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The dopamine 3 (D3) subtype receptor has been implicated in several neurological conditions,
and potent and selective D3 ligands may have therapeutic potential for the treatment of drug
addiction, Parkinson’s disease, and schizophrenia. In this paper, we report computational
homology modeling of the D3 receptor based upon the high-resolution X-ray structure of
rhodopsin, extensive structural refinement in the presence of explicit lipid bilayer and water
environment, and validation of the refined D3 structural models using experimental data. We
further describe the development, validation, and application of a hybrid computational
screening approach for the discovery of several classes of novel and potent D3 ligands. This
computational approach employs stepwise pharmacophore and structure-based searching of a
large three-dimensional chemical database for the identification of potential D3 ligands. The
obtained hits are then subjected to structural novelty screening, and the most promising
compounds are tested in a D3 binding assay. Using this approach we identified four compounds
with Ki values better than 100 nM and eight compounds with Ki values better than 1 µM out
of 20 compounds selected for testing in the D3 receptor binding assay. Our results suggest
that the D3 structural models obtained from this study may be useful for the discovery and
design of novel and potent D3 ligands. Furthermore, the employed hybrid approach may be
more effective for lead discovery from a large chemical database than either pharmacophore-
based or structure-based database screening alone.

Introduction

The dopamine 3 (D3) receptor, cloned in 1990, has 52%
sequence homology to the D2 receptor and a similar but
unique pharmacological profile. The D3 receptor has
been proposed as a potential therapeutic target for a
variety of conditions, including drug abuse, restless legs
syndrome, schizophrenia, Parkinson’s disease, and
depression.1-4 Accordingly, major medicinal chemistry
efforts have been made toward the design and develop-
ment of potent, novel, and selective D3 ligands.

A number of relatively selective D3 ligands have been
identified over the years, but very few D3 ligands with
unambiguous selectivity are available. PD 128907 (1)
is probably the most selective D3 agonist (or a relatively
efficacious partial agonist) and has a selectivity of 98-
fold between the D3 and D2 receptors using an antago-
nist as the reference radioligand.5 7-OH-DPAT (2) is the
best characterized D3 partial agonist to date and has a
selectivity of 70-fold between the D3 and D2 receptors.6
BP 897 (3) has a selectivity of 66-fold between the D3

and D2 receptors;7 however, whether this compound
possesses partial or antagonist activity is controversial.8
Until recently, the most selective D3 antagonists re-
ported in the literature have a selectivity ratio of
approximately 300 between the D3 and D2 receptors.2
However, a highly D3 selective antagonist designed
based upon the core structure of BP 897 was recently
reported.9

To date, accurate three-dimensional (3D) structural
information for the dopamine receptors has not been
available and the structural basis of ligand binding and
selectivity to the D3 receptor is poorly understood. Since
dopamine receptors are membrane-bound proteins,
experimental determination of their 3D structures is
still an extremely difficult task. The lack of accurate
structural information on D3 and other dopamine recep-
tors represents a significant impediment toward devel-
oping highly selective D3 ligands.

Dopamine receptors belong to the family of G-protein
coupled receptors (GPCRs), whose structures are char-
acterized by seven transmembrane (TM) helices. In the
past, computational homology modeling approaches
have been employed to construct the 3D models of
dopamine receptors using either low-resolution struc-
tures of rhodopsin or high-resolution structures of bac-
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teriorhodopsin.10-15 Since bacteriorhodopsin is not a
GPCR and has very low sequence homology with the
dopamine receptors, the accuracy of the dopamine
receptor models based upon the structures of bacterio-
rhodopsin was limited. Since rhodopsin and dopamine
receptors belong to the same subfamily of the GPCR
proteins, the structure of rhodopsin was the choice as
the template structure for modeling. However, prior to
the determination of the crystal structure of rhodopsin
in 2000,16 only low-resolution rhodopsin structures were
available, which also greatly limited the accuracy of
modeled structures. Furthermore, due to limited com-
puting power, structural refinement was performed
without inclusion of the proper lipid and water environ-
ment that is required for accurate modeling.

The crystal structure of rhodopsin has been deter-
mined to 2.8 Å resolution through X-ray diffraction in
2000.16 Since then, several high-resolution structures
of rhodopsin have been determined.17-20 The high-
resolution structures of rhodopsin provided us with an
opportunity to accurately model the 3D structures of
dopamine receptors through computational homology
modeling. Of note, since lipid and water environment
plays an important role for the dopamine receptor
structures,21-22 we also included explicit lipid and water
molecules in the molecular dynamics (MD) simulations
for further structural refinement. D3 receptor models
were then validated using available experimental in-
formation, i.e., substituted cysteine accessibility method
(SCAM) results, mutational data, and structure-activ-
ity relationships (SAR) of known D3 ligands.

On the basis of the modeled D3 receptor structures,
we further applied a hybrid, stepwise computational
screening approach for the discovery of novel and potent
D3 ligands. In this computational approach, a pharma-
cophore model was developed and used to identify
potential novel D3 ligands (“hits”) from a large 3D
structural chemical database of approximately 250 000
synthetic compounds and natural products. Hits identi-
fied from pharmacophore searching were further screened
through structure-based searching using multiple re-
ceptor models via computational docking and scoring.
Top-ranked potential D3 ligands were further subjected
to structural novelty screening. Finally, the most prom-
ising potential D3 ligands were tested for their binding
affinities to the D3 human receptors. This approach led
to the successful discovery of several classes of potent
and novel D3 ligands and may serve as further valida-
tion of our D3 receptor structural models.

This paper is organized as follows. We first present
the computational structural modeling of the D3 recep-
tor in explicit lipid and water environment and valida-
tion of the structural models using extensive experi-
mental data. We next describe our discovery of structur-
ally diverse and novel D3 ligands through a stepwise
computational database screening, followed by experi-
mental testing of selected potential ligands.

Results and Discussion

1. Modeling of the D3 Receptor and Its Natural
Environment. Modeling the Transmembrane He-
lices of the D3 Receptor. The dopamine receptors and
rhodopsin belong to the rhodopsin family within the
GPCR superfamily. The basic structural topology of

rhodopsin and dopamine receptors is shown in Chart
1, including the seven TM helices (TM1-TM7) and an
additional short helical region (TM8) at the intracellular
end of TM7. We used the rhodopsin structure deter-
mined at 2.8 Å resolution16 as the template structure
to model the TM helical region of the D3 receptor that
includes the ligand-binding site. A previous sequence
analysis of 493 members of the rhodopsin family of
GPCR proteins provided us with an unambiguous
sequence alignment without gaps in the TM region
between the D1, D2, and D3 receptors and rhodopsin, as
shown in Figure 1.23 The sequence identity between the
D3 receptor and rhodopsin is 28%. Furthermore, the D3
receptor contains 97% of the residues conserved within
the rhodopsin family of GPCRs. Overall, the high-
resolution X-ray structure of rhodopsin provides us with
an appropriate template for D3 receptor homology
modeling.

