*N*⁶-Cyclopentyl-2-(3-phenylaminocarbonyltriazene-1-yl)adenosine (TCPA), a Very Selective Agonist with High Affinity for the Human Adenosine A₁ Receptor

Margot W. Beukers,^{*,†} Martin J. Wanner,[‡] Jacobien K. Von Frijtag Drabbe Künzel,[†] Elisabeth C. Klaasse,[†] Adriaan P. IJzerman,[†] and Gerrit-Jan Koomen[‡]

Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, and Laboratory of Bioorganic Chemistry, Institute of Molecular Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands

Received October 21, 2002

Four subtypes of adenosine receptors are currently known, that is, A₁, A_{2A}, A_{2B}, and A₃ receptors. Interestingly, quite substantial species differences exist especially between human and rat A₃ receptors. As a result, ligands such as CCPA, which are very selective for the rat A_1 receptor versus the human A₃ receptor, are substantially less selective when the human A₁ and A₃ receptors are compared. New 2-substituted and 2, N^6 -disubstituted adenosines were synthesized, and their affinities for the human adenosine A₁, A_{2A}, A_{2B}, and A₃ receptors were determined. Although large substituents on the C2-position are generally thought to yield adenosine A_{2A} receptor selective ligands, the reported series of 2-triazeno-substituted adenosines had a very high affinity for the A₁ receptor. For example, 2-(3-phenylaminocarbonyltriazene-1-yl)adenosine had an affinity of 6.1 \pm 1.3 nM for the human adenosine A₁ receptor. Introduction of a diphenethyl substituent at the N^6 -position of this compound resulted in a high-affinity agonist, 3.1 ± 0.9 nM, for the human adenosine A₁ receptor with 316- and 45-fold selectivity versus the human A_{2A} and human A_3 receptors, respectively. The most selective, high-affinity human adenosine A_1 receptor agonist was the disubstituted compound N⁶-cyclopentyl-2-(3-phenylaminocarbonyltriazene-1-yl)adenosine (TCPA). TCPA had an affinity of 2.8 ± 0.8 nM for the human adenosine A_1 receptor and was 75-fold and 214-fold selective versus the human A_{2A} and human A3 receptors, respectively. In addition, TCPA was a full agonist and inhibited the forskolininduced cAMP production of CHO cells stably transfected with the human adenosine A_1 receptor with an IC_{50} of 1.5 \pm 0.5 nM.

Introduction

Four adenosine receptors have been cloned from several species including human. They are named adenosine A₁, A_{2A}, A_{2B}, and A₃ receptors. Numerous ligands for adenosine receptors have been synthesized and biologically evaluated. For a recent review on adenosine receptors and their ligands see Fredholm et al.¹ Traditionally, selective adenosine A₁ receptor agonists were obtained by monosubstitution of the N^6 position,² whereas introduction of substituents such as alkylamino,³ alkynyl,^{4,5} alkoxy,^{6,7} or *N*-aralkylidenehydrazino^{8,9} at the C2-position yielded selective A_{2A} receptor agonists. To date, no selective agonists are available for the A_{2B} receptor. With the discovery in 1991 of the adenosine A3 receptor, the fourth member of the adenosine receptor family, new challenges to synthesize selective ligands arose.^{10,11}

The most selective agonist for the human adenosine A_3 receptor, N^6 -(4-aminobenzyl)-5'-methylcarboxamidoadenosine (ABMECA), is substituted on the N^6 - and 5'-positions. This ligand is very selective for the human A_3 receptor versus the other human receptors (70 times over A_1 and 166 times over A_{2A}). The selective agonist for the human adenosine A_1 receptor, 2-Cl- N^6 -cyclopen-

tyladenosine (CCPA, 2735 times over human A2A and 51 times over human A_3),¹² and the selective agonist for the human adenosine A2A receptor CGS21680 (11 times over human A₁ and 4 times over human A₃, 2-[[4-(2-carboxyethyl)phenethyl]amino]adenosine-5'-N-ethylcarboxamide), on the other hand, display considerable affinity for the human A₃ receptor.¹² Hence, more selective ligands for both the human adenosine A1 and the human adenosine A_{2A} receptor are required. The objective of this study is to generate agonists for the human adenosine A₁ receptor with higher overall selectivity over the other human adenosine receptors. Although substitution at the C2-position is generally thought to yield selective agonists for adenosine A_{2A} receptors, some 2-substituted agonists show preference for the adenosine A_1 receptor. Introduction of small groups such as chlorine at the C2-position in combination with the N^6 -cyclopentyl moiety (CCPA) resulted in the most selective agonist for the human adenosine A₁ receptor known to date as shown in this study and by Klotz et al.¹²

In a previous study we have reported on N^6 -substituted, 2-NO₂ analogues of adenosine.¹³ The presence of the NO₂ group at the C2-position together with a cyclopentyl substituent at the N^6 -position resulted in a selective ligand for the rat adenosine A₁ receptor.

To further improve selectivity we have taken 2-nitrosoadenosine as a starting point in our search for

^{*} Corresponding author (telephone $+31\text{-}71\text{-}5274\overline{607}; \text{ fax } +31\text{-}71\text{-}5274565};$ e-mail beukers@chem.leidenuniv.nl).

[†] Leiden University.

[‡] University of Amsterdam.

Scheme 1. Synthesis of Carbamoyl Triazenes 8a-l, 11, 12, and 16a-d^a

^{*a*} Reagents and conditions: (i) 1.0 equiv of NaN₃, DMF, -18 °C; (ii) H₂, Pd/C, EtOAc; (iii) NaIO₄, EtOAc, H₂O; (iv) aq NH₃/MeOH; (v) CH₃CN/HOAc 10:1; room temperature, 5 h; (vi) **11**: benzoyl hydrazide, CH₃CN/HOAc 10:1, room temperature, 18 h, 54%; (vii) **12**: phenyl carbazate, CH₃CN/MeOH/HOAc 10:2:1, room temperature, 18 h, 32%; (viii) amine, DMF, DiPEA, room temperature; (ix) DCM/HOAc 10:1, room temperature, 18 h (71%); (x) aniline, room temperature, 8 h (83%); (xi) aq NH₃/MeOH (61%).

selective agonists for the human adenosine A_1 receptor. These data show that proper substitution at the C2position yields selective agonists for this receptor. In contrast to small substituents such as chlorine and NO₂, the compounds we present here contain large substituents at the C2-position. Combined substitution at C2 and N^6 further improves this selectivity.

Results and Discussion

Chemistry. 2-Nitrosoadenosine is a valuable precursor for the attachment of nitrogen-based side chains to

the adenosine 2-position. In particular, the key precursor 6-chloro-2-nitropurine riboside **1** is readily obtained from inosine, via nitration of 6-chloropurine riboside triacetate at the purine 2-position using the tetrabutylammonium nitrate/trifluoroacetic anhydride combination (Scheme 1).¹⁴ Azidation of the 6-position in compound **1** followed by redox conversion of the nitro to the nitroso group produced crystalline **2**.¹⁵ The exceptional reactivity of this nitroso functionality allows condensation with a variety of nitrogen nucleophiles. The first example shown is the acetic acid-catalyzed Mills reac-

^{*a*} Reagents and conditions: (i) $NH_2NH_2 \cdot H_2O$, DCM, -60 °C to room temperature; (ii) (PhO)₂CO, neat, 100–150°C; (iii) NH_2 - $NH_2 \cdot H_2O$, DCM, rT, 18 h; (iv) (PhO)₂P(O)N₃, DiPEA, DCM, room temperature; (v) PhOH, CH₃CN, reflux, 18 h, then NH_2NH_2 .HBr, Et₃N, room temperature, 2 h.

tion of **2** with aniline, producing 2-phenyldiazoadenosine **3** in good yield.

Elongation of the two-atom side chain was first examined by condensation of **2** with phenylhydrazine. The strong reducing properties of this type of electronrich hydrazines, however, completely converted the nitroso group in **2** to hydroxyamine **5**, whereas condensation products could not be isolated. Introduction of electron-withdrawing substituents such as trifluoromethyl and cyano in the phenyl ring of the hydrazine did not give any improvement.

Satisfactory results were obtained with 4-phenylsemicarbazide **6d** as a nucleophile in an acetic acid-catalyzed condensation reaction, producing phenylcarbamoylsubstituted triazene **7d** in 63% yield. Attachment of a carbonyl group directly to the hydrazine obviously decreases the reducing properties of the hydrazine without affecting its nucleophilicity. Only a few examples of reactions between nitrosobenzenes and semicarbazides are known in the literature, and it appears that the favorable reactivity of **2** makes this reaction a success.^{16,17} Removal of the acetates from the ribose in **7d** was readily accomplished with a mixture of methanol and aqueous ammonia.

A series of 4-substituted semicarbazides **6a-1** was synthesized from hydrazine hydrate and the corresponding isocyanates, as is shown in Scheme 2. Because thiazole-2-isocyanate is not commercially available, 4-(2thiazolyl)semicarbazide 61 was prepared from 2-aminothiazole in two steps. Furylsemicarbazide 9 could be obtained from furan-2-carboxylic acid via Curtius rearrangement. Condensation of the 4-substituted semicarbazides 6a-l with 2 gave triazenes 7a-l in 43-63% yield, and deprotection with aqueous ammonia furnished the corresponding triazenes 8a-l (60-93% yield). 4-Furylsemicarbazide 9 formed the only exception: instead of the anticipated condensation reaction, a 4+2 hetero-Diels-Alder reaction occurred between the furan ring and the nitroso group, leading to extensive decomposition. This type of cycloaddition has been described before in the literature.¹⁵

Two additional carbonyl-substituted hydrazines, benzoylhydrazide and phenyl carbazate, were examined (Scheme 1). A condensation reaction of **2** with both hydrazides proceeded in high yield, but removal of the acetate protecting groups with ammonia resulted in fragmentation of the triazene. Because deprotection under milder conditions (e.g., KCN in methanol) did not prevent this type of decomposition, the deprotection step was avoided by using unprotected 2-nitrosoadenosine **10**. This nitroso compound was prepared in a three-step process from **2** by protection of the nitroso functionality: Diels–Alder reaction with cyclopentadiene, deacylation, and retro-Diels–Alder.¹⁵ Condensation of **10** with benzoylhydrazide and phenyl carbazate directly produced the anticipated triazenes **11** and **12**.

2-Triazenyl-functionalized adenosines with an additional substituent at the N⁶-position were synthesized from 6-chloro-2-nitropurine riboside 1 (Scheme 1). Amination of **1** with aniline, cyclopentylamine, and 2.2diphenylethylamine gave N⁶-substituted adenosines **13a**-c, respectively.¹³ Nitroso derivatives **14a**-c were produced in good yield following the nitro to nitroso reduction/oxidation sequence already applied for the synthesis of 2. Acetic acid-catalyzed condensation between 14a-c and semicarbazide 6a or 4-phenylsemicarbazide 6d followed by removal of the acetates gave N⁶-substituted triazenes 16a-d. In particular, for the synthesis of TCPA the condensation step to 15c was low yielding as a result of nitroso to hydroxylamine reduction induced by 4-phenylsemicarbazide. An improved synthetic procedure was developed for TCPA by triazene formation from the nitroso derivative $\mathbf{14b}$ ($\mathbf{R}^2 = \text{cyclo-}$ pentyl) with *p*-nitrophenyl carbazate¹⁸ instead of 4-phenylsemicarbazide (Scheme 1). The electron-withdrawing *p*-nitrophenyl substituent further reduces the reduction potential of the hydrazine without noticeably affecting its nucleophilic properties. Reaction of 17 with aniline followed by aminolysis of the acetate protecting groups produced TCPA (16c) in an acceptable 24% yield over six steps.

