Design and Synthesis of Poly ADP-ribose Polymerase-1 Inhibitors. 2. Biological Evaluation of Aza-5[H]-phenanthridin-6-ones as Potent, Aqueous-Soluble Compounds for the Treatment of Ischemic Injuries

Dana Ferraris,* Yao-Sen Ko, Thomas Pahutski, Rica Pargas Ficco, Larisa Serdyuk, Christina Alemu, Chadwick Bradford, Tiffany Chiou, Randall Hoover, Shirley Huang, Susan Lautar, Shi Liang, Qian Lin, May X.-C Lu, Maria Mooney, Lisa Morgan, Yongzhen Qian, Scott Tran, Lawrence R. Williams, Qi Yi Wu, J ie Zhang, Yinong Zou, and Vincent Kalish

Guilford Pharmaceuticals Inc., 6611 Tributary Street, Baltimore, Maryland 21224
Received March 5, 2003

Abstract

A series of aza-5[H]-phenanthridin-6-ones were synthesized and evaluated as inhibitors of poly ADP-ribose polymerase-1 (PARP-1). Inhibitory potency of the unsubstituted aza-5[H]-phenan-thridin-6-ones (i.e., benzonaphthyridones) was dependent on the position of the nitrogen atom within the core structure. The A ring nitrogen analogues ($7-, 8-$, and 10 -aza- $5[\mathrm{H}]$-phenanthridin6 -ones) were an order of magnitude less potent than C ring nitrogen analogues (1-, 2-, 3-, and 4-aza-5[H]-phenanthridin-6-ones). Preliminary stroke results from 1- and 2-aza-5[H]-phenan-thridin-6-one prompted structure-activity relationships to be established for several 2 - and 3-substituted 1-aza-5[H]-phenanthridin-6-ones. The 2-substituted 1-aza-5[H]-phenanthridin6 -ones were designed to improve the solubility and pharmacokinetic profiles for this series of PARP-1 inhibitors. M ost importantly, three compounds from this series demonstrated statistically significant protective effects in rat models of stroke and heart ischemia.

Introduction

Poly ADP-ribose polymerase-1 (PARP-1, EC 2.4.2.30) is an abundant nuclear enzyme with an important role in the cellular life cycle. ${ }^{1-3}$ The PARP-1 enzyme has three structural regions: the DNA binding domain containing two zinc fingers, the automodification domain, and the catalytic domain. ${ }^{4,5}$ The catalytic domain is responsible for converting nicotinamide adenine dinucleotide (NAD^{+}) into nicotinamide and an ADP-ribose unit that is bound to the substrate protein or nucleotide segment. ${ }^{6}$ When overactivated, PARP-1 can cause the consumption of NAD ${ }^{+}$and subsequently a drop in the level of intracellular ATP. This depletion of ATP results in cell death through a necrotic pathway and eventually in ischemic tissue damage. ${ }^{7,8}$ M any studies with PARP-1 "knockout" mice have established the protective effects against a stroke ${ }^{9}$ and a myocardial infarction (MI). ${ }^{10}$ M ore recently, studies have demonstrated the utility of PARP-1 inhibitors in rat models of stroke and MI, ${ }^{11}$ indicating PARP-1 as a clinically relevant target for ischemic injuries.
Many of the early PARP-1 inhibitors are based on the structure of nicotinamide (Figure 1, structure A). For example, quinazol ines ${ }^{12}$ (Figure 1, structure $\mathbf{B}, \mathrm{X}=\mathrm{N}$), isoquinol ones ${ }^{13}$ (structure $\mathbf{B}, \mathrm{X}=\mathrm{CH}$), and the closely related tricyclic 5[H]-phenanthridin-6-ones ${ }^{14}$ (structure C, $\mathrm{R}=\mathrm{H}$, Figure 1) are well-known classes of inhibitors whose structure-activity relationships have been establ ished against PARP-1. It is generally accepted that the $5[\mathrm{H}]$-phenanthridin- 6 -one core competes with NAD ${ }^{+}$ (structure A, Figure 1, R = adenosine) for the nicotinamide binding pocket in the catalytic domain of PARP-

[^0]

Structure A NAD+, R = Adenosine

Structure B $\mathrm{X}=\mathrm{N}$ or CH

Structure C

Structure D

Figure 1. Structures of isoquinolones, 5[H]-phenanthridin6 -ones and related PARP-1 inhibitors.

1. Accordingly, the lone pairs of the $5[\mathrm{H}]$-phenanthridin6 -one oxygen bind to Ser904 and Gly863 while the amide nitrogen donates a hydrogen bond to Gly863.15,16 Any manipulation of this amide portion of the ring system results in decreased in vitro potency. ${ }^{17}$ There are few examples, however, of PARP-1 inhibitors with heteroatom replacements in the fused aryl rings of these inhibitors (highlighted in bold, Figure 1). ${ }^{18}$ In this manuscript, we present the aza-5[H]-phenanthridin-6ones (structure \mathbf{D}; one X is N , and all other X groups are $(\mathrm{H}$) to better determine the in vitro and in vivo effects of heteroatom replacements within the $5[\mathrm{H}]-$ phenanthridin-6-one core. We obtained information about the inhibitory effects of a ring-nitrogen atom on the ni cotinamide binding pocket by testing the inhibi-

Scheme $1^{\text {a }}$

${ }^{\text {a }}$ Reagents: (i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, toluene/EtOH (10:1), 73-85\%; (ii) THF, 3 equiv of LDA, 78-94\%.
tory potencies of 7-, 8-, and 10-aza-5[H]-phenanthridin6 -ones against PARP-1. In addition, the 1-, 2-, 3-, and 4-aza derivatives were tested to determine the in vitro and in vivo effects of a nitrogen atom in the C ring. Structure-activity relationship data, as well as preliminary rat stroke data, prompted us to derivatize this 1-aza-5[H]-phenanthridin-6-one core structure. Tertiary amines were incorporated into this core as solubilizing groups in an effort to administer these PARP-1 inhibitors as intravenous solutions, a necessity for acute clinical indications. Finally and most importantly, several examples of PARP-1 inhibitors from the 2-substituted 1-aza-5[H]-phenanthridin-6-one series demonstrate statistically significant efficacy in animal models of brain and heart ischemia (MCAO, MI) by intravenous administration.

Results and Discussion

Chemistry. The synthesis of 1-, 2-, and 4-aza-5[H]-phenanthridin-6-ones 4a, 5, and 6 was carried out as outlined in Scheme 1. Commercially available 2-chloro-3-aminopyridine $\mathbf{2 a}$ was coupled with boronic acid $\mathbf{1}^{19}$ under standard Suzuki conditions to yield biphenyl 3a in 85% yield. Subsequent cyclization occurred in THF with the addition of 3 equiv of lithium diisopropylamide (LDA) to afford the parent 1-aza-5[H]-phenanthrid-6one 4a in 89% yield. The 2 - and 4-aza derivatives 5^{20} and 6 were synthesized in a manner similar to that of $\mathbf{4 a}$ using $\mathbf{2 b}$ and $\mathbf{2 c}$, respectively.

