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Alignment of molecules is a crucial and time-consuming step in any 3D-QSAR study. For this
reason, the field interaction and geometrical overlap (FIGO) procedure presented in this paper
is particularly relevant because it can provide an objective and automatic superposition of
ligands through the computation of an appropriate alignment index (AI). Ligand overlay takes
place via a simplex optimization of the AI function. Experimental design strategies (full factorial
design, D-optimal design) are used to define the starting positions of the superposing molecules.
Overlay experiments are carried out to test the performance of the method. Comparison between
the results obtained with FIGO and known ligand-receptor X-ray crystallographic data (Protein
Data Bank) suggests that FIGO is an effective and reliable computational procedure.

Introduction
Drug design can be approached in one of two different

ways: receptor-based or nonreceptor-based. The recep-
tor-based or direct approach depends on the availability
of the three-dimensional structure of the target protein
in order to simulate in silico and to evaluate the most
favorable conditions for interaction of ligands with their
binding site. Obviously, the availability of this structure
contributes much to the drug design process. The
structure of the ligand can be modified in order to find
the suitable steric and electronic complementarity with
the target protein and to discover the specific interac-
tions necessary or that might improve the binding of
ligands to the target.

However, in most cases the 3D structure is not known
and rational drug design must be achieved in a nonre-
ceptor or indirect way by developing an empirical model
to describe the 3D structure-activity relationships (3D-
QSAR) for a data set of bioactive compounds.

To set up a 3D-QSAR model, a suitable set of mole-
cules must be selected. Each molecule is described by
proper figures to characterize it effectively. Over the
past decade, so-called grid-field descriptors have often
been used to identify three-dimensional chemical struc-
tures. These are obtained by defining a three-dimen-
sional grid around the ligands and calculating interac-
tion energy between each ligand and an interacting
partner (probe) at each grid point (node). When grid-
fields are used to quantitatively compare a set of
molecules in order to develop a 3D-QSAR model, care
must be taken to properly orientate them before calcu-
lating the descriptors. Different ligand orientations lead
to different values of grid-fields for a given grid node.
Therefore, it is evident that 3D descriptors must be
derived in a way that is equivalent to the relative spatial
arrangement of molecules in the training set (TrS) at
the protein binding site. The molecules must be laid on

the grid according to their original orientation in the
receptor cavity so that the interaction between the
ligand and the binding site is optimized. When these
conditions are fulfilled, the differences in the ligands
bioactivity can be analyzed.

Molecular alignment is often a critical and time-
consuming step in 3D-QSAR calculations. When no
X-ray crystallographic data are available for ligand-
receptor complexes, the researcher has no guidelines
and must rely only on his own personal experience for
dealing with molecular superpositioning. Therefore, a
method providing reliability and speed to this operation
would constitute an important improvement to the 3D-
QSAR procedure. Recently, examples of alignment-
independent applications for developing a virtual re-
ceptor site (VRS) have been presented.1-4 They use a
new and promising class of three-dimensional, super-
position-free molecular descriptors, GRINDs (grid-
independent descriptors),5 derived from molecular in-
teraction fields (MIFs) produced by the GRID program.6,7

However, these methods are not yet widely established
and most of the descriptors used today in developing
3D-QSAR models require ligands to be preliminarily
superposed. For these reasons, in the present study a
methodology is presented whereby an automatic align-
ment procedure is developed to overcome the inconve-
nience of a purely subjective evaluation. Many recent
scientific contributions have been focused on methods
for the structural alignments of molecules.8-33 Most of
them have been reviewed by Lemmen and Lengauer,34

while others have been subsequently presented.35-38

These proposed methods for small molecule superposi-
tion are summarized in Table 1 and mainly differ in the
treatment of conformational flexibility, the optimization
algorithm used, and the definition of molecular similar-
ity.