Stability Studies. Because some alkyl- and aryltriazenes are known to decompose slowly in solution, we examined the stability of the carbamoyl-substituted triazenes. No decomposition of N⁶-unsubstituted triazene 8d and N^6 -cyclopentyl-substituted triazene 16c (TCPA) was found in a 9:1 mixture of 0.05 M phosphate buffer in D₂O (pD 7.8) and DMSO-d₆ at 25 °C over a period of 5 days, as was monitored by ¹H NMR. The stability of these compounds might be due to the presence of electron-withdrawing substituents on both sides of the triazene linker. Heating 8d and 16c at 80 °C in aqueous DMSO was necessary before formation of aniline and 2,6-diaminopurine riboside 18 or 2-amino-CPA 19 occurred, as is shown in Scheme 3. In addition, the photostability of the triazene functionality in these compounds was examined. After DMSO- d_6 solutions of 8d and 16c had been exposed to daylight for several days or to irradiation at 350 nm, no decomposition was observed (¹H NMR analysis).

Interestingly, NMR analysis of aqueous solutions of compound **4** shows the presence of a Z/E = 41/59 mixture in diffuse daylight; the compound was tested as such. *E* to *Z* isomerization of the N=N double bond has never been observed for the triazenes. In, for example, NMR spectroscopy, only the most stable *E*-isomer is observed.

Biological Evaluation. All compounds were tested in radioligand binding assays to determine their affinity for the human adenosine receptors. The tritiated antagonist [³H]-1,3-dipropyl-8-cyclopentylxanthine ([³H]-DPCPX) was used for human adenosine A_1 and A_{2B} receptors, whereas [3H]-7-amino-2-(2-furyl)-5-[2-(4-hydroxyphenyl)ethyl]amino[1,2,4]triazolo[1,5-a][1,3,5]triazene ([³H]ZM241385) was used as a tritiated antagonist for human adenosine A2A receptors. Due to the lack of commercially available radiolabeled antagonists, we used I125-labeled N6-(4-amino-3-iodobenzyl)-5'-methylcarboxamidoadenosine ([125I]IABMECA) as a radiolabeled agonist for human adenosine A₃ receptors. As we used an antagonist radioligand to determine the affinities of the agonists for the adenosine A_1 and A_{2A} receptors, the K_i values represent a combined value for both the high- and low-affinity states of the receptors. The K_i values for the adenosine A_3 receptor, on the other hand, represent only the high-affinity state as we used an agonist radioligand to study this receptor.

Our encouraging results to achieve selective adenosine A_1 receptor ligands by introducing an NO_2 substituent at the C2-position of adenosine prompted us to explore the C2-position in further detail. The NO_2 substituent was converted to 2-nitrosoadenosine to obtain a suitable precursor for the attachment of nitrogen-based side chains (Table 1).

Whereas the adenosine A_3 receptor was relatively insensitive to the elongation of the side chain, the A₁, A_{2A}, and, to a lesser degree, A_{2B} receptors preferred compound 8d with the phenylcarbamoyltriazenyl chain. Extension of the side chain from nitroso (10), via diazophenyl (4) and benzoyltriazenyl (11), to phenylcarbamoyltriazenyl (8d) led to a progressive increase in affinity for the adenosine A_1 receptor. Within this series the introduction of an extra nitrogen atom, to obtain 8d, was most effective and resulted in a 311-fold increase in affinity as compared to **11**. A different pattern was obtained for the other three adenosine receptors. Neither the adenosine A_{2B} receptor nor the adenosine A₃ receptor was very sensitive (5-fold affinity change at most) to these C2 substituents. On the other hand, the nitroso-substituted (10) and the benzoyltriazenyl-substituted (11) analogues had a weak affinity for the adenosine A_{2A} receptor, whereas the diazophenylsubstituted (4) compound had a slightly higher affinity. In analogy with the adenosine A_1 receptor, the major affinity increase stemmed from the elongation of the spacer with an extra nitrogen atom (8d). As a result,

8d was selective for the human adenosine A_1 receptor with a 4-fold selectivity for A_1 versus A_{2A} and an 18-fold selectivity for A_1 versus A_3 .

On the basis of these data, the side chain of 8d was investigated in greater detail as shown in Table 2. Besides the phenyl substituent (as in 8d) also several other substituents R₁ as well as the unsubstituted (8a) compound were tested for their affinity for the human adenosine receptors. Within this series the phenyl (8d) and the cyclohexyl (8c) compounds had the highest affinity for the adenosine A_1 receptor, 6.1 and 5.8 nM, respectively. The unsubstituted compound (8a) had a strongly reduced affinity of 140 nM for this receptor. Introduction of an ethyl, benzyl, or thiazole substituent led to a 4-8-fold decrease in affinity. Substitution of the phenyl ring with either a chlorine or methoxy group resulted in a slight 2–4-fold decrease in affinity. Compound **8** with a trifluoromethyl group at the meta position of the phenyl ring was insoluble in our ligand binding assay buffers. Replacement of one of the nitrogen atoms of 8d with oxygen resulted in the ester analogue 12. This alteration was detrimental to the affinity of this compound for the adenosine A₁ receptor.

A different pattern was obtained with the adenosine A_{2A} receptor. This receptor had no preference for either a phenyl, ethyl, cyclohexyl, benzyl, or thiazole group at the R_1 position, whereas the unsubstituted compound had a 4-fold lower affinity compared to the phenyl-substituted ligand. Substitution of the phenyl group of **8d** was allowed at the ortho position with either a chlorine or a methoxy group or at the para position with a methoxy group and resulted in a 5-fold drop in affinity at most. In contrast, introduction of a chlorine substituent at the meta or para position was not allowed. The ester compound **12** had a very low affinity for the adenosine A_{2A} receptor.

The adenosine A_3 receptor was relatively insensitive to the nature of the R_1 substituent, with a maximal 2–6fold change in affinity. Substitution of the phenyl ring was also allowed and resulted in maximal changes in affinity of 3-fold. Even the replacement of nitrogen with oxygen in the spacer as in **12** was tolerated by this receptor.

None of the investigated C2-substituted compounds displayed marked affinity for the adenosine A_{2B} receptor. The highest affinity was obtained with thiazolyl-carbamoyltriazenyladenosine (**8**1) and resulted in a displacement of 79% of radiolabeled [³H]DPCPX at a concentration of 10 μ M. At a concentration of 1 μ M **8**1 was able to displace 42% of the radioligand, suggesting that the affinity of **81** is ~1 μ M. The affinity of **81** is comparable to the affinity of NECA (2.2 ± 0.6 μ M; see also Table 2), the reference agonist for the adenosine A_{2B} receptor.¹⁹

Substitution of adenosine at the N⁶-position together with a halogen residue at the C2-position has yielded selective high-affinity agonists, such as CCPA, for the adenosine A₁ receptor. However, substituents other than halogens at this position are generally detrimental for binding to the adenosine A₁ receptor.²⁰ In addition, C2,N⁶-disubstituted adenosines with an alkyl chain at the N⁶-position have a lower affinity compared to the equivalent C2 monosubstituted compounds.²¹ Introduction of a cyclopentyl group at the N⁶-position, however, **Table 1.** Affinity of 2-Nitrosoadenosine and Analogues for the Human Adenosine A_1 , A_{2A} , A_{2B} , and A_3 Receptors As Determined inRadioligand Binding Studies

Table 2. Affinities for Human Adenosine Receptors As Determined in Radioligand Binding Studies

R ¹ NH			$K_{ m i}\pm { m SEM}$ in nM ($n=3$) or % displacement at 10 $\mu { m M}$ ($n=2$)				
compd	\mathbb{R}^1	\mathbb{R}^2	A_1	A_{2A}	A_3	A_{2B}	
8a	Н	Н	140 ± 34	88 ± 12	209 ± 62	9%	
8b	ethyl	Н	45 ± 17	19 ± 10	113 ± 21	15%	
8c	cyclohexyl	Н	$\textbf{5.8} \pm \textbf{1.8}$	25 ± 3	63 ± 17	6%	
8d	phenyl	Н	6.1 ± 1.3	25 ± 3	110 ± 20	54%	
8e	4-Cl-phenyl	Н	15 ± 11	4.4%	39 ± 6	21%	
8f	3-Cl-phenyl	Н	15 ± 4	29.9%	59 ± 25	64%	
8g	2-Cl-phenyl	Н	23 ± 8	45 ± 19	179 ± 33	30%	
8h	4-MeO-phenyl	Н	20 ± 10	25 ± 1	73 ± 11	15%	
8i	2-MeO-phenyl	Н	20 ± 3	125 ± 49	81 ± 13	18%	
8j	3-CF ₃ -phenyl	Н	insoluble	insoluble	insoluble	insoluble	
8k	benzyl	Н	42 ± 15	25 ± 11	147 ± 18	9%	
12	O-phenyl ^a	Н	43%	38.9%	577 ± 138	6%	
81	thiazole	H	24 ± 1	25 ± 1	610 ± 340	79%	
16a	H	phenyl	204 ± 136	17.7%	175 ± 57	10%	
16b	phenyl	phenyl	430 ± 132	24.3%	90 ± 12	9%	
16c, TCPA	phenyl	cyclopentyl	2.8 ± 0.8	210 ± 20	600 ± 230	10%	
16d	phenyl	Ph ₂ CHCH ₂	3.1 ± 0.9	980 ± 110	140 ± 20	10%	
CCPA NECA			$\begin{array}{c} 6.4 \pm 1.8 \ 12 \ (9.6{-}15)^b \end{array}$	$\begin{array}{c} 639\pm55\\ 60\pm10\end{array}$	$\frac{281 \pm 56^{zz}}{11 \pm 0.8}$	2200 ± 600	

^a O-phenyl instead of NH-phenyl. ^b The K_i value of NECA for the human adenosine A₁ receptor was performed in duplicate.

partially restores the affinity of these disubstituted compounds for the adenosine A1 receptor.20 These data suggest that the binding sites of C2 and N⁶ substituents might partially overlap. To test this hypothesis, we analyzed carbamoyltriazenyladenosine with a phenyl group at the N⁶-position (16a) and compared the affinity of this compound with that of compound **8d**, in which the phenyl group is present on the triazenyl chain rather than the N⁶-position. Compound 16a had a reduced affinity for the adenosine A_1 (33-fold) as well as the adenosine A_{2A} receptor (>400-fold), whereas the affinity for the adenosine A₃ receptor was hardly affected (2-fold). These data suggest that the C2 and N^6 substituents may occupy different binding sites. Moreover, compound 8a, which lacks a phenyl group at both the C2- and N⁶-positions, has an affinity comparable to that of **16a** for the adenosine A_1 receptor, hence suggesting that disubstitution may be allowed for the adenosine A₁ receptor. Indeed, introduction of a phenyl group at the N⁶-position of 8d yielded compound 16b with an affinity comparable to that of compound 16a for the adenosine A₁ receptor. Substitution of the N⁶position with a big substituent, diphenylethyl, further demonstrates that the binding sites of N⁶ and C2 substituents are different. This compound, 16d, had a high affinity for the adenosine A_1 receptor, whereas the affinity for the A_{2A} receptor dropped considerably compared to that of **8d**. The affinity of **16d** for the A_3 receptor was comparable to those of 8d and 16a. To exploit the preference of this disubstituted compound for the adenosine A_1 receptor, we also introduced the A_1 selective cyclopentyl group at the N⁶-position (16c, TCPA). TCPA had indeed a high, 2.8 nM, affinity for the adenosine A₁ receptor. As anticipated on the basis of radioligand binding data in the rat,²⁰ the affinity of TCPA for the adenosine A_{2A} receptor was somewhat higher compared to that of the diphenylethyl-substituted compound (16d). The 5-fold drop in affinity for the

Table 3. Comparison of the Relative Potency and Selectivity of TCPA versus CCPA and NECA for the Human Adenosine A_1 , A_{2A} , and A_3 Receptors^{*a*}

	1	selectivity			
compd	A ₁ receptor	A _{2A} receptor	A ₃ receptor	A_1/A_{2A}	A_1/A_3
TCPA CCPA	1 (2.8) 0.4 (6.4)	1 (210) 0.3 (639)	1 (600) 2.1 (281)	75 100	214 44
NECA	0.2 (12)	3.5 (60)	55 (11)	5	0.9

^{*a*} The potency of TCPA for the three human adenosine receptors is set at 1. Actual K_i value in nM is presented in parentheses.

adenosine A_3 receptor, as compared to **8d**, improved the selectivity of TCPA for the adenosine A_1 receptor. The disubstituted compounds had virtually no affinity for the adenosine A_{2B} receptor.