The synthesis of 3-aza-5[H]-phenanthridin-6-one 9 required amide 7, which was synthesized according to the literature procedure in 23% overall yield from 3 -aminopyridine (Scheme 2). ${ }^{21}$ Coupling of amide 7 with boronic acid $\mathbf{1}$ led to the amide 8 in 57% yield under Suzuki coupling conditions. The treatment of amide 8 with concentrated HCl afforded 3-aza-5[H]-phenanthri-din-6-one 9 in 60% yield. This material was identical to the literature characterization of this compound. ${ }^{19}$

The 7-aza derivative was synthesized as indicated in Scheme 3. The boronic acid carbamate $\mathbf{1 1}^{22}$ was coupled with 2-cyano-3-bromopyridine $\mathbf{1 0}$ under standard Suzuki conditions leading directly to amine 12 in 29\% yield. A diazotization of $\mathbf{1 2}$ was performed in $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2}-$ SO_{4} with NaNO_{2} to afford the desired 7-aza-5[H]-phenanthridin-6-one 13 in 22% yield.

Synthesis of the 8- and 10-aza-derivatives 15a and 15b is outlined in Scheme 4. In one step, the coupling of boronic acid 11 and 4-chloronicotinic acid ethyl ester 14a resulted in the cyclized 8-aza-5[H]-phenanthridin6 -one 15a in one step in 24% yield. A similar cyclization and subsequent deprotection of the butoxycarbonyl

Scheme $\mathbf{2 a}^{\text {a }}$

a Reagents: (i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 2.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{DME}, 57 \%$; (ii) concentrated $\mathrm{HCl}, 60 \%$.

Scheme 3^{a}

12
13
a Reagents: (i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, toluene/EtOH (10:1), 29\%; (ii) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NaNO}_{2}, \mathrm{O}-100{ }^{\circ} \mathrm{C}, 22 \%$.
group have been reported. 22 This one-step coupling procedure was utilized with 14b, affording 15b in 19\% yield.

The 2-substituted 1-aza-5[H]-phenanthridin-6-ones were initially synthesized as illustrated in Scheme 5 (method A). Coupling of boronic acid 1 with commercially available 2,6-dichloro-3-nitropyridine 16 led to the nitro chloride 17a in 42\% yield. The moderate yield for this reaction can be explained by the isolation of the isomeric 17b in approximately the same yield. Chromatographic separation of the two isomers was accomplished, and the desired isomer was aminated with various amines to yield nitroamines $\mathbf{1 8 b}-\mathbf{g}$ in yields ranging from 72% to 92%. The subsequent reduction of the nitro group under standard hydrogenation conditions led to the anilines 19b-g in excellent yields.

Scheme 4^{a}

14a ($\mathrm{X}=\mathrm{CH}, \mathrm{Y}=\mathrm{N}$)
14b $(X=N, Y=C H)$

11

15a ($\mathrm{X}=\mathrm{CH}, \mathrm{Y}=\mathrm{N}$)
15b ($\mathrm{X}=\mathrm{N}, \mathrm{Y}=\mathrm{CH}$)
${ }^{\text {a }}$ Reagents: (i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, toluene/EtOH (10:1), 19-24\%.
The cyclization to 2-substituted 1-aza-5[H]-phenanthri-din-6-ones was accomplished by using an excess of LDA (3 equiv) in tetrahydrofuran. This cydization procedure afforded the desired compounds $\mathbf{4 b}-\mathbf{g}$ in moderate yields (42-46\%). Salt formation was accomplished by suspending the requisite free base in tetrahydrofuran and addition of 1 equiv of acid (HCl in diethyl ether or methanesulfonic acid). The hydrochloride or mesylate salts $(\mathbf{4 b}-\mathbf{g}) \cdot \mathrm{HCl}$ or $(\mathbf{4 b}-\mathbf{g}) \cdot \mathrm{MsOH}$ precipitated out of solution and were collected by filtration. The inherent problems with method A occur with the LDA cyclization. These strongly basic conditions limit the number of functional groups that can be incorporated into the synthesis. This limitation in addition to the low yields led to the design of an alternative route (method B) outlined in Scheme 6.

To directly compare the two methods, compound $\mathbf{4 g}$ was prepared by method B. The boronic ester 20 was prepared according to the literature ${ }^{23}$ on a gram scale. The Suzuki coupling of $\mathbf{2 0}$ with 2,6-dichloro-3-nitropyridine $\mathbf{1 6}$ led to the desired isomer 21a in 45\% yield as well as 35\% of the undesired species 21b. Nucleophilic aromatic substitution of chloride 21a was carried out using N -methylpiperazine, leading to the nitro ester 22a. The improvement in the synthesis is accomplished
by a combination of the last two steps of Scheme 5 into one. Reduction of the nitro group with Raney nickel and hydrazine, followed by immediate cyclization of the amino ester, leads to 2-amino-1-aza-5[H]-phenanthridin6 -one $\mathbf{4 g}$ in 29% overall yield compared to 14% overall yield using method A. Amines $\mathbf{4 h} \mathbf{- m}$ were also synthesized via method B using the requisite amines in overall yields of $20-30 \%$. Salt formation was carried out as illustrated in Scheme 5 to form $(\mathbf{4 g}-\mathbf{m}) \cdot \mathrm{HCl}$ or $(\mathbf{4 g}-$ $\mathbf{m}) \cdot \mathrm{MsOH}$ in $85-99 \%$ yield.

Further derivatization of amine 4d was carried out as shown in Scheme 7. Acylation of 4d with chloroacetyl chloride in dimethylacetamide led to the α-chloroamide 23 in 95\% yield. Subsequent substitution of the activated chloride with various amines led to the subseries of amides 24a-e in 82-92\% yields.

Similarly, derivatization at the 3-position of 1-aza5[H]-phenanthridin-6-ones was accomplished by first synthesizing 3-amino-1-aza-5[H]-phenanthridin-6-one 4n from boronic acid $\mathbf{1}$ and 2-chloro-3,5-di nitropyridine 25 using standard Suzuki coupling conditions (see Scheme 7). Reduction of the intermediate dinitro ester 26 led to $\mathbf{4 n}$. Reduction of the nitro groups led to an intermediate diamine that cyclized to the desired 3-amino-1-aza-5[H]-phenanthridin-6-one 4n in 55\% overall yield from 26. Acylation of this amine with chloroacetyl chloride led to the α-chl oroamide $\mathbf{2 7}$ in 95% yield. Chloride $\mathbf{2 7}$ was aminated in a manner similar to that of the 2-substituted isomer 23 (Scheme 7) to afford amides 28a-d.

Biological Evaluation and SAR Discussion. A comparative in vitro study of all aza-5[H]-phenanthri-din-6-one derivatives with respect to the parent 5[H]-phenanthridin-6-one $\left(\mathrm{IC}_{50}=350 \mathrm{nM}\right.$, structure C, Figure 1) is outlined in Table 1. Inhibitory potency of these aza derivatives was found to be largely dependent on which ring the nitrogen atom was incorporated. While the A ring aza analogues exhibited significantly lower potency than the parent 5[H]-phenanthridin-6one, all C ring aza analogues demonstrated similar or slightly better potency. Inhibitory analysis of 13, 15a, and 15b demonstrates the del eterious effect of a nitrogen atom within the A ring of this core. The potencies

Scheme 5^{a}

a Method A. Reagents: (i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, toluene/EtOH (10:1); (ii) $\mathrm{HNR}_{1} \mathrm{R}_{2}$ (excess), DIEA, $72-92 \%$; (iii) $\mathrm{H}_{2} / \mathrm{Pd} / \mathrm{C}, 90-100 \%$; (iv) THF, 3 equiv of LDA, $42-46 \%$; (v) 1 equiv of HCl or $\mathrm{MsOH}, 84-95 \%$.