Field interaction and geometrical overlap (FIGO) is
a new approach whereby the alignment of the molecules
occurs via simplex optimization through the superposi-
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tion of both MIFs of a set of compounds and the heavy
atoms (no hydrogen) of their chemical skeleton. The
innovation of the method is the use of the GRID
program6,7 to define the MIF values using several probes
including, most importantly, donor- and acceptor-
hydrogen-bonding ones. Moreover, experimental design
strategies are used in order to properly define the
number and initial positions of the vertexes in the
simplex. These are the unique aspects of FIGO that
successfully combine exploitation of GRID energy func-
tion and the experimental design methodology. Al-
though field-fit procedures are well-known in the over-
laying of small molecules, the remarkable effectiveness
of the force field used by the GRID program has never
been applied in this way. GRID program characterizes
the superposing molecules with an energy function that
includes Lennard Jones (Elj) and electrostatic (Eel)

terms, as well as an explicit hydrogen bond term (Ehb)
dependent on the length of the hydrogen bond, the
orientation of the probes at the hydrogen-bonding
atoms, and the chemical identity of the hydrogen-
bonding atoms. Moreover, the use of experimental
design strategy to identify the starting positions of the
superposing molecules is a new feature in this area that
allows superposing molecules to efficiently span the
experimental domain of variables (translation and rota-
tion movements of molecules) and enables the modified
simplex optimization method39 to approach the optimum
of the studied response.

The reliability of FIGO alignments was tested by
comparing the results obtained with X-ray crystal-
lography data for the ligand-receptor complexes avail-
able from the Protein Data Bank.40,41

Table 1. Main Recent-Literature Contributions to Computational Methods for the Structural Alignment of Compounds

authors program similarity criteria
optimization algorithm/

superposition methodology
superposition

mode ref

Cocchi, M. and De Benedetti, P. G. molecular electrostatic potential
(MEP), size, and shape descriptors

simplex rigid 8

Cossè-Barbi, A. and Raji, M. pattern in 3D space stepwise approach rigid 9
Dammkoehler et al. AAA distance map of pharmacophoric

points
combinatorial search flexible 10

de Caceres et al. MIPSIM molecular electrostatic potential gradient method semiflexible 32
De Rosa et al. Euclidean distance in Hi-PCA space rigid 11
Goldman, B. B. and Wipke, W. T. geometrically invariant molecular

surface descriptors
36

Good et al. ASP MEP (Hodgkin function) simplex rigid 12
Grant et al. van der Waals volume described by

Gaussian function
analytic first and second

derivatives
rigid 13

Handschuh et al. geometric fit (distance and
stereochemical parameters)

genetic algorithm and
quasi Newton method

flexible 14

Itai et al. AUTOFIT pharmacophoric points combinatorial matching flexible 15
Jain et al. COMPASS surface description neural network semiflexible 16
Jones et al. GASP intermolecular conformational

energy, volume overlay,
intermolecular matching energy

genetic algorithm flexible 17

Kearsley, S. K. and Smith, G. M. SEAL electrostatic and steric terms rational function
optimization (RFO)

rigid 18

Klebe et al. steric, electrostatic, hydrophobic, and
hydrogen-bond interaction
fields described by Gaussian
function

quasi Newton method semiflexible 19

Labute et al. atom properties modified RIPS (random
incremental pulse
search) procedure

flexible 38

Lemmen et al. RigFit steric occupancy, partial atomic
charge, hydrophobicity,
hydrogen bond potential described
by Gaussian function

quasi Newton method rigid 20

Lemmen, C. and Lengauer, T. FLEXS interaction fields described by
Gaussian function

combinatorial matching
procedure

flexible 21

Martin et al. DISCO pharmacophoric points combinatorial matching
procedure

semiflexible 22

Masek et al. MSC physicochemical properties BFGS (Broyden,
Fletcher, Goldfarb,
Shanno)

semiflexible 23

McMahon, A. and King, P. M. electrostatic potential described by
Gaussian function

gradient method rigid 24

McMartin, C. and Bohacek, R. S. TFIT inter- and intramolecular energy Monte Carlo and line
search procedure

flexible 25

Mestres et al. MIMIC steric and electrostatic fields
described by Gaussian function

steepest descent or
Newton-Raphson
method

semiflexible 26

Miller et al. SQ SQ type simplex semiflexible 27
Mills et al. SLATE distance matrix for H-bonding and

aromatic properties
simulated annealing flexible 35

Nissink et al. QUASIMODI electron density described by
Gaussian function

simplex rigid 28

Parretti et al. steric and electrostatic fields
described by Gaussian function

Monte Carlo rigid 29

Perkins et al. PLM surface overlap volume simulated annealing semiflexible 30
Petitjean et al. electronic properties and protonic