The cyclopentyl- and diphenylethyl-disubstituted compounds, 16c and 16d, respectively, are the most selective ligands for the human adenosine A1 receptor known to date due to the improved selectivity with respect to the adenosine A₃ receptor. As can be deduced from Table 2, these compounds are 214- and 45-fold selective for the adenosine A_1 receptor, respectively. N⁶-Cyclopentyladenosine, on the other hand, has affinities of 10.2 \pm 1.3 nM for the human A1 receptor and 281 \pm 56 nM for the human A₃ receptor, resulting in a 28-fold selectivity for the adenosine A₁ receptor versus the A₃ receptor. 2-Chloro-N⁶-cyclopentyladenosine (CCPA) has affinities of 6.4 ± 1.8 , 639 ± 55 , and $281 \pm 56 \text{ nM}^{22}$ for the human adenosine A₁, A_{2A}, and A₃ receptors, respectively (see Table 2). Hence, CCPA is 44-fold selective for the human adenosine A1 receptor versus the human A₃ receptor. Although CPA and CCPA are more selective toward the human A_{2A} receptor than TCPA and **16d**, the latter compounds are still 75- and 316-fold selective for A1 versus A2A. As we used an agonist radioligand to study ligand binding to the adenosine A₃ receptor, and an antagonist radioligand to study binding to the adenosine A1 and A2A receptors, the selectivity toward the adenosine A₃ receptor will be underestimated. As a reference, we therefore present the values for the prototypic agonist NECA in Table 2. In our hands, NECA had K_i values for the human adenosine A₁, A_{2A}, A_{2B} , and A_3 receptors of 12 nM (9.6–15 nM; n = 2) and 60 \pm 10, 11 \pm 0.8, and 2200 \pm 600 nM, respectively. A comparison of the relative potency and selectivity of TCPA versus CCPA and NECA for the human adenosine A_1 , A_{2A} , and A_3 receptors is presented in Table 3.

To verify that TCPA behaves as an agonist, cAMP experiments were performed. Figure 1 shows the inhibition of forskolin-induced cAMP formation in CHO cells stably expressing the adenosine A₁ receptor by TCPA and CCPA. Both compounds inhibited the cAMP formation to a similar extent with IC₅₀ values of 1.5 \pm 0.5 and 1.3 \pm 1.1 nM for TCPA and CCPA, respectively. Hence, in our cAMP assay TCPA is a full agonist like CCPA.

The selectivity of ligands for the adenosine receptors was challenged by two discoveries. First of all, the discovery of the adenosine A_3 receptor in 1991^{10,11} showed that many ligands with a high affinity for either the human adenosine A_1 receptor (e.g., CPA or CCPA) or the human adenosine A_{2A} receptor (e.g., CGS21680) had a relatively high affinity for the human adenosine A_3 receptor as well. Second, the affinity of ligands for the adenosine A_3 receptor depended strongly upon the

Figure 1. Representative curves of the inhibition of forskolininduced (10 μ M) cAMP production by CCPA (\Box) and TCPA (\blacksquare) in CHO cells stably expressing the adenosine A₁ receptor. The amount of cAMP formed is shown. Basal cAMP production was 0.6 pmol/2 × 10⁵ cells. The amount of cAMP formed by 10 μ M forskolin amounted to 10.1 pmol/2 × 10⁵ cells. After inhibition by CCPA and TCPA, cAMP levels were reduced to 3.9 and 3.8 pmol/2 × 10⁵ cells, respectively.

species that was studied. Thus, 2-chloro- N^6 -(3-iodobenzyl)adenosine-5'-N-methyluronamide (Cl-IB-MECA) is a very selective agonist for the rat adenosine A₃ receptor versus the rat adenosine A₁ (2485-fold) and the rat adenosine A_{2A} receptor (1424-fold).²³ However, considering the human receptors Cl-IB-MECA is only 10-fold (versus A₁) and 191-fold (versus A_{2A}) selective.²⁴ In this study we determined the affinity of a series of C2substituted and C2,N⁶-disubstituted analogues for the human adenosine receptors. When the affinities for all four human adenosine receptors are compared, TCPA turns out to have the best overall selectivity of the agonists known to date.

Conclusions

The 2-NO₂ analogue of adenosine was converted to 2-nitrosoadenosine to obtain a suitable precursor for the attachment of nitrogen-based side chains. Extension of the nitroso group to diazophenyl, benzoyltriazenyl, and phenylcarbamoyltriazenyl resulted in a compound (8d) with low nanomolar affinity for the human adenosine A_1 and A_{2A} receptors. Several analogues of **8d** were made, and biological evaluation of these compounds demonstrated that the phenyl substituent was the most appropriate group to achieve a high-affinity adenosine A₁ receptor ligand. To further improve the slight preference of 8d for the adenosine A₁ receptor, N⁶,C2-disubstituted compounds were synthesized. The introduction of diphenylethyl at the N⁶-position yielded a very selective compound for the human adenosine A1 receptor with 316-fold preference over A_{2A} and 45-fold preference over A₃. The disubstituted N⁶-cyclopentyl-2-phenylcarbamoyltriazene analogue (16c, TCPA) was very selective, 75-fold, with respect to the human adenosine A_{2A} receptor. Moreover, TCPA turned out to be the most selective agonist for human adenosine A1 receptors versus human adenosine A₃ receptors known to date. Its selectivity for A₁ over A₃ was 214-fold compared to the 44-fold selectivity of the reference A₁ agonist CCPA. This selectivity is most likely underestimated due to the fact that we used an agonist radioligand to study ligand binding to the adenosine A₃ receptor, whereas an antagonist radioligand was used to study binding to the adenosine A_1 and A_{2A} receptors. In addition, TCPA turned out to be a full agonist, just like CCPA, and inhibited cAMP production in CHO cells stably transfected with the adenosine A_1 receptor with an IC₅₀ of 1.5 ± 0.5 nM.

Experimental Section

Chemicals and Solvents. All reagents and solvents were used as commercially available, unless indicated otherwise. Adenosine deaminase was from Boehringer Mannheim (Mannheim, Germany), and CGS15943 was a gift from Dr. M. Williams and Dr. J. Watthey (Ciba-Geigy, Summit, NJ). CPA was obtained from RBI Research Chemicals (Natick, MA), and R-PIA was obtained from Sigma (St. Louis, MO).

Chromatography. Thin-layer chromatography (TLC) was carried out using silica-coated plastic sheets (Merck silica gel 60 F_{254}). Spots were visualized under UV (254 nm). Flash chromatography refers to purification using the indicated eluents and Janssen Chimica silica gel 60 (0.030–0.075 mm).

Instruments and Analysis. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR; APT) spectra were determined in CDCl₃ at 300 K using a Bruker ARX 400 (400 and 100 MHz, respectively) spectrometer. Mass spectra and accurate mass measurements were performed on a JEOL JMS-SX/SX 102 A tandem mass spectrometer using fast atom bombardment (FAB) or electron impact (EI). A resolving power of 10000 (10% valley definition) for high-resolution electron impact or FAB mass spectrometry was used. Melting points were measured with a Leitz melting point microscope.

General Procedure for the Synthesis of Semicarbazides 6b–k. The appropriate isocyanate (10.0 mmol) was added to a mixture of hydrazine hydrate (0.485 mL, 10.0 mmol) and DCM (distilled from P_2O_5 , 25 mL) at -60 °C. The bath was removed and the suspension was stirred for 4 h at room temperature, cooled in ice, and filtered. Additional product was obtained by concentrating the mother liquor. Noncrystalline semicarbazides were obtained by evaporation of the volatiles.

4-Ethylsemicarbazide 6b: yield, 0.91 g (88%), obtained as a pure oil after evaporation; ¹H NMR (DMSO- d_6) δ 6.15 (broad, 1H, N–H), 6.0 (broad, 1H, N–H), 3.6 (broad, 2H, NH₂), 3.26 (m, 2H, CH₂), 1.1 (t, 3H, J = 7.2 Hz, CH₃).

4-Cyclohexylsemicarbazide 6c: yield, 1.35 g (86%), crystallized from ethyl acetate after evaporation of the DCM, mp $100-105^{\circ}$ C; ¹H NMR (DMSO- d_6) δ 7.40 (s, 1H, N–H), 5.98 (d, 1H, J = 7.1 Hz, N–H), 4.05 (m, 1H, *CH*NH), 3.60 (broad, 2H, NH₂), 1.0–1.8 (m, 10H, cyclohexyl).

4-Phenylsemicarbazide 6d: yield, 1.22 g (81%), mp 122–123 °C; ¹H NMR (DMSO- d_6) δ 8.75 (s, 1H, N–H), 7.40 (s, 1H, N–H), 7.2–7.8 (m, 5H, Ar), 4.35 (broad, 2H, NH₂).

4-(4-Chlorophenyl)semicarbazide 6e: yield 1.65 g (89%), mp 190 °C (dec); ¹H NMR (DMSO-*d*₆) δ 8.78 (s, 1H, N–H), 7.58 (m, 2H, Ar), 7.48 (s, 1H, N–H), 7.30 (m, 3H, Ar), 4.37 (broad, 2H, NH₂).

4-(3-Chlorophenyl)semicarbazide 6f: yield, 0.95 g (51%), mp 107–108 °C after recrystallization from DCM/ether; ¹H NMR (DMSO- d_6) δ 8.85 (s, 1H, N–H), 7.81 (s, 1H, Ar), 7.55 (s, 1H, N–H), 7.41 (m, 1H, Ar), 7.25 (t, 1H, J = 8.1 Hz, Ar), 6.97 (m, 1H, Ar), 4.39 (broad, 2H, NH₂).

4-(2-Chlorophenyl)semicarbazide 6g: yield, 1.39 g (75%), mp 110–112 °C after recrystallization from ether/light petroleum; ¹H NMR (DMSO- d_6) δ 9.15 (s, 1H, N–H), 8.30 (m, 1H, Ar), 7.81 (s, 1H, N–H), 7.44 (m, 1H, Ar), 7.29 (m, 1H, Ar), 6.98 (m, 1H, Ar), 4.70 (broad, 2H, NH₂).

4-(4-Methoxyphenyl)semicarbazide 6h: yield, 1.59 g (88%), mp 145–146 °C; ¹H NMR (DMSO- d_6) δ 8.45 (s, 1H, N–H), 7.41 (d, 2H, J = 8.7 Hz, Ar), 7.29 (s, 1H, N–H), 8.82 (d, 2H, J = 8.7 Hz, Ar), 4.31 (s, 2H, NH₂), 3.71 (s, 3H, CH₃O).

4-(2-Methoxyphenyl)semicarbazide 6i: yield, 1.60 g (88%), mp 155–157 °C; ¹H NMR (DMSO- d_6) δ 8.90 (s, 1H, N–H), 8.17 (d, 1H, J = 7.0 Hz, Ar), 7.62 (s, 1H, N–H), 6.8–7.2 (m, 3H, Ar), 4.52 (broad, 2H, NH₂).

4-(3-Trifluoromethylphenyl)semicarbazide 6j: yield, 2.00 g (91%), mp 98–99 °C; ¹H NMR (DMSO- d_6) δ 9.02 (s, 1H, N–H), 8.11 (broad, 1H, Ar), 7.76 (m, 1H, Ar), 7.61 (s, 1H, N–H), 7.46 (t, 1H, J = 7.8 Hz, Ar), 7.25 (d, 1H, J = 7.8 Hz, Ar), 4.41 (broad, 2H, NH₂).

4-Benzylsemicarbazide 6k: yield, 1.19 g (72%), mp 110– 112 °C; ¹H NMR (DMSO- d_6) δ 7.2–7.35 (m, 5H, Ar), 7.03 (s, 1H, N–H), 6.83 (broad, 1H, N–H), 4.26 (d, 1H, J = 6.0 Hz, CH₂Ph), 4.15 (broad, 2H, NH₂).

