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Virtual library screening (VLS) is emerging as a valuable drug lead discovery tool. ICM-VLS
implementation of this technology was evaluated on a benchmark set of nuclear hormone
receptors (NRs), an important therapeutic target family. Over 5000 structurally diverse
compounds, including 78 known NR ligands, were screened against 18 crystal structures and
one computer model of 10 NR ligand binding domains in their active or inactive states. The
results confirm the ability of the VLS method to generate highly focused subsets of the input
chemical library, enriched 33- to 100-fold for all but one receptor studied. However, receptor
flexibility remains to be fully addressed, and the choice of the specific conformation used for
screening may determine the success of the exercise. We observe that for a particular ligand
VLS can often identify the correct target within the receptor family, although the technology
is unable to reliably discriminate between the closely related receptor isoforms. Additionally,
our results suggest that VLS may be applied successfully without an experimental structure
of the receptor by using a homology model. These data represent a realistic snapshot of the
state-of-the-art of NR-targeted VLS and define the recent progress and the remaining limitations
of the technology.

Introduction

Identification of the ligands that bind a specific target
receptor is of paramount importance in drug design and
in biochemistry in general. The rapidly increasing
availability of structural data prompted the develop-
ment of methods for in silico modeling of ligand-
receptor association (docking) and virtual screening of
compound libraries for putative ligands based on the
structure of the receptor.1

Structure-based virtual ligand screening (VLS) algo-
rithms typically involve (1) a docking procedure that
generates a hypothetic bound structure(s) for each
ligand and (2) a scoring procedure that evaluates the
docked ligand structures and assigns a score used to
rank the ligands according to the quality of their fit to
the receptor, ideally reflecting the binding affinity. A
growing number of docking methods have been proposed
(DOCK, FlexX, Gold, Autodock, and ICM-Dock;3-8 see
refs 2 and 9 for review). Scoring functions are also
evolving rapidly (Boehm/FlexX, PMF, ICM score, to
name a few;10-12 see ref 13 for review).

The ICM VLS algorithm used in the present study
applies internal coordinates mechanics (ICM) methodol-
ogy to rapidly dock flexible ligands into a grid repre-
sentation of the receptor. The best-energy docked con-
formation is subsequently evaluated using the scoring
function optimized for discrimination of the active
ligands.12 The scoring function includes a solvation
electrostatic free energy term calculated by the fast
REBEL algorithm.13

Successful applications of VLS algorithms to discover
novel ligands for various receptor proteins and DNA
were reported.14-17 Doman and colleagues also com-
pared the hit rates in random experimental high-

throughput screening and VLS-based approach on the
same ligand library and found a 1700-fold enrichment
rate for the target enzyme PTP1B.16 Interestingly,
“inverse virtual screening” was recently proposed as a
tool to identify in the protein structure database the
receptors that bind a specific compound/drug.18

In a number of recent studies, the performance of
various VLS methods was evaluated on benchmark sets
of receptor structures. Charifson et al. applied DOCK
and GAMBLER in combination with 13 different scoring
functions to three receptors.19 Bissantz et al. used three
different docking programs and seven scoring functions
in their assessment of the performance of VLS methods
for two receptors.20 Stahl and Rarey docked a 10 000
compound subset of the World Drug Index to seven
receptors using FlexX and analyzed the performance of
four scoring functions.21 These studies involved one to
seven receptors of diverse nature. Such tests are im-
portant to establish applicability of VLS techniques to
various target proteins. However, many receptors of
biomedical significance form large families such as
kinases, G-protein coupled receptors (GPCRs), and
nuclear receptors (NRs). To confirm the utility of VLS
applications involving receptors from such families, it
is essential to perform tests on a sufficiently large set
of representative proteins and to evaluate the ability of
the method to correctly identify specific interaction
partners within a group of related receptors and ligands.

Nuclear receptors form an important class of tran-
scriptional regulators involved in various signaling
mechanisms controlling cell proliferation and differen-
tiation as well as homeostasis and are implicated in
pathologic conditions such as cancer, inflammatory
diseases, and diabetes.22 These transcription factors are
naturally switched on and off by small-molecule hor-
mones presenting physicochemical properties very simi-
lar to therapeutic chemical entities. NRs are therefore
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intrinsically good therapeutic targets. Several NRs are
already targeted by known drugs, such as tamoxifen,
an estrogen receptor (ER) partial antagonist against
breast cancer;23 troglitazone, a peroxisome proliferator
activated receptor (PPAR) γ agonist against type II
diabetes;24 bicalutamide, an androgen receptor (AR)
antagonist against prostate cancer;25 and bexarotene,
a retinoid X receptor (RXR) agonist against cutaneous
T-cell lymphoma.26 Additionally, many other members
of the family are considered as good potential targets,
such as the liver X-activated receptor and the farnesoid
X-activated receptor for diabetes27 and the vitamin D
receptor (VDR) for cancer therapy.28

The crystal structures of the ligand-binding domain
(LBD) of several NRs, both in their active and inactive
states, have been solved and resulted in a detailed
model for the structural mechanism of activation and
inhibition of members of the NR family.29-34 Binding
of an agonist stabilizes a conformation of the receptor
where the C-terminal H12 helix folds like a lid onto the
ligand, thereby generating a hydrophobic cavity at the
surface of the receptor used for the recruitment of
coactivator proteins. Antagonists bind to the same site
as agonists but destabilize the coactivator-recruitment
state by preventing H12 from folding onto the ligand-
binding pocket.30-32

Here, we analyze the performance of the ICM virtual
screening approach on a benchmark set of 19 structures
of active and inactive forms of 10 nuclear receptors, 78
known ligands of these receptors, and a library of 5000
randomly selected compounds from a diverse compound
database.

Results

Receptor Preparation. Crystal structures of the
LBD of the androgen receptor, the estrogen receptor,
the pregnane X receptor (PXR), the progesterone recep-
tor (PR), the peroxisome proliferator activated receptor,
the retinoid X receptor, the retinoic acid receptor (RAR),
the thyroid hormone receptor (TR), the vitamin D
receptor, and a computer model of the glucocorticoid
receptor (GR) were used to screen a benchmark library
of 78 known NR ligands (Table 1). Structures of both
active and inactive conformations of ER were tested,
while other receptors were in the active state only. Dif-
ferent receptor isotypes were tested for PPAR (PPARR,
PPARγ, PPARδ) to evaluate the ability of virtual
screening to discriminate between isotype-specific lig-
ands. When several crystal structures were available
for a specific receptor, the highest resolution data were
preferred. In the case of AR, active ERR, PR, PPARγ,
and RXRR, two different crystal structures presenting
alternative side chain conformations in the vicinity of
the ligand binding pocket (LBP) were used for screening
in order to measure to what extent variations of the
binding pocket structure influence VLS efficiency.

In all cases but for GR, hydrogens were added to the
crystal structure, and the system was converted into the
internal coordinate representation according to the ICM
method.35 While the backbone and side chain conforma-
tions were left unchanged from the crystal structures,
it was found in most cases that a limited number of
polar atoms (mostly side-chain histidine nitrogens and
serine oxygens) lining the LBP could act either as a

hydrogen bond donor or as a hydrogen bond acceptor.
The preferred orientation of the group was usually
strongly suggested by the nature of neighboring atoms
of the ligand in the crystallized complex. However, the
favorable bias for the known ligands had to be avoided
in order to reproduce a more realistic exercise where
structure-based virtual screening is expected both to
retrieve known binders and to identify active molecules
presenting novel chemotypes. To reduce this bias,
receptors with alternative tautomeric states or rota-
meric states of polar hydrogens along the LBP were
systematically generated when possible (with the excep-
tion of PXR, which has too many such groups) and
screened in parallel (see “Experimental Section” for
details).