Modeling Loop Regions in the D3 Receptor. The
D3 and other dopamine receptors contain three extra-
cellular and three cytoplasmic loops in their structures
(Chart 1). We are primarily interested in the ligand-
binding site of the D3 receptor, which is in the extra-
cellular half of the transmembrane region. Therefore,
loops that are remote from the binding site were
omitted. These include the N- and C-terminus and
intracellular loops C-II and C-III (Chart 1). Inter-
changing the C-III loop between the D2/D3 sequences
in D2/D3 chimeras was found to have no effect on ligand
binding affinities, which suggested that the long C-III
loop may not be crucial for ligand binding.24,25 Exclusion
of these loops saved us considerable computational time
in the structural refinement through extensive MD
simulation. However, their omission represents a po-
tential limitation of our current computational struc-
tural modeling of the D3 receptor.

All extracellular loops were included. The short
cytoplasmic C-I loop was also included since in the
rhodopsin crystal structure this loop is in the proximity
of the short helical segment TM8 and may affect the
conformation of TM7. Details of loop modeling are
described in the Methods section.

Modeling Lipid-Water Environment of the D3
Receptor. The lipid membrane-water environment is
important for the 3D structures of transmembrane
proteins.21,22 To further improve the accuracy of the
modeled structures, we included explicitly the lipid-
water environment around the D3 receptor during
structural refinement. We chose 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphatidylcholine (POPC) as the lipid
molecule and TIP3P water model for water molecules.
POPC was chosen as the lipid molecule because it is a
phosphatidylcholine lipid, the most common class of

Chart 1. Topology of the Dopamine Receptors
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lipids in biological membranes. Also, this lipid contains
an unsaturated carbon-carbon bond in one of its tails,
making it a better choice for modeling biological mem-
branes than lipids with only saturated tails. A pre-
equilibrated and well-characterized structure of a POPC
bilayer in liquid-crystal phase was available to model
the starting lipid structure.26 Insertion of the receptor
model into the lipid bilayer is described in detail in the
Methods section.

Structural Refinement of the D3 Structure Em-
bedded in Lipid Membrane-Water Environment.
Structural refinement of the D3 receptor with surround-
ing lipid-water was achieved via conformational sam-
pling during 2.0 ns long MD simulation using the
CHARMM program.27 Structures saved in the MD
simulation trajectory (2000 conformations) were ana-
lyzed primarily focusing on the ligand binding site as
follows.

Conformational Cluster Analysis of the D3 Re-
ceptor’s Binding Site. The 2.0 ns long MD simulation
allowed us to explore protein flexibility. We performed
conformational cluster analysis to identify major con-
formations in the D3 receptor structural models with
respect to the binding site. D3 receptor conformations
saved in the MD simulation trajectory were first clus-
tered based on proline kink angles in TM5 and -6. These
angles affect the backbone structures of several residues
important for ligand binding. The obtained conforma-
tional clusters were further clustered based on ø1 and
ø2 side chain dihedral angles of selected residues impli-
cated in ligand binding at various GPCRs as sum-
marized in recent reviews,28,29 as well as residues in

their close proximity (Table 1). More details of clustering
are given in the Methods section.

Conformational analysis showed that there are four
major conformational clusters for the binding site based
on the MD simulation trajectory, distributed as 30%,
16%, 13%, and 10% of the total conformations clustered.
The conformations that represent the center conformer
of these four clusters were identified and superimposed
in Figure 2. The final conformer of the MD simulation
(at 2000 ps) with its lipid-water environment is shown
as a snapshot in Figure 3. This conformer belongs to
major conformational cluster IV and therefore may be
described by features characteristic of this particular
group of conformers (discussed below). The four major
conformational clusters of the D3 receptor differ in
average bend angles of the TM5, TM6 helices and in
preferred side chain orientations of ligand-binding site
residues as follows.

Considering the average kink angles of TM5 and TM6
in D3 conformational clusters, there is no significant
difference in TM5 helical bending but TM6 adopts
distinct average kink angles, as given in Table 1.

Several residues in the binding site, including V111,
W342, and F346, appear quite flexible and adopt dif-
ferent average side chain dihedral angles in the four
major conformational clusters (Figure 2 and Table 1).
A number of aromatic residues, including F197, W342,
F345, and F346, form a hydrophobic cluster, which is
accessible for ligand binding. Indeed, alanine substitu-
tions of the residues in the D2 receptor corresponding
to F345 and F346 in the D3 receptor were shown to
affect binding of several agonists and antagonists.30 We

Figure 1. Sequence alignment between rhodopsin (RHOA) and the D1, D2, and D3 receptors in the transmembrane region yields
22%, 26%, and 28% sequence identities, respectively. Conserved residues within the rhodopsin family of GPCRs are underlined;
sequence identities between rhodopsin and the dopamine receptors are in bold. These conserved amino acids combined with
further sequence identities between rhodopsin and the dopamine receptors provide an unambiguous sequence alignment for each
transmembrane helix. Sequence numbers are shown for first/last residues of the helices as superscripts following Swiss-Prot
sequence numbering (http://us.expasy.org).
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observed significant side chain conformational flexibility
for W342 and F346, which might play a role in binding
of the D3 receptor to different ligands.

D3 Models Correspond to the Inactive State of
the Receptor. Our D3 structure was modeled based on
the inactive state of rhodopsin, and it was therefore
expected to represent the inactive state of the receptor.
Indeed, major conformational clusters have several
structural features that are characteristic of the inactive
state. For example, in the center conformation of the
most populated conformational cluster, a salt bridge
between R128 in TM3 and E324 in TM6 is formed and
the distance between the centers of the guanidinium of
R128 and the carboxyl group of E324 is 4.2 Å. Numerous
studies have shown that in the inactive state the
intracellular ends of TM3 and TM6 are in close proxim-
ity and upon activation they become more distant from
each other, primarily due to the movement of TM6.31-34

As the distance between the intracellular ends of TM3
and TM6 increases during receptor activation, the salt
bridge linking these two regions is disrupted. This salt
bridge is present in the inactive state of the rhodopsin

crystal structure. This salt bridge was also shown to
constrain the â2-adrenergic receptor in the inactive
state.35 Another characteristic of the inactive state is
the burial of the TM6 cysteine residue, which corre-
sponds to C341 in the D3 receptor. Several studies have
shown that this buried cysteine in GPCR proteins
becomes exposed upon receptor activation.36,37 Interest-
ingly, it was shown that in the inactive state of the D2
receptor, the adjacent residue to the TM6 cysteine
residue, which is W342 in D3, is exposed to solvent. In
our D3 receptor models, C341 is buried while the
adjacent W342 is exposed to solvent. Taken together,
our analysis suggests that the modeled D3 structure is
in its inactive state.