charge
gradient method rigid 31

Pitman et al. FLASHFLOOD comma descriptors cluster method flexible 37
Sheridan et al. distance geometry of

pharmacophore
flexible 33
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Method
FIGO methodology consists of two fundamental steps.
I. Prealignment Procedure. First, the geometrical

center of each molecule, i.e., the point that has as
coordinates the mean of the coordinates for any atom
of the molecule, is moved to coincide with the point (0,
0, 0). Points 1 and 2 in Figure 1a are the geometrical
mass centers for the gray and black structures, respec-
tively. The two molecules are depicted before (Figure
1a) and after (Figure 1b) the translation took place.

Second, all molecules are rotated along axes X, Y, and
Z so that each of their average molecular plane is made
to coincide with the XZ plane (Figure 1c). The average
molecular plane is define as the plane where the sum
of the distances of the molecule atoms is the shortest
from the plane.

II. Alignment Sequence. To proceed in this phase,
we defined a new alignment index AI, calculated by the
formula

where definitions are the following.
N: number of probes
Nrif: number of selected nodes of the reference

structure
Nmol: number of selected nodes of the superposing

structure
p ) 1 ... N: the pth probe used
µ ) 1 ... Nrif: the µth node for the reference structure

(rif)
ν ) 1 ... Nmol: the νth node for the superimposed

molecule (mol)
Vrifµ: MIF relative to the µth node for the reference

structure (rif)
Vmolν: MIF relative to the νth node for the superpos-

ing molecule (mol)
rµν: distance between the µth node of the reference

structure and the νth node of the superposing molecule
Arif: number of heavy atoms of the reference structure
Amol: number of heavy atoms of the superposing

molecule

m ) 1 ... Arif: heavy m atom in the reference structure
(rif)

n ) 1 ... Amol: heavy n atom in the superposing
molecule (mol)

wa: weight factor of the term b
rmn: distance between the heavy m atom in the

reference structure and heavy n atom in the superposed
molecule. m and n are characterized by the same atom
type.

AI is a measurement of the similarity between
structures, and it is formed by two terms: a and b. The
former refers to the different MIFs computed for the
superposition, and the latter refers to the heavy atoms
of the compounds to be aligned. Thus, as a result of term
a, the alignment occurs through the superposition of
MIFs of equivalent nature, i.e., deriving from acceptor-
or donor-hydrogen-bonding or hydrophobic probes,
whereas the term b focuses on the atom types of the
overlaying molecules.

The GRID program is used to calculate MIFs. MIFs
represent specific noncovalent interactions calculated
for a small chemical group (probe) interacting with a
target (e.g., ligands). Ligands are put in a three-
dimensional grid (Figure 2a-d), the probe is moved to
each grid point (node), and the interaction energy
between it and the target is computed. Thus, each grid
point is associated with an energy value.

More than one probe can be used for the computation
of term a of AI. For each probe used, only a limited
number of nodes per molecule, equal to the number of
its heavy atoms, are considered (parts e and f of Figure
2). The selected nodes are all characterized by negative
MIFs values representing attractive interactions. The
importance of a node is judged on the basis its MIF
values, the larger negative value representing a more
significant node. In fact, these nodes are areas where
strong molecular interactions with the target occur.
Clearly, the value assumed by MIF strongly depends
on the kind of probe used. For each probe, the sum of
the pairwise difference of the MIFs between each node
of molecule 1 (the reference, for example) and each node
of molecule 2 (the superposing compound) is computed.
The exponential trend of these differences has the effect
of enhancing AI value when the differences between
MIFs decrease, so nodes with similar MIFs will tend to
coincide. On the other hand, the distance r between
compared nodes plays a crucial role for a good align-
ment. Two nodes with similar MIFs but far from each
other give rise to poor AI, whereas nodes with similar
MIFs but near each other lead to good AI. In other word,
term a of eq 1 leads to privileged situations where nodes
with similar MIFs are placed near each other rather
than to cases where the same nodes are distant from
each other.

