Brief Articles

A Selective Human H₄-Receptor Agonist: (-)-2-Cyano-1-methyl-3-{(2*R*,5*R*)-5-[1*H*-imidazol-4(5)-yl]tetrahydrofuran-2-yl}methylguanidine

Takeshi Hashimoto,^{||} Shinya Harusawa,[‡] Lisa Araki,[‡] Obbe P. Zuiderveld,[†] Martine J. Smit,[†] Tomonari Imazu,[‡] Seiichiroh Takashima,[‡] Yumiko Yamamoto,^{||} Yasuhiko Sakamoto,[§] Takushi Kurihara,[‡] Rob Leurs,[†] Remko A. Bakker,[†] and Atsushi Yamatodani^{*}

Department of Bioinformatics, Graduate School of Allied Health Sciences, Faculty of Medicine, Osaka University, Osaka 565-0871, Japan, Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Department of Pharmacology, Faculty of Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, Department of Synthetic Organic Chemistry, Osaka University of Pharmaceutical Sciences, 4–20–1 Nasahara, Takatsuki, Osaka 569-1094, Japan, and R&D Division, Azwell, Inc., 2–24–3, Sho, Ibaraki, Osaka 567-0806, Japan

Received January 2, 2003

A series of 16 compounds related to chiral 4(5)-(5-aminomethyltetrahydrofuran-2-yl)imidazoles (1) have been designed, synthesized, and examined in vitro by radioligand displacement studies and functional assays for both the human H₃- and H₄-receptors expressed in SK-N-MC cells. Among them, the (2*S*,5*S*)-isomer **1d** of amino compounds showed approximately 300-fold higher selectivity at the H₃-receptor than the H₄-receptor. On the other hand, (2*R*,5*S*)- and (2*R*,5*R*)- cyanoguanidines **3b** and **3c**, in which the amino group of the compounds **1b** and **1c** was substituted by the cyanoguanidino moiety, bound to the H₄-receptor with a pEC₅₀ value of 6.65 and 7.11, respectively, and had >40-fold selectivities over the H₃-receptor. As such, **3b** and **3c** are the first selective H₄ receptor agonists.

Introduction

A new histamine receptor, H₄-receptor, was discovered by several groups in the quest for new G-proteincoupled receptors (GPCR).¹⁻⁶ The overall amino acid sequence showed approximately 37% homology between H₃- and H₄-receptors. However, the distribution of the human H₄-receptor mRNA was entirely different from that of the H₃-receptor.^{1,6-8} Although little is known about its function in vivo, its expression in the bone marrow and eosinophils may elucidate a potential new role for histamine in the regulation of hemopoietic and immune functions.^{1,3} To investigate the possible physiological function of the receptor, a specific ligand is required. Yet, most H₃-receptor ligands are active at the H₄-receptor as well. For example, the classical "selective" H₃-receptor agonist, (R)- α -methylhistamine shows H₄-agonistic activity, and thioperamide, the H₃-antagonist prototype, has moderate affinities for the H₄receptor.¹ No ligands have so far been reported that can selectively target the human H₄-receptor.

In our previous study, we synthesized the respective four stereoisomers of the tetrahydrofurans (THFs) and dihydrofurans (DHFs) containing imidazole and examined their H_3 -receptor pharmacology using the in vivo microdialysis method in rats. These compounds spatially

arrange the imidazole and aminomethyl groups across the THF and DHF rings (Figure 1). Among them, only (+)-4(5)-[(2R,5R)-5-aminomethyltetrahydrofuran-2-yl]-

^{*} To whom correspondence should be addressed. Tel: $+81-6-6879-2562,\ Fax: +81-6-6879-2562,\ E-mail: yamatoda@ sahs.med.osaka-u.ac.jp.$

^{II} Osaka University.

[†] Leiden/Amsterdam Center for Drug Research (LACDR).

[‡] Osaka University of Pharmaceutical Sciences.

[§] Azwell, Inc.

Figure 2.

imidazole (imifuramine, $\mathbf{1c}$) was the eutomer exhibiting H₃-agonistic activity.^{9,10}

In this study, we examined the binding affinity and functional activity for the human H_{3^-} (h H_{3^-}) and H_{4^-} (h H_{4^-}) receptors of a total of 16 tetrahydrofuranylimidazoles: THFs (Figure 1A), DHFs (Figure 1B), and newly synthesized cyanoguanidines (Figure 2A) and benzyl ethers (Figure 2B).