4-(2-Thiazolyl)semicarbazide 6l. A solution of *N*-(phenoxycarbonyl)-2-aminothiazole (1.1 g, 5 mmol, prepared from 2-aminothiazole²⁵) and hydrazine hydrate (0.485 mL, 10 mmol) in DCM (25 mL, distilled from P_2O_5) was stirred at room temperature for 18 h. Methanol (5 mL) was added, and insoluble material was removed by hot filtration. Evaporation of the filtrate and crystallization of the residue from DCM/ ether gave **6e** (0.54 g (68%), mp 162–165 °C; ¹H NMR (DMSO-*d*₆) δ 10.2 (broad, 1H, N–H), 8.1 (broad, 1H, N–H), 7.34 (d, 1H, *J* = 3.5 Hz, thiazole), 7.06 (d, 1H, *J* = 3.5 Hz, thiazole), 4.25 (broad, 2H, NH₂).

4-(2-Furyl)semicarbazide 9. Diphenylphosphoryl azide (2.14 g, 10 mmol) was added to a solution of furan-2-carboxylic acid (1.12 g, 10 mmol) and DiPEA (1.918 mL, 11 mmol) in DCM (20 mL, distilled from P₂O₅). Extractive workup and crystallization from diethyl ether/light petroleum gave the moderately stable furan-2-carbonyl azide (1.23 g, 90%), mp 58–59 °C; ¹H NMR (DMSO- d_6) δ 8.12 (m, 1H, furan), 7.47 (m, 1H, furan), 6.78 (m, 1H, furan). A solution of this azide (0.411 g, 3.0 mmol) and phenol (0.564 g, 6.0 mmol) in CH₃CN (10 mL, anhydrous) was refluxed under N2 during 18 h. The reaction mixture was cooled to room temperature and hydrazine·HBr (0.678 g, 6 mmol) and triethylamine (1.6 mL, 12 mmol) were added. After 4 h of stirring at room temperature, the solvent was evaporated and the residue purified by chromatography (ethyl acetate/methanol 9:1) to give 9 (0.180 g, 43%) as a solid, mp >150 °C (dec); ¹H NMR (DMSO- d_6) δ 8.85 (broad, 1H, N-H), 7.50 (broad, 1H, N-H), 7.26 (m, 1H, furan), 6.38 (m, 1H, furan), 5.93(m, 1H, furan), 4.35 (broad, 2H, NH₂).

General Procedure for the Synthesis of Acetate-Protected Triazenes 7a–1. To a solution of 2-nitroso-2,3,5tri-*O*-acetyladenosine **2** (42 mg, 0.10 mmol) in a mixture of acetonitrile (2 mL) and acetic acid (0.2 mL) was added semicarbazide **6a**–1 (0.20 mmol), and the mixture was stirred at room temperature during 4 h. The reaction mixture was diluted with ethyl acetate (10 mL) and stirred with aqueous NaHCO₃ (5%, 10 mL) for 30 min. Extractive workup and flash chromatography with 4% methanol in ethyl acetate produced protected triazenes **7a–1** as glass. The products were analyzed by ¹H NMR and directly used in the deprotection step.

2',**3**',**5**'-**Tri-***O*-acetyl-2-(3-aminocarbonyltriazene-1-yl)adenosine 7a: yield, 30 mg (63%) after chromatography with 10% methanol in ethyl acetate; ¹H NMR (DMSO- d_6) δ 12.25 (broad, 1H, N–H), 8.37 (s, 1H, H-8), 7.61, (broad, 2H, NH₂), 6.5–7.3 (broad, 2H, NH₂), 6.21 (d, 1H, J = 5.1 Hz, H-1'), 6.03 (m, 1H, H-2'), 5.66 (m, 1H, H-3'), 5.2–5.45 (m, 3H, H-4', H-5'), 2.16, 2.15, and 2.07 (all 3H, s, acetates).

2',**3**',**5**'-**Tri**-*O*-acetyl-2-(3-ethylaminocarbonyltriazene-**1**-yl)adenosine 7b: yield, 25.7 mg (51%) after chromatography with 7% methanol in ethyl acetate; ¹H NMR δ 12.3 (broad, 1H, N–H), 8.00 (s, 1H, H-8), 7.04 (s, 1H, N–H), 6.7–7.2 (broad, 2H, NH₂), 6.34 (m, 1H, H-2'), 6.09 (d, 1H, J = 4.4 Hz, H-1'), 5.72 (m, 1H, H-3'), 4.3–4.5 (m, 3H, H-4', H5'), 3.47 (m, 2H, *CH*₂CH₃), 2.13, 2.09, and 2.02 (all 3H, s, acetates), 1.26 (t, 3H, J = 7.2 Hz, CH₃).

2',**3**',**5**'-**Tri**-*O*-acetyl-2-(**3**-cyclohexylaminocarbonyltriazene-1-yl)adenosine 7c: yield, 32.9 mg (59%) after chromatography with 4% methanol in ethyl acetate; ¹H NMR δ 11.9 (s, 1H, N–H), 8.02 (s, 1H, H-8), 7.0 (broad, 2H, NH₂), 6.70 (broad, 1H, N–H), 6.23 (m, 1H, H-2'), 6.16 (d, 1H, J=5.4 Hz, H-1'), 5.63 (m, 1H, H-3'), 4.3–4.5 (m, 3H, H-4', H5'), 3.80 (m, 1H, *CH*NH), 2.14, 2.07, and 2.04 (all 3H, s, acetates), 1.0–1.9 (m, 10H, cyclohexyl).

2',**3**',**5**'-**Tri**-*O*-acetyl-2-(**3**-phenylaminocarbonyltriazene-**1-yl)adenosine 7d:** yield, 30.0 mg (54%); ¹H NMR (DMSO d_6) δ 12.8 (broad, 1H, N–H), 10.1 (broad, 1H, N–H), 8.36 (s, 1H, H-8), 7.65 (m, 4H, Ar–H_{ortho}, NH₂), 7.35 (t, 2H, J = 7.7, Ar–H_{meta}), 7.09 (t, 1H, J = 7.6 Hz, Ar–H_{para}), 6.21 (d, 1H, J =5.5 Hz, H-1'), 5.99 (m, 1H, H-2'), 5.67 (m, 1H, H-3'), 4.3–4.5 (m, 3H, H-4', H-5'), 2.10, 2.06, and 1.99 (all 3H, s, acetates).

2',**3'**,**5'**-**Tri**-*O*-acetyl-2-[**3-(4-chlorophenyl)aminocarbonyltriazene-1-yl]adenosine 7e:** yield, 29.5 mg (50%); ¹H NMR (DMSO- d_6) δ 12.8 (broad, 1H, N–H), 10.0 (broad, 1H, N–H), 8.36 (s, 1H, H-8), 7.69 (m, 2H, Ar), 7.66 (s, 2H, NH₂), 7.40 (d, 2H, J = 8.7 Hz, Ar), 6.21 (d, 1H, J = 5.3 Hz, H-1'), 5.98 (m, 1H, H-2'), 5.67 (m, 1H, H-3'), 4.3–4.5 (m, 3H, H-4', H-5'), 2.10, 2.06, and 1.99 (all 3H, s, acetates).

2',**3'**,**5'**-**Tri**-*O*-acetyl-2-[**3-(3-chlorophenyl)aminocarbo**nyltriazene-1-yl]adenosine **7f**: yield, 32.0 mg (54%); ¹H NMR δ 12.1 (broad, 1H, N–H), 8.8 (broad, 1H, N–H), 8.03 (s, 1H, H-8), 7.1–7.7 (m, 4H, Ar), 6.0–6.2 (m, 4H, H-1', H-2', NH₂), 5.72 (m, 1H, H-3'), 4.3–4.5 (m, 3H, H-4', H-5'), 2.07, 2.05, and 2.04 (all 3H, s, acetates).

2',3',5'-Tri-*O*-acetyl-2-[**3-(2-chlorophenyl)aminocarbo**nyltriazene-1-yl]adenosine 7g: yield, 30.0 mg (51%); ¹H NMR δ 13.2 (broad, 1H, N–H), 9.03 (broad, 1H, N–H), 8.27 (d, J = 7.7 Hz, Ar), 8.08 (s, 1H, H-8), 7.0–7.3 (m, 6H, Ar, NH₂), 6.22 (d, 1H, J = 5.1 Hz, H-1'), 5.94 (m, 1H, H-2'), 5.65 (m, 1H, H-3'), 4.3–4.5 (m, 3H, H-4', H-5'), 2.08, 2.07, and 2.03 (all 3H, s, acetates).

2',**3**',**5**'-**Tri**-*O*-acetyl-2-[**3**-(**4**-methoxyphenyl)aminocarbonyltriazene-1-yl]adenosine 7h: yield, 25.4 mg (43%); ¹H NMR δ 11.5 (broad, 1H, N–H), 8.7 (broad, 1H, N–H), 7.99 (s, 1H, H-8), 7.50 (m, 2H, Ar), 7.02 (d, 2H, J = 9.0 Hz, Ar), 6.5 (broad, 2H, NH₂), 6.22 (broad, 1H, H-1'), 5.98 (m, 1H, H-2'), 5.71 (m, 1H, H-3'), 4.3–4.5 (m, 3H, H-4', H-5'), 3.81 (s, 3H, OCH₃), 2.08, 2.04, and 2.02 (all 3H, s, acetates).

2',**3**',**5**'-**Tri**-*O*-acetyl-2-[**3**-(**2**-methoxyphenyl)aminocarbonyltriazene-1-yl]adenosine 7i: yield, 32.1 mg (55%); ¹H NMR δ 12.0 (broad, 1H, N–H), 8.70 (broad, 1H, N–H), 8.22 (d, 1H, J= 8.3 Hz, Ar), 8.01 (s, 1H, H-8), 7.5 (broad, 2H, NH₂), 6.8–7.1 (m, 3H, Ar), 6.19 (broad, 1H, H-1'), 5.97 (m, 1H, H-2'), 5.70 (m, 1H, H-3'), 4.4–4.5 (m, 3H, H-4', H-5'), 3.83 (s, 3H, OCH₃), 2.08, 2.06, and 2.03 (all 3H, s, acetates).

2',3',5'-**Tri**-*O*-acetyl-2-[**3**-(**3**-trifluoromethylphenyl)aminocarbonyltriazene-1-yl]adenosine 7j: yield, 35.0 mg (56%); ¹H NMR δ 12.5 (broad, 1H, N–H), 9.90 (broad, 1H, N–H), 8.12 (m, 1H, Ar), 7.96 (m, 3H, H-8, NH₂), 7.2–7.5 (m, 3H, Ar), 6.27 (d, 1H, J= 5.1 Hz, H-1'), 5.93 (m, 1H, H-2'), 5.62 (m, 1H, H-3'), 4.4–4.5 (m, 3H, H-4', H-5'), 2.09, 2.08, and 2.05 (all 3H, s, acetates).

2',**3'**,**5'**-**Tri**-*O*-acetyl-2-(**3**-benzylaminocarbonyltriazene-**1-yl)adenosine 7k:** yield, 40.6 mg (71%); ¹H NMR δ 11.7 (broad, 1H, N–H), 7.95 (s, 1H, H-8), 7.41 (s, 1H, N–H), 7.2– 7.3 (m, 5H, Ar), 6.70 (broad, 2H, NH₂), 6.31 (m, 1H, H-2'), 6.04 (d, 1H, J= 4.4 Hz, H-1'), 5.68 (m, 1H, H-3'), 4.66 (m, 2H, *CH*₂-Ph), 4.2–4.5 (m, 3H, H-4', H5'), 2.04, 2.00, and 1.99 (all 3H, s, acetates).

2',**3**',**5**'-**Tri-***O*-**acetyl-2-[3-(2-thiazolyl)aminocarbonyltriazene-1-yl]adenosine 71:** yield, 27.0 mg (48%) after chromatography with 4% methanol in ethyl acetate; ¹H NMR (DMSO- d_6) δ 12.6 (broad, 1H, N–H), 10.8 (broad, 1H, N–H), 8.40 (s, 1H, H-8), 7.71 (s, 2H, NH₂), 7.49 (broad, 1H, thiazole), 7.27 (broad, 1H, thiazole), 6.20 (d, 1H, J = 4.4 Hz, H-1'), 5.96 (m, 1H, H-2'), 5.73 (m, 1H, H-3'), 4.40 (m, 1H, H-4'), 4.32–4.5 (m, 2H, H-5'), 2.11, 2.07, and 1.99 (all 3H, s, acetates).

