
conformational space.11

Generation of Pharmacophore Hypotheses. A
pharmacophore is a representation of generalized mo-
lecular features including 3D (hydrophobic groups,
charged/ionizable groups, hydrogen bond donors/accep-
tors), 2D (substructures), and 1D (physical or biological
properties) aspects that are considered to be responsible
for a desired biological activity. Two different ap-
proaches are applied in automated hypothesis genera-
tion. The first is HypoGen, an activity-based alignment
derived from a collection of conformational models of
compounds spanning activities of 4-5 orders of magni-
tude. Detailed criteria for training set selection are
presented earlier. The second algorithm in 3D pharma-
cophore generation within Catalyst is a common feature-
based alignment of highly potent compounds. The
activity of several molecules is not regarded using this
model generation mode. HipHop hypotheses are pro-
duced by comparing a set of conformational models and
a number of 3D configurations of chemical features
shared among the training set molecules. Compounds
of the training set may or may not fit all features of
each resulting hypothesis, depending on the setting for
the parameters Maximum Omitted Features, Misses,
and Complete Misses. The retrieved pharmacophore
models are expected to discriminate between active and
inactive compounds.

The first step in generation of a pharmacophore model
after choosing the training set is the feasible feature

selection performed by the user. Each feature is defined
by a chemical function, location, and orientation in 3D
space, tolerance in location, and weight. Hydrogen bond
acceptor (A), hydrophobic (H), hydrophobic aliphatic (Z),
hydrophobic aromatic (Y), ring aromatic (R), and nega-
tive ionizable (N) were carefully selected for the descrip-
tion of the AT1 receptor site. Additionally an individu-
ally built feature named NegIonizable was edited to
identify the weak acid N-H of sulfonamides. This was
performed in the Exclude/OR QickTool by extending the
default negative ionizable function to include sulfona-
mides. The modified function was added to the Feature
Dictionary to ensure the application in hypothesis
generation (Figure 2)

Database Search. Hypotheses can be used as que-
ries to search 3D databases to retrieve structures that
fit the hypothesis or as models to forecast the activities
of novel compounds. In this study, a database built in
the Catalyst data format containing 138 AT1 antago-
nists was used for virtual screening. Additionally a
search was pursued within the Derwent World Drug
Index (WDI), containing approximately 50 000 drugs
worldwide and bioactive molecules with their incidental
multiple conformers.39 A database search in Catalyst
involves two algorithms. The Fast Flexible Search
Databases/Spreadsheets command computes already
existing conformers of the database, the Best Flexible
Search Databases/Spreadsheets is able to change the
conformation of a molecule during computation. All
queries were performed using the Fast Flexible Search
Databases/Spreadsheets method. A molecule must fit
all the features of a Catalyst query to be retrieved as a
hit. Results are hit lists containing those compounds of

Figure 1. Equations describing the HypoGen algorithm.
Abbreviations: Unc, uncertainty (default 3); MA, activity of
most active compound; A, activity of active compound; E, error;
e, error coefficient (default 1); W, weight; w, weight coefficient
(default 1); C, configuration; c, configuration coefficient (default
1); x, deviation from the expected values of weight and error.

Figure 2. Extended negative ionizable function in the Exclude/
OR QickTool including sulfonamides N-H as weak acids.
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the database that fulfill all requirements in 3D space
of the hypothesis used as search input.