Results

The competitive binding affinities (pK_i value) for the hH₃-receptor of the DHFs ($2\mathbf{a}-\mathbf{d}$) and cyanoguanidines ($3\mathbf{a}-\mathbf{d}$) were significantly lower than that of the THFs ($1\mathbf{a}-\mathbf{d}$) and benzyl ethers ($4\mathbf{a}-\mathbf{d}$) (Table 1). The pK_i values of 1c, 1d, 4b, and 4c for the binding to the hH₃-receptor were 10-fold higher than that of the other compounds, and were 6.64 ± 0.12 , 6.66 ± 0.14 , 6.48 ± 0.16 , and 6.61 ± 0.14 , respectively. The trans-isomers (1c, 1d, 2c, and 2d) of amino compounds (THFs and DHFs) exhibited about 10-fold higher affinity than their cis-isomers (1a, 1b, 2a, and 2b). In a functional H₃-receptor assay, the compounds 1a, 1b, 1c, 1d, 2b, 2c, 4b, and 4c acted as full agonists ($0.9 \le \alpha \le 1.0$, Table 1). Among them, 1c had the highest agonistic activity.

As shown in Table 2, **1c**, **3b**, **3c**, and **4b** competed for [³H] histamine binding to the hH₄-receptor with pK_i values of 6.05 ± 0.04, 6.65 ± 0.06, 6.90 ± 0.17, and 6.36 ± 0.11, respectively. Moreover, the six compounds, **1a**, **3a**, **3b**, **3c**, **3d**, and **4b**, all showed agonist properties with high intrinsic activities (0.9 < α < 1.0). Among them, **3c** most potently inhibited the 1 μ M forskolinstimulated responses with an apparent pEC₅₀ value of 7.11 ± 0.05 (Table 2).

Journal of Medicinal Chemistry, 2003, Vol. 46, No. 14 3163

Table 1. pEC₅₀ Values and Affinity Values of Tetrahydrofuranylimidazoles for the Human H₃-Receptor^{*a*}

		functiona		
compound	config	pEC ₅₀	efficacy (α)	binding p <i>K</i> i
histamine		$\textbf{8.39} \pm \textbf{0.06}$	1.00	7.47 ± 0.11
(<i>R</i>)-α-methyl- histamine		9.91 ± 0.05	0.85 ± 0.05	
1a	2 <i>S</i> ,5 <i>R</i>	6.09 ± 0.05	$\textbf{0.95} \pm \textbf{0.04}$	5.77 ± 0.03
1b	2 <i>R</i> ,5 <i>S</i>	$\textbf{6.11} \pm \textbf{0.08}$	1.06 ± 0.04	5.69 ± 0.05
1c [imifuramine]	2R, 5R	7.35 ± 0.07	1.04 ± 0.05	$\textbf{6.64} \pm \textbf{0.12}$
1d	2 <i>S</i> ,5 <i>S</i>	6.98 ± 0.05	0.91 ± 0.04	$\textbf{6.66} \pm \textbf{0.14}$
2a	2 <i>S</i> ,5 <i>R</i>	<4		4.70 ± 0.20
2b	2 <i>R</i> ,5 <i>S</i>	4.57 ± 0.15	0.93 ± 0.06	$\textbf{4.94} \pm \textbf{0.08}$
2c	2 <i>R</i> ,5 <i>R</i>	6.57 ± 0.10	1.00 ± 0.05	5.99 ± 0.10
2d	2 <i>S</i> ,5 <i>S</i>	5.55 ± 0.13	0.75 ± 0.06	5.60 ± 0.09
3a	2S, 5R	NE	< 0.1	5.09 ± 0.08
3b	2 <i>R</i> ,5 <i>S</i>	4.99 ± 0.08	0.43 ± 0.03	5.15 ± 0.17
3c [OUP-16]	2 <i>R</i> ,5 <i>R</i>	5.50 ± 0.08	0.79 ± 0.06	5.66 ± 0.09
3d	2 <i>S</i> ,5 <i>S</i>	<4		4.73 ± 0.13
4a	2S,5R	5.01 ± 0.07	0.86 ± 0.04	5.16 ± 0.19
4b	2 <i>R</i> ,5 <i>S</i>	6.72 ± 0.15	1.06 ± 0.05	$\textbf{6.48} \pm \textbf{0.16}$
4c	2 <i>R</i> ,5 <i>R</i>	7.04 ± 0.10	0.97 ± 0.04	6.61 ± 0.14
4d	2 <i>S</i> ,5 <i>S</i>	5.02 ± 0.11	$\textbf{0.66} \pm \textbf{0.05}$	4.98 ± 0.12

^{*a*} The pEC₅₀ values were determined by the inhibition of the forskolin-stimulated (1 μ M) cAMP production, expressing the human H₃-receptor. All values shown are means \pm SEM of at least four experiments. H₃-receptor competition binding was performed using [³H] N^a -methylhistamine (1 nM).

