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We developed a computational algorithm for evaluating the possibility of cytochrome P450-
mediated metabolic transformations that xenobiotics molecules undergo in the human body.
First, we compiled a database of known human cytochrome P-450 substrates, products, and
nonsubstrates for 38 enzyme-specific groups (total of 2200 compounds). Second, we determined
the cytochrome-mediated metabolic reactions most typical for each group and examined the
substrates and products of these reactions. To assess the probability of P450 transformations
of novel compounds, we built a nonlinear quantitative structure-metabolism relationships
(QSMR) model based on Kohonen self-organizing maps (SOM). This neural network QSMR
model incorporated a predefined set of physicochemical descriptors encoding the key molecular
properties that define the metabolic fate of individual molecules. Isozyme-specific groups of
substrate molecules were visualized, thus facilitating prediction of tissue-specific metabolism.
The developed algorithm can be used in early stages of drug discovery as an efficient tool for
the assessment of human metabolism and toxicity of novel compounds in designing discovery
libraries and in lead optimization.

Introduction

With the growing use of chemicals as therapeutic
agents, food additives, cosmetics, agricultural fertilizers,
and pest management agents, people are increasingly
exposed to exogenous compounds (xenobiotics). Both the
parent agent and the products of its metabolism in the
liver and other organs may contribute to the composite
toxic effect of an agent on the human organism. The
metabolic transformations may profoundly affect the
initial bioavailability, the desired activity, the tissue
distribution, the toxic action, and the eventual elimina-
tion of a compound. The understanding of the possible
toxicity and the metabolic fate of xenobiotics in the
human body is particularly important in drug discovery,
where such early assessment may eliminate the poten-
tially toxic candidates from further development prior
to expensive clinical trials. With the obvious importance
of the early assessment problem, there is a need for in
silico methodologies for uncovering the relations be-
tween the structure and the biological activity of novel
molecules. For in silico models to be relevant, it is vital
to understand the pathways of xenobiotics biotransfor-
mation in the body which define their activity, toxicity,
and interaction with normal body metabolism.

In an attempt to systematize the overall complexity
of the metabolism of xenobitics molecules, several
groups tried to identify the general rules of metabolic
biotransformations. The first general rules on the met-
abolic behavior of esters, O- and N-alkyl derivatives, and
aromatic fragments were established almost 30 years
ago.1 Some of these rules were extensively used in ra-

tional drug development.2 Later, with the steady ac-
cumulation of drug metabolism data, the data storage
and management systems, such as MetabolExpert3 and
META4, were built. By using computer-driven queries
across these databases, one can identify the sites on a
query molecule most prone to metabolic transforma-
tions. However, these databases contained indiscrimi-
nate data from studies on a variety of mammalian spe-
cies. Consequently, the programs using these data sets
tend to predict all the metabolic possibilities for an exo-
genous molecule, as it was placed in a theoretical “aver-
age” mammal.5 Metabolite6 is a newer database that
represents a broad collection of metabolic data with its
main strength in size (more than 25 000 compounds,
85 000 metabolic reactions), rather than in quality of
data entries.

There are several concerns to be mentioned regarding
computerized prediction of the metabolic fate of novel
compounds. First, as mentioned above, the indiscrimi-
nate pooling of metabolic data from different species
distorts substantially any attempt at generalization.5
The metabolic pathways and corresponding networks
can be very different even in close mammalian species,
so any use of “pooled” data seems to be problematic.7
Second, in vitro versus in vivo data may vary substan-
tially even for the same species. The metabolic fate of a
drug delivered to a human liver after intravenous
administration is often quite different than in in vitro
experiments using liver microsomal fractions. Third, in
the last several years, the individual enzymatic profile
(pharmacogenomics profile) became an important con-
cern in drug toxicity and metabolism. The metabolism
of the same drug may vary substantially between
individuals depending on the expression level of par-
ticular enzymes, polymorphisms in enzyme-encoding
and regulatory genes and the presence of particular
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isoenzymes in normal8 and disease states.9 Fourth, in
determining structure-metabolism relationships, one
important question is whether it is the complete mo-
lecular structure or its structural components that ac-
tually undergo metabolism. The answer is vital for
choosing the descriptors for a robust QSMR model
capable of predicting the metabolic fate of novel com-
pounds. Finally, the QSMR algorithms should be highly
effective for real-time handling of the very large virtual
and real discovery compound databases built during the
last years.

These concerns make the accurate prediction of the
metabolic outcome for a new compound a very compli-
cated task, even for an individual structural query in
one species. To facilitate the solution, we offer a mul-
tistep approach. In the first step, one should build and
analyze a broad database of species-specific metabolic
transformations of all possible metabolic functional
groups. Using this database, the specific rules should
be established to characterize the probability of trans-
formations of the key “metabophore” elements. To fur-
ther reduce the complexity of the problem, one should
consider the metabolic pathways and subsystems re-
sponsible for xenobiotics catabolism separately. For
these pathways and enzymatic families, we need to
define the enzyme-specific substrate groups for which
an effective QSMR model can be designed. Such a
multistep approach, with a comprehensive initial da-
tabase and working algorithms applied by experts,
would be an extremely useful tool for early assessment
of human metabolic transformations of lead compounds
and drug candidates at the preclinical stage of drug
discovery. The automated version of the program can
be also applied for “filtering” the large virtual compound
collections designed for initial bioscreening programs.

In this work, we assembled a comprehensive set of
over 2200 substrate-product reactions for 38 human
cytochromes. On the basis of this database, we devel-
oped a neural network computational algorithm for in
silico assessment of the probability of cytochrome P450-
mediated transformation for any novel drug-like com-
pound.