The presence of the term b in the AI formula is
particularly important when functional groups respon-
sible for specific interactions are not present in the
overlaying molecules. In these cases MIFs could be
insufficient to achieve a good alignment; however, by
considering the number and the nature of the heavy
atoms, this can be obtained. Moreover, term b enables
information concerning hindrance and shape of the
molecules to be condensed into a few points (corre-
sponding to the number of the heavy atoms). This

Figure 1. Prealignment steps: (a) starting position of two
molecules to overlay , where points 1 and 2 are, respectively,
the geometrical centers for the gray and black structures; (b)
translation of molecular geometrical centers onto the origin
(0, 0, 0); (c) rotation of the molecules to meet the average
molecular plane.
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signifies that all positive MIFs values in term a do not
have to be considered. Undoubtedly, these values in-
clude steric information spread uniformly around the
molecule; however, their inclusion would substantially
increase calculation times. The summation of term b
refers to the sum of the pairwise distance between each
heavy atom of molecule 1 and each heavy atom of
molecule 2 of Figure 2. It is multiplied by a constant
factor wa, which is the only parameter that can be tuned,
and shows the influence that term b has on term a in
AI computation. The procedure sets wa ) 2 by default.
Figure 2g shows the final alignment obtained for
molecules 1 and 2.

The AI index defined in eq 1 is used as a score
function in the optimization process in order to deter-
mine the best superposition of the members of the data
set onto a molecule chosen as reference. The alignment
is readily accomplished through the optimization (maxi-
mization) of the AI, which occurs by a simplex procedure
according to the Nelder and Mead algorithm.39

For the alignment procedure, the most active member
of the data set is chosen as the reference. This molecule
is kept in the same position during the whole procedure,
while the rest of the members are superimposed one at
a time in such a way that for each data set member AI
is maximized.

Figure 2. Steps of alignment index (AI) calculation in the superposition of molecules 1 and 2 (PDB code 1dyi and 1jom,
respectively). Big and little dots belong to molecular interaction fields (MIFs) of molecules 1 and 2, respectively. (a) MIFs for
molecule 1 computed with an acceptor-hydrogen-bonding probe (O::); (b) MIFs for molecule 1 computed with a donor-hydrogen-
bonding probe (N2d); (c) MIFs for molecule 2 computed with an acceptor-hydrogen-bonding probe (O::); (d) MIFs for molecule 2
computed with a donor-hydrogen-bonding probe (N2d); (e) selected nodes (equal to the number of heavy atoms in the molecule)
for molecule 1 relative to O:: (blue) and N2d (red) probes; (f) selected nodes (equal to the number of heavy atoms in the molecule)
for molecule 2 relative to O:: (blue) and N2d (red) probes; (g) final FIGO alignment obtained for molecules 1 and 2.
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The number and initial positions of the vertexes in
the simplex are determined by statistical experimental
design. The reason for this is to explore the whole three-
dimensional space with a minimum number of starting
positions and, as a consequence, a minimum number of
simplex vertexes. In this work we refer to two strategies
for determining the simplex vertexes: the full factorial
(FFD) and the D-optimal designs (Schemes 1 and 2).42,43

Scheme 1 shows the 57 (N1) starting points arising
from the fusion of two full factorial designs: (a) a 26

FFD in two levels and six variables (three rotations
along X, Y, and Z and three translations with respect
to X, Y, and Z; the experimental domain for the

rotational and translational variables varies in the
range of +90° to -90° and from +1 to -1 Å respec-
tively); (b) three 23 FFD in two levels and three variables
(the translational movements along X, Y, and Z keep
the rotational variables constant in each of the three
23 FFD). The starting positions having equal orienta-
tions have been elided.

Scheme 2 highlights the 113 (N2) starting positions
selected from the 1729 candidate points derived from a
multilevel six-variable factorial design. According to the
D-optimality criterion,43 this is the best subset. Table 3
provides the levels and the experimental domain for
each variable in Scheme 2. Moreover, 26-2 fractional

Scheme 1. 26 FFD + (3 × 23) FFD Experimental Plan and Graphic Representation of the Reference Molecule (Black)
and the Whole Set of the 57 Starting Positions for the Superposing Moleculea

a The elided starting positions leading to equal orientations are in gray (compare exp no. 9 equal to exp no. 14). The center of the
experimental domain is in bold.
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factorial designs were centered on each starting position
given by both FFD (N1) and D-optimal (N2) designs. The
addition of further orientations [26-2 ) 16 × (N1 or N2)]
to the already great number of N1 or N2 reduces the
risk of falling into a local maximum of the AI function

and consequently results in a better exploration of the
AI function.