2. Validation of the 3D Structural Model of the
D3 Receptor. Regions Accessible to Solvent. Al-
though the binding site of the D3 receptor has not been
extensively studied, the binding site of the D2 receptor
has been mapped using the substituted cysteine acces-
sibility method (SCAM).38-45 Considering the TM region
that includes the ligand binding site, the sequence
identity between the D2 and D3 receptors is 80%. Many
ligands bind to the D2 and D3 receptors with similar
affinities. Thus, the 3D structures of the binding sites
in the D2 and D3 receptors should be similar and the
mapped binding site information for the D2 receptor
should be applicable to that for the D3 receptor.38-45 On
the basis of our modeled D3 structures, D3 residues
corresponding to water-exposed residues in the large

Table 1. D3 Receptor Conformations Were Clustered Based on (a) Helix 5,6 Bend Angles and (b) Side Chain Dihedral Angles of
Several Residues Implicated in Ligand Binding as Well as Other Residues in Their Close Proximity

a. conformational clusters

helices I II III IV

TM5 16.3° ( 3.4° 16.3° ( 2.9° 15.7° ( 3.3° 14.5° ( 3.3°
TM6 32.0° ( 2.6° 32.2° ( 2.5° 39.4° ( 3.0° 38.9° ( 2.7°

b. average side chain torsional angles for major clusters I, II, III, IV

V78 174.3, 157.4, -179.7, 171.0 D110 -167.3, -166.1, -169.4, -167.3 V111 176.7, -59.7, -58.6, 173.4
C114 -169.6, -167.6, -169.1, -169.4 S192 -171.6, -171.6, -171.8, -173.9 S193 -61.4, -64.8, -80.4, -64.3
S196 -54.8, -56.7, -56.1, -53.1 F197 -176.4, 179.3, -176.6, -175.3 F197a 42.8, 42.8, 52.7, 45.0
W342 -140.5, -159.6, -161.2, -86.0 W342a 16.3, 33.2, 31.5, 12.8 F345 -179.0, 179.9, 178.2, 177.1
F345a 56.6, 58.5, 58.5, 54.2 F346 -80.4, -65.5, -66.1, -88.3 F346a 97.5, 97.0, 97.8, 71.9
T369 -60.7, -57.3, -56.1, -63.0 Y373 -66.9, -65.7, -62.5, -69.9 Y373a 122.6, 112.4, 117.3, 119.5

a γ2. First side chain dihedral angles γ1 are shown unless otherwise indicated. Angles were averaged per D3 receptor conformational
clusters. Features showing largest deviations between clusters (larger than 5° for kink angles or 20° for dihedral angles) are in bold.

Figure 2. Four major D3 receptor conformations obtained
from 2.0 ns MD simulation. Cluster center I, II, III, and IV
conformations are colored by atom, red, blue, and gray,
respectively. Fitting heavy backbone atoms of each (II, III, and
IV) onto the major conformer yields RMS deviations of 1.1,
1.2, and 0.8 Å, respectively, in the transmembrane region.
Shown side chains were included in clustering based on
dihedral angles.

Figure 3. Snapshot of the final conformation (at 2.0 ns) of
the D3 receptor (red) also showing its POPC lipid bilayer
(yellow) and water (blue) environment.
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extracellular crevice formed by TM1-TM7 (the ligand
binding site) in the D2 receptor are indeed accessible to
solvent (Figure 4). TM1 is furthest away from this
crevice among all helices and only contributes to a
pocket located deep in the TM region. Excluding bridg-
ing cysteine residues, there are two cysteine residues
in the extracellular region and five cysteine residues in
the TM region in the D2 receptor corresponding to C355,
C358 and C51, C114, C122, C166, C341 in the D3
receptor. In D2, C118 was shown to be the only cysteine
residue exposed to solvent among these seven cysteine
residues.41 Indeed, in D3, the only solvent-exposed
cysteine residue among these seven cysteine residues
(Figure 4) is C114, which corresponds to C118 in D2.
Thus, the D3 receptor structure is in agreement with
the SCAM experiments and with the accessibility of its
naturally occurring cysteine residues to solvent. Fur-
thermore, residues which were implicated in ligand
binding at the G-protein coupled receptors using various
experimental methods28,29 are clustered within the
binding pocket of the D3 model structures (Figure 5).

Computational Docking of R-(+)-7-OH-DPAT
into the D3 Receptor Model. Although comprehensive
docking studies of known ligands to the D3 receptor are
beyond the scope of the present study, we carried out
computational studies of R-(+)-7-OH-DPAT to D3 to
further validate our D3 models and to identify the
residues that are involved in ligand binding. R-(+)-7-
OH-DPAT is probably the most well-characterized D3
partial agonist to date. Extensive structure-activity
relationships (SARs) have been performed on this class
of D3 ligands. Mutational analyses have also been
performed on the D3 receptor to probe the interaction
of the receptor to R-(+)-7-OH-DPAT. R-(+)-7-OH-DPAT
is a partial agonist46,47 and potently binds to both the
active and inactive states of the D3 receptor with high
affinities and a slight preference to the active state.48

As discussed above, our D3 receptor models represent
the inactive state of the D3 receptor and may be used
for computational docking of R-(+)-7-OH-DPAT.

R-(+)-7-OH-DPAT was docked into all four D3 recep-
tor cluster center conformations using the Cerius2

program.49 Analysis of the predicted binding models
showed that the binding mode obtained using the center
conformation of the most populated cluster (cluster I)
of the receptor for R-(+)-7-OH-DPAT (Figure 6) is
consistent with all the available experimental data for
this ligand, while the other predicted binding models
are not entirely consistent with the experimental data.
Accordingly, we focus our discussions on the binding
model obtained using the cluster I conformation. Dis-
tances between heavy atom groups of the ligand and of
the receptor participating in the interactions for this
predicted model are summarized in Table 2.

On the basis of the predicted binding model (Figure
6 and Table 2), the protonated nitrogen in R-(+)-7-OH-
DPAT forms a salt bridge with the negatively charged
D110 while its hydroxyl forms a hydrogen bond with

Figure 4. Water-exposed regions (black ribbon) in the trans-
membrane segment of the D3 receptor as viewed from the
extracellular side. Out of naturally occurring and nonbridging
cysteines, only one, Cys114, was found to be exposed to
sulfhydryl reagents, in agreement with the D3 conformation
cluster I center structure shown here.

Figure 5. Subset of residues implicated in ligand binding at
dopamine receptors (3.28, 3.29, 3.33, 3.36, 5.42, 5.43, 5.46, 5.47,
6.48, 6.51, 6.55, 7.39, 7.43, 7.46) and at other GPCRs (3.32,
6.44, 6.52, and residue(s) within a few amino acids following
TM4-TM5 disulfide bridge) map the inside of the extracellular
crevice of the most populated D3 cluster center conformer.
Helical ribbon in solvent exposed regions is colored black.