Deprotection of 7a–l to 8a–l, General Method. Aqueous ammonia (2 mL of a 25% solution) was added to a solution of triacetate **7a–l** in methanol (2 mL). After 18 h of stirring at room temperature, the solvents were removed in vacuo and the residue was coevaporated with methanol (4 mL). The remaining solid was dried in vacuo (0.1 mbar, 40 °C) for 2 h and triturated with methanol (2 mL), providing the yellow ribosides **8a–l**.

2-(3-Aminocarbonyl)triazene-1-yl)adenosine 8a: yield, 18.0 mg (86%), mp 186–188 °C; ¹H NMR (DMSO- d_6) δ 12.54 (broad, 1H, N–H), 8.35 (s, 1H, H-8), 7.64 (broad, 2H, NH₂),

6.9-7.4 (broad, 2H, NH₂), 5.9 (broad, 1H, OH), 5.85 (d, 1H, J = 6.8 Hz, H-1'), 5.45 (d, 1H, J = 6.4 Hz, OH), 5.22 (d, 1H, J = 4.0 Hz, OH), 4.69 (m, 1H, H-2'), 4.13 (m, 1H, H-3' or H-4'), 4.04 (m, 1H, H-4' or H-3'), 3.5-3.7 (m, 2H, H-5'); [found M⁺ + 1, 354.1560; C₁₁H₁₆N₉O₅ requires M, 354.1587]. Anal. Calcd (C₁₁H₁₅N₉O₅•1.0H₂O) C, H, N.

2-(3-Ethylaminocarbonyltriazene-1-yl)adenosine 8b: yield, 18.0 mg (93%), mp 172–173 °C; ¹H NMR (DMSO- d_6) δ 12.40 (s, 1H, N–H), 8.34 (s, 1H, H-8), 7.98 (s, 1H, N–H), 7.65 (s, 2H, NH₂), 6.05 (broad, 1H, OH), 5.86 (d, 1H, J = 7.2 Hz, H-1'), 5.45 (d, 1H, J = 6.4 Hz, OH), 5.22 (d, 1H, J = 3.7 Hz, OH), 4.72 (m, 1H, H-2'), 4.14 (m, 1H, H-3' or H-4'), 4.06 (m, 1H, H-4' or H-3'), 3.5–3.7 (m, 2H, H-5'), 3.24 (m, 2H, CH_2 -CH₃), 1.14 (t, 3H, J = 7.2 Hz, CH₃); [found M⁺ + 1, 382.1560; C₁₃H₂₀N₉O₅ requires M, 382.1587]. Anal. Calcd (C₁₃H₁₉N₉O₅· 2.1H₂O) C, H, N.

2-(3-Cyclohexylaminocarbonyltriazene-1-yl)adenosine 8c: yield, 23.5 mg (92%), mp 164–166 °C; ¹H NMR (DMSO- d_6) δ 12.35 (s, 1H, N–H), 8.35 (s, 1H, H-8), 7.92 (d, 1H, J = 7.1 Hz, N–H), 7.68 (s, 2H, NH₂), 6.20 (broad, 1H, OH), 5.85 (d, 1H, J = 7.4 Hz, H-1'), 5.46 (d, 1H, J = 6.5 Hz, OH), 5.23 (d, 1H, J = 3.4 Hz, OH), 4.79 (m, 1H, H-2'), 4.11 (m, 1H, H-3' or H-4'), 4.09 (m, 1H, H-4' or H-3'), 3.5–3.7 (m, 3H, *CH*NH, H-5'), 1.1–1.9 (m, 10H, cyclohexyl); [found M⁺ + 1, 436.2057; C₁₇H₂₆N₉O₅ requires M, 436.2056]. Anal. Calcd (C₁₇H₂₅N₉O₅·1.2H₂O) C, H, N.

2-(3-Phenylaminocarbonyltriazene-1-yl)adenosine 8d: yield, 18.0 mg (78%), mp 164–165 °C; ¹H NMR (DMSO- d_6) δ 12.75 (broad, 1H, N–H), 10.08 (broad, 1H, N–H), 8.37 (s, 1H, H-8), 7.70 (s, 2H, NH₂), 7.60 (m, 2H, Ar–H_{ortho}), 7.38 (t, 2H, J= 7.5 Hz, Ar–H_{meta}), 7.09 (t, 1H, J = 7.5 Hz, Ar–H_{para}), 6.4 (broad, 1H, OH), 5.88 (d, 1H, J = 7.2 Hz, H-1'), 5.49 (d, 1H, J= 6.3 Hz, OH), 5.26 (d, 1H, J = 3.4 Hz, OH), 4.77 (m, 1H, H-2'), 4.18 (m, 1H, H-3' or H-4'), 4.07 (m, 1H, H-4' or H-3'), 3.6–3.8 (m, 2H, H-5'); [found M⁺ + 1, 430.1569; C₁₇H₂₀N₉O₅ requires M, 430.1587]. Anal. Calcd (C₁₇H₁₉N₉O₅•2.2H₂O) C, H, N.

2-[3-(4-Chlorophenyl)aminocarbonyltriazene-1-yl]adenosine 8e: yield, 17.0 mg (73%), mp 170–172 °C; ¹H NMR (DMSO- d_6) δ 12.80 (s, 1H, N–H), 10.13 (s, 1H, N–H), 8.37 (s, 1H, H-8), 7.73 (s, 2H, NH₂), 7.63 (m, 2H, Ar), 7.43 (d, 2H, J = 8.7 Hz, Ar), 6.41 (broad, 1H, OH), 5.88 (d, 1H, J = 7.1 Hz, H-1'), 5.48 (d, 1H, J = 6.3 Hz, OH), 5.26 (broad, 1H, OH), 4.75 (m, 1H, H-2'), 4.19 (m, 1H, H-3' or H-4'), 4.07 (m, 1H, H-4' or H-3'), 3.6–3.8 (m, 2H, H-5'); [found M⁺ + 1, 464.1166; C₁₇H₁₉N₉O₅Cl requires M, 464.1198]. Anal. Calcd (C₁₇H₁₈N₉O₅-Cl·2.2H₂O) C, H, N.

2-[3-(3-Chlorophenyl)aminocarbonyltriazene-1-yl]adenosine 8f: yield, 18.1 mg (78%), mp 159–161 °C; ¹H NMR (DMSO- d_6) (two rotamers are present; only the major rotamer is shown) δ 12.74 (s, 1H, N–H), 10.03 (s, 1H, N–H), 8.39 (s, 1H, H-8), 7.75 (s, 2H, NH₂), 7.0–7.6 (m, 4H, Ar), 6.46 (d, 1H, J = 10.2 Hz, OH), 5.88 (d, 1H, J = 7.2 Hz, H-1'), 5.48 (d, 1H, J = 6.3 Hz, OH), 5.26 (d, 1H, J = 3.3 Hz, OH), 4.80 (m, 1H, H-2'), 4.19 (m, 1H, H-3' or H-4'), 4.10 (m, 1H, H-4' or H-3'), 3.6–3.8 (m, 2H, H-5'); [found M⁺ + 1, 464.1186; C₁₇H₁₉N₉O₅-Cl requires M, 464.1198]. Anal. Calcd (C₁₇H₁₈N₉O₅Cl·0.5 H₂O) C, H, N.

2-[3-(2-Chlorophenyl)aminocarbonyltriazene-1-yl]adenosine 8g: yield, 18.0 mg (76%), mp 160–161°C; ¹H NMR (DMSO- $d_6 \delta$ 12.88 (s, 1H, N–H), 9.43 (s, 1H, N–H), 8.40 (s, 1H, H-8), 7.95 (d, 1H, J = 7.3 Hz, Ar), 7.70 (s, 2H, NH₂), 7.2–7.6 (m, 3H, Ar), 5.88 (d, 1H, J = 6.8 Hz, H-1′), 5.81 (broad, 1H, OH), 5.46 (broad, 1H, OH), 5.20 (broad, 1H, OH), 4.70 (m, 1H, H-2′), 4.18 (m, 1H, H-3′ or H-4′), 4.12 (m, 1H, H-4′ or H-3′), 3.4–3.7 (m, 2H, H-5′); [found M⁺ + 1, 464.1194; C₁₇H₁₉N₉O₅-Cl requires M, 464.1198]. Anal. Calcd (C₁₇H₁₈N₉O₅Cl·1.2H₂O) C, H, N.

2-[3-(4-Methoxyphenyl)aminocarbonyltriazene-1-yl]adenosine 8h: yield, 17.4 mg (87%), mp 159–161°C; ¹H NMR (DMSO- d_{6}) (two rotamers are present; only the major rotamer is shown) δ 12.68 (s, 1H, N–H), 9.93 (s, 1H, N–H), 8.37 (s, 1H, H-8), 7.4–7.7 (broad, 4H, Ar–H_{ortho}, NH₂), 6.95 (d, 2H, J = 8.9 Hz, Ar–H_{meta}), 6.4 (broad, 1H, OH), 5.88 (d, 1H, J=7.2 Hz, H-1'), 5.5 (broad, 1H, OH), 5.3 (broad, 1H, OH), 4.79 (m, 1H, H-2'), 4.18 (m, 1H, H-3' or H-4'), 4.09 (m, 1H, H-4' or H-3'), 3.76 (s, 3H, OCH₃), 3.4–3.7 (m, 2H, H-5'); [found M^+ + 1, 460.1673; C₁₈H₂₂N₉O₆ requires M, 460.1693]. Anal. Calcd (C₁₈H₂₁N₉O₆·2.2H₂O) C, H, N.

2-[3-(2-Methoxyphenyl)aminocarbonyltriazene-1-yl]-adenosine 8i: yield, 15.1 mg (60%), mp 162–164 °C; ¹H NMR (DMSO- d_6) δ 12.65 (s, 1H, N–H), 9.03 (s, 1H, N–H), 8.41 (s, 1H, H-8), 8.04 (d, 1H, J = 7.8 Hz, Ar), 6.9–7.1 (broad, 4H, 3H–Ar, OH), 5.91 (d, 1H, J = 6.6 Hz, H-1'), 5.49 (m, 1H, OH), 5.21 (d, 1H, J = 4.3 Hz, OH), 4.67 (m, 1H, H-2'), 4.14 (m, 1H, H-3' or H-4'), 3.99 (m, 1H, H-4' or H-3'), 3.89 (s, 3H, OCH₃), 3.4–3.7 (m, 2H, H-5'); [found M⁺ + 1, 460.1700; C₁₈H₂₂N₉O₆ requires M, 460.1693]. Anal. Calcd (C₁₈H₂₁N₉O₆•1.7H₂O) C, H, N.

2-[3-(3-Trifluoromethylphenyl)aminocarbonyltriazene-1-yl]adenosine 8j: yield, 19.0 mg (68%), mp 169–170 °C; ¹H NMR (DMSO-*d*₆) (two rotamers are present in a ratio of 4:1; only the major rotamer is shown) δ 13.30 (s, 1H, N–H), 10.32 (s, 1H, N–H), 8.39 (s, 1H, H-8), 7.99 (m, 1H, Ar), 7.88 (broad, 2H, NH₂), 7.4–7.8 (broad, 3H, Ar), 6.52 (broad, 1H, OH), 5.28 (broad, 1H, OH), 4.79 (m, 1H, H-2'), 4.18 (m, 1H, H-3' or H-4'), 4.11 (m, 1H, H-4' or H-3'), 3.89 (s, 3H, OCH₃), 3.4–3.7 (m, 2H, H-5'); [found M⁺ + 1, 498.1454; C₁₈H₁₉N₉O₅F₃ requires M, 498.1461]. Anal. Calcd (C₁₈H₁₈N₉O₅F₃·1.5H₂O) C, H, N.