Methods

Databases. A database of about 2200 compounds repre-
senting substrates, nonsubstrates, and products of human
cytochrome P450-mediated metabolic reactions was compiled
from the experimental literature.11 The main descriptive
statistics for this database is shown in Table 1. All the
compounds were assigned to at least one enzyme-specific
group. Prior to the neural network experiments, the molecules
were filtered based on molecular weight (range 200-700) and
atom type content (only C, N, O, H, S, P, F, Cl, Br, and I were
permitted). Some specific chemical classes of compounds that
typically are not related to drug-like agents, such as polyaro-
matic compounds, long-chain linear molecules (e.g., leuko-
trienes, fatty acids) were excluded.

Descriptors. Sixty molecular descriptors describing the
important molecular properties, such as lipophilicity, charge
distribution, topological features, steric and surface param-
eters were explored. These descriptors were calculated for the
entire dataset using Cerius2,12 and ChemoSoft 13 software tools.
The SLIPPER program14 (included in ChemoSoft) was used
for logD7.4 and logSw calculations. The number of descriptors
was reduced to 26 by the omission of the low-variable and
highly correlated (R > 0.9) descriptors. To further reduce the
descriptor space, a principal component analysis was per-

formed using ChemoSoft. Eventually, seven descriptors were
selected as the most relevant and further used as input
parameters in all neural network experiments. For each
compound, the neural network scores for the back-propagated
neural networks or the map coordinates for the Kohonen
networks were calculated as the outcome descriptors.

Neural Network (NN) Modeling. For the unsupervised
learning procedure and generation of the Kohonen map, we
used an internally developed program, part of ChemoSoft soft-
ware suite.13 The training parameters were as follows: the
number of interactions for the training runs 2000; the starting
adjustment radius for the training runs 0.1; the decay factor
0.001.

The commercially available NeuroSolution 4.0 program15

was used for the supervised learning. Feed-forward nets
consisting of input neurons, one hidden layer, and two output
neurons were constructed. The final score was calculated by
subtracting the “substrates” score from the “products” score.
The back-propagated nets were trained by the momentum
learning rule as implemented in NeuroSolution. The training
was performed with over 1000 iterations.

Results

Cytochrome P450-Mediated Metabolism. Several
groups of metabolizing enzymes are involved in Phase
I processing of xenobiotics, including cytochrome P450
isozymes, hydrolases (esterases, amidases, epoxide hy-
drolases, glycosidases, glucuronidases), specific carboxyl-
ases, reductases (such as alcohol dehydrogenases and
aldo-keto reductases), and some non-CYP450-related
oxidases. Cytochrome P450 (CYP) enzyme superfamily
plays a central role in Phase I metabolism of xenobio-
tics.10 CYP enzymes represent mixed function monooxy-
genases capable of either inactivating or activating
xeno- and endobiotics molecules for further processing
by Phase II bioconjugation enzymes. The major compo-

Table 1. Descriptive Statistics for the Initial Database

CYP enzyme reactions substrates products

CYP19 19 15 20
CYP11A1 3 3 4
CYP11B1 2 2 2
CYP11B2 6 5 6
CYP17 7 6 7
CYP1A 4 3 4
CYP1A1 205 135 211
CYP1A2 350 244 346
CYP1B1 76 53 75
CYP21B 2 2 2
CYP24 5 3 4
CYP26A1 3 2 3
CYP27A1 17 11 17
CYP2A13 10 8 12
CYP2A6 122 98 130
CYP2B6 170 139 178
CYP2C 2 2 3
CYP2C18 42 38 43
CYP2C19 229 162 239
CYP2C8 137 102 150
CYP2C9 283 207 293
CYP2D6 277 217 289
CYP2E1 220 174 218
CYP2F1 5 5 5
CYP2J2 8 3 8
CYP3A4 589 423 624
CYP3A5 78 61 87
CYP3A7 23 20 25
CYP4A11 17 16 18
CYP4B1 17 13 17
CYP4F12 5 5 5
CYP4F2 9 9 10
CYP4F3 14 14 14
CYP4F8 9 6 9
CYP7A1 8 8 8
CYP7B1 4 4 4
CYP8A1 4 3 5
CYP3A43 4 3 5
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nents of Phase I enzymatic complex are a phospholipid,
a flavoprotein, a NADPH-cytochrome P450 oxidoreduc-
tase, and the hemoprotein cytochrome P450.16 CYPs are
the terminal binding proteins of monooxygenase elec-
tron transport chain, important for catalyzing the
oxidation of such endobiotics as fatty acids, steroids,
ketones, polycyclic aromatic hydrocarbons, nitrosamines,
hydrazines, and arylamines.16 CYPs have been charac-
terized as the most powerful in vivo oxidizing agents.17

The recent reviews on CYPs detail their chemistry,
regulation, membrane topology, molecular biology, and
provide the models for substrate binding sites.10 Out of
about 40 human CYP genes cloned and described,18 only
three CYP families, a half-dozen subfamilies, and fewer
than a dozen isoenzimes have been shown to play any
significant role in hepatic processing of drugs. There
may be a survival benefit associated with the use of such
selected number of CYP isoforms.19 The active CYP

enzymes have broad and overlapping substrate specific-
ity, which poses a serious challenge to prediction of
therapeutic or toxic outcomes of xenobiotic metabolism.

We analyzed the cytochrome P450 substrate/product
base and deduced the general rules for the CYP-
mediated metabolism. Table 2 summarizes all structural
fragments that undergo a metabolic transformation. We
also established a set of specific rules governing the
transformations of molecular fragments that do not
react according to the general scheme. Examples of such
exclusions are shown in Table 3.