While it is clear that availability of the receptor
crystal structure is preferable for VLS applications, the
use of computer models of the receptor would open up
a vast field of interesting targets to the technology that
are otherwise only amenable to high-throughput screen-
ing (HTS). To test this option, we generated a theoretical
model of the GR-LBD that was used for virtual screen-
ing. The model was built with ICM by homology to PR,
the closest crystallized homologue (see Experimental
Section).

Benchmark Library Preparation. A library of 78
known NR ligands was generated from the literature
(Table 1). The molecules are agonists (such as dihy-
drotestosterone and calcipotriol) or antagonists (tamox-
ifen, mifepristone, BMS614), natural (cortisol) or syn-
thetic (dexamethasone), isotype-specific (GW501516,
THC) or universal (all-trans retinoic acid, triiodothyro-
nine). Most ligands target at least one of the structures
screened, but a few do not (five AR antagonists, three
PR antagonists, and four RAR antagonists). For each
receptor screened, between three and eight known
ligands are present in the database. The initial 3D
coordinates of the ligands were either extracted from a
crystal structure or generated from their smiles string
with ICM. The free molecule was then subjected to
global energy optimization in the internal coordinate
space by the ICM method (ICM2.8 manual), and the
compounds were stored in the structure library.

Virtual Screening. The benchmark library was
screened against each of the prepared receptor struc-
tures according to the ICM virtual screening algo-
rithm:8,13,15,35 rapidly, grid potentials were generated
that account for the LBP shape, hydrophobicity, elec-
trostatic potential, and hydrogen-bond profile, and each
continuously flexible ligand was docked by a Monte
Carlo simulation with grid receptor potentials in the
internal coordinates space. Docking took an average of
1 min per molecule, depending on binding pocket size
and the number of torsional degrees of freedom of the
ligand.

We evaluated the precision of the docking procedure
for the complexes with known X-ray structures. Results
were encouraging, with 11 out of 16 structures repro-
duced to less than 1 Å heavy atom root-mean-square
deviation (rmsd) and only one structure with rmsd
worse than 2 Å (Table 4). Relatively poor rmsd in this
case may be related to the quality of the X-ray structure
(resolution 2.76 Å).
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Once a docked conformation was found, the ICM
scoring function that includes steric, hydrogen bonding,
hydrophobicity, continuum electrostatics, and entropy
terms (see Methods) was used to assign a score to the
ligand reflecting the quality of the complex. The library
was screened twice independently for each receptor
structure used, and the best score was kept for each
ligand (two additional screenings did not change the
results). When alternative conformations were derived
from a single-crystal structure, the best score for each
ligand over all receptor conformations was retained.

A random library of 5000 compounds was screened
following exactly the same protocol against each recep-
tor. This library was generated by extracting every 34th
molecule of the Chemdiv CombiLab database of 174 467
compounds (Chemical Diversity Inc., San Diego, CA).
This source database was designed to represent wide
chemical diversity, which is reflected in our sample
library. The diversity and the overlap between the

distributions of the basic properties for the benchmark
and the random background library are essential for the
meaningful evaluation of the VLS algorithm. Four
properties were calculated: molecular weight (MW),
number of flexible torsions (Nflex), and the numbers of
hydrogen bond donors (NHBdo) and acceptors (NHBacc).
The averages and standard deviations of these param-
eters for the random library and benchmark library
were as follows: MW, 344.0 ( 75.0 and 393.0 ( 85.0;
Nflex, 5.4 ( 2.2 and 4.3 ( 3.9; NHBdo, 1.1 ( 1.0 and
1.2 ( 1.1; NHBacc, 3.6 ( 1.5 and 3.5 ( 1.5 (see also
histograms in the Supporting Information).

For each of the 18 receptor crystal structures used
as well as for our model of GR, the best scores for the
78 compounds of the benchmark library are shown as
histograms along with the score thresholds necessary
to select 1% and 10% of the 5000 random molecules
(Figure 1). In a real life exercise used in lead discovery
programs, VLS would be applied to extract from large

Table 1. NR Ligand Benchmark Database Composed of 78 Compounds of Agonists (+) and Antagonists (-) Taken from the
Literaturea

ligands activity ligands activity ligands activity

1 LG121071 AR+ 27 GW0072 PPARg+ 53 BMS270394 RARg+
2 dihydrotestosterone AR+, ER+ 28 GW501516 PPARd+ 54 BMS961 RARg+
3 metribolone AR+, PR+ 29 GW7845 PPARg+ 55 BMS181156 RARabg+
4 MPA AR- 30 GI262570 PPARg+ 56 BMS184394 RARg+
5 bicalutamide AR- 31 L165041 PPARd+ 57 CD564 RARbg+
6 flutamide AR- 32 L783483 PPARg+ 58 AGN193109 RAR-
7 21b AR- 33 L796449 PPARg+ 59 BMS614 RAR-
8 nilutamide AR- 34 rosiglitazone PPARg+ 60 MX781 RAR-
9 coumestrol ER+ 35 troglitazone PPARg+, PXR+ 61 Ro415253 RAR-

10 DES ER+ 36 CP8481 PR+ 62 ER35794 RXR+
11 genistein ER+ 37 promegestone PR+ 63 SR11237 RXR+
12 moxestrol ER+ 38 progesterone PR+ 64 5 RXR+
13 estradiol ER+ 39 trimegestone PR+ 65 3 RXR+
14 THC ER+, ER- 40 mifepristone PR-, PXR+ 66 targretin RXR+
15 EM343 ER- 41 5g PR- 67 5 RXR+
16 ICI164384 ER- 42 onapristone PR- 68 9cis-RA RXR+, RAR+
17 LY326315 ER- 43 12 PR- 69 GC1 TR+
18 LY353381 ER- 44 SR12813 PXR+ 70 T3 TR+
19 hydroxytamoxifen ER- 45 clotrimazole PXR+ 71 TRIAC TR+
20 nafoxidine ER- 46 lovastatin PXR+ 72 19norD VDR+
21 raloxifene ER- 47 phenobarbital PXR+ 73 KH1060 VDR+
22 trioxifene ER- 48 pregnenolone PXR+ 74 KS291 VDR+
23 cortisol GR+ 49 transnonachlor PXR+ 75 LG190178 VDR+
24 dexamethasone GR+ 50 all-trans RA RARabg+ 76 MC1288 VDR+
25 triamcinolone GR+ 51 Am580 RARa+ 77 vitamin D3 VDR+
26 AZ242 PPARag+ 52 BMS187949 RARabg+ 78 calcipotriol VDR+