Figure 6. R-(+)-7-OH-DPAT docked into the binding site of
the most populated D3 cluster center conformation, as viewed
from the extracellular side. Side chains within 5 Å of ligand
atoms are shown. Ligand carbons are colored black; all other
atoms are colored by atom type. Only polar hydrogens are
shown for clarity. Orange dotted lines indicate hydrogen-
bonding interactions. The salt bridge between D110 and the
ligand also has a hydrogen-bonding component.
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S192 in D3. Several hydrophobic residues including
F106, V107, V111, C114, F345, F346, and Y373 are in
contact with hydrophobic groups in R-(+)-7-OH-DPAT.
Our analysis of this binding model showed that both
direct and indirect experimental data support the
importance of these interactions for the binding of R-(+)-
7-OH-DPAT to the D3 receptor.

First, mutation of S192 to Ala (S192A) reduces the
binding affinity of D3 for R-(+)-7-OH-DPAT by 16-fold
while the contributions of the other TM5 serines appear
to be much less significant.50 The importance of this
optimal hydrogen-bonding interaction between the hy-
droxyl group in R-(+)-7-OH-DPAT and S192 is also
supported by the SAR data, which showed that replace-
ment of the hydroxyl group by a methoxyl in R-(+)-7-
OH-DPAT reduces its binding affinity to the D3 receptor
by 100-fold.6 Interestingly, the T369V mutant of the D3
receptor was shown to have higher binding affinity for
R-(+)-7-OH-DPAT than the wild-type receptor.51 Indeed,
in our predicted binding model, the methyl group of
T369 is 5.4 Å away from the center of one of the propyl
groups in R-(+)-7-OH-DPAT and mutation of T369 to
valine may have improved the hydrophobic interactions
between R-(+)-7-OH-DPAT and the receptor.

Several lines of indirect evidence also support our
predicted binding model for R-(+)-7-OH-DPAT. F345 in
the D3 receptor corresponds to F389 in the D2 receptor,
which has been strongly implicated in ligand binding
for the D2 receptor. Mutation of F389 to alanine was
shown to abolish the binding of several but not all
ligands studied,30 suggesting that this mutation may
primarily affect the interactions between some ligands
and the receptor rather than the overall conformation
in the binding site. Residues corresponding to F345
(residue 6.51) and F346 (residue 6.52) in the D3 receptor
have been implicated in ligand binding in a number of
other GPCRs. The residue at 6.51 was shown to affect
ligand binding in V1a vasopressin,52 R-1b-adrenergic,53

and Angiotensin type I receptor.54 The residue at 6.52
was shown to affect ligand binding in V1a vasopressin,52

m5 muscarinic receptor,55 and serotonin receptor.56,57

Taken together, our predicted binding model for
R-(+)-7-OH-DPAT using the most populated conforma-
tional cluster (cluster I) is supported by the direct
experimental data pertaining to this ligand to the D3
receptor and indirect experimental data at other GPCR
proteins.

3. Application of a Hybrid Approach for the
Discovery of Novel D3 Ligands. We employed a step-
wise computational database screening approach to
discover potent and structurally novel D3 ligands, which

combines pharmacophore searching58-61 and protein
structure-based searching,62-68 followed by structural
novelty screening and experimental testing (Chart 2).

Briefly, in this approach a pharmacophore model was
developed based upon the structures of known D3
ligands and used to perform a pharmacophore search
from a large 3D chemical database to identify com-
pounds (“hits”) that meet the chemical and geometrical
requirements specified in the pharmacophore model.
These “hits” were then subjected to structure-based
screening using multiple D3 receptor conformations to
identify compounds that most effectively interact with
the receptor through computational docking and scoring.
Top-ranked compounds from computational structure-
based searching were further subjected to additional
structural novelty screening in comparison to known D3
ligands. Finally, the most promising potential D3 ligands
were selected for experimental testing of their binding
affinities to the human D3 receptor.

Deriving a Pharmacophore Model for D3 Lig-
ands. Ten potent and moderately selective known D3
ligands were selected (Chart 3, compounds 1-10) for
the development of a D3 pharmacophore model. Chemi-
cal structural analysis showed that these D3 ligands
contain a common aromatic ring and an sp3 nitrogen
attached to a propyl group and to two additional sp3

carbons. The distance between the aromatic ring center
and the basic sp3 nitrogen within these compounds was
found to be on average 5.16 ( 0.16 Å through confor-
mational analysis using the QUANTA program.69 Ac-
cordingly, a pharmacophore model was proposed, as
shown in Figure 7. Of note, for the purpose of obtaining
many structurally novel pharmacophore ‘hits’, the pro-
posed pharmacophore model contains only a limited
requirements.

Performance of Pharmacophore Searching of
the NCI 3D Database. Using the pharmacophore
model shown in Figure 7, we searched the latest version
of the NCI 3D database of 250 251 “open” compounds70

with the program Chem-X.71 A total of 6727 compounds
were identified as hits, which satisfy the chemical and
geometrical requirements specified in the pharmaco-
phore model.

Structure-Based Database Searching. When dif-
ferent ligands bind to a protein, the protein may have
to adopt different conformations in order to most ef-
fectively interact with them. For this reason, we used
multiple representative conformations obtained from
our extensive MD simulation for structure-based search-
ing. These 6727 “hits” obtained from pharmacophore
searching were docked into each cluster center structure
of the four major conformational clusters obtained from
our extensive MD simulations and ranked based on the
docking score function implemented in the Cerius2

program.49

To test whether structure-based database searching
can reasonably identify known potent D3 ligands, we
added 20 known D3 ligands to the database of pharma-
cophore hits (the total number of compounds was 6747).
These known ligands satisfied requirements of the
pharmacophore model and showed potent binding af-
finities at the D3 receptor as shown in Table 3. The
radioligand used for binding affinity data of all ligands
listed in Table 3 was either [125I]iodosulpiride or [3H]-

Table 2. Interactions between R-(+)-7-OH-DPAT and D3
Based on Binding Models Predicted Using Cerius2 Ligandfit

interacting groups
(+)-7-OH-DPAT D3 receptor

distance
(Å)

type of
interaction

protonated amine Asp110 carboxyl 2.7 salt bridge
hydroxyl group Ser192 hydroxyl 3.6 hydrogen bonding
aromatic ring F346 aromatic

ring
5.2 aromatic

saturated part
of fused ring

F345 aromatic
ring

4.9 hydrophobic/steric

propyl group T369 methyl 5.4 weak hydrophobic
a Distances given are between the center of mass of heavy atom

groups indicated.
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spiperone, with the exception of the otherwise highly
potent ligand, eticlopride. Most ligands considered are
antagonists and several of them are partial agonists.
Their chemical structures cover a wide range of struc-
tural diversity (Chart 4). Since it was expected that
many of these 6727 “hits” are not active, the successful
identification of these 20 diverse and potent known D3

ligands from other 6727 compounds would provide a
validation to the computational docking and scoring
methods used as well as the modeled D3 receptor
structures. Rank orders of these 20 known D3 ligands
based upon the docking score at each of the four D3

cluster center conformers (either of the conformers
I-IV) are shown in Figure 8.