Results and Discussion
1. HypoGen Model. The biological dataset was

divided into a training set, presented in Table 1, and
into a test set presented in Table 4. The training set
consists of 25 structures and was selected by considering
structural diversity and wide coverage of activity range.
Activities are reported as IC50 values (inhibitory con-
centration of an inhibitor that gives 50% displacement
of the specific binding of labeled angiotensin II) span-
ning from 1.3 nM to 150 µM. Each compound of the
training set should provide new structural information
to achieve a good model in terms of predictive power
and statistical significance. A default uncertainty factor
of 3 for each compound was defined, representing the
ratio range of uncertainty in the activity value based
on the expected statistical straggling of biological data
collection. Uncertainty influences the first of three steps
in the HypoGen generating process, as presented in
Figure 1, eq 1. The hypothesis created in the initial
phase, the constructive phase, considers all possible
pharmacophore configurations of the most active com-
pounds to imply pharmacophore demands. In the proxi-
mate second phase, the subtractive phase, all possible
pharmacophore configurations of the constructive phase
are kept or discarded depending on the number of least
active training set members that share a pharmaco-
phore pattern. Least active compounds are detected by
employing eq 2 in Figure 1. In the final optimization
phase, geometric fit, activity, error estimation, and cost
calculation are performed. The hypothesis generation
process stops when no better score of the hypothesis can
be accomplished.40 Important features for angiotensin
II antagonists were described in earlier studies. In the
hypothesis generation process, five features (hydrogen
bond acceptor (A) and aromatic plane as vector functions
(R) and hydrophobic aromatic (Y), hydrophobic aliphatic
(Z), and a modified negative ionizable feature (N) as
point functions) were selected to form the essential
information. The HypoGen algorithm was forced to find
pharmacophores that contain at least one and at most
two of every feature except the negative ionizable and
aromatic plane features. Pharmacophores were com-
puted, and the top 10 hypotheses were exported, con-
sisting of these five features presenting seven-point
pharmacophores. (Figure 3). According to earlier sub-
mitted pharmacophore studies, the negative ionizable
(N), hydrophobic aromatic (Y), hydrophobic aliphatic (Z),
ring aromatic (R), and hydrogen bond acceptor (A)
features were considered to be important.32,41,42 Hence,
in pharmacophore generation, priorities were set on
them. The algorithm was forced to select a certain
mininum and maximum number of these features, as
explained earlier, regarding the value of configuration
cost contribution. Catalyst produced 10 hypotheses: top
ranked Outhypo-181690.01, entitled Hypo1 is presented
in Figure 3 aligned with the highest active compound
(cmp1: 1.3 nM) of the training set molecules. Hypo1 is
the best pharmacophore hypothesis in this study, char-
acterized by the highest cost difference, lowest error
cost, and lowest root-mean-square divergence and has
the best correlation coefficient. All 10 hypotheses con-
tain the same features: one hydrogen bond acceptor,

one negative ionizable, one hydrophobic aliphatic, one
hydrophobic aromatic, and one ring aromatic feature
(Figure 3). The validation of reported hypotheses can
be performed in different ways. First, Catalyst applies
a cost analysis to reveal statistically significant hypoth-
eses generated with the HypoGen algorithm. Catalyst
calculates the cost for a theoretical ideal hypothesis
(fixed cost). The choice among many possibilities in
spatial arrangements is made according to Occam’s
razor principle, which states that among equivalent
possibilities, the simplest is the best. Three cost values,
all of them measured in bits, are crucial in the valida-
tion of a pharmacophore model. First, the fixed cost is
a theoretical cost value that entirely fulfils all demands
of data input (Figure 1, eq 3). Second, the null cost value
is the highest of the three values (Figure 1, eq 4). It
presents all activities of the training set molecules as
average values and represents a hypothesis containing
no features. Finally, the total hypothesis cost is the
summation of three factors: a weight, an error, and a
configuration cost.

The mathematical background of total cost calculation
is presented in Figure 1, eq 5. Configuration cost is
equal to entropy cost, a constant value, and should
always be less than 17. The weight component will
increase in a Gaussian form as the default value (2.0)
deviates. The error cost will increase as will the root-
mean-square (rms) factor, which is the divergence of the
estimated and actual activity of training set molecules
(Table 3). Correlation values are obtained by linear
regression of the geometric fit index. Fit functions check
mapping of chemical substructure into feature con-
straints as well as distance deviation of chemical
functions from the center of the feature. Therefore, the
geometric fit value points out how exact the function is
localized in the center of a feature sphere (Figure 1,
eq 6).

The correlation coefficient (Table 2) is based on linear
regression derived from the geometric fit index. Another
validation method to characterize the quality of a
hypothesis is represented by its capacity for correct
activity prediction. Estimated activity values and errors
(ratio between the estimated and tested activity) are
reported in Table 3. (For instance, an error of -1.4
means that the experimentally tested activity is 40%

Figure 3. Top scoring HypoGen pharmacophore (five fea-
tures, seven points). Hypo1 is aligned to the most active
compound in the training set (cmp1: IC50 ) 1.3 nM). Phar-
macophore features are color-coded (orange, negative ionizable
and aromatic ring; light-blue, hydrophobic aromatic and
hydrophobic aliphatic; green, hydrogen bond acceptor).
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lower than the predicted, referring to the pharmacoph-
ore model.)