a References for the entries (in brackets) are the following. [1] Hamann et al. J. Med. Chem. 1999, 42, 210-212. [2] Maggiolini et al.
Cancer Res. 1999, 59, 4864-4869. [6, 10, 11, 13, 19, 21, 23-25, 38, 40, 50, 68, 77] Goodman & Gilman’s the Pharmacological Basis of
Therapeutics, 9th ed.; Hardman, J. G., Limbird, L. E., Eds.; McGraw-Hill, Health Professions Division: New York, 1996. [3] Matias et al.
J. Biol. Chem. 2000, 275, 26164-26171. [4] Labrie et al. J. Steroid Biochem. 28, 379-384. [5] McLeod Cancer 1993, 71 (3, Suppl.), 1046-
1049. [7] Hamann et al. J. Med. Chem. 1998, 41, 623-639. [8] Dole et al. Ann. Pharmacother. 1997, 31, 65-75. [9] Nelson et al. Biochemistry
1984, 23, 2565-2572. [12] Salmon et al. J. Steroid Biochem. 1983, 18, 565-573. [14] Shiau et al. Nat. Struct. Biol. 2002, 9, 359-364. [15]
Luo. Int. J. Cancer 1997, 73, 735-759. [16] Poulin et al. Breast Cancer Res. Treat. 1989, 14, 65-76. [17] Mitchell et al. Abstracts of
Papers, 219th National Meeting of the American Chemical Society, San Francisco, CA, 2000; American Chemical Society: Washington,
DC, 2000; Paper 334. [18] Sato et al. J. Pharmacol. Exp. Ther. 1998, 287, 1-7. [20] Tagnon. Cancer 1977, 39 (6, Suppl.), 2959-2964. [22]
Arafah. Eur. J. Cancer 1980, Suppl. 1, 281-285. [26] Cronet et al. Structure 2001, 9, 699-706. [27] Oberfield et al. Proc. Natl. Acad. Sci
U.S.A. 1999, 96, 6102-6106. [28] Olivier et al. Proc. Natl. Acad. Sci. U.S.A 2001, 98, 5306-5311. [29] Suh et al. Cancer Res. 1999, 59,
5671-5673. [30] Gampe et al. Mol Cell. 2000, 3 (March 5), 545-555. [31-33] Berger et al. J. Biol. Chem. 1999, 274, 6718-6725. [34, 35]
Mudaliar et al. Annu. Rev. Med. 2001, 52, 239-257. Willson et al. Nat. Rev. Drug Discovery 2002, 1, 259-266. [36] Tabata et al. Eur. J.
Pharmacol. 2001, 430, 159-165. [37] Bashirelahi et al. J. Steroid Biochem. 1986, 3 (Sep 25), 367-374. [39] Wahab et al. Expert Opin.
Invest. Drugs 2001, 10 (9), 1737-1744. [41] Hamann et al. Bioorg. Med. Chem. Lett. 1998, 8, 2731-2736. [42] Wiechert et al. J. Steroid
Biochem. 1987, 27, 851-858. [43] Zhi et al. Bioorg. Med. Chem. Lett. 2000, 10, 415-418. [44-49] Moore et al. J. Biol. Chem. 2000, 275,
15122-15127. [51] Kagechika et al. J. Med. Chem. 1988, 31, 2182-2192. [52, 53] Klaholz et al. Proc. Natl. Acad. Sci. U.S.A 2000, 97,
6322-6327. [54] Klaholz et al. Nat. Struct. Biol. 1998, 5, 199-202. [55-57] Klaholz et al. J. Mol. Biol. 2000, 302, 155-170. [58] Sun et
al. Cancer Res. 1997, 57, 4931-4939. [59] Bourguet et al. Trends Pharmacol. Sci. 2000, 21, 381-388. [60] Fanjul et al. Cancer Res. 1998,
58, 4607-4610. [61] Marth et al. J. Steroid Biochem. Mol. Biol. 1993, 47, 123-126. [62] Hibi et al. J. Med. Chem. 1998, 41, 3245-3252.
[63] Lehmann et al. Science 1992, 258, 1944-1946. [64] Beard et al. J. Med. Chem. 1996, 39, 3556-3563. [65] Cannan-Koch et al. J. Med.
Chem. 1999, 42, 742-750. [66] Boehh et al. J. Med. Chem. 1994, 37, 2930-2941. [67] Vuligonda et al. Bioorg. Med. Chem. Lett. 1999, 9,
589-594. [69-71] Wagner et al. Mol. Endocrinol. 2001, 15, 398-410. [72, 78] Brown. Am. J. Kidney Dis. 1998, 32 (2, Suppl. 2), S25-S39.
[73, 76] Tocchini-Valentini et al. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 5491-5496. [74] Verstuyf et al. J. Bone Miner. Res. 1998, 13,
549-558. [75] Boehm et al. Chem. Biol. 1999, 6, 265-275.
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Figure 1. Virtual screening result. For each receptor conformation tested, the score of known binders (black) and presumed
nonbinders (gray) from the benchmark library (Table 1) is shown. Scores were multiplied by -1 (best scoring compounds have
the highest score), and scores worst than 0 are not displayed. The score thresholds necessary to select 1% (Sc-1) and 10% (Sc-10)
of a diverse database of 5000 random compounds are also shown (see figure keys). The crystal structure 1FM6 is a heterodimer
of PPARγ and RXRR and was used separately for both receptors.
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and diverse source virtual compound databases, smaller
focused libraries. Thus, the goal is to retain a high
quantity of hits while significantly decreasing the size
of the database subset that needs to be actually tested
in vitro. The corresponding hit enrichment factor (EF)
of the focused library can be calculated as

where SL is the source library and FL is the focused
library.

The enrichment factor of the NR-focused libraries
(excluding libraries focused on PXR) varies from 33 to
100 times for the top 1% selections and from 6 to 10
times for the top 10% selections (Table 2). This il-
lustrates significant differences in the VLS efficiency
from one receptor to another, which were further
analyzed on a case-by-case basis.

AR. Two crystal structures were used for AR screen-
ing: the 2.4 Å resolution structure of human AR-LBD
complexed with the agonist metribolone (PDB code
1E3G)36 and the 2.0 Å resolution structure of rat AR-
LBD complexed with dihydrotestosterone (PDB code
1I37).37 Throughout the text, PDB codes will be used to
refer to specific structures of the receptor. Three known
AR ligands were included in the benchmark database:
dihydrotestosterone, metribolone, and LG121071 (refer-
ences in Table 1). Not surprisingly, metribolone and
dihydrotestosterone satisfied the top 1% score threshold
against the structure of the receptor crystallized in their
presence (1E3G and 1I37, respectively). Metribolone
also passed the top 1% threshold against 1I37, while
dihydrotestosterone was only in the top 10% selection
of 1E3G due to the conformation of M745 in this
complex, which projects further toward the binding
pocket and sterically hinders correct positioning of the
additional methyl group present at position 19 on the
A ring of this compound. LG121071 did not satisfy the
top 10% threshold condition against 1I37 and hardly
met the threshold against 1E3G, which suggests that

neither receptor conformation can accommodate this
non-steroid ligand and which results in suboptimal
enrichment of AR-based selections (Table 2).

Interestingly, a number of nonandrogenic NR ligands
do score well against one or both structures (Figure 1).
These are mostly estrogenic compounds such as estra-
diol, coumestrol, and DES; progestagens such as prome-
gestone and trimegestone; and glucocorticoids such as
cortisol. Such false positives do not constitute irrelevant
background noise but actually reflect the fact that AR
selectivity for androgenic steroids is very fragile. Indeed,
it was shown in the past that a single residue mutation
T877A in AR-LBP results in activation of the receptor
by estrogen and progesterone receptor agonists.38 Simi-
larly, cortisol can activate the L701H AR mutant.38

These illicit activations of mutated forms of AR can be
associated with failed androgen ablation therapy in
prostate cancer patients.36 The nonperfect selectivity of
the VLS algorithm, which is not as stringent as the
biological selectivity of the receptor, fortuitously re-
vealed the potential promiscuity of the AR-LBP for a
diverse array of steroids.

