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Abstract: In using computational tools for library design it
is necessary to understand the performance and limitations
of available methods. This letter reports systematic compari-
sons of applying ligand-based and structure-based tools across
therapeutic project-derived data sets. Included are assess-
ments of performance in real-world iterative design applica-
tions and the utility of target structural information. The
results suggest that combining screening and target structure
information is robust; further, a well-designed screening
library can compensate for lacking structural information.

Introduction. The introduction of parallel synthesis
and high throughput screening in the medicinal chem-
istry setting has provided new challenges and opportuni-
ties for computational medicinal chemists. Design strat-
egies need to assist chemists in optimizing the informa-
tion gathered from screening libraries and capitalize on
the larger amount of available data. In response to these
changing needs the methods and measures by which
computational tools are assessed must be updated.

Historically, computational tools may have been used
to prioritize, in a single pass, compounds from a large
static corporate collection so it was appropriate to assess
tool performance in terms of recovery of known actives
from a large, diverse pool. With the integration of
computational methods in the iterative library design-
synthesize-screen-analyze process, the methods are
required to discern active compounds from congeneric
sets and to capitalize on large amounts of sometimes-
noisy screening data. In addition, the methods should
assist in discovering novel or alternate chemotypes to
provide back-up series in case a particular lead suffers
intractable ADMET or PK issues.

This letter describes evaluating computational meth-
ods including proprietary in-house pharmacophore-
based and structure-based ensemble and informative de-
sign tools. Virtual high throughput screening (docking)
with a variety of scoring methods was chosen as an ex-
ternal benchmark. The methods were tested using data
generated on internal discovery projects and a software
framework to simulate using the tools in a project

setting. Comparison metrics were chosen to reflect the
demands on computational tools in modern drug dis-
covery. These measures are cumulative enrichment,
enrichment per round, and number of scaffolds discov-
ered with active compounds. A single measure does not
reflect adequately the potential impact of a given
method on a therapeutic project; nor does the same
metric have the same importance when considering a
tool for different stages of a therapeutic project (e.g.,
lead discovery, evolution, or optimization). The metrics,
therefore, must be considered together and combined
with the insights of medicinal and computational chem-
ists to understand the balance of project needs and how
a particular method can meet those needs.

Data Sets. Two data sets comprising screening data
generated for internal discovery projects focusing on
different gene families were assembled. Both data sets
were processed to remove duplicate compounds. Activi-
ties for the compounds were binned according to criteria
described for the respective data sets below. To best
simulate therapeutic project scenarios, each of the data
sets was also split into “starting data” and “targeted
source pool” from which compounds were selected.

The first data set was derived from data associated
with a project targeted on cyclin-dependent kinase 2
(CDK2).1,10 It contains 17550 compounds divided into
the “starting” or “training” data made up of 13359
compounds from an informative screening library and
the “targeted source pool” comprising 4191 molecules;
these libraries contained 207 and 161 active compounds,
respectively. Compounds with IC50 < 25 µM or enzyme
inhibition >50% at 30 µM were considered active for
this study. Among the target library compounds there
were 22 scaffolds, as defined by the original medicinal
chemistry team, of these 14 contained active compounds.
This data set represents a situation in which data from
a screening library is used as the starting point for
model building. In addition, 23 structures of CDK2
complexed with a variety of ligands were available;
enabling the comparison between using screening data
only and using target structure information.

The second data set is from a serine protease inhibitor
discovery project. The starting data set contains three
lead compounds found in the literature and patents, and
the targeted source pool consists of 8098 compounds syn-
thesized in the course of the project. Of the synthetic
compounds 352 were considered active, with 14 scaffolds
exhibiting activity. The activity cutoffs for this data set
were Ki < 10 µM or >50% enzyme inhibition at 25 µM.
Three crystallographic structures of the target complex-
ed with inhibitors were available. This data set allows
comparison of how well various methods support lead
hopping, with and without target structure information.

The distributions of pairwise Tanimoto similarities
(1.0 - pairwise Tanimoto distance in Daylight finger-
print space2) between the active compounds in the
training sets and the source pools for each data set are
shown in Figure 1.