Figure 8 also shows the rank orders of these 20 known
ligands if the highest rank for a ligand is considered
among any of the four receptor conformers (thin cyan
line). Thus, if the highest rank is used for each ligand
among the docking and scoring results using all four
receptor conformers, then these 20 known compounds
are ranked within the top 30% of the database of
pharmacophore hits. Furthermore, 19 known D3 ligands
also rank in the top one-third of all the 6747 compounds
simultaneously at least at two or more receptor con-
formers (thick cyan line). The latter rank order is shown
in Table 3 for known D3 ligands and also for selected
database compounds in Tables 4 and 5. Using this rank
order, 2478 or 37% of all pharmacophore hit compounds
were found to rank in the top one-third at two or more
receptor conformers.

To further improve our chance to identify truly
structurally novel D3 ligands, the set of 2478 compounds
was compared to the known D3 ligands to determine the
structural similarity using an in-house program as
described in the Methods section. After eliminating
compounds with Tanimoto structural similarity index
of greater than 80% to any of the known D3 ligands,
the remaining 1314 compounds were then considered
as the most promising potential D3 ligands from the
original 250 251 NCI “open” compounds.

To date, we requested samples of 60 compounds (se-
lected out of the total 2478 compounds) from the Nation-
al Cancer Institute and 20 compounds were available
with sufficient quantity for testing their binding affini-
ties to the D3 receptor. The chemical structures of these
20 compounds are provided in Chart 5. The rank order
of these 20 compounds is provided in Table 4.

Testing of the Most Promising Potential D3

Ligands in the Receptor Binding Assay. Binding
affinities of the selected 20 potential D3 ligands were
tested using cell lines transfected with the D3 human
dopamine receptor.72 [3H]YM-09151-2, which has a high
affinity to the D3 receptor, was used as the radioligand
for the D3 receptor binding assay. Candidate compounds
were measured for their ability to compete with [3H]-
YM-09151-2 binding to the D3 receptor using CHO cells
transfected with human D3 (hD3) receptors. Compounds
were first screened at 10 µM. If sufficient binding was
found for a compound, its IC50 was determined and its
Ki value calculated according to the Cheng-Prusoff
equation assuming classical competitive inhibition.73

Chart 2. Scheme of the Hybrid Approach Applied in This Work

Chart 3. Chemical Structures of 10 Moderately
Selective, High-Affinity D3 Ligands Used for Developing
a Pharmacophore Model for 3D Database
Pharmacophore Search
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The results are summarized in Table 4. Out of the 20
compounds tested, compounds 27-30 have Ki values of
less than 100 nM, compounds 31-34 have Ki values
between 1 µM and 100 nM, and compounds 35-37 have
Ki values between 1 and 10 µM. Compounds 38-45 have
no appreciable binding at 10 µM. Compound 46 has no
appreciable binding at 1 µM, and this compound was
not tested at higher concentration due to its poor
solubility.

Therefore, our computational searching combining
pharmacophore-based screening followed by structure-
based screening using multiple receptor conformations
led to the identification of several classes of novel and
potent D3 ligands. In total, 11 out of 20 compounds show
significant binding affinity, 8 compounds have Ki values
less than 1 µM, and 4 compounds have Ki values than
less 100 nM in the binding assay.

Testing of Other Potential D3 Ligands with
Lower Ranking in Structure-Based Screening. To
test whether structure-based screening is indeed effec-
tive in improving our chance to identify potent D3
ligands, we obtained an additional 8 structurally novel
compounds that ranked lower than the 20 compounds
tested by selecting from the next one-third in the
ranking order of best to worst scores. We tested the
binding of these eight potential ligands to the D3
receptor under the same assay conditions. Out of these
eight compounds, two compounds (47 and 48) have Ki
values of 1.3 and 1.4 µM, respectively. The other six
compounds have no appreciable binding affinity to the
D3 receptor at 10 µM. The chemical structures of these
eight compounds are shown in Chart 6, and their Ki
values to the D3 receptor are provided in Table 5.
Therefore, these eight potential D3 ligands with lower
ranks in the structure-based screening in general have

lower affinities to the D3 receptor, and only two com-
pounds display any significant binding affinity to the
D3 receptor.

Advantages and Disadvantages of the Compu-
tational Database Searching Strategy Employed
in This Study. The stepwise approach applied in this
paper aims at overcoming some of the limitations of
current pharmacophore searching and structure-based
searching methods for the discovery of lead compounds.
Certain advantages and disadvantages are associated
with this approach, as discussed briefly below.

Although it is theoretically possible to identify the
most promising ligands from a large chemical database
using computational structure-based database searching
alone, two conditions must be met. First, the computa-
tional docking method employed must be able to predict
accurately the binding model for each compound in the
database. Second, the scoring function needs to be able
to predict reliably the binding affinity for each com-
pound based upon predicted binding models, which is
not satisfactory.74 In practice, for structure-based screen-
ing of a large chemical database (e.g., hundreds of
thousands of compounds), fast computational docking
methods must be used, which inevitably leads to much
less accurate binding mode predictions. Using pharma-
cophore searching as the first filter significantly reduces
the number of compounds for computational structure-
based screening and allows the use of computational
docking methods that are more accurate but may be
much slower.

Pharmacophore searching has been very effective
in the discovery of novel lead compounds. A pharma-
cophore model with too stringent geometrical and
chemical requirements often leads to very few poten-
tial ligands, even from a large database. On the other

Figure 7. Deriving a pharmacophore model from known D3 ligands: (a) Superposition of 10 D3 partial agonists and agonists; (b)
A pharmacophore model derived from these D3 ligands.

Table 3. Binding Affinities and Rank Order of a Set of Known D3 Ligandsa

ligand Ki (nM) ref rank (%) ligand Ki (nM) ref rank (%)

11 chlorpromazine 3.0b 80 5.5 2 R-(+)-7-OH-DPATc 2.2b 83 23.6
12 clozapine 88b 80 10.1 4 S-(-)-3-PPPc 132d 72 23.7
13 metoclopramide 27b 81 10.8 21 L-741,626 87d 88 25.1

60b

14b 2.4d 82 11.0 22 domperidone 3.5b 85 26.0
15 sulpiride 8.0b 80 12.8 23 CI-1007c 16.6d 89 26.7
16 nafadotride 0.81b 83 13.9 24 spiperone 0.25b 86 27.7
17 raclopride 3.7d 84 14.1 25 R-(+)-S14297 13.0b 86 32.5
18 (1S,2R)-AJ-76 70b 85 15.3 7 S-(-)-DS121 249d 90 33.1
19 haloperidol 2.2b 86 18.9 1 R-(+)-PD128907c 1.1d 5 33.2
20 eticlopride 0.16e 87 23.3 26 27d 91 35.9
a Given rank orders correspond to scores at two or more D3 conformers, as shown in Figure 8. For example, spiperone ranks on top