Scheme 6^{a}

a Method B. Reagents: (i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, toluene/EtOH (10:1); (ii) $\mathrm{HNR}_{1} \mathrm{R}_{2}$ (excess), DIEA, 77-90\%; (iii) Raney nickel, $\mathrm{H}_{2} \mathrm{NNH}_{2}$, 36-95\%; (iv) HCI or MsOH, 85-99\%.

Scheme $7^{\text {a }}$

${ }^{\text {a }}$ Reagents: (i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, toluene/EtOH (10:1), 82\%; (ii) (1) $\mathrm{H}_{2} / \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, (2) THF, 3 equiv of LDA, 55% overall; (iii) chloroacetyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMA}, 95 \%$; (iv) HNR 2 (excess), DMA, 82-92\%.

Table 1. PARP-1 Inhibition of Aza-5[H]-phenanthridin-6-ones

compound	name	$\mathrm{IC}_{50}{ }^{\mathrm{b}}(\mathrm{nM})$
	benzamide	20000
	nicotinamide	210000
$\mathbf{C}(\mathrm{R}=\mathrm{H})$	5[H]-phenanthridin-6-one	$350 \pm 8.9^{\mathrm{c}}$
$\mathbf{4 a}$	1-aza-5[H]-phenanthridin-6-one	$116 \pm 2.9^{\mathrm{c}}$
$\mathbf{5}$	2-aza-5[H]-phenanthridin-6-one	$128 \pm 3.9^{\mathrm{c}}$
$\mathbf{9}$	3-aza-5[H]-phenanthridin-6-one	169
$\mathbf{6}$	4-aza-5[H]-phenanthridin-6-one	311
$\mathbf{1 3}$	7-aza-5[H]-phenanthridin-6-one	14000
$\mathbf{1 5 a}$	8-aza-5[H]-phenanthridin-6-one	2600
$\mathbf{1 5 b}$	10-aza-5[H]-phenanthridin-6-one	2900

a See ref 24. ${ }^{\text {b }}$ See Experimental Section for details. ${ }^{\text {c Represents }}$ an average of three IC_{50} values.
of compounds $13\left(\mathrm{IC}_{50}=14 \mu \mathrm{M}\right)$, 15a $\left(\mathrm{IC}_{50}=2.6 \mu \mathrm{M}\right)$, and 15b $\left(\mathrm{IC}_{50}=2.9 \mu \mathrm{M}\right)$ were up to an order of magnitude worse than $5[\mathrm{H}]$-phenanthridin-6-one, while C ring derivatives 4a, 5, 6, and 9 all demonstrated similar or slightly better potency than 5[H]-phenan-thridin-6-one. Presumably, the A ring of these aza-5[H]-phenanthridin-6-ones binds to the nicotinamide binding
pocket of the catalytic domain. If this holds true, the potency of 15a can be explained by an analogous difference in potency between benzamide ($\mathrm{IC}_{50}=20 \mu \mathrm{M}$) and nicotinamide $\left(\mathrm{IC}_{50}=210 \mu \mathrm{M}\right) .{ }^{24}$ The decrease in potency for $\mathbf{1 3}$ and 15b may be attributable to the ring nitrogen interacting electrostatically with residues in the hydrophobic nicotinamide binding pocket (His862, Gly863, Phe897, or Ala898). Compound $\mathbf{1 3}$ is the least active of these three presumably because the ring nitrogen not only interacts electrostatically with the hydrophobic binding pocket but adversely affects the hydrogen bond formed by Ser904 on the amide carbonyl. The inhibition results from the (1-4)-aza derivatives $\mathbf{4 a}, \mathbf{5}, \mathbf{6}$, and $\mathbf{9}$ al so confirm previous findings about $5[\mathrm{H}]-$ phenanthridin-6-one SAR, ${ }^{14}$ namely, the tolerance for hydrophilic moieties on the C ring.

While the enzymatic potencies of 4a and 5 were slightly better than the potency of 5[H]-phenanthridin6 -one, preliminary stroke data on 4a and 5 displayed significant protective effects versus 5[H]-phenanthridin-

Table 2. PARP-1 Inhibition of 2 -Substituted
1-Aza-5[H]-phenanthridin-6-ones 4b-m

Compound	$\mathbf{N R}{ }^{1} \mathbf{R}^{\mathbf{2}}$	$\mathbf{I C}_{50}(\mathrm{nM})$	$\mathrm{EC}_{50}(\mathrm{nM})^{\text {e }}$
4b		339	n.d.
4 c	$\xi \underbrace{n}<{ }_{N}-$	173	n.d.
4d	NH_{2}	209	n.d.
4e.MsOH	$\xi-\sqrt{\sim}$	$112 \pm 5.9^{\text {a }}$	135
4f. HCl		$75 \pm 1.7^{\text {a }}$	177
4g	$\xi-N^{N-}$	$45 \pm 2.2^{\text {a }}$	125
4h	$\sqrt[3]{N^{N B o C}}$	774	n.d.
$4 \mathrm{i} \cdot$ TFA ${ }^{\text {b }}$	$\xi-\sqrt[N]{C_{N H}}$	42	n.d.
$\mathbf{4 j} \cdot \mathbf{M s O H}$	$\xi-\underbrace{N H}$	$58 \pm 1.2^{\text {a }}$	150
$\mathbf{4 k} \mathbf{M s O H}^{\text {c }}$	$\sqrt[3]{\sqrt{N-}}$	51	240
$41^{\text {d }}$		247	5800
$4 \mathrm{~m} \cdot \mathrm{MsOH}$		$71 \pm 3.0^{\text {a }}$	145

${ }^{\text {a }}$ Average of three C_{50} values. ${ }^{\mathrm{b}}$ Made from deprotection of $\mathbf{4 h}$. ${ }^{\text {c M M }}$ Methylation product of $\mathbf{4 i}$. ${ }^{\text {d }}$ Oxidation product of $\mathbf{4 g}$; see Scheme 8. e See Experimental Section for details. n.d. $=$ not determined.

6 -one (vide infra). These data prompted further derivatization of the 1-aza and/or 2-aza analogues. On the basis of previous 5[H]-phenanthridin-6-one SAR data, ${ }^{14}$ the 2 - and 3 -positions are best suited for substitution while maintaining inhibitory potency. Because of this precedent, derivatives of the 1 -aza- $5[\mathrm{H}]$-phenanthridin6 -one core 4a were pursued, since both the 2 - and 3 -positions can be substituted while derivatives of 5 can only be substituted from the 3 -position.