Methods. The studies presented form a retrospective
analysis, meaning the methods were tested using com-
pounds and data that already existed. This is the most

* To whom correspondence should be addressed.
† Present address: Sunesis Pharmaceuticals, 341 Oyster Pt. Blvd,

South San Francisco, CA 94080, email: ee: ee@sunesis.com; ekb:
ebradley@sunesis.com.

‡ Present address: Celera Genomics, 180 Kimball Way, South San
Francisco, CA, 94080, email: john.eksterowicz@celera.com.

§ Present address: Pfizer Discovery Technology Center, 620 Memo-
rial Dr., Cambridge, MA 02139, email: robert_stanton@cambridge.
pfizer.com.

| Present address: Roche Palo Alto, 3431 Hillview Ave, Palo Alto,
CA 94304.

⊥ Present address: Vertex Pharmaceuticals Inc., 11010 Torreyana
Rd., San Diego, CA 92121, email: Peter_Grootenhuis@sd.vrtx.com

5125J. Med. Chem. 2003, 46, 5125-5128

10.1021/jm025618t CCC: $25.00 © 2003 American Chemical Society
Published on Web 10/18/2003



realistic and consistent manner possible by which to
compare the methods; nevertheless, it does present
limitations in that the methods are able only to discover
previously known compounds.

The performance of two ligand-based and two struc-
ture-based methods was compared to random selection.
For all the methods except docking, an initial compu-
tational model was derived from the “starting data set”,
this was followed by five simulated iterations of the
design-synthesize-screen-analyze cycle within the
“targeted source pool”.

For the internal ligand- and structure-based methods
a full conformational model was generated for all
compounds using the program CONAN,3 and the pres-
ence of three-dimensional 2-, 3-, and 4-point pharma-
cophores with bin-widths ranging from 0.8 Å at short
distances (minimum distance 2.2Å) to 3.0 Å at longer
distances (maximum distance 24 Å) in any of a com-
pound’s conformers was encoded as binary strings or
fingerprints.4,5 Feature combinations could occupy ad-
jacent bins simultaneously if their distance fell within
20% of a bin width of the bin boundary. These descrip-
tors were used as the basis for developing ensemble
models using machine learning4,6,7 or performing infor-
mative design8,9 in pharmacophore spaces derived either
from the screening library (CDK2) or known active
(protease) data.10 In addition, informative design was
performed in structure-derived pharmacophore spaces.11

For all internal methods five rounds of compound
selection and model or design space refinement were
performed. For the CDK2 data set, a total of 1000
compounds were selected in batches of 500, 250, 100,
100, and 50. A total of 2500 protease compounds were
selected in batches of 500 compounds per round.

To investigate whether virtual high-throughput
screening12-16 provided advantages in comparison to the
proprietary methods, compounds were selected from the
source pools by docking them to the available protein
structures and evaluating their interaction energy
scores using UCSF DOCK.17 Partial charges were
assigned using the Gasteiger method18,19 and 10 CO-
NAN conformers per stereoisomer of each ligand were
docked rigidly to each target structure. The limited
number of conformers was chosen to achieve reasonable
throughput in the docking calculation in a moderate-
sized Linux clusters (approximately 40 dual 1.4 GHz
processor nodes); this constraint reflects the computa-
tional demands of the docking calculation in comparison
to the ligand-based methods which required at most two

processors of similar speed. In the case of the CDK2 data
set, compounds were docked to only four structures20-23

because of the large amount of CPU time required per
target structure; the protease compounds were docked
to all three available structures. The DOCK energy
score, DOCK chem score, and DOCK vdw score scoring
functions were applied both individually and in combi-
nation by taking a consensus of their results. In addi-
tion, consensus scores were calculated across the avail-
able protein structures.24-26 Because there is not a
straightforward, systematic method for incorporating
assay data in the DOCK protocol and scoring functions,
a single selection of a number of compounds equal to
the number selected in the five rounds for each target
was made using each scoring function and combinations
thereof. The ranges and averages of enrichment and
active scaffolds are reported for each target.

Finally, to establish a baseline for comparison, ran-
dom selections matching the numbers picked in the
experiments of the internal tools were made.