27.7% at the center conformer of D3 conformational cluster II and 27.1% at cluster III. The listed 27.7% value therefore covers the rank
order given by both scores, between 0% and 27.7%. All ligands are antagonists except for a few partial agonists as indicated.
b [125I]iodosulpiride radioligand. c Partial agonist. d [3H]spiperone. e [125I]NCQ298 radioligands.
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hand, the drawback of using only few and less restric-
tive pharmacophore requirements is that many com-
pounds in a large chemical database will satisfy the
pharmacophore model. A large percentage of these com-
pounds will be inactive. In our approach, “hits” iden-

tified from pharmacophore searching are further
screened using computational structure-based screening
by evaluating the interactions between each hit and the
receptor. Thus, many compounds which are unable to
effectively interact with the receptor are excluded or

Chart 4. 2D Chemical Structures of Known D3 Antagonists/Partial Agonists Used for Validation of Hybrid Database
Searching Strategy
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receive lower priorities in experimental testing. Fur-
thermore, potential ligands with top ranking are further
screened for their structural novelty by comparing to
known ligands. This stepwise process thus identifies
potential ligands that meet several criteria simulta-
neously: (1) all these potential ligands meet the phar-
macophore requirements specified in the pharmaco-
phore model; (2) they can effectively interact with
the receptor; and (3) they are structurally novel. This

process significantly improves our chance to discover
potent and structurally novel lead compounds by testing
only a limited number of potential ligands, as demon-
strated in our current study.

Compared to structure-based database searching
alone, a potential drawback of this stepwise screening
approach is that the bias introduced by the pharma-
cophore model is carried to the structure-based screen-
ing step. Thus, some structurally novel ligands that do
not meet the pharmacophore requirements specified in
the pharmacophore model are excluded. To minimize
this potential drawback, we used a pharmacophore
model that imposed minimal chemical and structural
constraints in our current study. Another possible
solution to overcome this drawback is to use multiple
pharmacophore models for pharmacophore searching
and combine the obtained pharmacophore hits for the
following step structure-based searching.

Summary

In this paper, we presented our computational model-
ing of the human D3 receptor structure based upon the
high-resolution X-ray structure of rhodopsin and valida-
tion of the modeled structures using experimental data.
We demonstrated that our modeled structures are
consistent with existing experimental data with respect
to the ligand-binding site of the D3 receptor.

We next presented our development and application
of a stepwise and “hybrid” computational approach to
discover novel D3 ligands. Using this approach, we were
able to discover 4 compounds with Ki values better than
100 nM and 8 compounds with Ki values better than 1
µM out of 20 compounds selected for testing in the D3
receptor binding assay. Testing of eight other com-
pounds that had lower ranks in structure-based screen-
ing only led to the identification of two moderately active
ligands with Ki values of approximately 1µM but no
potent ligands. Taken together, our results demonstrate
that the employed stepwise, hybrid computational screen-
ing approach may be more effective for discovering
potent and structurally diverse ligands from a large
chemical database than either pharmacophore-based or
structure-based database screening alone.

Figure 8. Recognition of known D3 ligands out of compounds
obtained from pharmacophore-based database searching plus
20 additional known D3 ligands. ‘Random’ recognition would
correspond to the x ) y line. Selection of known D3 ligands is
shown in the following cases: if structure-based searching is
performed using only one receptor structure (either of the
conformers I-IV), at all four receptor conformers (thin cyan
curve) and two or more receptor conformers simultaneously
(thick cyan line).

Table 4. Rank Orders of 20 Tested Database Compounds That
Rank in the Top One-Third in Two or More Receptor
Conformations Are Shown, Analogously to the Ranks Given in
Table 3a

rank at each D3 conformer

NCI
no.

I
(%)

II
(%)

III
(%)

IV
(%)

rank
(%)

Ki ( SD
(nM)b

27 143691 1.5 0.8 3.1 0.5 0.8 11.0 ( 0.6
28 131405 8.6 39.1 17.4 10.0 10.0 83.5 ( 7.3
29 170979 30.3 63.8 16.0 59.4 30.3 43.2 ( 16.7
30 309710 6.1 9.7 4.3 23.1 6.1 62.7 ( 22.4
31 24116 71.1 15.7 12.0 10.7 12.0 442 ( 62
32 147865 15.7 34.4 26.9 21.0 21.0 465 ( 83
33 147980 19.0 41.0 18.1 22.1 19.0 297 ( 90
34 167762 46.9 19.9 23.3 48.4 23.3 429 ( 42
35 402703 24.9 5.1 21.3 77.4 21.3 1381 ( 466
36 349646 2.0 10.5 10.8 1.3 2.0 2412 ( 233
37 186753 51.8 27.7 28.1 32.8 28.1 2615 ( 358
38 13636 15.5 6.8 2.5 17.4 6.8 >10000
39 22808 6.7 9.5 9.1 6.1 6.7 >10000
40 201722 4.3 5.5 2.1 21.8 4.3 >10000
41 202072 29.9 56.2 55.2 20.6 29.9 >10000
42 246981 7.0 24.0 34.0 1.3 7.0 >10000
43 298248 1.6 0.7 2.8 3.9 1.6 >10000
44 300859 37.5 24.0 12.3 38.4 24.0 >10000
45 349645 2.5 10.1 2.4 8.1 2.5 >10000
46 330803 12.6 24.1 4.4 33.0 12.6 >1000c

a Rank orders corresponding to docking/ranking at each D3
conformer (cluster I-IV centers) are also listed. Binding affinities
(Ki values) given were measured at the D3 receptor using a cell
line transfected with the human D3 receptor. b Standard deviation
for each compound was obtained in 2-3 experiments. c Due to its
pure solubility, the highest concentration tested for this compound
was 1 µM.

Table 5. Rank Orders of Eight Tested Database Compounds
That Rank in the Next One-Third (33-66%) at Two or More
Receptor Conformations Are Shown, Analogously to the Ranks
Given in Table 3a

rank at each D3 conformer

NCI
no.