2-(3-Benzylaminocarbonyltriazene-1-yl)adenosine 8k: yield, 30.0 mg (95%), mp 170–171 °C; ¹H NMR (DMSO- d_6) δ 12.51 (s, 1H, N–H), 8.57 (m, 1H, N–H), 8.34 (s, 1H, H-8), 7.67 (s, 2H, NH₂), 7.37 (m, 5H, C₆H₅), 6.09 (d, 1H, J = 8.9 Hz, OH), 5.83 (d, 1H, J = 7.3 Hz, H-1'), 5.43 (d, 1H, J = 6.5 Hz, OH), 5.20 (d, 1H, J = 3.6 Hz, OH), 4.68 (m, 1H, H-2'), 4.43 (m, 2H, CH₂Ph), 4.03 (m, 1H, H-3' or H-4'), 3.97 (m, 1H, H-4' or H-3'), 3.3–3.5 (m, 2H, H-5'); [found M⁺ + 1, 444.1705; C₁₈H₂₂N₉O₅ requires M, 444.1744]. Anal. Calcd (C₁₈H₂₁N₉O₅•1.6H₂O) C, H, N.

2-[3-(2-Thiazolyl)aminocarbonyltriazene-1-yl]adenosine 81: yield, 17.1 mg (81%), mp 184–185 °C; ¹H NMR (DMSO- d_6) δ 13.15 (broad, 1H, N–H), 12.50 (broad, 1H, N–H), 8.38 (s, 1H, H-8), 7.80 (s, 2H, NH₂), 7.52 (d, 1H, J = 3.4 Hz, thiazole), 7.26 (d, 1H, J = 3.4 Hz, thiazole), 7.0 (broad, 1H, OH), 5.88 (d, 1H, J = 7.5 Hz, H-1'), 5.46 (d, 1H, J = 6.4 Hz, OH), 5.28 (d, 1H, J = 3.4 Hz, OH), 4.78 (m, 1H, H-2'), 4.18 (m, 1H, H-3' or H-4'), 4.14 (m, 1H, H-4' or H-3'), 3.75–4.0 (m, 2H, H-5'); [found M⁺ + 1, 437.1120; C₁₄H₁₇N₁₀O₅S requires M, 437.1104]. Anal. Calcd (C₁₄H₁₆N₁₀O₅S·2.9H₂O) C, H, N, S.

2-(3-Benzoyltriazene-1-yl]adenosine 11. A mixture of 2-nitrosoadenosine (29.6 mg, 0.10 mmol) and benzoylhydrazide (20.4 mg, 0.15 mmol) was stirred in a mixture of acetonitrile (2 mL) and acetic acid (0.2 mL) during 4 h at room temperature. The suspension was heated to dissolve solid material, cooled in ice, and filtered. Recrystallization from ethanol produced pure **11** (22.2 mg, 54%) as a yellow solid: mp 158–162°C; ¹H NMR (DMSO-*d*₆) δ 13.5 (s, 1H, N–H), 8.45 (s, 1H, H-8), 8.06 (d, 2H, J = 7.5 Hz, Ar–H_{ortho}), 7.69 (s, 2H, NH₂), 7.5–7.7 (m, 3H, Ar), 5.92 (d, 1H, J = 6.0 Hz, H-1'), 5.50 (d, 1H, J = 6.1 Hz, OH), 5.20 (d, 1H, J = 4.8 Hz, OH), 5.14 (m, 1H, OH), 4.65 (m, 1H, H-2'), 4.17 (m, 1H, H-3' or H-4'), 3.97 (m, 1H, H-4' or H-3'), 3.5–3.7 (m, 2H, H-5'); [found M⁺ + 1, 415.1478; C₁₇H₁₉N₈O₅ requires M, 415.1478]. Anal. Calcd (C₁₇H₁₈N₈O₅:2.4H₂O) C, H, N.

2-(3-Phenyloxycarbonyltriazene-1-yl)adenosine 12. A solution of 2-nitrosoadenosine (21.0 mg, 0.071 mmol) and phenyl carbazate (12.0 mg, 0.080 mmol) in a mixture of acetonitrile (2 mL), methanol (0.5 mL), and acetic acid (0.2 mL) was stirred during 24 h at room temperature. The suspension was diluted with dichloromethane and purified by flash chromatography with dichloromethane/methanol 80:20 as eluent. Evaporation of the solvents and trituration of the residue with ether gave **12** (11.2 mg, 32%) as a yellow solid: mp >180 °C (dec); ¹H NMR (DMSO-*d*₆) δ 13.6 (broad, 1H, N–H), 8.44 (s, 1H, H-8), 7.67 (s, 2H, NH₂), 7.2–7.4 (m, 5H, Ar), 5.92 (d, 1H, *J* = 6.0 Hz, H-1'), 5.50 (d, 1H, *J* = 6.2 Hz, OH), 5.19 (d, 1H, *J* = 4.8 Hz, OH), 5.14 (m, 1H, OH), 4.63 (m,

1H, H-2'), 4.17 (m, 1H, H-3' or H-4'), 3.97 (m, 1H, H-4' or H-3'), 3.5–3.7 (m, 2H, H-5'); [found M^+ + 1, 431.1421; C₁₇H₁₉N₈O₆ requires M, 431.1428]. Anal. Calcd (C₁₇H₁₈N₈O₆·0.3H₂O) C, H, N.

N⁶-Phenyl-2',3',5'-tri-*O***-acetyl-2-nitroadenosine 13a.** Aniline (0.548 mL, 6.0 mmol) was added to a solution of **1** (0.915 g, 2.0 mmol) in DMF (4 mL). After 1 h of stirring, water (~10 mL) was slowly added to precipitate the product. Filtration, washing with methanol, and drying in vacuo gave pure **13a** (1.01 g, 98%), as a yellow solid: mp 95–99 °C; ¹H NMR δ 8.20 (s, 1H, H-8), 8.01 (s, 1H, N–H), 7.87 (d, 2H, J = 8.0 Hz, Ar–H_{ortho}), 7.45 (t, 2H, J = 8.0 Hz, Ar–H_{meta}), 7.21 (t, 1H, J = 8.0 Hz, Ar–H_{para}), 6.27 (d, 1H, J = 5.5 Hz, H-1), 5.77 (m, 1H, H-2'), 5.63 (m, 1H, H-3'), 4.45–4.50 (m, 3H, H-4', H-5'), 2.19, 2.14, and 2.10 (all 3H, s, acetates).

*N*⁶-Cyclopentyl-2',3',5'-tri-*O*-acetyl-2-nitroadenosine 13b. Cyclopentylamine (99 μ L, 1.02 mmol) and *N*,*N*-diisopropylethylamine (0.262 mL, 1.5 mmol) were added to a solution of 1 (0.457 g, 1.0 mmol) in DMF (2 mL) at -18 °C. The bath was removed, and after 1 h of stirring at room temperature, the reaction mixture was purified by extractive workup (ether/ water) to give crude 13b, which was used without purification in the next step: ¹H NMR δ 8.60 (broad, 1H, N–H), 8.05 (s, 1H, H-8), 6.20 (m, 1H, H-2'), 6.15 (d, 1H, *J* = 5.5 Hz, H-1'), 5.62 (m, 1H, H-3'), 4.7 (broad, *CH*-NH), 4.3–4.6 (m, 3H, H4', H5'), 2.15, 2.10, and 2.07 (all 3H, s, acetates), 1.3–1.9 (m, 4H, cyclopentyl).

*N*⁶-(2,2-Diphenylethyl)-2',3',5'-tri-*O*-acetyl-2-nitroadenosine 13c. 2,2-Diphenylethylamine (0.197 g, 1.0 mmol) was reacted with 1 (1 mmol) as is described for 13b to give crude 13c, which was used without purification in the next step: ¹H NMR δ 8.02 (s, 1H, H-8), 7.2–7.4 (m, 10H, Ar), 6.23 (m, 1H, H-2'), 6.19 (d, 1H, *J* = 5.5 Hz, H-1'), 5.72 (m, 1H, N–H), 5.62 (m, 1H, H-3'), 4.3–4.6 (m, 6H), 2.17, 2.11, and 2.08 (all 3H, s, acetates).

*N*⁶-Phenyl-2′,3′,5′-tri-*O*-acetyl-2-nitrosoadenosine 14a. Nitropurine 13a (0.514 g, 1.0 mmol) was hydrogenated with Pd/C (30 mg, 10%) in ethyl acetate (20 mL) during one night under 1 atm of H₂. The catalyst was removed by hot filtration over hyflow, and the filtrate was immediately oxidized with a solution of sodium periodate (0.321 g, 1.5 mmol) in water (10 mL) at 0 °C. The biphasic mixture was stirred vigorously during 1 h at this temperature, and after separation of the organic layer, the nitroso derivative **14a** (0.51 g, purity \sim 90%) was obtained as a yellow glass: ¹H NMR (concentrationdependent mixture of monomer and dimer; a sample of 1 mg in 0.5 mL of CDCl₃ shows predominantly the monomer) δ 8.31 (s, 1H, H-8), 7.93 (s, 1H, N–H), 7.86 (d, 2H, J = 7.6 Hz, Ar), 7.45 (t, 2H, J = 7.6 Hz, Ar), 7.19 (m, 1H, Ar), 6.44 (d, 1H, J= 5.5 Hz, H-1'), 5.90 (m, 1H, H-2'), 5.69 (m, 1H, H-3'), 4.4-4.5 (m, 3H, H-4', H-5'), 2.20, 2.15, and 2.10 (all 3H, s, acetates).

N⁶-Cyclopentyl-2',3',5'-tri-*O***-acetyl-2-nitrosoadenosine 14b.** Nitro compound **13b** (0.10 g, 0.23 mmol) was reduced and oxidized as described for **14a** to give nitroso derivative **14b**, which was used without purification in the next step: ¹H NMR δ 8.00 (broad, 2H, H-8, N–H), 6.33 (m, 1H, H-1'), 5.7 (m, 1H, H-2'), 5.5 (m, 1H, H-3'), 4.9 (broad, *CH*– NH), 4.3–4.6 (m, 3H, H4', H5'), 2.18, 2.11, and 2.10 (all 3H, s, acetates), 1.3–1.9 (m, 4H, cyclopentyl).

*N*⁶-(2,2-Diphenylethyl)-2',3',5'-tri-*O*-acetyl-2-nitrosoadenosine 14c. Nitro compound 13c (crude, from 1 mmol of 1) was reduced and oxidized as described for 14a to give nitroso derivative 14c, which was used without purification in the next step: ¹H NMR δ 8.12 (s, 1H, H-8), 7.0–7.3 (m, 10H, Ar), 6.23 (d, 1H, *J* = 5.5 Hz, H-1'), 5.90 (m, 1H, H-2'), 5.65 (m, 1H, H-3'), 4.3–4.6 (m, 6H), 2.20, 2.15, and 211 (all 3H, s, acetates).

N⁶-Phenyl-2-(3-aminocarbonyltriazene-1-yl)adenosine 16a. The general procedure described for the synthesis of **7a-1** was used. Starting from **14a** (0.1 mmol) and **6a** (0.2 mmol), 32.2 mg of triacetate **15a** (58%) was isolated after chromatography with 5% methanol in ethyl acetate. The acetates were removed by stirring a solution of **15a** in methanol (2 mL) with aqueous ammonia (2 mL of a 25% solution) for 18 h at room temperature. The solvents were removed in vacuo, and the residue was triturated with methanol (~2 mL), providing pure **16a** (19.0 mg, 76%): mp 187–88 °C; ¹H NMR (DMSO-*d*₆) δ 12.50 (s, 1H, N–H), 10.21 (s, 1H, N–H), 8.55 (s, 1H, H-8), 8.00 (d, 2H, *J* = 8.1 Hz, Ar), 7.35 (m, 2H, Ar), 7.2 (broad, 2H, NH₂), 7.09 (m, 1H, Ar), 5.94 (d, 1H, *J* = 7.0 Hz, H-1'), 5.81 (m, 1H, OH), 5.50 (d, 1H, *J* = 6.3 Hz, OH), 5.26 (d, 1H, *J* = 3.9, OH), 4.75 (m, 1H, H-2'), 4.17 (m, 1H, H-3' or H-4'), 4.07 (m, 1H, H-4' or H-3'), 3.5–3.8 (m, 2H, H-5'); [found M⁺ + 1, 430.1591; C₁₇H₂₀N₉O₅ requires M, 430.1587]. Anal. Calcd (C₁₇H₁₉N₉O₅•1.1H₂O) C, H, N.