ER. The crystal structures of ERR-LBD bound to the
agonists (R,R)-5,11-cis-diethyl-5,6,11,12-tetrahydrocry-
sene-2,8-diol (THC) and diethylstilbestrol (DES) and to
antagonist 4-hydroxytamoxifen (TAM) (PDB codes 1L2I,
3ERD, and 3ERT, respectively), as well as ERâ-LBD
complexed to the partial agonist genistein (PDB code
1QKM), were used.40,41,33 Five ER agonists and eight
ER antagonists were present in the benchmark library
(Table 1). The ERR agonist/ERâ antagonist THC was
also included, and dihydrotestosterone was considered
as a weak ER agonist.42 On average, ER ligands scored
better than other steroid receptor ligands against ER
(Figure 1). Not surprisingly, ER agonists docked also
reasonably well to the inactive form of the receptor
(3ERT), since antagonists bind to the same LBP as
agonists but generally present an additional bulky
group that protrudes out of the agonist binding pocket.41

Most ERâ agonists also docked well to the structure of
the LBD crystallized in the presence of the partial

Table 2. Screening Efficiencya

score cutoff (top 1%) score cutoff (top 10%) enrichment (top 1%) enrichment (top 10%)

receptor full scoring steric scoring full scoring steric scoring full scoring steric scoring full scoring steric scoring

AR [+] (1E3G) -41. -43. -32. -39. 33 33 10 7
AR [+] (1I37) -37. -43. -27. -38. 67 50 7 5
ERa [+] (1L2I) -33. -46. -27. -42. 71 0 10 3
ERa [+] (3ERD) -32. -44. -26. -39. 71 14 10 6
ERb [+] (1QKM) -34. -44. -28. -39. 57 14 9 6
ERa [-] (3ERT) -34. -52. -29. -46. 87 87 10 10
GR [+] (model) -38. -51. -31. -46. 100 100 10 10
PXR [+] (1ILH) -38. -57. -33. -50. 0 14 2 4
PR [+] (1A28) -44. -51. -35. -46. 83 20 10 8
PR [+] (1E3K) -39. -50. -32. -45. 50 60 8 6
PPARg [+] (1FM6) -36. -54 -30. -48. 80 10 9 3
PPARg [+] (1FM9) -46. -58. -37. -52. 40 30 9 5
PPARa [+] (1K7L) -37. -54. -29. -48. 70 20 10 7
PPARd [+] (1GWX) -42. -59. -37. -53. 60 20 6 4
RXRa [+] (1FBY) -44. -54. -36. -48. 100 71 10 10
RXRa [+] (1FM6) -47. -53. -36. -48. 100 29 10 10
RARg [+] (1FCZ) -45. -53. -35. -48. 88 89 10 9
TRb [+] (1BSX) -50. -55. -36. -49. 33 0 10 0
VDR [+] (1DB1) -40. -59. -34. -52. 100 71 10 10
average 68 39 9 6

a For each receptor conformation, the scores necessary to select 1% and 10% of a diverse database of 5000 compounds (score cutoff, also
displayed as horizontal lines Figure 1) and enrichment factors of the corresponding focused libraries are shown. Results obtained with
the full ICM scoring function and results obtained with the steric component (steric scoring) only of the scoring function are presented.

EF )
hitsFL

hitsSL
× compoundsSL

compoundsFL
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antagonist genistein, which was expected, considering
the structural similarity of the LBP with the active form
of the receptor.33

Moxestrol scored rather poorly with all forms of the
receptor compared to other ER agonists. Inspection of
the docked complexes showed that the ethyne group of
moxestrol constitutes a rather bulky hydrophobic entity
that lightly clashes with M421 of ERR in 1L2I and
3ERD and with M295 of ERâ in 1QKM. Conformational
rearrangement of some receptor side chains may be
necessary to accommodate this agonist.

A few false positives scoring better than the top 1%
threshold were present, most of which were ligands for
other steroid hormone receptors such as metribolone
and progesterone. More surprising was the top 1%
selection of all three TR agonists against the 3ERD
structure of ERR, where a hydrophobic cavity between
M343, L346, and T347, too small in 1L2I or 1QKM, can
accommodate the methyl group of the disubstituted
phenolic ring of GC1 (compound 69, Figure 1) or the
corresponding T3 iodine. Whether this unexpected
result simply represents an artifact of the docking
simulations or points at possible cross-reactivity be-
tween thyroid hormone and estrogen receptors, as
suggested elsewhere, remains to be tested.43,44

The 87-fold enrichment in ER antagonists of the top
1% selection against inactive ERR (Table 2) reflects the
good feasibility of the VLS technology to identify ER
antagonists. False-positive NR ligands are of two kinds
(Figure 1). (1) ER agonists fit in the antagonist binding
pocket but, as expected, do not present a bulky group
that would destabilize the active state of helix H12.30

A simple computerized filter could easily be set up that
rejects docked compounds that are more than 2 Å away
from active H12. (2) Three PPARγ agonists (rosiglita-
zone, troglitazone, and GW501516) also score better
than the top 1% threshold (Figure 1). Inspection of the
docked complexes reveals that these compounds actually
occupy only half of the agonist binding cavity and mostly
interact with residues that are out of the LBP. Such
compounds could be avoided either by reducing the
receptor domain available for docking during VLS or by
automatically filtering out docked ligands that occupy
only part of the agonist binding cavity. Such an exercise
remains beyond the scope of this work, which is to
compare the efficiency of one single VLS algorithm when
applied to different receptors rather than customizing
the algorithm or procedure to each receptor.

GR. A computer model of the GR-LBD built by
homology to the crystal structure of PR was used for
virtual screening (see above). Three known GR agonists
were included in the benchmark library: cortisol, dexa-
methasone, and triamcinolone (Table 1). The observa-
tion that all three ligands are in the top 1% selection of
a random database (Figure 1 and Table 2) strongly
suggests that in some cases VLS can be applied suc-
cessfully even when an experimental receptor structure
is not available. A rather large number of false positives
can be seen in Figure 1, which seems surprising
considering the enrichment level observed (Table 2).
This could be an expected outcome because a homology
model was used. Interestingly, almost all false positives
are ligands for AR, ER, or PR, all steroid hormone
receptors structurally closer to GR than most enzyme

active sites or receptor binding pockets. This under-
scores the fact that our 78-compound benchmark library
is structurally biased toward NRs, and ligand discrimi-
nation within this library is more difficult than for
random compound databases.

PXR. PXR, a xenobiotic receptor that was recently
crystallized, is by nature able to bind to a variety of
ligands presenting extreme structural diversity.45 This
promiscuity is based on a large spherical hydrophobic
LBP lined by a discrete series of polar atoms that can
be combined into a diverse array of hydrogen bond
networks. Additionally, a flexible loop of the LBP can
expand and contract, thereby accommodating ligands
of different sizes and shapes.45 The absence of salient
features of the LBP, both in terms of shape and
electrostatic potential, is extremely unfavorable to the
fast and accurate docking required for VLS and trans-
lates into a lack of enrichment of focused libraries (Table
2). This clear result strongly suggests that high-
throughput docking to PXR would not be an efficient
alternative to binding or cell-based assays for rapid
prediction of drug-drug interactions.46

PR. The crystal structures of human PR-LBD com-
plexed to progesterone (PDB code 1A28) and metri-
bolone (PDB code 1E3K) were used.47,36 Five known PR
agonists were present in the benchmark library: proges-
terone, metribolone, promegestone, trimegestone, and
CP8481 (Table 1). A first observation is that both
receptor structures yield to significant enrichment of
focused libraries (Table 2), which indicates that VLS can
efficiently identify PR agonists. The slightly higher
enrichment of selections derived from 1A28 may be
explained by the higher resolution of this structure (1.8
versus 2.8 Å), which translates into more accurate
docking and more relevant scoring. Additionally, M759
adopts a more open conformation in 1A28, which allows
placement of a methyl group that is present at position
19 of progesterone but absent from metribolone. The
alternative conformation of M759 in 1E3K cannot
accommodate this group or another methyl of CP8481,
which explains the relatively poor score assigned to
these compounds.

A number of false positives from the benchmark
library satisfy the top 1% selection threshold (Figure
1). These false positives are mostly AR, ER, and GR
agonists. The LBP of these steroid hormone receptors
is structurally close to that of PR, and the promiscuity
of these receptors is illustrated by the existence of
ligands such as metribolone, which binds and activates
both AR and PR36 or cortisol, a GR agonist that also
weakly binds PR.48 This reflects the current limitations
of the state-of-the-art in VLS at discriminating between
very similar binding sites.