The simplex starting points can be seen as orienta-
tions assumed by the superposing molecule in the
surrounding space. Therefore, each vertex of the sim-

Scheme 2. Experimental Plan, D-Optimal Design Statistical Parameters, and Graphic Representation of the
Reference Molecule (Black) and the 113 Starting Positions of the Superposing Moleculea

a The elided starting positions leading to equal orientations are in gray (compare exp nos. 2 and 3 equal to exp no. 9).
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plex, as well as each orientation, will be associated with
a value for the AI. After the simplex run, the value
calculated for AI will be maximized as well as the
overlap between the superposing molecule and the
reference, according to the criteria defining AI.

The program flowchart is shown in Chart 1, while
Chart 2 outlines the whole process.

Results and Discussion
FIGO methodology steps in to determine the best

superposition between two molecules, according to the
criteria defining the alignment index AI. Nevertheless,
the procedure can also be applied to superpose a set of
molecules. In these cases, a reference structure is
needed for the pairwise alignment between the refer-
ence and any other molecule of the set. As a consequence
of the successive pairwise alignment to the same refer-
ence structure, the overall set is clearly superposed.

The relevance of alignments performed by FIGO
methodology was tested using seven well-suited data
sets for which crystal structures of the receptor-
inhibitor complexes were available (Table 2). Studies
carried out on these data sets pointed out some crucial
aspects to be carefully considered during the application
of the proposed procedure. Bearing in mind the method
presented in the Method section, they can be sum-
marized by the following points: (1) choice of the
experimental design for the definition of the starting
orientations of the molecule to be superposed onto the
reference; (2) choice of the wa parameter (eq 1, term b);
(3) choice of the reference structure; (4) MIF types for
the calculation (eq 1, term a).

FIGO methodology was tested using all the ligands
in the same conformation because they came from the

crystal structure but with different starting orienta-
tions. Each component within the testing data sets was
selected one at a time to be the reference compound,
and the other members of the data set were superposed.
To evaluate the quality of the alignment obtained, the
orientation of each ligand after the FIGO procedure
(FIGO-aligned ligand) was compared to the orientation
presented by the same ligand in the crystallographic
structure superposition, the latter obtained using the
common protein backbone atoms (crystal-aligned ligand).
The lower is the root-mean-square (rms) deviation
between the FIGO-aligned and the crystal-aligned
ligands the better is the quality of FIGO superposition.

Table 2. List of Ligands Binding to the Same Protein Used in This Study

PDB
code source

resolution
(Å)

PDB
code source

resolution
(Å)

Trypsin Dihydrofolate Reductase
1 1tnl bovine (bos taurus) pancreas 1.9 1 1jom Escherichia coli 1.9
2 1tnk bovine (bos taurus) pancreas 1.8 2 1dds Escherichia coli 2.2
3 1tnj bovine (bos taurus) pancreas 1.8 3 1dyj Escherichia coli 1.85
4 1tni bovine (bos taurus) pancreas 1.9 4 1dyi Escherichia coli 1.9
5 1tnh bovine (bos taurus) pancreas 1.8
6 3ptb bovine (bos taurus) pancreas 1.7 R-Thrombin

1 1ppb human (Homo sapiens) plasma 1.92
Steroid 2 1dwd human (Homo sapiens) plasma 3

1 1dbb mouse (mus musculus) hybridoma 2.7
2 1dbj mouse (mus musculus) hybridoma 2.7 Endothiapepsin
3 1dbk mouse (mus musculus) hybridoma 3 1 4er1 chestnut blight fungus (endothia parasitica) 2
4 2dbl mouse (mus musculus) hybridoma 2.9 2 1er8 chestnut blight fungus (endothia parasitica) 2
5 1dbm mouse (mus musculus) hybridoma 2.7 3 1epo chestnut blight fungus (endothia parasitica) 2