 Table 2.
 pEC₅₀ Values and Affinity Values of

 Tetrahydrofuranylimidazoles for the Human H₄-Receptor^a

		functional activity		
compound	config	pEC ₅₀	efficacy (α)	р <i>К</i> і
histamine		$\textbf{7.68} \pm \textbf{0.05}$	1.00	
(<i>R</i>)-α-methylhistamine		$\textbf{6.26} \pm \textbf{0.07}$	1.01 ± 0.01	
1a	2S, 5R	5.12 ± 0.05	1.02 ± 0.07	5.19 ± 0.07
1b	2R,5S	5.26 ± 0.07	$\textbf{0.88} \pm \textbf{0.06}$	5.60 ± 0.10
1c [imifuramine]	2R, 5R	5.70 ± 0.05	$\textbf{0.70} \pm \textbf{0.01}$	6.05 ± 0.04
1d	2 <i>S</i> ,5 <i>S</i>	$\textbf{4.51} \pm \textbf{0.01}$	$\textbf{0.60} \pm \textbf{0.04}$	$\textbf{4.89} \pm \textbf{0.06}$
2a	2S, 5R	$\textbf{4.12} \pm \textbf{0.08}$	$\textbf{0.71} \pm \textbf{0.05}$	4.92 ± 0.16
2b	2 <i>R</i> ,5 <i>S</i>	$\textbf{4.39} \pm \textbf{0.04}$	$\textbf{0.74} \pm \textbf{0.04}$	4.66 ± 0.12
2c	2 <i>R</i> ,5 <i>R</i>	$\textbf{4.62} \pm \textbf{0.08}$	$\textbf{0.76} \pm \textbf{0.04}$	4.93 ± 0.03
2d	2 <i>S</i> ,5 <i>S</i>	$\textbf{4.07} \pm \textbf{0.20}$	$\textbf{0.85} \pm \textbf{0.11}$	<4
3a	2S, 5R	5.12 ± 0.06	1.07 ± 0.01	5.09 ± 0.07
3b	2 <i>R</i> ,5 <i>S</i>	$\textbf{6.65} \pm \textbf{0.03}$	1.01 ± 0.01	6.65 ± 0.06
3c [OUP-16]	2 <i>R</i> ,5 <i>R</i>	$\textbf{7.11} \pm \textbf{0.05}$	$\textbf{0.99} \pm \textbf{0.01}$	6.90 ± 0.17
3d	2 <i>S</i> ,5 <i>S</i>	4.67 ± 0.03	1.06 ± 0.02	4.69 ± 0.12
4a	2S, 5R	$\textbf{4.94} \pm \textbf{0.03}$	$\textbf{0.82} \pm \textbf{0.02}$	4.87 ± 0.07
4b	2 <i>R</i> ,5 <i>S</i>	$\textbf{6.87} \pm \textbf{0.05}$	$\textbf{0.91} \pm \textbf{0.02}$	6.36 ± 0.11
4c	2 <i>R</i> ,5 <i>R</i>	$\textbf{6.13} \pm \textbf{0.10}$	$\textbf{0.46} \pm \textbf{0.02}$	5.98 ± 0.12
4d	2 <i>S</i> ,5 <i>S</i>	$\textbf{4.89} \pm \textbf{0.08}$	$\textbf{0.49} \pm \textbf{0.05}$	4.67 ± 0.05

 a The pEC_{50} values were determined by the inhibition of the forskolin-stimulated (1 μM) cAMP production, expressing the human H_4-receptor. All values shown are means \pm SEM of at least four experiments. H_4-receptor competition binding was performed using [^3H] histamine (10 nM).

As shown in Figure 3, **1c**, **1d**, **2c**, **2d**, **3b**, and **3c** exhibited receptor selectivity for either the hH_{3^-} or hH_{4^-} receptor. Amino compounds **1c**, **1d**, **2c**, and **2d** showed selective H_{3^-} agonistic activity, which was approximately 45-, 300-, 89-, and 30-fold higher than for the H_{4^-} receptor, respectively. In contrast, the cyanoguanidine analogues **3b** and **3c** exhibited full agonistic activities at the H_{4^-} receptor with 45- and 41-fold higher potency than at the H_{3^-} receptor, respectively.