For most of the CYP-mediated enzymatic reactions,
such as aldehyde or sulfide oxidation, the recognition
of the reaction site is relatively straightforward. How-
ever, in some aromatic molecules, several sites may be
sensitive to CYPs as several delocalized double bonds
may be oxidized. In such cases, definition of relative
sensitivity of molecular sites and the scope of P450
metabolites is not trivial and the metabolites can be
observed at positions with relatively low sensitivity.
Sometimes, the quantum mechanics calculations (such
as evaluation of highest occupied molecular orbital
(HOMO), the lowest unoccupied molecular orbital
(LUMO), potential of ionization, etc.) can help to solve
the problem of correct choice. Our data indicate that
only a thorough estimation of a large number of input
parameters, including steric, electronic and quantum,
as well as an application of efficient substructure
similarity evaluation tools leads to the effective solution.

For early evaluation of the metabolic fate of a
compound, the aromatic hydroxylation itself is usually
more important than the exact positioning of the hy-
droxyl group. The most typical consequence of hydroxyl-
ation is further glucuronidation of the hydroxyl group
and rapid elimination of the metabolized compound
from the organism. The same is true, in general, for
aliphatic compounds.

To build a general model for metabolic fate of novel
compounds, it is not sufficient to know the structural
fragments metabolized by cytochromes and the empiri-
cal rules governing the particular metabolic reactions.

Table 2. General Rules for Cytochrome P450-Mediated
Metabolic Transformations

Table 3. Examples of Specific Rules Governing Some
Metabolic Transformations

Modeling of P450-Mediated Drug Metabolism Journal of Medicinal Chemistry, 2003, Vol. 46, No. 17 3633



Such rules relate to the local molecular fragments, but
do not take into account the properties of the whole
molecule. Thus, prediction of even the most typical
metabolic conversions, such as sulfur (II) oxidation or
N-dealkylation, usually requires the whole-molecule
approach.

Several predictive models for the metabolism of
organic compounds by particular cytochromes have been
reported, those based on pharmacophores, protein se-
quences,20 and the assessment of reaction energies.21 In
this work, we designed a more general model for the
prediction of human cytochrome P450-mediated drug
metabolism. With our model, a substrate/nonsubstrate
potential can be assessed for each compound based on
its 2D molecular representation.

Unsupervised Kohonen Learning Approach. Neu-
ral network (NN) classification methodology has been
used for multiple applications in rational drug design.22

For instance, the ligands for certain protein classes, like
GPCRs, were accurately differentiated based on some
specific physicochemical features.23 In most of the
reported applications of NN in drug discovery, a super-
vised learning strategy was used. The alternative
unsupervised learning method also becomes popular for
comparative analysis and visualization of data sets.24

Recently, a study on comparison of a benzodiazepine and
dopamine data sets was performed with an implemen-
tation of a Kohonen network.25 In another study, a
dataset of 31 steroids binding to the corticosteroid
binding globulin (CBG) receptor was modeled.26 Ko-
honen self-organizing maps were used for distinguishing
between drugs and nondrugs with a set of descriptors
derived from semiempirical molecular orbital calcula-
tions.27 It was emphasized that Kohonen map-based
classification does not depend on the definition of a
nondrug data set, and, therefore, the virtual screening
of drug candidates can be conducted more objectively.
This property of unsupervised Kohonen learning strat-
egy is particularly important in cases when it is hard
to define correctly the negative training set.

The choice between the supervised or the unsuper-
vised approach depends on the problem and the avail-
able data. In both cases, the objects with known answers
are needed. In supervised learning, the answers are
directly used to influence the learning system; in unsup-
ervised learning, the answers are needed to identify and
label the output neurons. Whereas with supervised
learning, the system adapts itself to a selected repre-
sentation of classes, an unsupervised neural network
method is more flexible due to its many possible outputs.
Using the supervised learning, the multivariate objects
should be split into three sets (the training, the control,
and the test set). In unsupervised learning, the control
set is not required, since the learning continues until
the network stabilization. The number of available
objects is critical, since the supervised learning proce-
dure may take hundreds of thousands of epochs, and,
for each object, the corrections of thousands of weights
might be required even for medium-sized net. In unsu-
pervised learning, a time for training with the same
number of objects is much shorter since the single layer
neural networks have much fewer epochs and weights.

In this work, we used the unsupervised learning
methodology for in silico evaluation of a compound

ability to be a cytochrome substrate. In this application,
the available data do not describe all the possibilities,
as only one distinct category of molecules can be
unambiguously identified, namely, the cytochrome P450
substrates. The available data for nonsubstrates are
related to specific isozymes, and a nonsubstrate for a
particular isozyme is often described as a well-metabo-
lized substrate of another isozyme. The products of
individual metabolic reactions cannot be used as sepa-
rate compound categories because these reactions often
proceed in consecutive steps and the products of meta-
bolic conversions can be metabolized further. This
limitation excludes multilayer neural networks with a
supervised learning procedure as an error back-propa-
gation learning algorithm, and requires an unsupervised
approach. Cytochrome substrates are extremely diverse
structurally and, therefore, several different clusters are
likely to appear. Therefore, a neural network should be
capable of classifying the objects into none, one, or more
classes, and not only into one out of several predefined
existing classes. For classification of a large number of
objects, the unsupervised strategy seems to be more
efficient than the supervised one. We have chosen
Kohonen neural network as the one with the most
appropriate architecture and learning strategy.

Datasets. To effectively predict the metabolic pro-
cessing of xenobiotics by CYP enzymes and to develop
an effective QSMR model, one needs to compile the
representative group of substrates of these isozymes.
For the purposes of comparative analysis, it is also very
desirable to consider the opposite category of compounds
that manifests the properties of nonsubstrates.