4 2er6 chestnut blight fungus (endothia parasitica) 2
Penicillopepsin 5 1ent chestnut blight fungus (endothia parasitica) 1.9

1 1apu fungus (penicillium janthinellum) 1.8 6 3er5 chestnut blight fungus (endothia parasitica) 1.8
2 1apv fungus (penicillium janthinellum) 1.8 7 3er3 chestnut blight fungus (endothia parasitica) 2
3 1apw fungus (penicillium janthinellum) 1.8 8 1epq chestnut blight fungus (endothia parasitica) 1.9
4 1ppk fungus (penicillium janthinellum) 1.8 9 1epp chestnut blight fungus (endothia parasitica) 1.9
5 1ppl fungus (penicillium janthinellum) 1.7 10 1epn chestnut blight fungus (endothia parasitica) 1.6

Table 3. Factors, Experimental Domain, and Levels for the
First-Phase Strategy 2

variables levels and experimental domain unit

rx -90, 0, 90, 180 deg
ry -90, 0, 90, 180 deg
rz -90, 0, 90, 180 deg
tx -1, 0, 1 Å
ty -1, 0, 1 Å
tz -1, 0, 1 Å

Chart 1. Flow Chart of FIGO Procedure
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Experimental evidence coming from the testing data
sets indicates that the best results of the FIGO proce-
dure were accomplished using the full factorial design
strategy and wa ) 2 parameter (points 1 and 2). The
data set in Table 4 refers to the application of both FFD
and D-optimal strategies and two values of the wa
parameter when the penicillopepsin data set was taken
as an example. As can be seen, the lowest average rms
value is obtained with wa ) 2 and 1apw as the reference
structure. In this case, both experimental design strate-
gies lead to almost equivalent results.

As far as the reference compound within a data set
is concerned, the requirements for its selection are high
affinity and a reduced conformational freedom (point 3).
In other words, a potent and rigid compound, or at least
conformationally constrained, would be an ideal candi-
date as a reference structure. Whenever the reference
structure presents a notable conformational freedom,
it would be more appropriate to use a hyperstructure

(HS) as reference. HS can be imagined as a molecule
with the number of atoms and nodes equal to the sum
of those in the individual molecules participating in its
formation. The utilization of HS instead of a single
reference structure should be considered when dealing
with very structurally different compounds having
similar biological activities or when no fine structural
and electronic features of the receptor-binding mode are
known.

MIFs employed to carry out the superposition affect
the overlay results (point 4). As a general rule, MIFs
derived from donor- and acceptor-hydrogen-bonding
probes are always used because hydrogen bonds play a
crucial role in determining the specificity of ligand-
macromolecule interactions. On the other hand, when
hydrophobic interactions are determinant for the bind-
ing of the ligands, it is important to use MIFs arising
from hydrophobic probes (DRY, CH3). Table 5 sum-

Chart 2. Steps of FIGO Procedure

Table 4. Numerical and Graphical Results of the Penicillopepsin Data Set: (a) FIGO Alignment; (b) Alignment in the Crystal

rms,
reference 1

rms,
reference 2

rms,
reference 3

rms,
reference 4

rms,
reference 5

FFD DOPT FFD DOPT FFD DOPT FFD DOPT FFD DOPT

Penicillopepsin Data Set, wa ) 1

1 0.192 0.187 0.135 0.137 0.258 0.258 1.404 1.402
2 0.643 0.641 0.224 0.224 0.312 0.306 1.424 1.429
3 0.653 0.651 0.219 0.219 0.259 0.257 1.417 1.416
4 0.648 0.651 0.266 0.267 0.225 0.223 1.377 1.380
5 0.703 0.700 0.354 0.355 0.359 0.355 0.175 0.175
average value: 0.662 0.661 0.258 0.257 0.236 0.235 0.251 0.249 1.405 1.407

Penicillopepsin Data Set, wa ) 2
1 0.172 0.172 0.124 0.123 0.249 0.246 1.414 1.411
2 0.667 0.664 0.126 0.127 0.308 0.306 1.436 1.437
3 0.676 0.674 0.123 0.123 0.268 0.269 1.424 1.423
4 0.625 0.621 0.277 0.277 0.248 0.247 1.368 1.365
5 0.687 0.683 0.360 0.361 0.365 0.364 0.173 0.173
average value: 0.663 0.660 0.233 0.233 0.216 0.215 0.250 0.249 1.411 1.409
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marizes the chemical properties of some of the main
probes used.