As observed above with one of the ERR structures,
all three TR ligands present in the library are selected
as PR agonist candidates (Figure 1, compounds 69-71).
The compounds dock reasonably and make both hydro-
phobic and electrostatic interactions; however, they
seem to be lightly clashing with T894, which would
destabilize the complex. The ICM VLS algorithm is
designed to avoid penalizing strongly the limited steric
clashes, based on the assumption that receptor flex-
ibility may accommodate them. While this feature is
useful to account for moderate side chain flexibility, it
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can also result in the selection of false positives. More
realistic implementation of receptor flexibility is a
major, complex challenge of VLS and the subject of
much effort to improve the technology.13

PPAR. Discriminating between ligands specific for
different receptor isotypes seems so far to remain
beyond the limits of virtual screening technology, es-
pecially when the LBPs of the receptor isoforms are
almost identical.13 To formally address this question,
both nonspecific and isotype-specific PPAR agonists
where included in our benchmark library and screened
against the crystal structures of active PPARγ bound
to rosiglitazone or GI262570 (PDB codes 1FM6 and
1FM9), PPARR complexed to GW409544 (PDB code
1K7L), and PPARδ bound to eicosapentanoic acid (PDB
code 1GWX).49-51

A first observation is that PPAR focused libraries are
significantly enriched in PPAR ligands: 80% of all
PPAR ligands are in the top 1% VLS selection against
the 1FM6 conformation of PPARγ, and 70% are in the
top 1% VLS selection against PPARR (Table 2). The
enrichment level decreases to 60% against PPARδ and
40% against the 1FM9 conformation of PPARγ. It is
important to note here that PPAR ligands score equally
well against receptor conformations yielding highly
enriched or poor selections (Figure 1). The significant
difference is rather the score threshold necessary for
them to be selected. For instance, 1% of the 5000
random compounds scored better than -46 in the 1FM9
screen, while the threshold was only -36 against 1FM6.
The much more open structure of the 1FM9 LBP
underlies this difference: the conformation of F363 and
F282 in 1FM9 creates an open hydrophobic channel,
absent in 1FM6, that can accommodate a benzene ring
of GI262570. As a result, numerous ligands that do not
fit into the 1FM6 conformation dock well to and score
well against 1FM9. GI262570 is one such ligand (Figure
1). Other compounds from the diverse library and not
identified as PPAR ligands behave similarly. A corollary
is that the actual enrichment of the 1FM9 selections
may be higher than shown here because most true
positives from our benchmark library as well as most
known PPAR agonists are absent from the chemistry
space represented by GI262570.

The score assigned to PPARγ specific ligands (com-
pounds 27, 29, 30, 32-35), PPARRγ dual agonists
(compound 26), and PPARδ selective ligands (com-
pounds 28, 31) can be compared to address how VLS
scoring correlates with receptor isotype selectivity.
Figure 1 shows that the two PPARδ selective agonists
are included in the top 1% selection focused on PPARR,
PPARδ, and the 1FM6 conformation of PPARγ but are
excluded from the 1FM9 PPARγ focused library. The
PPARRγ specific ligand passes the top 1% threshold
against all PPAR structures. If only the top 0.5% top
scoring compounds were retained, it would be included
in the three PPARR/PPARγ selections while excluded
from the PPARδ pool. At last, out of seven PPARγ
selective agonists, five, four, and three are present in
the top 1% PPARγ (1FM6), PPARR, and PPARδ focused
libraries, respectively. These results show clearly that
isotype selectivity is poorly represented by VLS exer-
cises. This is particularly true when specificity relies
on few residues, as it is the case here. For instance,

structural and biochemical studies have shown that
receptor selectivity between PPARR and PPARγ could
be reverted by a single residue mutation.50 This leaves
room for the improvement of the virtual screening
technology.

Among the few false-positive NR ligands, nafoxidine
(compound 20), an ER antagonist that has been used
in advanced breast cancer,52 passed the top 1% score
threshold against both PPARγ conformations as well as
PPARδ (Figure 1). This ligand also scored well against
PPARR, as did the TR agonist TRIAC (compound 71).
Whether these results represent artifacts of the VLS
approach or actually reflect PPAR agonist activities
remains to be tested.

RXR. Two crystal structures of human RXRR bound
to 9-cis-retinoic acid were used for screening (PDB codes
1FBY and 1FM6).49,53 Seven RXR ligands were included
in the benchmark library (Table 1). The different RXR
isotype LBPs are almost identical, and all ligands are
pan-agonists. Our results suggest that VLS can very
efficiently enrich the RXR agonists random compound
libraries; all known hits present in a source library
would be selected if 99% of the library was filtered-out
on the basis of VLS scoring (Table 1 and Figure 1). This
result was repeated against both receptor conforma-
tions, which differ principally at the level of P264, V265,
I324, F439, and L451, the LBP being slightly more
compact in the 1FBY conformation.

Despite the observed efficiency of the RXR-based
screening reflected by the enrichment of focused librar-
ies (Table 2), the fact that all RAR agonists present in
the benchmark library were also present in the RXR
selections underscores the limitations of the in silico
approach (Figure 1). The RAR LBP is only slightly more
elongated than RXR but otherwise very similar in
shape, and both display arginines on one end that
interact with a carboxylate moiety present in all known
retinoid receptor ligands. As mentioned above, the VLS
algorithm used here is rather tolerant for light steric
clashes, such as those present in most RAR ligand/RXR
complexes (data not shown), to account for potential
local rearrangement of side chain conformation. Once
again, an improved representation of receptor flexibility
would probably result in increased VLS efficiency.
Alternatively, a more immediate approach that has
proven successful in the past implements a second, more
stringent filter with flexible receptor side chains against
the limited number of compounds that have passed the
VLS filter.15

The only other hits observed in both crystal structures
are the PPARδ agonist L165041 and TR agonist GC1
(Figure 1). Inspection of the complex structures show
that too short a distance between the positively charged
side chain of R316 and the negatively charged carbox-
ylate of L165041 compensates for the strained internal
torsion angles of the PPAR ligand. This strongly sug-
gests that this hit is a false positive. On the other hand,
the RXR/GC1 docked complexes look reasonable, and
in vitro experiments would be necessary to reject this
unexpected hit.

RAR. The crystal structure of human RARγ com-
plexed to the pan-agonist BMS181156 (PDB code 1FCZ)
was used.54 Of the nine RAR agonists included in the
benchmark library, 89% satisfied the top 1% selection
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threshold derived from the sample database of 5000
compounds. With a score slightly under the threshold,
the natural agonist 9-cis-retinoic (9cis-RA) acid was the
only binder filtered out of the selection (Figure 1). A
conformational rearrangement of some receptor side
chains may be necessary to properly dock this ligand.
Along with 9cis-RA, all RXR agonists are excluded from
the top 1% selection. This result could seem surprising
considering the similarity between RAR and RXR LBPs
and the observation made above that all RAR agonists
satisfied the corresponding threshold in the RXR screen-
ing. Inspection of the docked complexes shows that most
RXR ligands are actually not as elongated as RAR
ligands (an observation already made in the past),55 and
while the carboxylate of RAR agonists interacts favor-
ably with R278, the carboxylate of RXR agonists re-
mains too distant from this residue. The score assigned
by VLS to all RAR agonists except 9cis-RA is actually
significantly better than that assigned to all other NR
ligands from our benchmark library; they all score
better than -50, which is the threshold necessary to
retain only the best 10 hits (or 0.2%) of the 5000 random
compound database. The corresponding enrichment
value would be (8/10)/(9/5000) ) 444 times.