All methods were evaluated according to several para-
meters chosen to measure quantities important for ther-
apeutic project success. To assess the ability of each
method to help discover active compounds, enrichment
was calculated by dividing the fraction of selected
molecules that were active by the fraction of active
compounds in the source pool. The enrichment provided
by each method was calculated for the cumulative
collection of molecules selected, as well as for the
molecules selected in each round. The latter was used
to ascertain whether the methods were capitalizing on
the data generated.

It is important to note that depending on the source
pool size and composition there is a broad range of
possible enrichment values; therefore, the maximum
possible enrichment is reported for each experiment.
This quantity is calculated using the function described
above with the assumption that all possible active
compounds were selected; for example, if a pool con-
tained 5000 compounds of which 100 were active, the
maximum possible enrichment for a selection of 1000
compounds is 5. In contrast, other evaluations of
computational methods often involve searching for a
small number of actives in a large, diverse collection;
typically this might involve searching for 100 active
compounds using a 1000 compound selection from a
100000 compound database. The maximum expected
enrichment for this type of selection is 100.

Each method was also evaluated for its ability to
recover actives on multiple scaffolds. This parameter is
important because it gives an indication of how suc-
cessful a method is at discovering alternate chemotypes
or lead hopping. Since compounds can fail for many
reasons as they move through optimization and devel-
opment having multiple backup series is critical.27 The
ability to identify and optimize chemically diverse
scaffolds should enhance the chances of finding active
compounds that have favorable pharmacokinetic pro-
files. Thus, the other metric used for comparing the
methods is the number of scaffolds containing active
compounds each method discovered.

Results. The cumulative enrichment and the number
of scaffolds found by each method are summarized in
Table 1. The results indicate that all computational

Figure 1. Histogram of distribution of pairwise Tanimoto
similarities between active training set compounds and active
source pool compounds. Purple bars represent CDK2 com-
pounds and blue bars represent protease compounds.
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methods perform better than randomly selecting com-
pounds. In other words, when looking for active com-
pounds there is little downside to using any of these
methods and there is a potentially large upside. It can
also be seen that the methods providing the highest
enrichment did not result in the largest number of
active scaffolds. This suggests that there may be a
tradeoff between obtaining higher cumulative enrich-
ments and finding active scaffolds. This observation
might be attributable to the specific compositions of the
data sets and conditions of this study.

The random selection numbers in Table 1 reflect one
trial. 1000 random selections in the CDK2 data set
yielded an average of 10.7 (σ ) 1.4) scaffolds, the
minimum number of scaffolds recovered randomly was
6 and the maximum, 14. Average enrichment for the
random trials was 1.0 (σ ) 0.14). Thus, the enrichments
achieved by the computational methods are generally
significant. The active scaffold parameter is more dif-
ficult to interpret, except to note that finding more
active scaffolds is desirable.

For docking, the best, worst, and average values for
these parameters for the one-time selection of the re-
quired number of compounds are reported. The DOCK
scoring scheme that yielded the best performance varied
between the two targets. While taking a consensus of
score among protein structures yielded the best perfor-
mance for the CDK2 data set, the same method gave
extremely poor results for the protease set. This exem-
plifies one of the difficulties of using DOCK in this
setting: determining the optimal scoring function a priori
is not straightforward. The average values achieved us-
ing DOCK are used for the purpose of comparison. In
addition to overall enrichment, the per-round perfor-
mance is shown in Figures 2 and 3, for the CDK2 and
protease data sets, respectively. Since the DOCK
score would not change based on new data, its perfor-
mance is shown at a constant level for both the best
and worst case.

Discussion. In examining these results it is important
to consider that tradeoffs will be required in selecting
the optimal tool for a given problem. In particular, for
the parameters examined here, obtaining higher cumula-
tive enrichments can come at the expense of finding fewer

scaffolds. These trends need to be considered in the con-
text of a particular project’s needs: in early discovery it
might be acceptable to sacrifice enrichment to find more
scaffolds; conversely, in optimization enrichment would
be emphasized.