I
(%)

II
(%)

III
(%)

IV
(%)

rank
(%)

Ki ( SD
(nM)b

47 14232 65.3 43.2 60.3 55.7 55.7 1258 ( 419
48 24115 68.5 46.0 41.5 73.6 46.0 1419 ( 223
49 13044 59.7 49.0 55.1 58.4 55.1 >10000
50 167769 61.1 39.7 11.9 36.8 36.8 >10000
51 170980 62.4 58.6 32.6 57.1 57.1 >10000
52 265314 73.5 37.1 11.7 46.6 37.1 >1000c

53 362648 37.1 51.3 52.3 19.9 37.1 >10000
54 647422 43.8 40.6 62.7 49.0 43.8 >10000

a Rank orders corresponding to docking/ranking at each D3
conformer (cluster I-IV centers) are also listed. Binding affinities
(Ki values) given were measured at the D3 receptor using a cell
line transfected with the human D3 receptor. b Standard deviation
for each compound was obtained in 2-3 experiments. c Due to its
pure solubility, the highest concentration tested for this compound
was 1 µM.
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Chart 5. 2D Structures of 20 Tested Compounds Ranking on the Top One-Third at Two or More D3 Receptor
Conformations Based upon the Results of Structure-Based Searching
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Methods
Computational Homology Modeling and Model Re-

finement. D3 Transmembrane Helices. The transmem-
brane region of the D3 receptor was homology modeled based
on a 2.8 Å resolution rhodopsin crystal structure.16 The
sequence alignment used has been previously described be-
tween rhodopsin and rhodopsin family GPCRs23 and shown
on Figure 1 between rhodopsin and the D1, D2, D3 subtype
dopamine receptors. The sequence identity between the D3 and
rhodopsin sequence is 28% in the transmembrane region.

There are three conserved proline residues in TM5, -6, and
-7 in rhodopsin that significantly bend the helices. These three
important prolines are conserved among rhodopsin and dop-
amine receptors. Thus, these kinks in the D3 receptor can be
accurately modeled. Excluding prolines within a few resi-
dues of helical ends, there are two additional prolines in rho-
dopsin that correspond to residues other than proline in D3:
Pro53 in TM1 and Pro291 in TM7 of the rhodopsin sequence
corresponding to Phe45 and Thr368 in D3 (Figure 1). Hence,
a normal helical conformation should be maintained in these
two positions in the D3 structure. Thus, in our modeling, weak
NOE restraints were applied during an initial MD simulation
between backbone atoms in these two positions until a normal
hydrogen-bonding pattern of R-helix was formed. No special

treatment was applied to Pro84 (TM2) in D3, which is Thr92
in rhodopsin. The lack of backbone hydrogen bonding in D3 at
this position is expected to affect the backbone structure
differently during equilibration than if residue 84 of D3

sequence were a non-proline amino acid. The local conforma-
tional sampling performed during equilibration was sufficient
to relax TM2 of the D3 structure into a helical bend of 28.5° at
Pro84. The bend angle of TM2 was maintained around this
value during the production run; the most populated confor-
mational cluster center conformer contains a TM2 bend of
27.3°, while in the final conformer (at 2.0 ns) TM2 is bent at
30.8°.

D3 Loops. The following loop regions show significant
sequence identity between D3 and rhodopsin, and therefore,
these loops were also homology modeled based on the rhodop-
sin crystal structure: C-I (33%), E-I (33%), and E-III (25%).
For the E-II loop, there is no significant sequence homology
between rhodopsin and D3; however, the C103-C181 disulfide
bridge connecting the E-II loop and TM3 greatly reduces the
number of low-energy conformations. We have attempted to
model this loop structure by generating possible structures
that satisfy the spatial requirements of the disulphide bond

Chart 6. 2D Structures of Eight Tested Compounds Ranking below the Top One-Third (within 33-66%) at Two or
More D3 Receptor Conformations
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between C103-C181 and at the same time occupy approxi-
mately the same region in the D3 model structure as in
rhodopsin.

Modeling the Environment of the D3 Receptor. A
bilayer of 200 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-
choline (POPC) lipid covered with water on the intra- and
extracellular sides was used as starting structure of the
protein’s environment.26 For all MD simulations, energy
minimizations, and structural analysis of the protein and
environment, the CHARMM program27 (version 27) was used.
The CHARMM force field75,76 was applied to all the protein
and lipid atoms except that for the POPC lipid hydrocarbon
tails united atom model was chosen. Water molecules were
based on the TIP3P water model.

The D3 receptor does not have a regular shape, and
therefore, simply inserting it into a hole created within the
membrane model would cause severe van der Waals repulsion
in certain regions while leaving voids in other regions between
the protein and the lipid. To overcome this problem, the D3

receptor model was inserted gradually into the lipid bilayer
as follows. First, a hole with an approximate diameter of 18 Å
was created by deleting lipid molecules. Next, the size of the
protein structure was scaled down by 50% and placed at the
center of this hole according to the position of the predicted
membrane boundaries obtained from the sequence analysis of
about 500 rhodopsin family GPCRs.23 The protein structure
was then gradually scaled to its original size in 5% incremental
steps of the van der Waals radii of atoms. At each step, nested
energy minimizations and short MD simulation runs (25 ps
simulation time per increment) were used, during which the
lipid molecules were allowed to adjust themselves to accom-
modate the protein structure while the protein was kept rigid.
The total accumulated simulation time over 11 cycles was 275
ps. Finally, the environment was trimmed down to a 2-3 lipid
layer thickness around the protein, which yielded a total of
76 lipid molecules and 1000-1200 waters on each face of the
lipid bilayer. The size of the system is 16210 atoms.

Structural Refinement of the D3 Receptor and Its
Environment. The system containing the D3 receptor and its
lipid-water environment was equilibrated using nested energy
minimizations followed by short molecular dynamics simula-
tion (MD) runs. Energy minimizations employed the adopted-
basis Newton Raphson method, and for MD simulations the
Leapfrog Verlet algorithm of the CHARMM program was used.
To reduce artifacts caused by a layer of lipid molecules at the
edges lacking their ‘outer’ neighbors, the stochastic boundary
method was applied if hydrocarbon tail atoms were further
than 33 Å away from the origin; the friction coefficient was
set to 200. The phosphorus atoms in the lipid headgroups were
fixed, except for lipids within 5 Å of the protein, where the
lipid headgroups were instead very weakly restrained to their
original position using harmonic restraints (force constant
between 0.8 and 8 kcal/mol/Å2). The dielectric constant was
set to 1 and the time step to 1 fs. The temperature was kept
constant at 300 K with a coupling decay time of 1.0 ps. Long-
range electrostatic forces were treated with the force switch
method in the range of 12-14 Å; van der Waals forces were
cut at 14 Å. The nonbond list was generated up to 15 Å and
updated heuristically. The frequency of checking atoms enter-
ing the Langevin region was set to 20 steps. Trajectory files
of the final production runs containing coordinates were saved
every picosecond. During equilibration in the first 250 ps of
simulation time, weak NOE restraints were applied at back-
bones of F45 and T368. These two D3 residues were aligned
with two proline residues in the rhodopsin sequence and the
restraints served to enforce backbone hydrogen-bonding char-
acteristic of the R-helix. After removing the NOE restraints,
MD simulation was performed for another 100 ps long run.
The production MD simulation run was 2.0 ns long using the
same setup as in the last 100 ps of equilibration. All computa-
tions were done using a 32 CPU origin 2000 at the National
Institute of Health (NIH).