Conclusions

The substitution of an amino group of tetrahydrofuranylimidazoles with a cyanoguanidine moiety led to a decrease in the agonistic activity at the H_3 -receptor and an increase in the H_4 -receptor selectivity. The **3b**

Figure 3. Relation of the functional activity between the H₃and H₄-receptors. Data for tetrahydrofuranylimidazoles in Tables 1 and 2 are plotted as H₃ EC₅₀ values (ordinate, Table 1) versus H₄ EC₅₀ values (abscissa, Table 2). Compound numbers correspond with those in Tables 1 and 2. \bullet , (2*R*,5*S*); \blacktriangle , (2*S*,5*R*); \blacksquare , (2*R*,5*R*); \blacklozenge , (2*S*,5*S*).

and **3c** [OUP-**16**], having the 2*R*-configuration,¹¹ were highly selective compounds at the H₄-receptor. On the other hand, **1d**, having the 2*S*,5*S*-configuration, behaved as the most selective H₃-receptor agonist in our series. The present results suggest that the stereochemistry of the tetrahydrofuranylimidazoles is useful for the investigation of selective ligands for hH₃- and hH₄receptors and that the 2*R*-configured isomers of cyanoguanidines exhibit a high agonistic activity for the H₄receptor.

Experimental Section

SK-N-MC cells expressing the hH_{3}^{-12} or hH_{4} -receptor¹ were maintained in Eagle's minimal essential medium (BioWhittaker, Verviers, Belgium) supplemented with 10% fetal calf serum (Integro, Zaandam, The Netherlands), 50 IU/mL penicillin, nonessential amino acids solution, 2 mM L-glutamine, 50 μ g/mL streptomycin, and 50 μ g/mL sodium pyruvate (Invitrogen, Breda, The Netherlands) under the selection of 600 μ g/mL G₄₁₈ disulfate (Calbiochem, Amsterdam, The Netherlands) at 37 °C in a humidified atmosphere of 5% CO₂ in air by the method described by Wieland et al.¹³ Cells were detached from the dishes with 0.05% trypsin–EDTA (Invitrogen).

SK-N-MC cells stably expressing the hH₃-¹² or hH₄-receptors¹ were grown overnight in 96-well plates before the assay. To start the assay, the cells were incubated for 6 h with 1 μ M forskolin (Sigma-Aldrich, St. Louis, MO) and respective tetrahydrofuranylimidazoles at 37 °C. Thereafter, the medium was aspirated, and cells were incubated overnight in a refrigerator with 100 μ L of assay buffer (100 mM NaH₂PO₄, 100 mM Na₂HPO₄, pH 8, 2 mM MgSO₄, 0.1 mM MnCl₂, 0.5% Triton, and 40 mM β -mercaptoethanol).¹³ Transcription of β -galactosidase was determined by 4 mM ρ -nitrophenyl- β -D-galactopyranoside. Absorbance was quantified on a microplate reader at 420 nm.

The binding affinity of the hH₃- and hH₄-receptors was determined with 1.0 nM [³H] N^{α} -methylhistamine (82 Ci/mmol, PerkinElmer Life Sciences, Zaventem, Belgium) and 10 nM [³H] histamine (23.3 Ci/mmol, PerkinElmer Life Sciences), respectively. The cell pellets were harvested, washed, and homogenized in incubation buffer (50 mM Na₂HPO₄, pH 7.4). The cell homogenates (hH₃-: 131 ± 11 fmol/mg of protein) hH₄-: 166 ± 26 fmol/mg of protein) were incubated for 1 h at 37°C with each radioligand in incubation buffer, pH 7.4, with or without competing ligands. Then, the membranes were filtered through the GF/C filters pretreated with 0.3% poly-

ethylenimine. The filter was washed three times with ice-cold washing buffer (hH₃-: 25 mM Tris HCl, 145 mM NaCl, pH 7.4, hH₄-: 50 mM Tris HCl, pH 7.4) and the radioactivity was determined by liquid scintillation counting. Nonspecific binding was defined with 1 μ M thioperamide as the competing ligand.

Protein concentrations were determined spectrophotometrically by a Packard Argus 400 Microplate Reader using the Bradford reagent,¹⁴ with bovine serum albumin as a standard.

The value of pK_i and pEC_{50} was obtained by fitting these data to a sigmoidal relation using GraphPad Prism (GraphPad Software, San Diego, CA). The intrinsic activities were calculated in comparison with the effects of histamine (100 μ M).

Acknowledgment. We are grateful to Dr. Timothy Lovenberg (The R.W. Johnson Pharmaceutical Research Institute) for generously providing the SK-N-MC cells expressing either human histamine H₃- or H₄-receptors. This study was supported in part by a grant to T.K. from the Ministry of Education, Culture, Sports, Science and Technology of Japan (no. 11672127).