The 2-substituted derivatives $\mathbf{4 b} \mathbf{b}$ m were assayed against PARP-1, and their potencies are outlined in Table 2. The ethylenediamino derivatives $\mathbf{4 b}$ and $\mathbf{4 c}$ had activities that were slightly higher than the parent 4a ($\mathrm{IC}_{50}=116 \mathrm{nM}$, Table 1). A slight improvement in I C_{50} occurred with the addition of a piperazine moiety, as seen for compounds $\mathbf{4 g}, \mathbf{4} \mathbf{j} \cdot \mathrm{MsOH}$, and $\mathbf{4 m} \cdot \mathbf{M s O H}$. In fact, this activity was even maintained for the bicyclic derivatives $\mathbf{4 i} \cdot \mathrm{TFA}$ and $\mathbf{4} \mathbf{k} \cdot \mathrm{MsOH}$. Compound $\mathbf{4 h}$, the precursor to anal ogues $\mathbf{4 i} \cdot \mathrm{TFA}$ and $\mathbf{4 k} \cdot \mathrm{MsOH}\left(\mathrm{IC}_{50}=\right.$ 774 nM), was the least active anal ogue, perhaps because of the size of the butoxycarbonyl group and/or the necessity for a charged amine functionality. The hydrophilic N -oxide $4 \mathrm{I}\left(\mathrm{IC}_{50}=247 \mathrm{nM}\right)$, a major metabolite of $\mathbf{4 g}$ as discussed vide infra, was 5-6 times less potent than its unoxidized precursor $\mathbf{4 g}\left(\mathrm{IC}_{50}=45 \mathrm{nM}\right)$.

An $\mathrm{H}_{2} \mathrm{O}_{2}$ cytotoxicity assay was utilized to determine the effectivness of PARP-1 inhibitors in penetrating cells and preventing cell death. ${ }^{25}$ The cells were preincubated

Table 3. PARP-1 Inhibition of
1-Aza-5[H]-phenanthridin-6-ones 24a-d and 28a-d

Compound	Substituent position	\mathbf{R}^{3} Group	$\mathrm{IC}_{50}(\mathrm{nM})^{\text {a }}$	$\mathrm{EC}_{50}(\mathbf{n M})^{\mathbf{a}}$
$4 d$	2	H	209	n.d.
4 n	3	H	180	n.d.
$24 \mathrm{a} \cdot \mathrm{HCl}$	2		98	2075
$28 \mathrm{a} \cdot \mathrm{HCl}$	3		165	2630
24b-HCl	2		150	1110
28b. HCl	3		111	n.d.
$24 \mathrm{c} \cdot \mathrm{HCl}$	2		142	1270
$28 \mathrm{c} \cdot \mathrm{HCI}$	3		134	1140
$24 \mathrm{~d} \cdot \mathrm{HCl}$	2		277	n.d.
$28 \mathrm{~d} \cdot \mathrm{HCl}$	3		86	n.d.

with the desired PARP-1 inhibitor and consequently damaged with $\mathrm{H}_{2} \mathrm{O}_{2}$. The concentration of the inhibitor required to achieve 50% reduction in cell death is reported as EC_{50}. For the 2-amino-1-aza-5[H]-phenan-thridin- 6 -ones $\mathbf{4 e}-\mathbf{g}$ and $\mathbf{4 j} \cdot \mathrm{MsOH}$, the cellular activities (EC_{50}) were approximately $2-5$ less potent compared to the corresponding enzymatic IC_{50} values. The one exception to this trend was N -oxide 41 whose EC_{50} was over 20 times less potent than the inhibitory constant. This result indicates that this compound, despite being a metabolite for $\mathbf{4 g}$, does not adequately penetrate into cells and is most likely not responsible for in vivo efficacy of $\mathbf{4 g}$ in animal models of brain ischemia as discussed below.
The in vitro potencies of the acyl 2 -and 3 -substituted derivatives of 4a are listed in Table 3. Most of these derivatives were potent against PARP-1 regardless of the size of the substituent. The bulkiest derivative 24d $\left(\mathrm{IC}_{50}=277 \mathrm{nM}\right)$ was only $2-3$ times less potent than the most active derivatives 24a and 28d. Once again, the steric bulk of these derivatives underscores the versatility of the 2 - and 3 -positions to modulate the pharmaceutic and pharmacokinetic profiles of this series.
The cellular activities for the amides 24a-d and 28a-d, however, were notably less potent than their respective IC_{50} values. Compound 24b had the most potent $E C_{50}$ value within the series (1110 nM), a 7 -fold decrease from its IC_{50}. In addition, there is an order of magnitude difference in cellular activity between the 2 - and 3-amido-1-aza-5[H]-phenanthridin-6-ones and the corresponding 2 -substituted piperazines outlined in Table 2.

Pharmacology Data

Solubility Data. Because of the structural characteristics of most PARP-1 inhibitors (i.e., highly conjugated, crystalline, and planar), poor aqueous solubility is a significant issue. To develop a drug for acute ischemic injuries (i.e., stroke, MI), the compound should ideally be soluble in intravenous buffers (e.g., citrate,

Table 4. Solubility Measurements ${ }^{\text {a }}$

	concn compound $(\mathrm{mg} / \mathrm{mL})$	salt	turbidity measurement $\left(\mathrm{CB}^{\mathrm{b}}\right)$	turbidity measurement $\left(\mathrm{PBSc}^{2}\right.$
$\mathbf{4 g}$	5	HCl	13.0	26.8
$\mathbf{4 g}$	5	MsOH	1.3	1.4
$\mathbf{4 g}$	20	MsOH	4.0	145
$\mathbf{4 9}$	40	MsOH	45.7	215
$\mathbf{4 e}$	5	MsOH	17	pcp
$\mathbf{4 m}$	5	MsOH	11.5	pcp
$\mathbf{2 4 a}$	5	HCl	143	190
$\mathbf{2 4 c}$	5	HCl	12.7	17.4
$\mathbf{2 4 c}$	20	HCl	13.0	15.6
$\mathbf{2 4 c}$	40	HCl	21.0	pcp
$\mathbf{2 4 d}$	5	HCl	25.3	63.1

${ }^{\text {a }}$ All measurements were taken on a Nepheloskan Ascent instrument, type 750, manufactured by Labsystems. Baseline reading $=0.1$. Turbidity measurement greater than 20 indicates that the compound is insoluble. $\mathrm{pcp}=$ precipitate. ${ }^{\mathrm{b}} \mathrm{CB}=50 \mathrm{mM}$ citrate buffer, $\mathrm{pH}=4.0$. ${ }^{\mathrm{C}} \mathrm{PBS}=70 \mathrm{mM}$ phosphate-buffered saline solution, $\mathrm{pH}=7.4$.

Table 5. $\mathrm{C}_{\text {max }}$ Values for Selected PARP-1 Inhibitors in Rats ($10 \mathrm{mg} / \mathrm{kg}, \mathrm{n}=6$) ${ }^{\mathrm{a}}$

	$\mathrm{C}_{\max }$		
compound	plasma $(\mu \mathrm{g} / \mathrm{mL})$	heart $(\mu \mathrm{g} / \mathrm{g})$	brain $(\mu \mathrm{g} / \mathrm{g})$
$\mathbf{4 g} \cdot \mathbf{M s O H}$	0.456	2.98	13.7
$\mathbf{4 m} \cdot \mathbf{M s O H}$	1.95	7.48	8.85
$\mathbf{2 4} \cdot \mathbf{H C l}$	4.79	38.4	1.44
$\mathbf{4 I}$	0.010	nd	nd
$\mathbf{4} \cdot \mathrm{MsOH}$	3.79	20.3	2.18

${ }^{\text {a }}$ Compounds were injected intravenously using 70 mM PBS as the buffer. nd = not detected.
phosphate) and deliverable by bolus injection or infusion. To determine the relative solubility of many of these analogues, turbidity measurements were taken at $5-20 \mathrm{mg} / \mathrm{mL}$ in two common buffers, namely, citrate buffer (CB) and phosphate buffered saline (PBS) (Table 4). ${ }^{26}$ These solubility data acted as a guideline in determining the derivatives that could be tested as intravenous solutions in vivo and the maximum concentrations at which they could be administered. Concentrations that had turbidity measurements higher than 20 were considered insoluble and not used for administration in animal models.