When the above-mentioned points were carefully
followed during application of the FIGO procedure to

each testing data set, the superpositions shown in
Figure 3 and Table 4 were obtained.

In all cases, the calculated alignment (part a) is
consistent with that observed in the crystal (part b), the

Figure 3. Superposition of molecules within each data set. The average rms deviation is also reported. (a) Best alignment calculated
by FIGO; (b) alignment in the crystal.

Table 5. Some of the Probes Used in MIFs Calculations with GRID Program6,7

grid probes description
no. of H bonds

accepted
no. of H bonds

donated H-bond type

O sp2 carbonyl oxygen 2 0 sp2 carbonyl oxygen bonded to one atom and with two
lone pairs, e.g., in aldehyde or ketone or
amide groups.

O:: sp2 carboxyl oxygen 2 0 explicit resonating sp2 oxygen with two lone pairs in
carboxyl acid anion or pyridine oxide (C5H5NO).

OH phenol or carboxyl OH 1 1 oxygen atom bearing one acidic hydrogen in phenols
or carboxyl -COOH.

N2d sp2 amine NH2 cation 0 2 cationic sp2 N bonded to two hydrogens and with one
other nonrotatable (double) bond. Always flat.
No lone pair. NOT guanidinium NH2.

N1 neutral flat NH, i.e., amide 0 1 planar nitrogen bonded to one H and two other atoms.
No lone pair. e.g., amide, guanidinium,
methylaniline, and some aromatic heterocycles.

C3 methyl CH3 group 0 0 sp3 aliphatic carbon atom bonded to three hydrogen
atoms.

DRY hydrophobic probe 2 2 This type of hydrogen bond is exclusively used in the
GRID program for the hydrophobic probe,
which identifies places where hydrophobic atoms
on the surface of a target molecule will make
favorable interactions with hydrophobic atoms on
another molecule. It is a distinguishing
characteristic of hydrophobic interactions that
they only occur when both molecules are immersed
in water. This hydrophobic probe may be regarded
as a modified water probe. Like water, it must be
able to donate and accept hydrogen bonds and
must be electrically neutral.
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major features of the crystal overlay being preserved.
Figure 4 shows greater details with regard to the
superpositions of each molecule in the data sets and the
appropriate reference structure when the steroid and
trypsin data sets were taken as examples. Although the
steroid data set gave a less convergent alignment
(Figures 3 and 4a), it should be pointed out that the
average rms deviation (1.508) for this data set falls
within the X-ray crystallography resolution. It can be
presumed that while FIGO superposition involves both
MIF and heavy atoms of the data set molecules, thus
explaining the almost perfect overlay of the gonane
system, the same moiety could freely fit into a large
pocket of the enzyme with no residues in proximity.
Therefore, a rigorous superposition of the gonane system
is not strictly required for the activity, whereas super-
positions of the molecules belonging to the trypsin data
set predicted by FIGO (Figures 3 and 4b) compare well
with the crystal setup as confirmed by both the average

rms value (0.682) and the rms deviations for each data
set molecule shown in Figure 4b.

FIGO is an ideal application in cases where the
crystal structure of protein-ligand complexes is not
available. Even in this case, verification of the test
results was carried out by comparing the FIGO-aligned
ligand to the crystal-aligned ligand. For this purpose,
conformers derived from the conformational analysis
carried out on the ligands belonging to the testing data
sets were considered. Subsets of conformers were de-
rived by the application of an appropriate clustering
algorithm, and then the FIGO procedure was applied
to cluster representatives. Figure 5 refers to the results
obtained from the flexibility treatment of the dihydro-
folate reductase and R-thrombin data sets taken as
examples. The former data set is formed by four
molecules. Taking compound 1dyi (PDB code) in its
crystallographic conformation as the reference (Figure
5A), seven cluster representatives for each of the other