N⁶-Phenyl-2-(3-phenylaminocarbonyltriazene-1-yl]adenosine 16b. The general procedure described for the synthesis of 7a-l was used. Starting from 14a (1.0 mmol) and 4-phenylsemicarbazide 6d (2.0 mmol), a yield was obtained of 0.153 g of 15b (24%) after chromatography with ethyl acetate. The acetates were removed by stirring a solution of 15b in methanol (5 mL) with aqueous ammonia (5 mL of a 25% solution) for 18 h at room temperature. The solvents were removed in vacuo, and the residue was triturated with methanol (~2 mL), providing ${\bf 16b}$ (0.062 g, 51%) as a yellow solid: mp 190–191 °C; ¹H NMR (DMSO- d_6) δ 12.97 (s, 1H, N-H), 10.28 (s, 1H, N-H), 10.05 (s, 1H, N-H), 8.56 (s, 1H, H-8), 8.00 (broad, 2H, Ar), 7.41 (broad, 2H, Ar), 7.37 (m, 4H, Ar), 7.10 (m, 2H, Ar), 6.34 (m, 1H, OH), 5.96 (d, 1H, J = 7.2Hz, H-1'), 5.87 (d, 1H, J = 6.0 Hz, OH), 5.52 (m, 1H, OH), 4.84 (m, 1H, H-2'), 4.22 (m, 1H, H-3' or H-4'), 4.13 (m, 1H, H-4' or H-3'), 3.6-3.9 (m, 2H, H-5'); [found M⁺ + 1, 506.1907; C23H24N9O5 requires M, 506.1901]. Anal. Calcd (C23H23N9O5. 1.0H₂O) C, H, N.

N⁶-Cyclopentyl-2-(3-phenylaminocarbonyltriazene-1yl)adenosine 16c (TCPA). The general procedure described for the synthesis of 7a-l was used. Starting from 14b (98 mg, 0.23 mmol) and 4-phenylsemicarbazide 6d (0.4 mmol), a yield was obtained of 0.024 g of 15c (0.039 mmol, 17% in four steps starting from 1) after chromatography with ethyl acetate. The acetates were removed by stirring a solution of 15c in methanol (2 mL) with aqueous ammonia (2 mL of a 25% solution) for 18 h at room temperature. The solvents were removed in vacuo, and the residue was triturated with methanol (~ 2 mL), providing 16c (9.5 mg, 48%) as a yellow solid: mp 164–166 °C; ¹H NMR (DMSO- d_6) δ 12.81 (s, 1H, N-H), 10.17 (s, 1H, N-H), 8.37 (s, 1H, H-8), 8.21 (s, 1H, N-H), 7.59 (broad, 2H, Ar), 7.39 (t, 2H, J = 7.7 Hz, Ar), 7.11 (m, 1H, Ar), 6.65 (m, 1H, OH), 5.88 (d, 1H, J = 7.4 Hz, H-1'), 5.47 (d, 1H, J = 5.8 Hz, OH), 5.26 (m, 1H, OH), 5.18 and 4.68 (m, 1H, CHNH, rotamers), 4.82 (m, 1H, H-2'), 4.19 (m, 1H, H-3' or H-4'), 4.10 (m, 1H, H-4' or H-3'), 3.65-3.9 (m, 2H, H-5'), 1.98 (m, 2H, cyclopentyl), 1.70 (m, 2H, cyclopentyl), 1.58 (m, 4H, cyclopentyl); [found M⁺ + 1, 498.2207; $C_{22}H_{28}N_9O_5$ requires M, 498.2213]. Anal. Calcd (C₂₂H₂₇N₉O₅•0.5H₂O) C, H, N.

N⁶-(2,2-Diphenylethyl)-2-(3-phenylaminocarbonyltriazene-1-yl)adenosine 16d. The general procedure described for the synthesis of 7a-l was used. Starting from 14c (obtained from 1.0 mmol 1) and 4-phenylsemicarbazide 6d (1.4 mmol), a yield was obtained of 98 mg of 15d (13% in four steps based on 1) after chromatography with ethyl acetate. The acetates were removed by stirring a solution of 15d in methanol (4 mL) with aqueous ammonia (4 mL of a 25% solution) for 18 h at room temperature. The solvents were removed in vacuo, and the residue was triturated with methanol (~ 2 mL), providing 16d (54.3 mg, 69%) as a yellow solid: mp 138-140 °C; ¹H NMR (DMSO-d₆) δ 12.92 (s, 1H, N–H), 10.13 (s, 1H, N–H), 8.31 (s, 1H, H-8), 8.25 (s, 1H, N-H), 7.61 (broad, 2H, Ar), 7.0-7.4 (m, 13H, Ar), 6.49 (broad, 1H, OH), 5.86 (d, 1H, J = 7.3 Hz, H-1'), 5.46 (d, 1H, J = 6.1 Hz, OH), 5.26 (m, 1H, OH), 4.77 (m, 1H, H-2'), 4.67 and 4.61 (m, 1H, CHNH, rotamers), 4.18 (m, 3H, CH₂CH, H-3' or H-4'), 4.08 (m, 1H, H-4' or H-3'), 3.65-3.8 (m, 2H, H-5'); [found M^+ + 1, 610.2512; $C_{31}H_{32}N_9O_5$ requires M, 610.2527]. Anal. Calcd ($C_{31}H_{31}N_9O_5 \cdot 1.1H_2O$) C, H, N.

Improved Synthesis of TCPA (16c) via 17. A mixture of *p*-nitrophenyl carbazate¹⁸ (0.455 g, 2.31 mmol) and **14b** (prepared from 3.0 mmol **13b**) was stirred in a mixture of DCM (25 mL) and acetic acid (2.5 mL) during 18 h. Aqueous workup (saturated NaHCO₃, diethyl ether), drying (Na₂SO₄), and

evaporation of the solvents (bath temperature < 30 °C) gave crude **17**. Chromatography (silica, EtOAc) gave moderately pure **17** as a yellow glass (0.930 g, 46% based on **1**); ¹H NMR (DMSO- d_{6}) δ 12.0 (s, 1H, N–H), 8.32 (d, 2H, J= 9.0 Hz, ArH), 7.96 (s, 1H, H-8), 7.49 (d, 2H, J= 9.0 Hz, ArH), 6.93 (d, 1H, J= 7.3 Hz, N–H), 6.20 (d, 1H, J= 3.9 Hz, H1'), 5.83 (m, 1H, H-2'), 5.74 (m, 1H, H-3'), 4.65 (broad, 1H, *CH*NH), 4.45 (m, 3H, H4', H5'), 2.09, 2.07 and 2.04 (all 3H, s, acetates), 1.5–1.8 (m, 8H, cyclopentyl).

A solution of 17 (0.335 g, 0.50 mmol) was stirred with aniline (0.456 mL, 5.0 mmol) in anhydrous acetonitrile (10 mL) during 8 h. Evaporation of the solvent and chromatography (silica, ethyl acetate) gave 15c (0.259 g, 0.416 mmol, 83%) as a yellow glass: ¹H NMR δ 14.5 (broad, 1H, N-H), 9.7 (broad, 1H, N-H), 8.51 (s, 1H, H-8), 7.93 (broad, 1H, N-H), 7.60 (broad, 2H, Ar), 7.36 (t, 2H, J = 7.7 Hz, Ar), 7.13 (m, 1H, Ar), 6.16 (m, 1H, H-1'), 5.98 (m, 1H, H-2'), 5.75 (m, 1H, H3'), 4.49 (broad, 1H, CHNH), 4.3-4.5 (m, 3H, H4', H5'), 2.12, 2.06, 2.04 (all 3H, s, acetates), 1.5-1.8 (m, 8H, cyclopentyl). The acetates were removed by stirring a solution of **15c** (0.238 g, 0.38 mmol) in methanol (10 mL) with aqueous ammonia (10 mL of a 25%) solution) for 18 h at room temperature. The solvents were removed in vacuo, and the residue was triturated with methanol (~5 mL), providing 16c (0.116 g, 0.23 mmol, 61%) as a yellow solid.

Stability Studies. A solution of **8d** or **16c** (0.5 mg) in DMSO- d_6 (50 μ L) was diluted with phosphate buffer in D₂O (450 μ L, pD 7.8, 0.05 M) and kept in an NMR tube at 25 °C. ¹H NMR spectra were obtained at 2 h intervals for 5 days. No changes in the spectrum were observed.

Hydrolysis of 8d. A solution of **8d** in a mixture of DMSOd₆ (450 μ L) and D₂O (50 μ L) was heated in an NMR tube at 80 °C. After 2 h, complete conversion was observed to aniline and 2-aminoadenosine (**18**): ¹H NMR δ 7.93 (s, 1H, H-8), 7.01 (m, 2H, aniline), 6.58 (t, 2H, J = 7.3 Hz, aniline), 6.53 (t, J = 7.3 Hz, aniline), 5.70 (d, 1H, J = 6.4 Hz, H-1'), 4.51 (m, 1H, H-2'), 3.64 (dd, 1H, J = 12.2 Hz, J = 3.2 Hz, H-5a'), 3.54 (dd, 1H, J = 12.2 Hz, J = 3.2 Hz, H-5b').

Hydrolysis of 16c. Hydrolysis of **16c** was performed as described for **8d** to give 2-amino-CPA **19** and aniline: ¹H NMR δ 7.89 (s, 1H, H-8), 7.01 (m, 2H, aniline), 6.58 (t, 2H, *J* = 7.3 Hz, aniline), 6.53 (t, *J* = 7.3 Hz, aniline), 5.70 (d, 1H, *J* = 6.4 Hz, H-1'), 4.50 (m, 1H, H-2'), 3.9–4.1 (m, 3H, H-3', H-4', *CH*NH), 3.64 (dd, 1H, *J* = 12.3 Hz, *J* = 3.2 Hz).

Cell Cultures. Radioligand binding studies were performed on stably transfected cell lines expressing human adenosine receptors. CHO cells expressing the human adenosine A_1 receptor were obtained from Dr. A. Townsend-Nicholson. These cells were cultured at 37 °C in a 5% CO₂ atmosphere in a 1:1 mixture of DMEM/F12, 2 mM Glutamax (a stable analogue of glutamine), 10% newborn calf serum with 50 IU/mL penicillin, and 50 µg/mL streptomycin. Dr. S. Rees kindly provided CHO cells expressing the human A_{2A} or human A_{2B} receptor. These cells were cultured at 37 °C in a 5% CO₂ atmosphere in a 1:1 mixture of DMEM/F12, 2 mM Glutamax (a stable analogue of glutamine), 10% newborn calf serum, 1 mg/mL G418 with 50 IU/mL penicillin, and 50 μ g/mL streptomycin. HEK293 cells expressing human adenosine A_3 receptors were from Dr. K.-N. Klotz. These cells were cultured at 37 $^\circ\text{C}$ in a 7% CO_2 atmosphere in DMEM, 2 mM Glutamax (a stable analogue of glutamine), 10% newborn calf serum, 0.5 mg/mL G418, with 50 IU/mL penicillin, and 50 μ g/mL streptomycin.

Confluent cells expressing the human A_1 , A_{2A} , or A_{2B} receptor or semiconfluent cells expressing the human A_3 adenosine receptor were trypsinized and centrifuged for 10 min at 1000 rpm. The cell pellet of CHO cells expressing the adenosine A_{2B} receptor was resuspended in 140 mM NaCl, 5 mM KCl, and 5 mM glucose in 20 mM Tris-HCl adjusted to pH 7.4 at room temperature. The other cell pellets were resuspended in 50 mM Tris-HCl, pH 7.4, at room temperature and homogenized on ice for 5 s at position 8 with an Ystral. The homogenate was centrifuged for 45 min at 12700 rpm in an SW-30 rotor at 4 °C. The resulting pellet was resuspended

in 50 mM Tris-HCl, pH 7.4, at room temperature. Adenosine deaminase, 2 IU/mL, was added, and aliquots were stored at -80 °C.