In general, most piperazine mesylate salts (4e. MsOH , $\mathbf{4 g} \cdot \mathrm{MsOH}$, and $\mathbf{4 m} \cdot \mathrm{MsOH}$) were soluble in the 50 mM citrate buffer at $5 \mathrm{mg} / \mathrm{mL}$. Piperazine $\mathbf{4 g}$, one of the most soluble compounds within the series, was soluble as both the HCl and MsOH salt in CB , even though the HCl salt only had limited solubility in PBS. Compound $\mathbf{4 g} \cdot \mathrm{MsOH}$ was the only piperazine with a high concentration limit of $20 \mathrm{mg} / \mathrm{mL}$ in citrate buffer. Of all the 2and 3-amido derivatives tested, only compound $\mathbf{2 4 c} \cdot \mathbf{H C l}$ was soluble in any buffer by turbidity measurements. The high concentration limit for amide $\mathbf{2 4 c} \cdot \mathbf{H C l}$ was 20 $\mathrm{mg} / \mathrm{mL}$ in CB. These parameters were eventually used as a guideline for in vivo administration in the models discussed below.

In Vivo Results. Drug Metabolism and Pharmacokinetic Data. After the aqueous solubility for the amine and amide derivatives of 4a was established, the next logical step was to obtain drug metabolism and rat pharmacokinetic (PK) data for representative compounds from each subseries to prioritize the compounds for in vivo testing. Table 5 outlines the $C_{\text {max }}$ values in the plasma, heart, and brain for selected 2-substituted

Figure 2. Pharmacokinetic profile of $\mathbf{4 g} \cdot \mathrm{MsOH}$.

Figure 3. Pharmacokinetic profile of $\mathbf{2 4 c} \cdot \mathbf{H C l}$.
1-aza-5[H]-phenanthridin-6-ones (administered intravenously in citrate buffer). A notable feature of these data is the structural similarity between piperazines $\mathbf{4 g} \cdot \mathrm{MsOH}$ and $\mathbf{4 m} \cdot \mathbf{M s O H}$ and the requisite similarities in distribution. These two compounds have the highest $\mathrm{C}_{\text {max }}$ values of those tested, especially in the brain. A graphical representation of the PK profile of $\mathbf{4 g} \cdot \mathrm{MsOH}$ is illustrated in Figure2. There is, however, a noticeable PK profile difference between these piperazines and amide derivative 24c•HCl (Figure 3). Namely, amide $\mathbf{2 4 c} \cdot \mathrm{HCl}$ does not achieve brain levels as high as the piperazines, yet $\mathbf{2 4 c} \cdot \mathbf{H C l}$ does have a much higher heart level and a much longer half-life (consequently a Iarger area under the curve (AUC)), as seen in the graphical depiction in Figure 3. All three compounds $(\mathbf{4 g} \cdot \mathrm{MsOH}$, $\mathbf{4 m} \cdot \mathbf{M s O H}$, and $\mathbf{2 4 c} \cdot \mathrm{HCl}$) have higher concentrations in the heart and brain than the plasma (4-30 times higher). The ability to achieve high tissue concentrations emphasizes the permeability of these PARP-1 inhibitors and could be beneficial for treating stroke and heart ischemia, given that the enzyme target (PARP-1) is tissue-based.

The PK profile for $\mathbf{4 g} \cdot \mathrm{MsOH}$ (Figure 2) illustrates a relatively short half-life but relatively high $\mathrm{C}_{\max }$ in tissues. This short half-life indicates that the parent compound is rapidly metabolized in the rat, causing depletion of the parent compound. To address the metabolism issue, $\mathbf{4 g} \cdot \mathrm{MsOH}$ was subjected to liver microsomal enzymes and the byproducts were analyzed by LC/MS. The major metabolites result from the oxidative degradation of the piperazine ring. The major product resulting from the microsomal exposure of $\mathbf{4 g} \cdot \mathrm{MsOH}$ had a mass of 310 , which corresponds to the parent compound plus one oxygen atom. Because there are multiple potential sites of oxidation, we conducted a synthetic effort to establish the most prevalent

Scheme 8^{a}

${ }^{\text {a }}$ Reagents: (i) mCPBA, DCE, 75%, or rat microsomal enzymes.
Table 6. Cerebral Ischemic Stroke Results

compound	$\begin{gathered} \text { dose } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	$\mathrm{n}^{\text {a }}$	reduction in infarct volume (\%)	MCAO model
4a	$80^{\text {b }}$	10	$55(\rho=0.055)$	transient ${ }^{\text {d }}$
5	$40^{\text {b }}$	10	47 ($\rho=0.031$)	transient ${ }^{\text {d }}$
C (R $=\mathrm{H}$)	$40^{\text {b }}$	10	$-7\left(\rho=\mathrm{ns}^{\mathrm{f}}\right)$	transient ${ }^{\text {d }}$
4g. MsOH	$40^{\text {c }}$	10	$44(\rho=0.008)$	transient ${ }^{\text {d }}$
49. MsOH	20°	10	$33(\rho=0.017)$	transient ${ }^{\text {d }}$
24c. HCl	80°	10	$-1\left(\rho=\mathrm{ns}^{\mathrm{f}}\right.$)	transient ${ }^{\text {d }}$
4g. MsOH	80°	10	$35(\rho=0.039)$	permanent ${ }^{\text {e }}$
4g. MsOH	40°	10	$18(\rho=0.02)$	permanente

${ }^{\mathrm{a}} \mathrm{n}=$ number of rats per experiment. ${ }^{\mathrm{b}}$ Compound was administered intraperitoneally. ${ }^{\text {c Compound was administered intrave- }}$ nously. ${ }^{\text {d }}$ Half of compound was administered as a bolus dose 30 min before ischemia, and half was administered 30 min after reperfusion. See ref 31 . e Half of compound was administered as a bolus dose 30 min before ischemia, and half was administered 30 min after ischemia. See ref 32 . ${ }^{\mathrm{f}} \mathrm{ns}=$ not significant.
metabolite. When compound $\mathbf{4 g}$ was subjected to 1 equiv of m-CPBA, the major product was compound $\mathbf{4 I},{ }^{27}$ one potential metabolite (Scheme8). This similar oxidation appeared to be rapidly catalyzed by either a flavin monooxygenase ${ }^{28}$ or a cytochrome P450 enzyme ${ }^{29}$ within the microsomal culture. Direct comparison of the microsomal culture with a pure sample of $\mathbf{4 I}$ confirmed this as the major metabolite. Compound 41 displayed a drastically different PK profile than the parent 4g, as outlined in Table5. This material 4I, due to the presence of a polar N -oxide moiety, was not detected in the brain or heart tissue.