The ensemble model method produces an impressive
cumulative enrichment for the protease data set and a
cumulative enrichment comparable to the other methods
(at the expense of active scaffolds) for the CDK2 data
set. Examining the round-to-round enrichments for the
ensemble models, however, reveals some potential defi-
ciencies with this method. For both data sets, the en-
semble models find many active compounds in the early
rounds but the enrichment drops off in later rounds.
This can be interpreted as the ensemble models being
good at finding compounds similar to the known actives,
but having to find novel chemotypes serendipitously.

This appears to be consistent with the distributions of
Tanimoto similarities between training and source ac-
tive compounds observed for the two data sets in Figure
1. The protease pool actives are relatively more similar
to the training set actives; therefore, it is expected that
the ensemble models derived from the training actives
should be more able to discern active compounds in the
source pool. The ensemble methods, therefore, are more
suitable for projects where the pharmacophores of
interest are more defined and the structure-activity
relationships are better established, and where finding
alternate chemical series has lower priority.

Table 1. Summary of Cumulative Enrichment and Active
Scaffolds Recovered by the Computational Tools

cumulative
enrichment

no. of active
scaffolds

CDK2
ligand-based infodesign 1.61 10
ligand-based ensemble model 1.51 8
structure-based infodesign 1.41 12
DOCK(best) 1.74 13
DOCK(average) 1.34 10
DOCK(worst) 0.94 7
random 0.94 10
maximum 4.19 14
Protease
ligand-based infodesign 2.18 13
ligand-based ensemble model 2.89 12
structure-based infodesign 1.58 12
DOCK(best) 2.07 11
DOCK(average) 1.54 9
DOCK(worst) 1.01 7
random 1.04 12
maximum 3.24 14

Figure 2. Plot of enrichment per round in CDK2 data set.
Each line represents the enrichment in each selection cycle;
the colors correspond to the methods as follows: ligand-based
ensemble model: gold; ligand-based informative design: ma-
genta; informative design in structure-derived space: green;
the DOCK best and worst (blue) performance bounds are
indicated by horizontal blue lines; one trial of random selection
in each round is shown in turquoise.

Figure 3. Plot of enrichment per round in Protease data set;
color scheme is the same as Figure 2.
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The informative design based methods tend to support
the discovery of larger numbers of active scaffolds. This
observation is not particularly surprising given that one
of the goals of this method is to sample efficiently the
available descriptor space. In addition, informative
methods manage scaffold discovery without a large
sacrifice in enrichment.

This study also provides comparisons involving struc-
ture-based methods; informative design in structure-
derived pharmacophore spaces yields enrichments es-
sentially identical to the average values for DOCK. The
internal method, however, discovers more active scaf-
folds and provides a defined way in which to capitalize
on both target structure information and screening data.
Moreover, the structure-based informative design method
should prove more consistent across all targets as it is
not sensitive to scoring function choices.

There is no serious deficiency in the performance of
the ligand-based methods with respect to the structure-
based methods. Thus, applying these methods can
compensate for the lack of target structure. Conversely,
the results also show that in the absence of screening
data or lead compounds target structure is useful for
prioritizing compounds for synthesis.

It is not entirely appropriate to name a single method
as being superior; nevertheless, several trends emerge in
the data. First, methods utilizing informative design more
consistently discover a larger number of scaffolds as well
as increasing enrichment round-to-round. Second, while
docking can deliver good performance, it is sensitive to
the scoring function, the choice of which is often not ap-
parent. Third, a well-designed screening library and
follow-up strategy can deliver performance similar to
that observed for methods leveraging target structural
information. Finally, methods that can incorporate both
target structural information and ligand screening data
such as informative design in a structure-derived phar-
macophore space can yield the most balanced perfor-
mance.

Overall, applying any of the methods examined here
generally improves the chances of finding active com-
pounds and in no case decreases the number of active
compounds discovered below that which would be found
by random selection. Further, applying these methods
often leads to discovering novel chemotypes that may be
overlooked by traditional medicinal chemistry methods.

This letter reports a more rigorous approach to
evaluating the impact of computational methods on
medicinal chemistry projects. These comparisons real-
istically and critically examine the performance that can
be expected from a variety of computational tools. By
benchmarking methods in this manner, insights will be
learned that can lead to improving existing methods.
Finally, these studies can help develop valuable intu-
ition into optimal applications of the respective methods.
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