Hypotheses are believed to be statistically relevant
when the overall hypothesis cost is close to the fixed
and far away from null cost values. The difference
between the null cost hypothesis and the total hypoth-
esis cost is of particular importance. A true correlation
will be estimated very likely by models that exhibit a
cost difference (∆ cost ) null cost - total cost) of 60 bits
or higher. The difference between fixed and null costs
should be 70 or higher to achieve this request. Cost
differences of 40-60 bits lead to a predictive correlation
probability of 75-90%. When cost differences fall
under 40, the chance of a true correlation coefficient
will probably decrease to 50%. These output param-
eters determine the quality of pharmacophore hypoth-
eses.35,43,44 The null cost of the 10 top-scored hypotheses
is 172.995, and the fixed cost value is 99.9643. Config-
uration cost is 14.7493 (Table 2).

Third, another approach to assess the statistical
confidence of HypoGen models is to apply cross valida-
tion using the CatScramble program. This random test
validation helps to define the SAR (structure-activity
relationship) of training set members. CatScramble
mixes up activity values of all training set compounds
and creates in our case 49 random spreadsheets (es-
sential to achieve a statistical significance level of 98%).
A HypoGen computation with each of them is performed
by keeping the parameters of the initial run of Hypo1.
In our case, a statistical significance of 98% was
allocated.

All compounds of this study were classified by their
activity as highly active (<0.1 µM, +++), moderately
active (0.1-10 µM, ++), or inactive (>10 µM, +). All
inactive compounds were predicted correctly, two mod-
erately active compounds were predicted to be inactive,
and one moderately active compound was predicted to
be highly active. All but three of the highly actives were
predicted correctly. Altogether, for 19 of 25 compounds,
the predicted IC50 values were found to be within the
same order of magnitude as the experimentally deter-
mined ones.

Finally, to check the predictive power of this phar-
macophore hypothesis, a test set containing 25 AT1
antagonists of different activity classes was analyzed.
All test set molecules were built and minimized as well
as used in conformational analysis like all training set
compounds. Hypo1 was regressed against the training
set compounds. A score of 85.28% was achieved.

Structural data of test set compounds are shown in
Table 4. In the test set analysis, out of six highly active
compounds, three were predicted correctly but three
highly actives were underestimated as moderately ac-
tive. All other members of the test set were predicted
correctly or as better than their actual activities. Five
inactive compounds were regarded as moderately active
and therefore are false positives. The results are pre-
sented in Table 5.

The mapping of Hypo1 onto a highly active compound
of the test set, compound 2 (IC50 ) 12 nM), is shown in
Figure 4. Test set compound 2 fits very well all features
of the pharmacophore model Hypo1. The biphenylyltet-
razole moiety seems to be essential for high binding
affinity, but also compounds containing different struc-
tures map all features of Hypo1, e.g., test set compound
2 or 7 shows high affinity.

Quite often, the negative ionizable feature is fitted
by tetrazole rings, carboxylic acids, or sulfonamides. In
this case, the negative ionizable sphere is mapped by a
sulfonic acid. The two hydrophobic aromatic features are
fitted by two phenyl rings. In most AT1 antagonists, the
biphenylyl substructure is included, which indicates this
moiety to be indispensable for angiotensin II binding
affinity.

The pharmacophore model Hypo1 was used in a 3D
database query to find new structures mapping this
hypothesis. Hypo1 was able to detect 176 of the entire
WDI (48 405) substances (∼0.4%). To be exported as a
hit, they must map the hypothesis in all five features.
All compounds exhibiting fit values higher than 5 are
reported as AT1 antagonists in the WDI. The database
search procedure, however, also retrieved compounds
with activity keywords or mode of action different from

Table 2. Information of Statistical Significance and Predictive
Power Presented in Cost Values Measured in Bits for Top 10
Hypotheses as a Result of Automated HypoGen Pharmacophore
Generation Processa

hypothesis
no. total cost ∆ cost

rms
deviation

correlation
(r)

1 109.569 63.426 0.739 0.963
2 113.752 59.243 1.004 0.927
3 113.844 59.151 1.026 0.923
4 114.004 58.991 1.045 0.920
5 114.22 58.775 1.067 0.916
6 114.392 58.603 1.028 0.923
7 115.08 57.915 1.089 0.912
8 116.473 56.522 1.133 0.905
9 116.901 56.094 1.156 0.901

10 118.144 54.851 1.201 0.892
a Null cost of 10 top-scored hypotheses is 172.995. Fixed cost

value is 99.9643. Configuration cost is 14.7493.