Another minor product from the microsomal degradation study displayed a mass of 279, corresponding to the parent compound without a methyl group. The desmethyl compound $\mathbf{4 j}$ was synthesized as outlined in Scheme 6 and directly compared to the microsomal samples. Compound $4 \mathrm{j} \cdot \mathrm{MsOH}\left(\mathrm{IC}_{50}=58 \mathrm{nM}\right.$, Table 3$)$, whose free base is a product resulting from oxidative demethylation ${ }^{30}$ of the piperazine methyl group, displayed a different PK profile than the metabolic precursor $\mathbf{4 g} \cdot \mathrm{MsOH}$ (Table 6). That is, the $\mathrm{C}_{\max }$ for $\mathbf{4 j}$ was 6-fold lower in the brain while the $\mathrm{C}_{\text {max }}$ for $\mathbf{4 j}$ was almost 10 -fold higher in the heart than $\mathbf{4 g} \cdot \mathrm{MsOH}$. A graphical representation of the metabolism of $\mathbf{4 g} \cdot \mathbf{M s O H}$ in Wistar rats is illustrated in Figure 4 (plasma only). The appearance of $\mathbf{4 I}$ and, to a lesser extent, the desmethyl compound 4; proceeds immediately, presumably because of rapid oxidation or demethylation of $\mathbf{4 g}$. The rapid clearance of the piperizine $\mathbf{4 g}$ happens while the two major metabolites 4 j and 41 are detected. Once formed, $\mathbf{4 j}$ and $\mathbf{4 l}$ disappear at a rate similar to that of $\mathbf{4 g}$.

Figure 4. Metabolism of compound $\mathbf{4 g}$ (Wistar rat).
Focal Cerebral Ischemic Stroke Data. On the basis of their solubility and pharmacokinetic profiles, compounds $\mathbf{4 g} \cdot \mathrm{MsOH}$ and $\mathbf{2 4 c} \cdot \mathbf{H C l}$ were chosen for animal brain ischemia studies. A widely accepted animal model of brain ischemia is the transient MCAO stroke model. ${ }^{31}$ Table 6 outlines the effects of the PARP-1 inhibitors that were tested in this model. These compounds were administered 30 min before occlusion of the middle cerebral artery and immediately after reperfusion in a bolus dose (20 or $40 \mathrm{mg} / \mathrm{mL}$ iv in CB or ip in DMSO over 3 min for 4a, 5, and C). After several hours, the stroked animals were sacrificed and brain slices were analyzed to calculate the overall area of infarction or dead tissue. Reduction in this area represents a protective effect and is noted in Table 6 as a reduction in infarct volume. The initial results for this model were obtained with the parent aza-5[H]-phenan-thridin-6-ones $\mathbf{4 a}$ and $\mathbf{5}$ via intraperitoneal administration. Compound 4a showed a strong trend toward reduction in infarct volume when dosed at $40 \mathrm{mg} / \mathrm{kg} 30$ min before ischemia and $40 \mathrm{mg} / \mathrm{kg}$ after reperfusion. This type of effect was mirrored by the 2-aza analogue 5. These initial results were surprising because 5[H]-phenanthridin-6-onedid not show protection in thesame model. Clearly, the only limits to persuing 4a and 5 as potential drug candidates are their innate aqueous solubility and inability to be administered intravenously. For this reason, the amine salts $\mathbf{4 g} \cdot \mathrm{MsOH}$ and $\mathbf{2 4 c} \cdot \mathrm{HCl}$ were designed and synthesized to overcome these shortcomings. The results for $\mathbf{4 g} \cdot \mathrm{MsOH}$ were very encouraging, as illustrated in Table 6. At the $40 \mathrm{mg} / \mathrm{kg}$ total dose, $\mathbf{4 g} \cdot \mathrm{MsOH}$ resulted in a 44% reduction in infarct volume in this transient model. The majority of this protective effect was even maintained at the lower dose of $20 \mathrm{mg} / \mathrm{kg}$. The two potential metabolites of $\mathbf{4 g}$, namely, 4j and 4I, are both viable inhibitors of PARP-1 and could potentially account for some of the efficacy in this MCAO model (Table 2). The pharmacokinetic analysis, however, indicates that the N -oxide $\mathbf{4 I}$ does not penetrate readily into tissues and hence is most likely not responsible for in vivo efficacy in this model. In addition, the minimal amount of $4 \mathbf{j}$ available from metabolism (2 orders of magnitude less than $\mathbf{4 g}$) indicates that $\mathbf{4 j}$ is probably not responsible for the efficacy either.

Unfortunately, amide $\mathbf{2 4 c} \cdot \mathbf{H C l}$ did not afford the same level of protection as $\mathbf{4 g} \cdot \mathrm{MsOH}$. In fact, at an $80 \mathrm{mg} / \mathrm{kg}$ total dose, 24c $\cdot \mathbf{H C l}$ did not show any reduction in infarct volume. One possible explanation for this result can be

Table 7. Rat Myocardial Ischemia Data

compound	vehicle	n^{a}	dose $^{\mathrm{b}}$ $(\mathrm{mg} / \mathrm{kg})$	reduction in infarct volume (\%)
$\mathbf{4 \mathbf { g }} \cdot \mathbf{M s O H}$	70 mM PBS	8	80	$25.5(\rho=0.013)$
$\mathbf{4 g} \cdot \mathbf{M s O H}$	70 mM PBS	8	40	$18.8(\rho=0.08)$
$\mathbf{4 m} \cdot \mathbf{M s O H}$	50 mM CB	8	40	$36(\rho=0.001)$
$\mathbf{2 4 c} \cdot \mathrm{HCl}$	50 mM CB	8	80	$44(\rho=0.001)$
$\mathbf{2 4 c} \cdot \mathrm{HCl}$	50 mM CB	8	40	$39(\rho=0.007)$
$\mathbf{2 4 c} \cdot \mathrm{HCl}$	50 mM CB	8	20	$13(\rho=0.15)$

${ }^{\mathrm{a}} \mathrm{n}=$ number of rats per experiment. ${ }^{\mathrm{b}} \mathrm{H}$ alf of compound was administered intravenously 5 min before ischemia and 5 min before reperfusion.
gathered from the pharmacokinetic data for these two compounds. Analogue $\mathbf{4 g} \cdot \mathrm{MsOH}$, while having a significantly shorter half-life than 24c $\cdot \mathbf{H C l}$, does have a higher $\mathrm{C}_{\text {max }}$ in the brain. Perhaps this high initial concentration of drug is necessary to achieve a protective effect in ischemic models such as the rat transient MCAO. This result also illustrates that $C_{\max }$ may be a more rel evant PK parameter than the half-life or AUC for predicting the protective effects of PARP-1 inhibitors in brain ischemia. That is, compound $\mathbf{2 4 c} \cdot \mathbf{H C l}$ has a longer half-life (and larger AUC) in the brain than $\mathbf{4 g} \cdot \mathrm{MsOH}$ but its $\mathrm{C}_{\max }$ is 10 times lower than that of $\mathbf{4 g} \cdot \mathrm{MsOH}$.