Two overlapping data sets were distinguished within
the database, filtered as described in Methods, and used
in the neural network experiments. The first data set
consisted of 485 compounds described as substrates for
the cytochromes listed in Table 1. The second data set
comprised 523 products of the cytochrome-mediated
biotransformations for which no data on their further
cytochrome-mediated metabolism were found. It was
assumed that this dataset models the properties of the
nonsubstrates to the whole cytochrome P450 family.
This assumption probably results in a certain number
of false negatives among the classified compounds.
Because of incompleteness of the data, this selection
cannot be considered as true negative training set with
respect to the cytochrome substrates. In this work, we
used it for illustrative purposes only. The complete 1008-
compound database was used in further modeling
experiments.

Molecular Descriptors. The principal component
(PC) analysis28 for 26 descriptors was performed for the
1008-compound dataset (Table 4). About 90% of the
variance can be explained by the first 11 PCs. We
conducted two tests to evaluate the significance of PCs
for our set of descriptors and data, based on the plot of
eigenvalues of the PCs against the number of the PC
(not shown). The first one, Kaiser-Guttmann criterion,29

establishes all PCs with eigenvalues larger than one as
significant. In our experiment, the first six PCs ap-
peared to be significant in this test. The second test,
Scree test,30 proposes that the eigenvalue plots should
have a kink between the significant and the less
significant PCs. Our plot has a kink between PCs six
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and seven. As the latter agrees with the Kaiser-
Guttmann criterion, we conclude that the space de-
scribed by our 26 descriptors for the studied database
is 6-7-dimensional.

The coefficients for these six PCs are shown in Table
5. The first PC, which explains 25% of the total variance,
consists of size descriptors such as the molecular
volume, partial negative and solvent accessible molec-
ular surface area. The second PC, which accounts for
about 24% of the total variance, consists mainly of the
total polar surface area and the number of H-bond ac-
ceptors. The third PC, explaining about 13% of the total

variance, is dominated by molecular lipophilicity pa-
rameters. PC4 (6% of the total variance) can be at-
tributed to molecular polarity as it includes the contri-
butions from molecular lipophilicity and the surface
charge distribution parameters. PC5 (5% of the total
variance) is dominated by the factors describing positive
and negative surface charges. The remaining PC6,
accounting for 4% of the variance, has strong contribu-
tions from the quantum descriptors that can contribute
to the reactivity of the active sites of a molecule.

To reduce the calculation time and to make the
parameters intuitively more understandable, it is ap-
propriate to use particular descriptors instead of the
principal components. Therefore, for all neural network
experiments performed in this work, we used seven
molecular descriptors italicized in Table 5. We selected
the descriptors, which maximally contribute to the first
six PCs, using the contribution coefficients and the
descriptor loadings plot (not shown). An exception was
made for the descriptor “molecular weight”, included
into the final descriptor set instead of Vm. The former
is a classical molecular property correlating well with
the molecular volume, and the contributions of these
coefficients are comparable. The chosen descriptors are
readily computable and, in combination, provide a
reasonable basis for assessment of the cytochrome P450
substrate potential. In terms of relative importance, the
physical properties of descriptors in descending order
are as follows: molecular surface area and volume,
H-bonding potential, surface charge properties contrib-
uting to all PCs, molecular lipophilicity and reactivity.

Kohonen Neural Networks. We used a Kohonen
net with a 2D organization of the network nodes
(neurons). To prevent the border effects, the neurons
were organized toroidally, so that every neuron is

Table 4. Descriptive Statistics for the Principal
Component Analysis

p.c. eigenvalue variance accum variance

1 6.4663 24.87 24.87
2 6.1199 23.54 48.41
3 3.3335 12.82 61.23
4 1.6702 6.42 67.65
5 1.3071 5.03 72.68
6 1.0821 4.16 76.84
7 0.8805 3.39 80.23
8 0.8521 3.28 83.51
9 0.7041 2.71 86.21

10 0.5758 2.21 88.43
11 0.5531 2.13 90.56
12 0.4565 1.76 92.31
13 0.4430 1.7 94.02
14 0.3874 1.49 95.51
15 0.3147 1.21 96.72
16 0.2293 0.88 97.6
17 0.1857 0.71 98.31
18 0.1644 0.63 98.94
19 0.1160 0.45 99.39
20 0.0674 0.26 99.65
21 0.0462 0.18 99.83
22 0.0281 0.11 99.94
23 0.0089 0.03 99.97
24 0.0056 0.02 99.99
25 0.0023 0.01 100
26 0.0000 0 100

Table 5. Six Most Significant PCs for 26 Descriptors of the 1008-Compound Databasea,b

descriptor definition PC1 PC2 PC3 PC4 PC5 PC6

logD7.4 log of 1-octanol/water
partition coeff. at pH 7.4

-0.1375 0.0155 -0.4002 0.2971 -0.1163 0.0363

logSw 7.4 log of water solubility at pH 7.4 0.0861 0.0373 0.3948 -0.2077 0.0821 -0.0495
FA fractional absorption 0.0661 0.1910 -0.2389 0.2343 0.1160 -0.1247
DipM dipole moment -0.0527 -0.1661 -0.0630 0.2832 0.1016 -0.4786
HOMO highest occupied molecular orbital -0.0129 -0.0049 -0.0518 -0.2076 -0.4556 -0.4537
LUMO lowest unoccupied molecular orbital -0.0774 0.0932 0.1271 0.2430 -0.0022 0.4967
Jurs-PPSA-1 partial negative surface area -0.3762 -0.0529 0.0758 0.0618 -0.0254 -0.0088
Jurs-PNSA-1 partial negative surface area 0.0816 -0.3178 -0.2483 -0.1671 -0.0401 0.0765
Jurs-PNSA-3 atomic charge weighted negative