Table 3. Experimental Biological Dataa and Estimated IC50 of
Training Set Molecules Based on Pharmacophore Model Hypo1a

compd
no. in the
literature

actual
IC50
[µM]

estimated
IC50
[µM] error

activity
scale

estimated
activity

scale

1 77 0.0013 0.0074 5.7 +++ +++
2 76 0.019 0.014 -1.4 +++ +++
3 106 0.02 0.021 1.1 +++ +++
4 107 0.029 0.015 -2 +++ +++
5 34 0.042 0.2 4.7 +++ ++
6 65 0.08 0.1 1.3 +++ ++
7 74 0.083 0.095 1.1 +++ +++
8 109 0.099 0.12 1.2 +++ ++
9 14 0.14 3.4 24 ++ ++

10 55 0.15 0.11 -1.4 ++ ++
11 54 0.34 1.9 5.5 ++ ++
12 56 0.4 0.04 -10 ++ +++
13 40 0.5 4.6 9.1 ++ ++
14 58 0.92 1.2 1.3 ++ ++
15 39 1.2 10 8.4 ++ +
16 62 2.4 10 4.2 ++ +
17 23 2.8 7.1 2.5 ++ ++
18 118 3.33 0.12 -28 ++ ++
19 16 5.8 3 -2 ++ ++
20 83 11 10 -1.1 + +
21 20 13 10 -1.3 + +
22 12 32 10 -3.2 + +
23 11 46 10 -4.6 + +
24 19 100 10 -10 + +
25 3 150 10 -15 + +
a Activity scale: highly active (<0.1 µM, +++), moderately

active (0.1-10 µM, ++), and inactive (>10 µM, +). Detailed
information of synthesis and biological data is reported elsewhere.9
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angiotensin II antagonism. For example, CL-329167 was
retrieved, which is reported to act as a somatoliberine
agonist (fit value of 5.06), and the leuktotriene antago-
nist LY-22398245 (fit value of 4.38) was found.

Another interesting molecule is the viruzide cibatron
(fit value of 3.93). A problem related to this hypothesis
is obviously the selectivity in filtering WDI compounds,
which may be considered as being too high. Some
important compounds may not be discovered because
of the extensive spatial demands of a five-feature
pharmacophore hypothesis. This objection was con-
firmed by using a subset of the WDI, restricted to 66
non-peptide substances with known angiotensin an-
tagonistic activity, in another 3D database search. Only
25 compounds (37% of the total set) were found. When
Hypo1 is modified, for example, when the constraint
restrictions are eased or the negative ionizable and
aromatic sphere are removed manually, 42 of 66 (63%)
can be detected.

The metadata information within the WDI (mecha-
nism of action, activity keywords, indications, usage, ...)
is only a subtle hint and is not a significant validation
method. Some of the compounds will not be retrieved
because the conformers of the WDI do not allow map-
ping of all features, or some of the compounds in the
subset do not fit the negative ionizable function because
they act as prodrugs, such as esters. Examples of the
WDI subset structures are shown in Figure 5.

In the 3D database containing 138 AT1 antagonists
built within Catalyst, Hypo1 was able to retrieve 129
molecules (93.5%). Three examples of chemical struc-
tures included in this data set are shown in Figure 6.
Included compounds are AT1 antagonists that have been
recently launched or are in a clinical development stage.
Results of this query can be interpreted as a good
validation for the generated pharmacophore hypothesis
because 93.5% of active AT1 antagonists were identified
as potential candidates. Actual and estimated activity

Table 4. Chemical Structuresa of 25 Diverse Molecules Forming the Test Set

a All 2D chemical structures were produced with the ISIS/Draw, version 2.1, drawing program.52
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data were not scored because of different assay systems
used by different research groups. In Figure 7, four
structurally diverse compounds antagonizing the an-
giotensin II subtype 1 (AT1) receptor are presented as
an example. The information of pharmacophore Hypo1
may be useful in the development of new drugs inhibit-
ing the angiotensin II subtype 1 (AT1) receptor.

2. HipHop Model. The algorithm for qualitative
pharmacophore model generation applied within Cata-
lyst is termed HipHop. This method is used when the
ligand set is small and sufficient biological data are not
available. In this case, the alignment of some highly
potent compounds can lead to a spatial arrangement of
common chemical features of the molecules forming the
training set. Each member of the training set is repre-
sented by a collection of conformers that should be able
to extensively cover the conformational space 20 kcal/
mol beyond the calculated potential energy minimum.
After the conformation models are generated, all con-
formers are aligned, regarding the chemical feature
demanded by the user. Finally a 3D configuration of
common chemical features of training set molecules is
determined.46

In our case, two highly potent AT1 antagonists (4u,
IC50 ) 0.2 nM; 3k, IC50 ) 0.7 nM) were selected to form
the basis information of this computational method.41