These results are a good indication that VLS can
efficiently accelerate the discovery of RAR agonist leads;
however, the work presented here is only a test-case
study and does not guarantee that selecting the top 0.2%
of a large and diverse source library based on RAR VLS
scoring would result in a focused library enriched over
400 times in RAR agonists. In this regard, two points
should not be overlooked. First, Am580, an RARR
selective agonist, was assigned a very good score (com-
pound 51, Figure 1) even though RARγ was the receptor
isotype used for screening. Once again, this underscores
the limitation of the method at discriminating between
isotype specific ligands. Second, the structural diversity
of known RAR agonists is relatively limited,56 which
could explain why all dock well to the same receptor
conformation. Whether this receptor structure can allow
identification of diverse RAR agonists presenting novel
chemotypes remains an open question.

TR. The only TR-LBD crystal structure available is
the 3.7 Å resolution structure of human TRâ bound to
the natural hormone T3 (PDB code 1BSX).57 As a rule
of thumb, data worst than 2.5 Å resolution should not
be considered reliable for VLS applications, and the poor
resolution of this structure is probably in part respon-
sible for the low screening efficiency observed (Table 2);
the enrichment level of the top 1% selection is the
second worst after PXR. The three known TR agonists
screened ranked 3, 6, and 10 of the NR ligand bench-
mark library, while four PPAR agonists ranked in the
top 10, including the best three compounds, as well as
three RAR agonists (Figure 1).

The poor quality of the receptor structure is probably
not the only factor responsible for the low enrichment
of the top 1% selection. Indeed, the corresponding score
threshold (-50) is the lowest observed for all receptors
tested (Table 2). A cluster of three arginines (R99, R103,
and R282) at one extremity of the TR LBP generates
an electrostatic potential extremely favorable to car-
boxylate or nitro groups, which are rather common in
compound libraries. Any molecule carrying such func-

tional moiety and presenting structural features com-
patible with the TR LBP is likely to be assigned a good
score.

This observation, however, does not explain why three
PPAR agonists score better than all TR ligands. Three
reasons can be advanced. (1) The receptor side chain
conformation may not be optimal because of the above-
mentioned low resolution of the crystal structure. (2)
The torsion angles of several top scoring PPAR ligands,
such as L165041 and GW501516, are very unfavorable,
while their carboxylates lightly clash with R282, R103,
and/or A234. The corresponding energetic penalty is
compensated by too short a distance between positively
charged R282 and/or R103 side chain amines and
negatively charged carboxylates of the ligand, which
translates into overly stabilizing electrostatic interac-
tions. The same is true for RAR ligands. (3) The
possibility that some PPAR ligands may bind to the TR-
LBD should not be overlooked. This may reflect pro-
miscuity between the PPAR and TR binding pockets. It
is not impossible that a higher resolution structure or
flexibility of the receptor side chains would allow a more
reasonable, low-energy structure of the PPAR agonists/
TR complex. The observation made above that TRIAC,
a TR agonist, was selected among the top PPARR ligand
candidates seems to reinforce this hypothesis (Figure
1). Whether such promiscuity would actually have a
biological meaning (PPARs are therapeutic targets
against diabetes and atherosclerosis, while TR activa-
tion has hypocholesterolemic effects)58,59 remains beyond
the scope of this work.

VDR. The high-resolution crystal structure of the
human VDR-LBD complexed to vitamin D (PDB code
1DB1, 1.8 Å resolution)60 was used for our VLS test-
case study. All of the seven known VDR agonists
screened scored better than the top 1% selection thresh-
old derived from the 5000 random compounds (Figure
1, Table 2). Additionally, our results show that VDR-
based VLS can significantly enrich compound libraries
in structurally diverse hits. Indeed, compounds such as
LG19078 and KS291, structurally unrelated to vitamin
D, were selected by the algorithm. This result under-
scores a strength of the VLS technology, which is the
ability to derive ligand candidates from the structure
of the receptor, regardless of existing ligands, and to
uncover novel chemotypes that may translate into
improved pharmacological profiles. Indeed, while the
use of VDR agonists against a number of diseases, such
as cancer and psoriasis, has been impossible so far
because of the hypercalcemic side effects of these com-
pounds, newly discovered molecules, such as LG19078
and KS291, also identified by our screening, could
uncouple the beneficial effect from the calcemic activity
and are promising leads for cancer therapy.61,62

The main false positives observed among NR ligands
are PPAR agonists (Figure 1). Some of these compounds,
such as L796449 and GW501516, are structurally
unrelated, and the docked complexes look reasonable.
As always, in vitro experiments would be necessary to
address the relevance of these unexpected hits.

Discussion

The efficiency of virtual screening was tested against
a variety of NR-LBDs and different receptor conforma-
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tions, with both random compound library and 78
known NR ligands. With the exception of PXR, the
exercise could significantly increase the hit concentra-
tion of focused libraries. The average enrichment factor
was 70 for the top 1% selections and was 9 for top 10%
selections (Table 2). This result clearly shows that VLS
can significantly enrich small libraries focused on
crystallized NRs. Additionally, the 100 times enrich-
ment rate of a top 1% selection derived from a computer
model of GR suggests that, at least in some cases, VLS
can be applied successfully in the absence of an experi-
mental receptor structure. However, to evaluate the
success rate of such an approach, VLS should be tested
against a statistically representative number of struc-
tural models built by homology to more or less distant
experimental template structures.

While the overall efficiency of NR-based VLS was
demonstrated, results vary significantly from one recep-
tor to another (Table 2). The observation that two
different crystal structures of the same receptor can
produce widely diverging VLS efficiency (see, for in-
stance, 1FM6 and 1FM9 conformations of PPARγ)
emphasizes that the conformation of the receptor, in
addition to the nature of the target, is a critical
parameter for VLS. The chemical diversity of hits
present in the source library can also influence the
results. For instance, the limited diversity of known
RAR and GR ligands translated into high enrichment
of corresponding selections. If one ligand docks well to
the receptor’s conformation, structurally related ligands
have increased chances of also docking well. The ap-
parently high VLS efficiency that results may be
undermined by the low diversity of hits identified. As
for HTS, diversity is an important variable of VLS
technology because the purpose of a lead discovery
program is to identify hits covering different regions of
the chemistry space in order to increase the chances of
developing a drug with acceptable pharmacology. In this
regard, it is important to note that known ligands for
most receptors that did produce quality selections, such
as ERs, PPARγ, VDR, and RXR, are chemically diverse.
This confirms that VLS is a relevant approach for NR-
targeted lead discovery.

Selectivity is another important parameter to address
the efficiency of VLS. Both receptor selectivity and
selectivity between different isoforms of the same recep-
tor can be considered. Comparing the scores assigned
for each receptor to the different NR ligands clearly
shows that, as a general trend, ligands for receptor X
score better than ligands for receptor Y when screened
against receptor X (Figure 1). While this distinction is
very well defined for some receptors such as PPARs,
VDR, RAR, and ER, the separation is sometimes not as
clear for others, such as the steroid receptors AR, PR,
and GR. As detailed above, in the latter case, nonspecific
steroid receptor ligands constitute most of the false
positives. While such miss-selected compounds result
from a lack of VLS specificity, they can sometimes also
reflect the presence of structurally similar features
between the LBP of two receptors and the potential risk
of cross-reactivity. For instance, the good scores as-
signed to several ER, PR, and GR ligands in the AR
screenings (see Results) suggest possible cross-reactivity
between these receptors. Indeed, some estrogens, pro-

gestagens, and glucocorticoids can activate variant
forms of AR carrying a single mutation in their LBD.38

A more surprising feature is the possible cross-reactivity
between ER antagonists and active PPARs suggested
by the high score assigned to some ER antagonists in
the PPAR screens.