surface area
-0.0759 0.3738 0.0643 0.0038 0.0485 -0.1140

Jurs-FNSA-1 partial negative surface area
divided by TPSA

0.2875 -0.1860 -0.2299 -0.1087 -0.0139 0.0809

Jurs-FPSA-3 atomic charge weighted positive
surface area divided by TPSA

-0.1357 -0.0509 0.3840 0.3612 -0.1331 -0.1566

Jurs-FNSA-3 atomic charge weighted negative
surface area divided by TPSA

-0.2595 0.2722 0.0631 -0.0366 0.0255 -0.1197

Jurs-RPCG relative positive charge 0.2656 -0.0177 -0.0544 0.1042 0.1913 -0.1786
Jurs-RNCG relative negative charge 0.2453 0.1433 -0.0280 0.1395 -0.3032 -0.0550
Jurs-RPCS relative positive charge surface area 0.1083 0.0837 0.0896 0.1607 -0.5933 0.0634
Jurs-RNCS relative negative charge surface area 0.1838 0.0418 -0.1300 -0.0698 -0.2670 0.3331
Jurs-TPSA total polar surface area 0.0399 -0.3772 0.0869 0.1977 -0.0248 -0.0693
Jurs-TASA total sovent-accessible surface area -0.3448 0.0854 -0.1195 -0.1807 -0.0239 0.0842
Jurs-RPSA relative positive surface area 0.2165 -0.2854 0.0969 0.2252 -0.0060 -0.0622
Vm molecular volume -0.3245 -0.2062 -0.0549 0.0000 -0.0522 -0.0025
logP log of 1-octanol/water partition coeff -0.1701 -0.0196 -0.3482 0.3129 -0.0761 0.0857
Balaban Balaban index 0.2017 0.0661 0.0486 0.3110 0.2841 0.0702
MW molecular weight -0.2519 -0.2805 -0.0994 -0.1035 -0.0885 -0.0372
B-rot no. of rotatable bonds -0.2363 -0.1974 0.1120 0.1609 0.0755 0.1820
HBA no. of H-bond acceptors 0.0096 -0.3447 0.0532 -0.1878 0.1222 0.0379
HBD no. of H-bond donors 0.0140 -0.1840 0.3414 0.0772 -0.2335 0.1447
eigenvalue 6.466 6.120 3.334 1.670 1.307 1.082
% variance explained 24.87 23.54 12.82 6.42 5.03 4.16
total % variance explained 24.87 48.41 61.23 67.65 72.68 76.84

a Coefficients larger than 0.30 are shown in boldface. b Descriptors, used in furher neural network experiments, are italicized.
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equivalent to the others. For all Kohonen net calcula-
tions reported here, we used the internally developed
program, part of ChemoSoft software environment.13 A
10 × 10 node architecture was chosen to provide the
studied molecules (485 CYP substrates) with sufficient
distribution space. The nodes were arranged in a
rectangular grid. The “bubble” function was used as the
radial adjustment function.

The smoothed projection of the combined data set of
cytochrome substrates onto the 10 × 10 Kohonen map
was conducted using the seven descriptors selected by
principal component analysis (Figure 1a). The cyto-
chrome substrates are distributed throughout the map
as the irregularly shaped islands, with a clearly defined
trend toward the right side of the map. The area
occupied by the cytochrome substrates is relatively
large, which reflects the broad substrate specificity of
the studied set of cytochromes. We suggest that the
physicochemical properties of a molecule falling into the
positive regions of the Kohonen map are consistent with
the molecule’s ability to be a cytochrome substrate.

For the comparison, we also processed the additional
data set of 523 products of cytochrome-mediated biotrans-
formations, on the same Kohonen map (Figure 1b). This
data set occupies distinct areas on the map substantially
different from the regions of the substrates localization.
The “product” compound category is unified by a com-
bination of physicochemical properties distinctly differ-
ent from the cytochrome substrates. Therefore, the sites
of “products” localization on the Kohonen map can be
used for the enhancement of prediction quality.

On the basis of these distributions, we built the
smoothed contour plots of the occurrences of these two
compound categories within the Kohonen map (Figure
2). The area of “substrates” is marked in green, the area
of “products” is in blue, and the low-populated area is
in brown. The contours correspond to at least 1.5% of
compounds per node, belonging to the particular cat-
egory. Therefore, these areas have a higher concentra-
tion of compounds compared to random distribution.
Some overlap (5% of the total surface occupied by both

substrates and products) is observed between these two
distributions, which can be explained by the incom-
pleteness of data for the set of “products”. We suggest
that a fraction of compounds assigned to the category
of “products” from the overlapping regions, indeed,
represents the cytochrome substrates. For this reason,
the overlapping areas were assigned to “substrates”.

The model correctly classified 76.7% of substrates and
62.7% of products, as defined by their localization in the
corresponding areas of the Kohonen map (Table 6). A
certain number of compounds (12.6 and 22.4% for
substrates and products, correspondingly) falls into the
area for which no specific assignment could be made.
Additional criteria are needed for assessing the cyto-
chrome substrate potential for these compounds. The
observed limited classification power of the model can
be explained by several factors. First, the cytochrome
substrates are widely diverse that leads to high vari-
ability of molecular properties and high heterogeneity
of the input data. More statistical data are usually
required for accurate prediction in such case. Second,

Figure 1. (a) 10 × 10 Kohonen network trained with seven selected descriptors for cytochrome substrates (485 compounds). (b)
Final cytochrome reaction products (523 compounds) processed within the same map. The data have been smoothed.