Hypo2 (Outhypo 55649.01, Figure 8) compiles the
feature requirements of the training set considered as
relevant. In the hypothesis generation, Catalyst was
forced to find a model including two ring aromatic (R)
features, one hydrophobic (H), two hydrogen bond
acceptors (A), and one negative ionizable (N) function
(Figure 6). Both molecules were set as principals, which
means that all features must be mapped. The output
hypothesis is composed of seven features and 11
spheres: two aromatic rings, two hydrophobic groups
(one more than expected), two hydrogen bond acceptors,
and one negative ionizable function. Hypo2 was used
as a query in a 3D database.41 An amount of 42 out of
46 substances featuring IC50 values of 20 nM or better
were retrieved. This would indicate that this model is
able to retrieve 91% of the highly active compounds.
Additionally 14 out of 36 less active AT1 antagonists
(20-500 nM) were found. According to our expectations,
this pharmacophore model was able to identify a
number of recently launched AT1 antagonists or some
that are presently undergoing the clinical test/develop-
ment phase. (Table 6).

In the Catalyst AT1-antagonist-subset database, 98
of 138 AT1 antagonists mapped the hypothesis as direct
hits. New compounds reported recently in the literature
were found in the query.6,41,47-50 The 3D database search
in WDI resulted in only 73 structures (0.15% of the
entire WDI). Thirty-seven of them were registered in
the ensemble database45 as AT1 antagonists, six as AT1/
AT2 antagonists, and one as ACE inhibitor. Thirty
compounds of the hit list were not found in the ensemble
database. All hits of the WDI search containing 1D
information indicate their mode of action as AT1 an-
tagonists. In the subset of 66 non-peptide AT1 antago-
nists, only 17 are detected because of earlier described

Table 5. Experimental Biological Dataa and Estimated IC50 of
Test Set Molecules Based on Pharmacophore Model Hypo1a

test
set

no. in the
literature

actual
IC50
[µM]

estimated
IC50
[µM] error

actual
activity

scale

estimated
activity

scale

1 108 0.012 0.06 5 +++ +++
2 45 0.012 0.39 33 +++ ++
3 105 0.019 0.054 2.9 +++ +++
4 65 0.08 0.11 1.3 +++ ++
5 64 0.092 0.075 -1.2 +++ +++
6 48 0.099 0.19 1.9 +++ ++
7 53 0.16 0.18 1.1 ++ ++
8 75 0.19 0.1 -1.8 ++ ++
9 66 0.22 0.04 -5.5 ++ +++

10 46 0.23 0.14 -1.6 ++ ++
11 103 0.26 0.058 -4.5 ++ +++
12 88 0.51 0.079 -6.4 ++ +++
13 122 0.6 0.22 -2.7 ++ ++
14 79 0.7 0.91 1.3 ++ ++
15 27 0.79 2 2.5 ++ ++
16 60 1.2 2.8 2.4 ++ ++
17 18 1.7 0.14 -1.6 ++ ++
18 52 2.9 1.1 -2.7 ++ ++
19 68 4.1 9 2.2 ++ ++
20 73 6.3 9 1.4 ++ ++
21 51 11 9 -1.2 + ++
22 20 13 9 -1.4 + ++
23 19 19 9 -2.1 + ++
24 22 28 9 -3.1 + ++
25 12 32 9 -3.5 + ++

a Activity scale: highly active (<0.1 µM, +++), moderately active
(0.1-10 µM, ++), and inactive (>10 µM, +). Detailed information
of synthesis and biological data is reported elsewhere.9

Figure 4. Best HypoGen pharmacophore model Hypo1 aligned
to test set cmp2 (IC50 ) 12 nM). Pharmacophore features are
color-coded (orange, negative ionizable and aromatic ring;
light-blue, hydrophobic aromatic and hydrophobic aliphatic;
green, hydrogen bond acceptor).

Figure 5. Three examples of chemical structures included
in the WDI subset database of 66 AT1 antagonists.

Figure 6. Three examples of chemical structures included
in the 138 compounds Catalyst database.
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causes. Molecules mapped on Hypo2 containing diverse
substructures to BPT (biphenlylytetrazole) are pre-
sented in Figure 9.