A more stringent animal model of brain ischemia is the rat permanent MCAO model. ${ }^{32}$ In this model, the middle cerebral artery is permanently occluded as opposed to the temporary occlusion of the transient model. Infarct volume was determined in a manner similar to the transient model, and this value is recorded in Table 6 as percent reduction in infarct volume. The PARP-1 inhibitor $\mathbf{4 g} \cdot \mathrm{MsOH}$ was administered 30 min before ischemia at $40 \mathrm{mg} / \mathrm{kg}$ and 30 min after ischemia at $40 \mathrm{mg} / \mathrm{kg}$ and still demonstrated a significant reduction in infarct volume (35\%). In fact, lowering the dose to $20 \mathrm{mg} / \mathrm{kg}$ before and $20 \mathrm{mg} / \mathrm{kg}$ after also resulted in an 18% reduction.

Myocardial Ischemia Data. If $\mathrm{C}_{\max }$ is also the relevant pharmacokinetic parameter for heart ischemia, one would predict that the in vivo efficacy of $\mathbf{2 4 c} \cdot \mathbf{H C l}$ would be better in therat model of myocardial infarction than $\mathbf{4 g} \cdot \mathrm{MsOH} .{ }^{33,34}$ While the brain levels for compound $\mathbf{4 g} \cdot \mathrm{MsOH}$ are higher than those for $\mathbf{2 4 c} \cdot \mathbf{H C l}$, their relative concentrations in the heart are juxtaposed. That is, $\mathbf{2 4 c} \cdot \mathbf{H C l}$ has maximum heart levels that are 13 times higher than $\mathbf{4 g} \cdot \mathrm{MsOH}$ (Table 5). The protective results from these two compounds are outlined in Table 7. As expected, compound $\mathbf{4 g} \cdot \mathbf{M s O H}$ displayed a modest reduction in infarct volume at the two doses tested (40 $\mathrm{mg} / \mathrm{kg} 5^{\prime}$ before ischemia, $40 \mathrm{mg} / \mathrm{kg} 5^{\prime}$ before reperfusion) while amide 24c $\cdot \mathrm{HCl}$, at this same dose ($80 \mathrm{mg} / \mathrm{kg}$), reduced the infarct volume by 44\%. Even at the $40 \mathrm{mg} /$ kg total dose, $\mathbf{2 4 c} \cdot \mathrm{HCl}$ maintained efficacy (39\%). Similarly, compound $\mathbf{4 m} \cdot \mathrm{MsOH}$ displayed better protection at the $40 \mathrm{mg} / \mathrm{kg}$ dose than $\mathbf{4 g} \cdot \mathrm{MsOH}$, correlating with their relative $C_{\max }$ values in the heart tissue. These in vivo results once again illustrate the utility of $\mathrm{C}_{\max }$ as a pharmacokinetic parameter to predict efficacy in an ischemic model. All together, these data indicate that PARP-1 inhibitors can potentially be used to reduce the damage caused by myocardial infarction.

Conclusions

We have designed and synthesized a series of aza-$5[\mathrm{H}]$-phenanthridin-6-ones as potent PARP-1 inhibitors with clearly defined structure-activity relationships. These SAR studies further elucidate the hydrophobic constraints of the nicotinamide binding pocket by demonstrating the lack of activity of aza-5[H]-phenan-thridin-6-ones 13, 15a, and 15b. The aza-5[H]-phenan-thridin-6-one core has shown in vitro activity similar to that of 5[H]-phenanthridin-6-one but has shown a notably better in vivo efficacy in ischemic models as displayed by compounds 4 a and 5 . Derivitization of the 1-aza-5[H]-phenanthridin-6-one core led to several examples of potent PARP-1 inhibitors (42-100 nM). In addition to the enzymatic activity, this series contains examples of compounds with ionizable groups for increased aqueous solubility and thus potential clinical utility in acute settings. We established $C_{\max }$ values for selected inhibitors to predict in vivo efficacy in animal models of ischemia. Most importantly, we have demonstrated three 1-aza-5[H]-phenanthridin-6-one PARP-1 inhibitors ($\mathbf{4 g}, \mathbf{4 m}$, and $\mathbf{2 4 c}$) that are protective when administered intravenously in animal models of heart ischemia and stroke.

Experimental Section

General. Melting points were obtained on a MEL-TEMP II and were uncorrected (Meltemp Laboratory Devices, Inc.). Proton nuclear magnetic resonance were recorded at 400 MHz on a Bruker 400 using deuterated solvent as an internal standard. Chemical shift values are indicated in parts per million. Mass spectra were recorded using a Micromass LCS Platform LC/MS spectrometer. Elemental analyses were obtained from Atlantic Microlabs, Inc. (Norcross, GA). All reagents were purchased from Aldrich Chemical (Milwaukee, WI) or CB Reasearch (New Castle, DE) unless otherwise stated.

General Procedure for the Synthesis of 2-(3-Aminopy-ridin-2-yl)-N,N-diisopropylbenzamide (3a). The boronic acid $\mathbf{1}(2.0 \mathrm{~g}, 8.0 \mathrm{mmol})$, prepared according to the literature, ${ }^{19}$ was added to a sol ution of potassium carbonate (2.2 g in 8 mL of $\mathrm{H}_{2} \mathrm{O}$) and 2-chloro-3-amino pyridine $\mathbf{2 a}$ ($0.94 \mathrm{~g}, 7.3 \mathrm{mmol}$) in 100 mL of toluene/EtOH (9:1). This mixture was deoxygenated in vacuo and refilled with nitrogen. After the mixture was stirred under nitrogen for 30 min , palladium tetrakistriphenylphosphine ($420 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added to the mixture. The solution was heated to $80^{\circ} \mathrm{C}$ until complete conversion was attained according to TLC (50:50 hexanes/ EtOAc). The solvent was removed in vacuo, and the reaction mixture was then partitioned between water (100 mL) and EtOAc (100 mL). The water layer was extracted two more times with EtOAc (100 mL), and the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield a crude solid that was triturated with diethyl ether ($10-20 \mathrm{~mL}$) to yield the desired amine 3a as a yellow solid ($1.84 \mathrm{~g}, 85 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, 1 \mathrm{H}), 7.06(\mathrm{~m}$, 1H), $7.00(\mathrm{~d}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 1.48$ (d, 3H), $1.13(d, 3 H), 1.01(d, 3 H), 0.84(d, 3 H) ; M S(E S+)=$ 298. Anal. ($\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$) C, H, N.

2-(4-Aminopyridin-3-yl)-N,N-diisopropylbenzamide (3b). 4-Amino-3-iodopyridine $\mathbf{2 b}$ ($1.4 \mathrm{~g}, 8.1 \mathrm{mmol}$), boronic acid $\mathbf{1}$ ($2.0 \mathrm{~g}, 8.9 \mathrm{mmol}$), and potassium carbonate ($2.2 \mathrm{~g}, 15.9 \mathrm{mmol}$) were dissolved in 80 mL of toluene, 8 mL of EtOH , and 8 mL of $\mathrm{H}_{2} \mathrm{O}$. This mixture was purged of oxygen and refilled with nitrogen several times. Then, tetrakistriphenylphosphine palladium ($350 \mathrm{mg}, 0.30 \mathrm{mmol}$) was added to the mixture, and the mixture was heated to $80^{\circ} \mathrm{C}$ overnight. Water (100 mL) was then added to the reaction mixture, and the organic layer was partitioned. The aqueous layer was extracted with EtOAc $(2 \times 100 \mathrm{~mL})$, and the combined organics were dried with $\mathrm{Na}_{2}{ }^{-}$
SO_{4} and concentrated. The crude reaction product was triturated with diethyl ether (25 mL) and filtered. The resulting solid was collected and characterized as the biphenylamine 3b ($2.0 \mathrm{~g}, 83 \%$): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.17(\mathrm{~d}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H})$, $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~d}, 1 \mathrm{H}), 4.50(\mathrm{bs}, 2 \mathrm{H}), 3.61$ (m, 1H), $3.31(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~d}, 3 \mathrm{H}), 1.16(\mathrm{~d}, 3 \mathrm{H}), 1.03(\mathrm{~d}, 3 \mathrm{H})$, $0.83(\mathrm{~d}, 3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=298$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N} \mathrm{~N}_{3} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(2-Aminopyridin-3-yl)-N,N-diisopropylbenzamide (3c). The synthesis was carried out in a manner identical to that of 3b (73%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.29$ (m, 2H), 6.58 (m, 1H), 5.49 (bs, 2H), 3.56 (m, 2H), $1.40(\mathrm{~d}, 3 \mathrm{H})$, $1.05(d, 3 H), 0.93(d, 3 H), 0.64(d, 3 H)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}\right) \mathrm{C}$, H, N.