Figure 2. Smoothed contour plots of the occurrences of
substrates and final products within the Kohonen map. The
area of substrates is depicted in green, the area of products is
in blue, and the low-populated area is in brown. The contours
correspond to at least 1.5% of compounds, from a particular
category, per node.
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the substrates and products for all the studied CYP
enzymes were considered as a group, without taking
into account the isozyme-specific differences in sub-
strate’s properties. Separation of substrates/nonsub-
strates into the groups according to particular CYP
isozymes should enhance the classification power. Third,
some compounds may be misclassified because of the
incompleteness of the reliable data for the “products”
and lack of comparative quantitative data on CYP-
mediated metabolic reactions.

Although the general classification power of our model
is moderate, it reasonably descriminates between

CYP450 substrates and nonsubstrates when the studied
compounds fall into meaningful regions of the map. The
enhancement factors for the areas of substrates and
nonsubstrates are equal to 7.17 and 4.21, correspond-
ingly. The enhancement factor is a ratio between the
fractions of correctly and incorrectly classified com-
pounds within the corresponding areas on the map.
Effectively, it shows how many folds the number of
CYP450 substrates or nonsubstrates found in the cor-
responding areas on the map exceeds the random
distribution expectation. We believe that the developed
algorithm is useful in assessment of compound’s ability
to be a cytochrome P450 substrate.

Distribution of the Descriptor Values. On Figure
3, we showed the contour plot of the occurrence of
different CYP substrates and the distribution of four
selected descriptor values within the Kohonen map. The
distributions of the number of H-bond donors and the
total polar surface area values (Figure 3a,b) are similar

Figure 3. Gradient Kohonen maps of the values for four descriptors used for neural network generation: (a) HBD, (b) Jurs
TPSA, (c) logD74, and (d) Jurs PPSA-1. The red contour corresponds to the contour plot of cytochrome substrates given in Figure
2.

Table 6. Classification Quality for the Kohonen Neural
Network Algorithm

predicted
substrates

predicted
products

unassigned
area

total
map

substrates 363 (76.7%) 52 (10.7%) 70 (12.6%) 485 (100%)
products 78 (14.9%) 328 (62.7%) 117 (22.4%) 523 (100%)
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to that of the cytochrome substrates. The distribution
of substrates correlates well with logD7.4 values: both
distributions display a positive trend toward the upper
and the lower parts of the map (Figure 3c). These
correlations reflect an important pattern observed for
the cytochrome substrates: the reduction of compound’s
lipophilicity positively correlates with the decreased
probability of its CYP metabolism, as CYPs’ binding
sites are lipophilic. The deviations from this rule may
be related to the other molecular properties affecting
metabolism, such as the nonspecific protein binding. For
instance, the level of CYP metabolism prediction is poor
when plasma protein binding is incorporated into clear-
ance extrapolations, particularly for drugs with high
plasma protein binding.31 A study that specifically
examined this phenomenon, showed different binding
characteristics for basic and acidic drugs.32 Both the
serum-free fraction and the free microsomal fraction
contained a relatively high fraction of the basic drugs
propranolol and imipramine: 12 and 6% for serum-free
and 38 and 16% for microsomes of a total drug content
in the body, respectively. In contrast, the acidic drug
warfarin showed a much lower concentration of the
serum-free fraction (0.8%), but high microsomal binding
(free fraction of 73%). Probably, this aspect can partly
explain a relative significance of another molecular
parameter, Jurs PPSA-1, i.e., the sum of solvent-
accessible surface areas of all positively charged atoms
(Figure 3d), describing what part of the molecule is
positively charged.

KohonenMapsforIndividualCYP-specificGroups
of Substrates. To evaluate the partitioning within the
combined substrate dataset, we selected the seven
largest enzyme-specific substrate groups. These CYPs
(with the exception of CYP1A1) are responsible for the
transformation of >95% of metabolized drugs.33 The
number of reactions for each CYP type from the data-
base is shown in Table 7. All these cytochromes possess
the broad and overlapping substrate specificity. The
prevailing types of metabolic conversions are the aro-
matic and aliphatic hydroxylation and N- and O-
dealkylation. The distribution of each group within the
Kohonen map is shown in Figure 4. The substrates for

some cytochromes, such as CYP2C9 and CYP2E1, are
distributed widely within the map, which indicates the
high substrate specificity for these particular isozymes.
On the other hand, the substrates for the remaining
isozymes are typically mapped in different distinct
areas. This is particularly evident for CYP2D6, CYP2C19,
and CYP1A1 substrates, with 2-3 distinct sites of
localization different from the areas occupied by other
substrate groups. These differences can be explained by
the fact that the binding sites of CYP enzymes are not
conservative, with binding site architecture and amino
acid composition varying greatly for each isozyme.34

Therefore, different micro environmental conditions
define the possibility of specific enzyme-substrate
interactions. Importantly, despite a significant diversity
in each enzyme-specific group, the number of distinct
clusters is relatively low. Probably, it indicates that the
substrates can bind to the active sites of CYP enzymes
only if they fit a rather narrow range of variability of
several molecular properties.

The combined contour plot with localization of par-
ticular isozyme-specific substrate groups is shown in
Figure 4h. Using these fingerprints, one can address the
cytochrome-mediated metabolism in different tissues,
most importantly in liver, muscles and lungs. For
example, CYP1A1, largely undetectable in uninduced
human liver, is found in lungs and placentas of cigarette
smokers.16 CYP2A6, CYP2B7, CYP2F1, and 4B1 have
been identified in the human lung.35 CYP2C9, CYP2D6,
CYP2E1, and CYP3A4 are expressed in the liver and
intestine, and CYP2D6 in liver and kidney.36 A combi-
nation of such tissue-specific models with the knowledge
of tissue distribution of organic compounds (literature
data is available in our data set) is important for early
evaluation of pharmacokinetic parameters.