To systematically evaluate the predicted promiscuity
between receptors used for screening in this work, a
cross-reactivity matrix was generated on the basis of
the scores assigned to all NR ligands against all recep-
tors, which lists calculated distances between the LBPs
(see Experimental Section for details). The distance
between two receptors that may share common ligands
is small while that between structurally remote recep-
tors is large (Table 3). A striking feature of this matrix
is the very small distance separating inactive ER (PDB
code 3ERT) from all active PPARs. The distances are
0.07, 0.04, 0.04, and 0.05 against PPARR (1K7L), PPARδ
(1GWX), PPARγ (1FM6), and PPARγ (1FM9), respec-
tively. Testing this observation in vitro would be inter-
esting but may prove difficult, since it is possible that
only mutated forms of PPARs may be activated by ER
antagonists.

Selectivity between different isoforms of the same
receptor can also represent an important parameter of
lead discovery. As detailed above, the PPAR screenings
show that VLS is so far unable to reliably discriminate
between receptor isotypes (Figure 1). The observation
that isoform specificity may rely on a single residue, as
is the case here,50 underscores the extreme selectivity
required.

It may be hypothesized that steric fit dominates NR/
ligand recognition. It is therefore instructive to evaluate
the relative importance of the steric factors compared
to more specific terms of the scoring function such as
electrostatics and hydrogen bonding. Table 2 sum-
marizes the enrichment factors of the compound selec-
tions obtained when the steric term (dEgrid) of the ICM
scoring function was used alone without other compo-
nents of the ICM score. For the top 1% selections, in 13
out of 19 cases the full score performs significantly
better, especially for non-steroid binding receptors such
as all PPARs and TRâ (the latter gets 0% enrichment
with steric scoring). In five cases, the performance is
similar. Only with PXR, the poorest performing recep-
tor, does steric scoring work somewhat better for both
the top 1% and 10% selections. Overall, compared to
steric scoring, full scoring improves average enrichment
by 75% (from 39- to 68-fold) for the top 1% selection.

The treatment of receptor flexibility in VLS simula-
tions leaves room for improvement. In the present state
of the algorithm used here, the ligand is continuously
flexible during docking simulations while the receptor
is represented by a series of superimposed potential
maps that account for van der Waals, hydrogen bond,
and hydrophobicity profiles, as well as electrostatic
potential.35 The boundaries of the LBPs are rather
tolerant for small-range van der Waals clashes to
simulate possible local rearrangement of receptor side
chains, while tautomeric or rotameric side chain trans-
formations are accounted for by screening independently
different conformations of the receptor. Such screening
strategy does result in a significant enrichment of
compound libraries (Table 2) and can be further im-
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proved by adding a “medium-throughput” step, where
compounds initially selected by VLS are docked again,
this time against a flexible representation of the recep-
tor, with higher stringency against van der Waals
clashes.15 While such fully flexible docking simulations
still remain too slow for the screening of libraries of
several hundred thousand molecules, it is reasonable
for a few thousand compounds. Implementing receptor
flexibility on all ligands of large source libraries would
still be preferable because it may allow for the identi-
fication of interesting hits requiring unexpected side
chain conformations and the exclusion of additional true
negatives that may lightly clash with structurally locked
residues.

The screenings performed against two different con-
formations of PPARγ (PDB codes 1FM6 and 1FM9)
illustrate how critical receptor flexibility is for the
identification of structurally diverse ligands. As detailed
above (see Results), the LBP of the 1FM9 structure is
larger than that of 1FM6. As a result, some real PPARγ
agonists selected against 1FM9 cannot fit in the 1FM6
structure and are missed in the corresponding screen-
ing. Conversely, a few other true positives selected
against 1FM6 fit in the 1FM9 structure but do not make
optimal hydrophobic contacts with the LBP that is
larger than necessary and are assigned a relatively poor
score. This clearly illustrates that one receptor confor-
mation does not match all ligands. If only PPARγ
agonists of the glitazone family were known, the 1FM9
structure where the receptor is complexed to GI262570,
a larger ligand, would not be available, and VLS against
the 1FM6 conformation would not allow identification
of GI262570-like hits. However, a flexible representation
of PPARγ, starting from the 1FM6 structure, would
account for more open conformations of the LBP and
may allow the selection of GI262570 and related com-
pounds as PPARγ agonist candidates. This example
illustrates how implementation of receptor flexibility
could open unexpected regions of the chemistry space
to lead discovery efforts toward the development of
active molecules presenting original chemotypes. De-
veloping rapid and robust VLS algorithms that include
such a feature is an important challenge of the present
time (see ref 13 for a review).

Ongoing development efforts will undoubtedly result
in improved enrichment levels of focused libraries
toward an ideal case scenario where VLS would actually
allow cherry picking of all true positives out of a large
and diverse compound database. The present study,
however, shows that significant differences in enrich-
ment can exist between the top 10% selections and top
1% selections (Table 2). This result suggests that a
conservative approach, where VLS is used to extract
focused pools of a few thousand molecules from diverse
or customized source libraries of hundreds of thousands
of compounds, remains probably the most appropriate
at this time.

Conclusion

The systematic virtual screening of 78 NR ligands as
well as 5000 random compounds against 19 different
NR structures provides a reliable assessment of the
efficiency of the VLS technology against this important
family of transcription factors. More generally, this
study contributes to the evaluation of the state-of-the-
art of VLS. It reveals encouraging progress, such as the
efficient enrichment of a focused library in the absence
of experimental structure of the targeted receptor, as
well as important unmet challenges, such as the need
for improvement of receptor isoform selectivity and
implementation of side chain flexibility. While this study
clearly confirms that VLS can be a useful tool to rapidly
identify hits, it also defines the limitations of the
approach and suggests that, to avoid missing active
compounds, the technology may best be used to rapidly
extract from large source libraries focused selections
that are more easily amenable to high-throughput
screening.

Experimental Section

Receptor Preparation. For all receptors but GR, the
conformations targeted for virtual screening were directly
derived from crystal structures. Several receptor conformations
were used when multiple tautomeric or rotameric states could
match the experimental electron density of the structure. For
each of the 1E3G and 1I37 structures of AR,36,37 alternative
conformations were used where the ø2 torsion of N705 points
either the side chain oxygen or side chain nitrogen toward the
LBP and where the hydroxyl hydrogen of T877 points either

Table 4. Docking Accuracya

PDB ligand receptor
resolution X-ray

structure (Å)
VLS score,

X-ray ligand
VLS score,

docked ligand
rmsd

X-ray/docked (Å)