Radioligand Binding Studies. Stock solutions of ligands were made in DMSO. The final concentration of DMSO in the assay did not exceed 1%. [³H]DPCPX and [¹²⁵I]IAB-MECA were obtained from Amersham, and [³H]ZM241385 was from Tocris Cookson Ltd. (Northpoint, U.K.). IC₅₀ values were estimated by GraphPad Prism software (GraphPad, San Diego, CA). IC₅₀ values obtained from the competition curves were converted to K_i values using the Cheng–Prusoff equation.

Adenosine A₁ **Receptor.** Membranes, containing 40 μ g of protein, were incubated in a total volume of 400 μ L of 50 mM Tris-HCl, pH 7.4, at room temperature with [³H]DPCPX (final concentration = 1.6 nM) during 1 h at 25 °C in a shaking water bath. Nonspecific binding was determined in the presence of 10 μ M CPA. The incubation was terminated by filtration over Whatman GF/B filters under reduced pressure with a Brandell harvester. Filters were washed three times with ice-cold buffer and placed in scintillation vials. Emulsifier Safe, 3.5 mL, was added, and after 2 h, radioactivity was counted in an LKB rackbeta scintillation counter.

Adenosine A_{2A} Receptor. Membranes, containing 40 μ g of protein, were incubated in a total volume of 400 μ L of 50 mM Tris-HCl, pH 7.4, at room temperature with [³H]-ZM241385 (final concentration = 2.0 nM) during 2 h at 25 °C in a shaking water bath. Nonspecific binding was determined in the presence of 100 μ M CPA. The incubation was terminated by filtration over Whatman GF/B filters under reduced pressure with a Brandell harvester. Filters were washed four times with ice-cold buffer and placed in scintillation vials. Emulsifier Safe, 3.5 mL, was added, and after 2 h, radioactivity was counted in an LKB rackbeta scintillation counter.

Adenosine A_{2B} Receptor. Cells (500000 per assay) were incubated in a total volume of 100 μ L of 140 mM NaCl, 5 mM KCl, 5 mM glucose, and 20 mM Tris-HCl, pH 7.4, at room temperature with [³H]DPCPX (final concentration = 6.0 nM) during 3 h at 25 °C in a shaking water bath. Nonspecific binding was determined in the presence of 10 μ M CGS15943. The incubation was terminated by filtration over Whatman GF/B filters under reduced pressure with a Millipore manifold. Filters were washed eight times with 2 mL of ice-cold buffer and placed in scintillation vials. Emulsifier Safe, 3.5 mL, was added, and after 2 h, radioactivity was counted in an LKB rackbeta scintillation counter.

Adenosine A₃ Receptor. Membranes, containing 20–40 μ g of protein, were incubated in a total volume of 100 μ L of 50 mM Tris-HCl, 10 mM MgCl₂, 1 mM EDTA, and 0.01% CHAPS, pH 7.4, at room temperature with [¹²⁵I]IAB-MECA (final concentration = 0.10 nM) during 1 h at 37 °C in a shaking water bath. Nonspecific binding was determined in the presence of 100 μ M R-PIA. The incubation was terminated by filtration over Whatman GF/B filters under reduced pressure with a Brandell harvester. Filters were washed three times with ice-cold buffer and placed in vials. Radioactivity was counted in a gamma counter.

cAMP Experiments. The CHO cells stably expressing the human adenosine A₁ receptor from Dr. A. Townsend-Nicholson were seeded in 24 well plates at a density of 2×10^5 cells/ well. The next day cAMP generation was performed as previously described.²⁶ Inhibition of 10 μ M forskolin-induced cAMP formation by CCPA and TCPA was determined by competition with [³H]cAMP for binding to protein kinase A.²⁶ The data reflect three independent experiments, performed in duplicate. To analyze the data, PRISM software (GraphPad, San Diego, CA) was used.

References

 Fredholm, B. B.; IJzerman, A. P.; Jacobson, K. A.; Klotz, K. N.; Linden, L. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. *Pharmacol. Rev.* 2001, *53*, 527–552.

- (2) Daly, J. W.; Padgett, W.; Thompson, R. D.; Kusachi, S.; Bugni, R. A. Structure-activity relationships for N6-substituted adenosines at a brain A1-adenosine receptor with a comparison to an A2-adenosine receptor regulating coronary blood flow. *Biochem. Pharmacol.* **1986**, *35*, 2467–2481.
- (3) Francis, J. E.; Webb, R. L.; Ghai, G. R.; Hutchison, A. J.; Moskal, M. A.; DeJesus, R.; Yokoyama, R.; Rovinski, S. L.; Contardo, N.; Dotson, R.; Barclay, B.; Stone, G. A.; Jarvis, M. F. Highly selective adenosine A2 receptor agonists in a series of Nalkylated 2-amino adenosines. *J. Med. Chem.* **1991**, *34*, 2570– 2579.
- (4) Matsuda, A.; Shinozaki, M.; Yamaguchi, T.; Homma, H.; Nomoto, R.; Miyasaka, T.; Watanabe, Y.; Abiru, T. Nucleosides and nucleotides. 103. 2-Alkynyladenosines: a novel class of selective adenosine A2 receptor agonists with potent antihypertensive effects. J. Med. Chem. 1992, 35, 241–52.
- (5) Abiru, T.; Miyashita, T.; Watanabe, Y.; Yamaguchi, T.; Machida, H.; Matsuda A. Nucleosides and nucleotides. 107. 2-(Cycloalkylalkynyl)adenosines: adenosine A2 receptor agonists with potent antihypertensive effects. J. Med. Chem. 1992, 35, 2253–2260.
- (6) Ueeda, M.; Thompson, R. D.; Arroyo, L. H.; Olsson, R. A. 2-Aralkoxyadenosines: potent and selective agonists at the coronary artery A2 adenosine receptor. *J. Med. Chem.* **1991**, *34*, 1340–1344.
- (7) Makujina, S. R.; Olsson, R. A.; Esinhart, J. D.; Mustafa, S. J. Structure–activity relationship of 2-(ar)alkoxyadenosines at the adenosine A2 receptor in coronary artery. *Eur. J. Pharmacol.* **1993**, *243*, 35–38.
- (8) Niiya, K.; Olsson, R. A.; Thompson, R. D.; Silvia, S. K.; Ueeda, M. 2-(N-Alkylidenehydrazino)adenosines: potent and selective coronary vasodilators. J. Med. Chem. 1992, 35, 4557–4561.
- (9) Niiya, K.; Thompson, R. D.; Silvia, S. K.; Olsson, R. A. 2-(N-Aralkylidenehydrazino)adenosines: potent and selective coronary vasodilators. J. Med. Chem. 1992, 35, 4562–4566.
- (10) Meyerhof, W.; Muller-Brechlin, R.; Richter, D. Molecular cloning of a novel putative G-protein coupled receptor expressed during rat spermiogenesis. *FEBS Lett.* **1991**, *284*, 155–160.
- (11) Zhou, Q. Y.; Li, C.; Olah, M. E.; Johnson, R. A.; Stiles, G. L.; Civelli, O. Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. *Proc. Natl. Acad. Sci.* U.S.A. 1992, 89, 7432–7436.
- (12) Klotz, K. N.; Hessling, J.; Hegler, J.; Owman, C.; Kull, B.; Fredholm, B. B.; Lohse, M. J. Comparative pharmacology of human adenosine receptor subtypes-characterization of stably transfected receptors in CHO cells. *Naunyn Schmiedebergs Arch. Pharmacol.* **1998**, *357*, 1–9.
- (13) Wanner, M. J.; Von Frijtag Drabbe Künzel, J. K.; IJzerman, A. P.; Koomen, G.-J. 2-Nitro analogues of adenosine and 1-deazaadenosine: synthesis and binding studies at the adenosine A₁, A_{2A} and A₃ receptor subtypes. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 2141–2144.
- (14) Deghati, P. Y. F.; Wanner, M. J.; Koomen, G.-J. Regioselective nitration of purine nucleosides: Synthesis of 2-nitroadenosine and 2-nitroinosine. *Tetrahedron Lett.* **2000**, *41*, 1291–1295.
- (15) Wanner, M. J.; Koomen, G.-J. Synthesis and properties of 2-nitrosoadenosine. J. Chem. Soc., Perkin Trans. 1 2001, 1908– 1915.
- (16) Kreher, R.; Goth, K. Notiz zur synthese von 3-(arylamino)carbazinsäure-alkylestern und N-(arylazo)alkansäureamiden. *Liebigs Ann. Chem.* **1973**, 1750–1752.
- (17) Ito, S.; Fukuyama, T. The formation of 1-phenyl-3-benzoyltriazene by the base-catalyzed condensation of nitrosobenzene with benzhydrazide. J. Org. Chem. **1971**, *36*, 2008–2009.
- (18) Vlasak, P.; Parik, P.; Klicnar, J.; Mindl, J. Synthesis of ringsubstituted phenyl hydrazinecarboxylates and study of their protonation in dimethyl sulfoxide solutions. *Collect. Czech. Chem. Commun.* **1998**, *63*, 793–802.
- (19) Beukers, M. W.; Den Dulk, H.; Van Tilburg, E. W.; Brouwer, J.; IJzerman, A. P. Why are A_{2B} receptors low-affinity adenosine receptors? Mutation of Asn273 to Tyr increases affinity of human A_{2B} receptor for 2-(1-hexynyl)adenosine. *Mol. Pharmacol.* **2000**, *58*, 1349–1356.
- (20) Trivedi. B. K.; Bruns, R. F. C2, N⁶-disubstituted adenosines: synthesis and structure activity relationships. J. Med. Chem. **1989**, 32, 1667–1673.
- (21) Volpini, R.; Costanzi, S.; Lambertucci, C.; Taffi, S.; Vittori, S.; Klotz, K.-N.; Cristalli, G. N^o-Alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A₃ receptor and a starting point for searching A_{2B} ligands. J. Med. Chem. **2002**, 45, 3271–3279.
- (22) van Tilburg, E. W.; van der Klein, P. A. M.; von Freitag Drabbe Künzel, J.; de Groote, M.; Stannek, C.; Lorenzen, A.; IJzerman, A. P. 5'-O-Alkyl ethers of N,2-substituted adenosine derivatives: partial agonists for the adenosine A₁ and A₃ receptors. *J. Med. Chem.* **2001**, *44*, 2966–2975.

- (23) Kim, H. O.; Ji, X.-D.; Siddiqi, S. M.; Olah, M. E.; Stiles, G. L.; Jacobson, K. A. 2-Substitution of N6-benzyladenosine-5'-uronamide enhances selectivity for A3 adenosine receptors. J. Med. Chem. 1994, 37, 3614-3621.
- (24) Klotz, K. N.; Camaioni, E.; Volpini, R.; Kachler, S.; Vittori, S.; Cristalli, G. 2-Substituted N-ethylcarboxamidoadenosine derivatives as high-affinity agonists at human A3 adenosine receptors. *Naunyn Schmiedebergs Arch. Pharmacol.* **1999**, *360*, 103–108.
- (25) Nagano, M.; Tobitsuka, J.; Matsui, T.; Oyamada, K. Reaction of

alkoxycarbonyl isothiocyanates and 2-aminothiazole. *Chem. Pharm. Bull.* 1972, 20, 2618–2625.
(26) van Calenbergh, S.; Link, A.; Fujikawa, S.; de Ligt, R. A.; Vanheusden, V.; Golisade, A.; Blaton, N. M.; Rozenski, J.; IJzerman, A. P.; Herdewijn, P. 5'-Deoxy congeners of 9-(3-amido-3-deoxy-β-D-xylofuranosyl)*N*6-cyclopentyladenine: new adenosine A1 receptor antagonists and inverse agonists. *J. Med. Chem.* 2002, 45, 1845–1852.

JM021074J