Comparison of Supervised and Unsupervised
Learning Approaches. Our observations indicate that
the difference between human cytochrome substrates
and the products of cytochrome-mediated reactions can
be described by a combination of specific physicochem-
ical features. Correspondingly, these categories of com-
pounds have distinctly different localizations on the
Kohonen map. We chose an unsupervised learning
method because we cannot consider the subset of 523
CYP “products” as a true negative training set with
respect to the “substrates”. As a result, only the cyto-
chrome P450 “substrates” can be unambiguously identi-
fied. However, we believe it was useful to evaluate the
alternative classification algorithm, the supervised learn-
ing, for its ability to discriminate between these com-
pound categories using the same set of molecular
descriptors. Such comparison is particularly interesting
as the back-propagation method was applied in almost
90% of all publications on neural networks in chemistry.

The NeuroSolution 4.0 program15 was used for gen-
eration of the neural networks. We constructed feed-
forward nets consisting of seven input neurons, one
hidden layer, and two output neurons (italicized de-
scriptors in Table 5). The networks were trained with
the molecular descriptors as input values and the scores
as output values. The back-propagated nets were trained
following the momentum learning rule as implemented
in NeuroSolution 4.0 over 1000 iterations. All scores
were scaled between 0 and 1. The complete training set

Table 7. Type and Number of Metabolic Reactions Catalyzed
by Seven Selected Cytochromes
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of 1008 compounds (substrates and products) was
randomized and subdivided into three categories: (1)
the training set (60% of the total number of compounds),
(2) the cross-validation set (20%), and (3) the test set
(20%). The cross-validation set was used to avoid
overtraining while building the models. Control sets are
essential for supervised learning, but are not required
for unsupervised learning as in the latter case learning
continues until the network stabilization. We conducted
three independent training-testing experiments with the
seven-descriptor set. The discriminative power of the

trained network was moderate, as it demonstrated by
the distribution of the substrates and products of CYP-
mediated reactions (Figure 5). The classification quality
was approximately the same in each of these three
independent cycles: on average, 60% of CYP substrates
and 65% of CYP reaction products were correctly
classified in the corresponding test sets (Table 8). We
assigned the score value 0.5 as a reasonable threshold
(Figure 5).

We conclude that the unsupervised learning proce-
dure provides with more accurate discrimination be-

Figure 4. (a-g) Distributions of seven large isozyme-specific substrate groups within the Kohonen map. (h) The combined contour
map of the occurrences of substrates within the Kohonen map. The contours restrict the areas that contain at least 70% of
compounds belonging to each isozyme-specific group.
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tween the studied compound categories than the super-
vised learning (see Figures 1 and 2 and Table 6). The
moderate level of discrimination can be explained by the
extreme diversity of cytochrome substrates and prod-
ucts. Such diversity resulted in several distinct clusters
in the investigated property space corresponding to
separate islands on the Kohonen map. The neural
network classified objects into more than two classes,
and not only into one out of several predefined ones.
Overall, the unsupervised strategy was more efficient
than the supervised method for solving the CYP-
mediated metabolism problem.

Discussion

Early Consideration of Cytochrome-Mediated
Metabolism in Drug Discovery. Currently, drug
metabolism and toxicity in the human body is primarily
a subject of clinical trials. Its outcome can be extrapo-
lated based on preclinical experiments, both in vitro
(hepatocytes, organ slices, etc.) and in vivo (several
animal models). The acute human toxicity is predicted
fairly well; chronic toxicity is reasonable on average, and
nothing can be done for idiosyncratic toxicity. We believe
that experiment-based in silico models allow us to
consider human metabolism and toxicity at earlier
stages of drug discovery. The most important applica-
tion is at the level of advanced drug leads. Typically, a
drug development program has several such leads with
similar potency and selectivity but unknown human
toxicity, and only one drug candidate is chosen for
expensive clinical studies. The expert use of metabolic
models could help to eliminate the ones in which
metabolites are likely to appear toxic to humans.

Moreover, our algorithm is applicable at the level of
synthesis SAR hit-to-lead libraries. The compounds with
the highest risk of formation of toxic intermediates can
be excluded from synthesis, for example, by choosing
“metabolism-friendly” building blocks. Prediction of
metabolism can be useful for retro-metabolic drug
design, including chemical delivery systems and soft
drug approaches.2 As liver metabolism is the predomi-
nant drug clearance mechanism, its early consideration
may help in establishing the therapeutic dose of a novel
agent. It is also useful to select metabolically “stable”
compounds within a chemical series in order to incor-
porate stability into the candidate selection.37 Finally,
prediction of human metabolism can open new op-
portunities of evaluating synthetic combinatorial librar-
ies for bioscreening.38

To summarize, reliable computational tools for early
consideration of metabolic transformations of drug-like
compounds are seriously needed. In this work, we
developed a computational algorithm capable of recog-
nizing substrates to human cytochromes P450. This
algorithm allows early in silico evaluation of many
metabolism-related effects, especially those associated
with pharmacokinetics and toxicology.