Figure 4. Pairwise representation between the reference (green) and the superposing molecule from the overlay of (a) five steroidic
compounds (PDB codes 1dbb, 1dbj, 1dbk, 1dbl, 1dbm); (b) six molecules belonging to the trypsin data set (PDB codes 1tnj, 1tnl,
1tnk, 1tni, 1tnh, 3ptb).
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three compounds (PDB codes 1jom, 1dds, 1dyj) were
taken for the superposition, together with their crystal-
lographic conformations. The number of cluster repre-
sentatives here is limited because of graphical needs;
application of the procedure to a higher number of
conformers allows the same kind of conclusions. Over-
lays of the reference 1dyi and all eight conformers of
1jom, 1dds, and 1dyj are shown in the central portions
of parts a, b, and c of Figure 5A, respectively. The
alignments between 1dyi and each conformer, together
with the corresponding AI values, are illustrated around
the central figures. The highest AI values are always
associated with the crystallographic conformations of
1jom, 1dds, and 1dyi, which indicates the reliability of
FIGO in choosing the appropriate binding conformer
orientation. The same conclusions are reached when the
components of the other data sets in Table 2 are
submitted to this flexibility treatment (data shown only
for R-thrombin data set, Figure 5B). In the case of
cluster representatives, the AI index has been used as
a superposition evaluation parameter because compari-
son involves different conformers of the same molecule
having the same number and type of atoms.

The results presented in this study confirm that FIGO
is a semiflexible superposing procedure because it
explicitly considers conformers derived from a confor-
mational analysis performed on all studied molecules.

Conclusion

The results collected so far suggest that FIGO is an
innovative and promising methodology capable of re-
placing subjective evaluations for superposition criteria.
The ability of the joint MIFs/simplex/experimental
design approach has been proved by experimental
evidence to be qualitatively very close to reality, the
average rms distances being inferior to X-ray crystal-
lography resolution.

Studies are in progress to evaluate the quality per-
formance offered by FIGO when either a single molecule
or a hyperstructure is used as the reference. This would
give insights into the real effect of the reference
structure selection step on the quality of the results.

At present, experience gained with different data sets
shows that the best choice is represented by the most
biologically active and less flexible compound.

Finally, we are currently considering the possibility
of new applications for FIGO methodology in other
related 3D-QSAR contexts. For example, FIGO could be
successfully joined to a procedure for the extraction of
the bioactive conformation of each ligand of the data
set. Studies are in progress in order to apply the genetic
algorithm procedure to the problem of conformer selec-
tion. The reason for this additional feature is straight-
forward. The selection of molecules in their biologically

Figure 5. FIGO conformational flexibility treatment. (A) Dihydrofolate reductase data set. Conformers of molecules (a) 1jom
(PDB code), (b) 1dds (PDB code), and (c) 1dyj (PDB code) are superposed to the reference structure 1dyi (PDB code, in green).
Arrows indicate the superposition with the highest AI value. (B) R-Thrombin data set. Conformers of molecule 1dwd (PDB code)
are superposed to the reference structure 1ppb (PDB code, in green). The arrow indicates the superposition with the highest AI
value.
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active conformation will furnish a detailed picture of the
unknown receptor cavity taken from the ligand point
of view. It is quite possible that application of such a
methodology could help resolve scientific problems that
would otherwise be left to subjective solutions.

Materials and Software

The FIGO method was implemented using Visual Basic
programming language version 6.0 (Microsoft Corporation).
The calculations were performed on a 900 MHz K7Athlon
personal computer. CPU calculation time required for the
alignment varies according to the number of superposing
compounds and the number of atoms in all the molecules.
Usually, superposition of 10 compounds requires 20 min to
achieve an optimal alignment.

Data sets used for testing the FIGO procedure were re-
trieved from the Protein Data Bank40,41 and are set out in Table
2. An additional data set of 57 glycogenophosphorylase inhibi-
tors based on the glucose scaffold was kindly supplied by the
Laboratory for Chemometrics, Department of Chemistry,
Perugia. X-ray crystallographic results of all ligands complexed
to glycogenophosphorilase were available.44,45

Hydrogen atoms of data set compounds were added, and
charges were loaded from AMBER46 by the Building module
of the InsightII 200047 program. These structures were refined
by keeping their heavy atoms at fixed positions and then
minimizing their energy.

MIFs value were computed with the GRID program.6,7
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