Conformational Clustering of the D3 Receptor’s Bind-
ing Site. Conformers saved during the first 0.5 ns were

skipped, and clustering was over the last 1.5 ns MD simulation
time (or 1500 conformations). Conformational clustering was
done in two steps. In the first step TM5, TM6 bend angles
were calculated for each conformer. These values were clus-
tered using the command ‘cluster’ within the Correl facility of
the CHARMM program, which was intended for clustering
time series data. The clustering algorithm was based on a self-
organizing neural net.77,78 The following ‘cluster’ command
parameters were used: ‘angle’ to indicate that the values used
for clustering are angles, the maximum cluster radius was set
to 10. All other parameters were default values. The obtained
two clusters were further subdivided in the second step based
on side chain dihedral angles of residues listed in Table 1.b:
ø1 and in case of the bulkiest side chains ø2 also. In this step
clustering was based on 18 side chain dihedral angle value
series using the following ‘cluster’ command parameters:
‘angle’ to indicate that the values used for clustering are
angles, with the maximum cluster radius set to 30. All other
parameters were default values. The number of conformers
that belonged to each cluster obtained in the second step was
expressed as the percentage of the total number of conformers
(1500): 30.3%, 16.0%, 13.1%, 10.0%, and several further
clusters with much lower number of conformer memberships.
Each cluster is characterized by the average values of TM5,
TM6 bend angles and the 18 side chain dihedral angles used
for second-step clustering. We defined ‘cluster center conform-
ers’ as those conformations that have TM5, TM6 bend angle
and the side chain dihedral angles simultaneously closest to
the cluster averages. For each of the four cluster center
conformer, we found a particular cluster center conformer that
was closer than others to cluster averages, and therefore, this
conformation was selected as the ‘center’ conformer, although
in other cases multiple ‘centers’ may also be selected. Scripts
and short accessory programs were used to assist in various
simple tasks, for example, in pinpointing cluster center
conformations out of the structures in the MD simulation
trajectory.

Pharmacophore Model Building. A conformational search
was performed for 10 potent D3 ligands by systematic rotation
of nonring single bonds in 30° increments, followed by 1000
steps of adopted-basis Newton Raphson (ABNR) energy mini-
mization at each increment. The obtained conformers were
clustered into groups using a root-mean-square-deviation
(RMSD) value of 1.0 Å of heavy atoms, and the lowest energy
conformer was retained per cluster for each molecule. First,
the most conformationally constrained structures, followed by
conformers of the remaining compounds, were overlaid to
maximize common structural features among these ligands.
We found that at least one conformer for each compound fits
a common pharmacophore, as depicted in Figure 7. The
modeling program Quanta (versions 97 and 98)69 was used for
all computations discussed above.

Pharmacophore-Based Database Searching. The pro-
gram Chem-X with default parameters was used for all
pharmacophore searching. The protonation states of the
obtained pharmacophore ‘hits’ were adjusted to correspond to
pH7.4.

Structure-Based Database Searching and Scoring.
Structure-based database searching was performed using the
‘Ligand Fit’ module of the program Cerius2 (version 4.6).49 The
grid used for defining the protein’s binding pocket was gener-
ated based on the protein’s shape using default values except
that the radii of all atoms were set to 2.0 Å. Regions closer to
the intracellular side or within the intra- or extracellular loops
were excluded (since the binding site is believed to be in the
extracellular crevice of the protein). The CFF force field
(version 1997) was used as implemented into Cerius2 (version
4.6). Ligand docking into the binding site was performed using
the Monte Carlo method for conformational search; the number
of trials was set to 10000, and the maximum number of ligand
conformers saved to 100. Flexible docking and soft potential
interaction energy between receptor and ligand were chosen
with default penalties for atoms outside of the binding site.
The ligands were not energy minimized after docking. Cluster-
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ing of ligand conformations was done using default param-
eters. Docked ligands were scored based on Cerius2 ‘dock score’
that approximates the negative of the receptor-ligand poten-
tial interaction energy. Docking R-(+)-7-OH-DPAT was done
using Cerius2 (version 4.6) Ligand fit module with the same
specifications as for structure-based database searching, except
that the number of trials of the Monte Carlo conformational
search was increased to 0.99 × 106. Considering the top 10%
scoring binding modes; a single binding mode is predicted for
R-(+)-7-OH-DPAT.

Structural Similarity Searching. The structural diver-
sity search was done using an in-house program. Briefly, for
each compound, binary fingerprints (1024 bits) were generated
using a hashing algorithm and stored in a database. The
following equation was used to measure the 2D structural
diversity of two molecules.79

S is the Tanimoto coefficient; NA and NB are the number of
bits set in the fingerprints of molecule A and B, respectively,
NA& B is the number of bits that are set in both molecules.

Determination of Ligand Binding Affinities to the D3
Receptor. Twenty-eight compounds were measured for their
ability to compete with [3H]YM-09151-2 binding to the D3

receptor using CHO cells transfected with human D3 (hD3)
receptors. CHO cells transfected with human D3 (hD3) recep-
tors were grown to confluence in R minimum essential medium
(R MEM) containing 10% fetal calf serum, 0.05% pen-strep,
and 600 µg/mL of G418. The cells were scraped from the 100
× 20 mm plates and centrifuged at 500 × g for 5 min. The
pellet was homogenized by polytron in 50 mM Tris-HCl, pH
7.7, and centrifuged at 27000 × g for 12 min. The pellet was
resuspended in 50 mM Tris, D2 at 5 mg of protein/mL, D3 at
1 mg of protein/mL, and stored at -70 °C in 1-mL aliquots.

On the day of the experiment, CHOp-D3 cells were thawed,
resuspended in 50 mM Tris, and centrifuged at 27000 × g for
12 min. The pellet was then resuspended at 1 mg of protein/
80 mL in 50 mM Tris containing 120 mM of NaCl, 5 mM of
KCl, 1.5 mM of CaCl2, 4 mM of MgCl2, and 1 mM of EDTA,
pH7.4. Then 0.8 mL of cell homogenate (0.01 mg of protein/
well) was added to wells containing 100 µL of the test drug or
buffer and 100 µL of [3H]YM-09151-2 (0.21 mM final concen-
tration). Nonspecific binding was determined with 1 µM of
chlorpromazine. The plates were incubated at 25 °C for 60 min
before filtration. The filters were soaked in 0.1% PEI before
filtering. Bound radioactivity was counted using a scintillation
counter. Each drug was first screened at 10 µM. If more than
50% of inhibition was observed, six drug concentrations were
tested to determine its IC50 value and its Ki value was
calculated according to the Cheng-Prusoff equation assuming
classical competitive inhibition.
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Note Added after ASAP Posting. This manuscript
was released ASAP on 9/3/2003 with structures for

35-46 missing from Chart 5 and with incorrect units
in footnote c of Tables 4 and 5. The correct version was
posted on 9/15/2003.
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