1a28 progesterone PR 1.8 -55.2 -59.3 0.032
1bsx T3 TRb 3.7 -35.7 -51.6 0.38
1db1 VD3 VDR 1.8 -52.3 -60.7 0.74
1e3g metribolone AR 2.4 -56.2 -62.9 0.22
1e3k metribolone PR 2.8 -52.4 -52.6 0.28
1fby 9cis-RA RXR 2.25 -58.5 -66.4 0.37
1fcz BMS181156 RARg 1.38 -72.7 -68.6 0.84
1fm6 rosiglitazone PPARg 2.1 -41. -43.3 1.39
1fm6 9cisRA RXR 2.1 -51.4 -67.4 0.78
1fm9 GI262570 PPARg 2.1 -61.7 -66.5 1.72
1i37 dihydrotesto AR 2.0 -48.6 -51.4 0.21
1ilh SR12813 PXR 2.76 +28.6 -29.0 2.24
1l2i THC ERa 1.95 -31.2 -41.7 0.29
1qkm genistein ERb 1.8 -30.5 -40.4 0.79
3erd DES ERa 2.03 -43.0 -48.6 1.61
3ert tamoxifen ERa 1.9 -37.6 -46.2 1.41
a Docking and scoring performance for the ligand/receptor pairs for which complex X-ray structures were available. The rmsd of docked

ligand versus X-ray structure as well as VLS scores for both structures are listed. X-ray structure resolution is provided as an indication
of the quality of the experimental structures.
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toward or away from the LBP. For the 1L2I, 3ERD, and 1QKM
structures of ER,33,40,41 the tautomeric state of ERR-H524 or
ERâ-H475 was set so that the residue could either accept a
hydrogen from or give a hydrogen to potential ligands. In the
case of the 1A28 and 1E3K PR structures,47,36 the ø3 torsion
angle of Q725 was set either to 0° or to 180°, while the hydroxyl
oxygen of T894 was either pointing away from or toward the
receptor’s LBP. Representations of PPARs with alternative
hydroxyl rotameric states and histidine tautomeric states of
S289, Y473, H449, and H473 for PPARγ, S280, Y314, and Y464
for PPARR, and Y473, H323, and H449 for PPARδ were used
for screening. The two possible tautomeric states of TRâ-H435
that preserve the rotamer observed in the crystal structure
were used for this receptor. Additionally, while the experi-
mental conformation of N223 was retained for one screening,
the conformational space available to this residue was also
sampled in the presence of bound T3 and the lowest energy
conformation found was used for screening. This exceptional,
local diversion from the experimental electronic density was
only justified by the poor 3.7 Å resolution of the TR data
currently available.57 In the case of VDR, varied rotameric
states of S237 and S278 hydroxyls and tautomeric states of
H305 were applied for screening the 1DB1 structure.60 Finally,
a single receptor conformation was derived from the RAR and
RXR experimental structures, since no variation seemed
necessary or justified, and a single conformational state of PXR
was used out of the too numerous possible conformations
produced by a series of hydrogen-bond donors and acceptors
lining the LBP of this receptor.

The GR-LBD 3D model used for screening was built by
homology to the 1A28 crystal structure of the AR-LBD, a
template sharing 53.8% sequence identity.47 The target se-
quence was aligned on the 3D template, and the energy of the
system was minimized by a Monte Carlo simulation through
a series of random global moves and gradient local minimiza-
tions in the internal coordinates space.35 A single rotameric
state was used for screening.

Virtual Screening. The ICM virtual library screening
(VLS) module was applied (Molsoft LLC, La Jolla, CA). A series
of five grid potential representations of the receptor were
automatically generated, which accounted for the hydrophobic
interactions, heavy-atom and hydrogen van der Waals interac-
tions, hydrogen-bonding, and electrostatic potential of the
predefined ligand binding site. Grid calculation took an
average of 3 min per receptor conformation. Each flexible
compound was first energy-minimized in the absence of the
receptor. The lowest energy conformations identified were then
used as a starting point for docking simulations to the receptor
grids by the ICM method,8,63 and the ligand was assigned a
score that reflects the quality of the complex. Docking took
an average of 1 min per processor and per ligand. Since ICM
docking is a stochastic optimization procedure, to ensure
convergence, the whole process was conducted two times in
parallel for each receptor structure (an additional two screen-
ings tested on the benchmark library of NR ligands did not
change the results) and the lowest score assigned to each
ligand was retained.

The ICM scoring function12 used consisted of the following
terms:

where ∆EIntFF includes the van der Waals interaction of the
ligand with the receptor as well as internal force-field energy
of the ligand. Total van der Waals repulsion for any ligand
atom was truncated to 4 kcal/mol. This term accounts for the
quality of the steric fit, including any conformational strain
induced in the ligand by receptor binding.

T∆STor is the change in free energy due to the conforma-
tional entropy loss for the ligand upon binding, which is
assumed to be proportional to the number of free torsions (NTor)
in the ligand and calculated as 0.6NTor .

∆EHBond is the hydrogen bonding term. For a hydrogen
bond acceptor atom i and a hydrogen atom j located at
rj, the hydrogen bonding interaction was estimated as
Fang(æ)Fdist(rLPi-rj), where æ is the angle formed by hydrogen
bond acceptor atom, hydrogen, and the hydrogen bond donor,
and rLPi is the radius vector of the center of the lone electron
pair (LP) closest to the hydrogen. The angular function used
was defined as Fang(æ) ) 1 - cos(æ). Distance function
Fdist(rLPi-rj) was constant (1.0) within λHB/2 from the lone pair
center and dropped as

beyond that distance, where λHB is the characteristic range of
hydrogen bonding interaction (value of 1.6 Å was used). Lone
pair centers were placed at 1 Å from the hydrogen bond
acceptor atom, assuming symmetrical planar trigonal config-
uration for sp2 atoms and tetrahedral configuration for sp3

atoms. The resulting functional dependence reflects (at least
qualitatively) the physical nature and observed statistics of
the hydrogen bond interactions. The interaction is maximized
when the hydrogen atom is pointing directly to the acceptor
atom along a lone pair axis and drops quickly as the hydrogen
is moved farther away. It declines more gradually as the
hydrogen moves out of the LP axis or, as hydrogen bond donor,
hydrogen atom, or hydrogen bond acceptor, moves out of
alignment. Appropriate strength of the interaction was achieved
through the weighting factor R1.

∆EHBDesol is the term that accounts for the disruption of
hydrogen bonds with solvent (desolvation of hydrogen bond
donors and acceptors). Appropriate strength was achieved
through the weighting factor R2.

∆ESolEl is the solvation electrostatic energy change upon
binding. It was calculated using the boundary element Poisson
equation solver as implemented in the REBEL64 module of
ICM. Calculations were performed using dielectric constants
of 4 and 80 for the protein interior and exterior, respectively.
Owing to the large uncertainty of the current estimates for
internal dielectric constant and partial charges, the weighting
factor R3 was applied.

∆EHphobm is the hydrophobic free energy gain. Following the
popular accessible surface area (ASA) model, it was assumed
to be proportional to the ASA of the hydrophobic atoms of the
receptor and ligand, buried upon binding. Initial estimate of
the surface tension was set at 0.012 kcal/Å2. Again, a wide
variety of values for this parameter can be found in the
literature, prompting us to apply an adjustable weighting
factor R4.

QSize is a size correction term. It is often observed that
scoring functions have a bias toward larger ligands. Addition
of a size factor proportional to the number of atoms in the
ligand allowed us to largely eliminate this bias. While this
term has no direct physical meaning, it may account for
otherwise omitted interactions of the ligand with the solvent,
primarily the van der Waals dispersion interaction. QSize was
evaluated simply as the number of atoms in the ligand, with
the weighting factor R5.

The weights R1-R5 were optimized on a diverse benchmark
of ligands and receptors as previously described.12

Cross-Reactivity Matrix. The predicted binding profiles
across the 78 NR ligand benchmark library were used to scale
the LBP structural similarity between different receptors. Two
structures presenting similar scoring profiles across the library
are separated by a small LBP-structure similarity distance and
have higher risks of cross-reactivity. The distances listed in
the matrix are calculated as scalar products between the
normalized sets of scores assigned for each receptor to all
ligands.
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Supporting Information Available: Figure 2 showing
19 charts of the details of the steric scores (dEgrid term of the
ICM scoring function) of all NR ligands for all receptors and
Figure 3 showing the chemical diversity of the 5000-compound
library used in this work (evaluated using the molecular
weight, number of torsional degrees of freedom, number of
hydrogen bond donors, and number of hydrogen bond acceptors
as molecular descriptors), and the benchmark library of 78 NR
ligands. This material is available free of charge via the
Internet at http://pubs.acs.org.
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