Supporting Information Available: Synthetic procedures, spectral data, and Scheme 1 for compounds **3a**–**d** and **4a**–**d**. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Liu, C.; Ma, X. J.; Jiang, X.; Wilson, S. J.; Hofstra, C. L.; Blevitt, J.; Pyati, J.; Li, X.; Chai, W.; Carruthers, N.; Lovenberg, T. W. Cloning and pharmacological characterization of a fourth histamine receptor (H₄) expressed in bone marrow. *Mol. Pharmacol.* **2001**, *59*, 420–426.
- (2) Nakamura, T.; Itadani, H.; Hidaka, Y.; Ohta, M.; Tanaka, K. Molecular cloning and characterization of a new human histamine receptor, *HH4R. Biochem. Biophys. Res. Commun.* 2000, *279*, 615–620.
- (3) Morse, K. L.; Behan, J.; Laz, T. M.; West, R. E.; Greenfeder, S. A.; Anthes, J. C.; Umland, S.; Wan, Y.; Hipkin, R. W.; Gonsiorek, W.; Shin, N.; Gustafson, E. L.; Qiao, X.; Wang, S.; Hedrick, J. A.; Greene, J.; Bayne, M.; Monsma, F. J. Cloning and characterization of a novel human histamine receptor. *J. Pharmacol. Exp. Ther.* **2001**, *296*, 1058–1066.
- (4) Zhu, Y.; Michalovich, D.; Wu, H. L.; Tan, K. B.; Dytko, G. M.; Mannan, I. J.; Boyce, R.; Alston, J.; Tierney, L. A.; Li, X.; Herrity, N. C.; Vawter, L.; Sarau, H. M.; Ames, R. S.; Davenport, C. M.; Hieble, J. P.; Wilson, S.; Bergsma, D. J.; Fitzgerald, L. R. Cloning, expression, and pharmacological characterization of a novel human histamine receptor. *Mol. Pharmacol.* **2001**, *59*, 434-441.
- (5) Nguyen, T.; Shapiro, D. A.; George, S. R.; Setola, V.; Lee, D. K.; Cheng, R.; Rauser, L.; Lee, S. P.; Lynch, K. R.; Roth, B. L.; O'Dowd, B. F. Discovery of a novel member of the histamine receptor family. *Mol. Pharmacol.* **2001**, *59*, 427–433.
- (6) Oda, T.; Morikawa, N.; Saito, Y.; Masuho, Y.; Matsumoto, S. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J. Biol. Chem. 2000, 275, 36781–36786.
- (7) Liu, C.; Wilson, S. J.; Kuei, C.; Lovenberg, T. W. Comparison of human, mouse, rat, and guinea pig histamine H₄ receptors reveals substantial pharmacological species variation. *J. Pharmacol. Exp. Ther.* **2001**, *299*, 121–130.
- (8) Coge, F.; Guenin, S. P.; Rique, H.; Boutin, J. A.; Galizzi, J. P. Structure and expression of the human histamine H₄-receptor gene. *Biochem. Biophys. Res. Commun.* 2001, 284, 301–309.
- (9) Harusawa, S.; Imazu T.; Takashima S.; Araki L.; Ohishi H.; Kurihara T.; Sakamoto Y.; Yamamoto Y.; Yamatodani A. Synthesis 4(5)-[5-(Aminomethyl)-tetrahydrofuran-2-yl- or 5-(Aminomethyl)-2,5-dihydrofuran-2-yl]imidazoles by efficient use of a PhSe Group: Application to Novel Histamine H₃-Ligands. J. Org. Chem. 1999, 64, 8608-8615.
- (10) Harusawa, S.; Imazu, T.; Takashima S.; Araki, L.; Ohishi, H.; Kurihara, T.; Yamamoto, Y. and Yamatodani, A.: Synthesis of Imifuramine and its stereoisomers exhibiting histamine H₃agonistic activity. *Tetrahedron Lett.* **1999**, *40*, 2561–2564.
- (11) In case of cyanoguanidines (A) in Figure 2, the carbon bonding to imidazole is numbered as the 2-position of the THF ring for convenience in order to clarify the mutual configurational relationships among the compounds in Figures 1 and 2. The numbering system of THF in the title compounds (OUP-16) is properly employed.

agonism by H₃ antagonists. J. Pharmacol. Exp. Ther. 2001, 299. 908–914.
(14) Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254.

JM0300025