Validation of CYP Metabolism Prediction. To
validate the effectiveness of the developed model for
prediction of metabolic transformation of drugs, we
analyzed three different series of cytochrome-mediated
reactions from our database (Scheme 1). These com-
pounds were not used in the stage of building the
Kohonen map, and, therefore, could be used as an
independent validation set. Each compound was as-
signed to “substrates” or “products” within the reaction
schemes; the descriptors were calculated for each com-
pound and plotted on the Kohonen map used in all
described experiments (Figure 6). The model correctly
classified all the compounds with substrate potential,
and most of all final products with no further metabolic
degradation. Two final products were misclassified (11
and 13), but their localization in close proximity with
the area of products allows us to classify them as likely
final products.

We consider our model as a step in the development
of a comprehensive algorithm for the assessment of all
possible cytochrome-mediated and Phase II metabolic
transformations that any “foreign” compound can un-
dergo in the human body. For such algorithms to be
relevant, additional groundwork is needed. First, a
complete set of all possible metabolites for both Phase
I and Phase II should be compiled. MetaDrug11 devel-
oped by GeneGo, Inc. has the most complete dataset
available today, with 12 000 “natural” human metabo-
lites, 4000 xenobiotics metabolites. Second, one needs
to establish and store in logically linked dictionaries a
complete set of rules governing metabolic reactions
based on the dataset (work in progress at GenGo). It is
important to develop reliable criteria for metabolic
“termination”, i.e., to identify that which cannot be
further metabolized. This is a nontrivial problem as
many of Phase II xenobiotics metabolites become the
substrates of normal metabolic reactions (over 8000
human reactions in MetaCore11, a commercial product
available from GeneGo, www.genego.com). The algo-
rithm recognizes and applies these rules and then

Figure 5. Compound distributions on the scale of calculated
neural network scores for three independent test sets.

Table 8. Fraction of Correctly Classified Compounds Using
Supervised Neural Network Approach

randomization
compound
category

training
set (60%)

cross-validation
set (20%)

test set
(20%)

rand 1 substrates 67.4 64.6 62.4
products 68.4 66.3 63.5

rand 2 substrates 57.4 50.5 57.3
products 73.4 67.3 65.2

rand 3 substrates 60.3 60 60
products 70.4 78 65.7

average substrates 61.7 58.4 59.9
products 70.8 70.5 64.8
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displays the potential metabolites of a xenobiotic. To
assess the possibility of transformations for which no
unambiguous rule-based prediction can be made, the
nonlinear quantitative structure-metabolism relation-
ships based on Kohonen self-organizing maps should be
implemented. The probability of the transformation is
defined by the position of a compound on the map. The
final set of predicted metabolites is generated from the
corresponding substrates localized within the positive
areas on the map. Third, the established rules should
be applied in the framework of a special computational
platform able to combine all parts of the system into
one mechanism. This platform should integrate the
chemical database management program, the algorithm
for generation of potential metabolite structures from
the queried compounds, the programs for descriptor
calculation and Kohonen network testing. Currently, we
are working on a module for CYP450 metabolism

prediction based on the CDL proprietary chemo infor-
matics tool, ChemoSoft.

Isozyme-Specific Substrate Distribution. It is
known that the CYT P450s responsible for the metabo-
lism of most drugs has broad and overlapping substrate
specificity.33 This is well in line with our data on
individual distributions of seven large isozyme-specific
groups of substrates on the Kohonen map (Figure 4).
At the same time, the distributions of several particular
groups of substrates are substantially different. To
explain this observation, we should emphasize that,
unlike most enzyme families, the CYP superfamily does
not have any highly conserved catalytic motif.34 While
CYPs do share a common heme unit for the delivery of
the active oxygen atom to substrates, the substrate
binding site per se is in one of the most variable regions
throughout the family. This variability manifests at the
levels of the gene sequences, the amino acid composition

Scheme 1. Metabolic reactions used for evaluation of the developed modela

a Positioning of substrates and products of these reactions on the Kohonen map is shown in Figure 6.
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and in the three-dimensional architecture of the binding
sites. Presumably, such variability is necessary for the
accommodation of such chemically different substrates.

Identification of the isozyme-specific areas on the
Kohonen map is important for assessing the tissue-
specificity of drug metabolism. Using the Kohonen maps
for individual isozyme-specific groups of substrates, one
can make a prognosis about cytochrome-mediated me-
tabolism in different tissues. This tool could be particu-
larly useful in combination with special algorithms
capable of predicting the distribution of compounds
within specific tissues.

Conclusions
In this work, we developed a neural network model

for early evaluation of human cytochrome P450-medi-
ated metabolism of drug-like compounds. The model is
based on an unsupervised Kohonen learning approach
and a preselected set of molecular descriptors. We have
chosen the unsupervised learning method over the more
popular supervised techniques due to the nature of CYP
P450 metabolism as application and particular features
of the available data set. Namely, these are (i) the lack
of reliable data on CYP P450 nonsubstrates, and (ii) the
extreme diversity of cytochrome substrates. The direct
comparison of the efficiency of substrate/nonsubstrate
discrimination conducted with unsupervised and super-
vised learning strategies, demonstrates the superiority
of the former approach. The developed neural network
model represents an effective tool for classification and
visualization of drug-like compounds based on their
ability to be cytochrome P450 substrates.

The model allows for the development of an auto-
mated computational algorithm for early assessment of
possible cytochrome-mediated metabolic transforma-
tions that any compound can undergo in the human
body. Using this algorithm, the position of a compound
on the Kohonen map will determine the probability of
its cytochrome-mediated metabolic transformation even
in cases when no unambiguous rule-based prediction
can be made.

Another useful extension of the proposed methodolo-
gyconsists of an early assessment of tissue-specificity

of cytochrome-mediated metabolism. This is based on
the map of tissue-specific fingerprints defining the
localization of potential isozyme-specific substrate groups
for the seven most significant cytochromes.
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