Conclusions and Perspectives
The pharmacophore models generated in this study

highlight the pattern with significance for antagonistic
activity on the AT1 receptor site. In this work, two
different approaches were performed to describe the

essential pharmacophore of the AT1 receptor antago-
nists. With both the HypoGen and the HipHop algo-
rithms within the Catalyst software, several models

Figure 7. Four examples of compounds antagonizing the angiotensin II subtype 1 receptor. Pharmacophore features are color-
coded (orange, negative ionizable and aromatic ring; light-blue, hydrophobic aromatic and hydrophobic aliphatic; green, hydrogen
bond acceptor).

Figure 8. Hypo2 and two training set compounds. 3k shows
IC50 ) 0.7 nM and 4u shows IC50 ) 0.2 nM. Pharmacophore
features are color-coded (orange, negative ionizable and aro-
matic ring; cyan, hydrophobic; green, hydrogen bond acceptor).

Table 6. Compounds Sorted by Descending Geometric Fit
Valuesa

compd
generic name or
company code

current
development phase

1 milfasartan phase 2
2 Cl-329167 phase 2
3 EXP-3174 phase 3
4 ripisartan phase 2
5 irbesartan launched 97
6 candesartan phase 1
7 YM-358 phase 2
8 forasartan phase 2
9 zolasartan phase 2

10 losartan launched 94
11 pomisartan phase 2
12 L-159282 phase 2
13 saprisartan phase 2
14 fonsartan phase 2
15 tasosartan preregistered
16 valsartan launched 96

a According to our expectations, pharmacophore model Hypo2
was able identify a number of recently launched AT1 antagonists
or some presently undergoing clinical test/development phase.
Generic name or company codes and development phase are
retrieved from a purchasable database.45
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were obtained. The best pharmacophore in terms of
predictive value consisted of a five-feature HypoGen
model (Hypo1, seven points with one hydrophobic
aromatic, one hydrophobic aliphatic, a hydrogen bond
acceptor, a negative ionizable function, and an aromatic
plane function) and of a seven-feature HipHop model
(Hypo2, 11 points with two aromatic rings, two hydro-
gen bond acceptors, a negative ionizable function, and
two hydrophobic functions). The pharmacophores were
able to identify a range of highly potent AT1 antagonists.
All compounds of the training set were mapped in both
approaches as direct hits. Also, AT1 antagonists outside
the training set fitted onto most of the features consid-
ered important for activity. When the pharmacophore
model generated with HypoGen (Hypo1) is compared to
the ones built with HipHop (Hypo2), Hypo1 finds more
AT1 antagonists. The hydrophobic aromatic functions
in Hypo1 are one-point features and hence represent a
less specific filter than the two-point vector function of
the aromatic plane in Hypo2. Most active compounds
will fit some of these recommended chemical features
but maybe not all of them. All those molecules are
ignored in the database search because only thorough-
fitting compounds are reported as hits. Eased-constraint
tolerances could be useful to eventually reveal more
active compounds. At the same time, the probability of
finding false positives increases. A false positive in a
hit list does not necessarily mean that the compound is
inactive. Molecules without the expected 1D information
can also show affinity and therefore be interesting leads.
The generation of a subset database can help to evaluate
models, but success is limited to quality of data content.
The aim of pharmacophores can be seen in a 3D

database search to find diverse structures with potential
activity. The knowledge of important chemical features
for AT1 antagonism is expected to be useful in the
development of AT1 antagonists, e.g., to estimate the
activity potential of new designed compounds in virtual
libraries, before further investigations are implemented.
The utility of our pharmacophores is shown by the fact
that the models elaborated within this study were able
identify a number of recently launched AT1 antagonists
and some compounds presently undergoing the clinical
test and/or development phase. We intend to use our
models to discover novel potential AT1 antagonists
within virtual combinatorial databases as generated
with our recently developed tool CombiGen.51

Experimental Section

All molecular modeling studies were performed using
Catalyst 4.7 installed on a Silicon Graphic O2 desktop work-
station equipped with a 200 MHz MIPS R5000 processor (128
MB RAM) running the Irix 6.5 operating system. All 2D
chemical structures were produced within ISIS/Draw2.1 draw-
ing program.52
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Supporting Information Available: All control param-
eter settings and results of the pharmacophore generation
processes plus three-dimensional coordinates of all selected
pharmacophore hypotheses (log files generated by the Hypo-

Figure 9. Mapping of four molecules containing diverse substructures to biphenlylytetrazole (BPT) used as proof of the predictive
power of the model. Pharmacophore features are color-coded (orange, negative ionizable and aromatic ring; cyan, hydrophobic;
green, hydrogen bond acceptor).
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Gen and HipHop algorithms). This material is available free
of charge via the Internet at http://pubs.acs.org.
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