1-Aza-5[H]-phenanthridin-6-one (4a). The amine 3a ($1.74 \mathrm{~g}, 5.8 \mathrm{mmol}$) was dissol ved in dry tetrahydrofuran (25 mL), and the mixture was cooled to $-78^{\circ} \mathrm{C}$ under nitrogen. Lithium diisopropylamide ($2.0 \mathrm{M}, 7.6 \mathrm{~mL}$) was added dropwise to the solution, and this mixture was stirred for several hours and warmed to room temperature overnight. The reaction was quenched with water (50 mL), and the mixture was extracted with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried and concentrated to yield the crude solid, which was triturated with boiling diethyl ether to yield the pure material 4a as a yellow solid ($0.95 \mathrm{~g}, 89 \%$): $\mathrm{mp}=300-320^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 11.78$ ($\mathrm{s}, 1 \mathrm{H}$), 8.77 (d, 1H), $8.55(\mathrm{~d}, 1 \mathrm{H}), 8.32(\mathrm{~d}$, 1H), 7.93 (d, 1H), $7.74(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=197$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Aza-5[H]-phenanthridin-6-one (5). A solution of lithium diisopropylamide ($2.0 \mathrm{M}, 10 \mathrm{~mL}$) was dissolved in 90 mL of THF, and the mixture was cooled to $-78^{\circ} \mathrm{C}$. A solution of amine $3 \mathbf{b}(2.0 \mathrm{~g}, 6.73 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ was added to the LDA dropwise over a 15 min period. The reaction mixture was warmed to room temperature and stirred overnight. The reaction mixture was concentrated in vacuo and suspended in 100 mL of water. The solid was filtered off and triturated with ethyl acetate (100 mL). The resulting solid was dried to yield the desired compound 5 ($1.24 \mathrm{~g}, 94 \%$): $\mathrm{mp}=300-320$ ${ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 11.57$ (bs, 1H), 9.57 ($\mathrm{s}, 1 \mathrm{H}$), 8.65 (d, 1H), 8.50 (d, 1H), 8.33 (d, 1H), 7.90 (t, 1H), 7.71 (t, 1H), 7.28 (d, 1H); MS (ES ${ }^{+}$) = 197. Anal. ($\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$) C, H, N.

4-Aza-5[H]-phenanthridin-6-one (6). The cyclization was done in a manner similar to the cyclization of amine 6 (78%): $\mathrm{mp}=295-300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 12.05(\mathrm{bs}, 1 \mathrm{H}), 8.84$ (d, 1H), $8.53(\mathrm{~d}, 1 \mathrm{H}), 8.51(\mathrm{~d}, 1 \mathrm{H}), 8.34(\mathrm{~d}, 1 \mathrm{H}), 7.91(\mathrm{t}, 1 \mathrm{H})$, $7.71(\mathrm{t}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=197$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[3-(2,2-Dimethylpropionylamino)pyridin-4-yl]-N,Ndiisopropylbenzamide (8). Boronic acid $\mathbf{1}$ ($1.3 \mathrm{~g}, 5.2 \mathrm{mmol}$) and 2,2-dimethyl-N-(4-iodo-3-pyridinyl)propanamide (700 mg , $2.3 \mathrm{mmol}) 7$ were dissolved in DME (25 mL). Tetrakistriphenylphosphinepalladium ($133 \mathrm{mg}, 0.11 \mathrm{mmol}$) and 2 M sodium carbonate sol ution (2.2 mL) were added. The reaction mixture was refluxed at $83{ }^{\circ} \mathrm{C}$ for 18 h . The mixture was concentrated in vacuo, extracted with EtOAc, washed with brine, and dried with sodium sulfate. The crude oil was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1-5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to obtain 8 as a white solid ($503 \mathrm{mg}, 57 \%$): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}^{2} \mathrm{~d}_{6}$) $\delta 9.08$ (s, $1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.43$ (d, 1 H$), 7.58-7.48$ (m, 2 H), 7.40 (dd, 1 H), 7.33 (d, 1 H), 7.24 (dd, 1 H), 3.53-3.36 (m, 2 H), 1.38 (d, $3 \mathrm{H}), 1.01(\mathrm{~d}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, 3 \mathrm{H}), 0.77(\mathrm{~d}, 3 \mathrm{H})$; MS $\left(\mathrm{ES}^{+}\right)=382.0$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-Aza-5[H]-phenanthridin-6-one (9). Amide 8 (485 mg, 1.27 mmol) was dissolved in methanol (20 mL). Concentrated $\mathrm{HCl}(1 \mathrm{~mL})$ was added, followed by 24 h of refluxing of the mixture. A white solid that precipitated out of solution was filtered and dissolved in $\mathrm{H}_{2} \mathrm{O}$. After 15 min of stirring, the free base crashed out of solution. The solid was filtered and dried, providing 150 mg of the desired final product 9 as a white sol id (60\%): $\mathrm{mp}=303-309^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 8.70$ ($\mathrm{s}, 1$ H), $8.60(\mathrm{~d}, 1 \mathrm{H}), 8.41(\mathrm{t}, 2 \mathrm{H}), 8.31(\mathrm{~d}, 1 \mathrm{H}), 7.95(\mathrm{t}, 1 \mathrm{H}), 7.80$ $(\mathrm{t}, 1 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=197$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5,6-Dihydrobenzo[f][1,7]naphthyridin-5-ylamine (12). The boronic acid $\mathbf{1 1}(1.1 \mathrm{~g}, 4.6 \mathrm{mmol})$, prepared according to the literature method, ${ }^{23}$ 2-cyano-3-bromopyridine ($770 \mathrm{mg}, 4.2$
mmol), potassium carbonate ($1 \mathrm{~g}, 7.25 \mathrm{mmol}$), and tetrakistriphenyl phosphinepalladium (100 mg , catalyst) were mixed together in toluene (50 mL) and ethanol (5 mL) and heated to $70^{\circ} \mathrm{C}$ overnight. The reaction was quenched with water (75 $\mathrm{mL})$, and the mixture was then extracted with EtOAc (3×50 mL). The combined organics were dried and concentrated in vacuo and chromatographed (50:50 EtOAc/hexanes to 10\% $\mathrm{MeOH} / \mathrm{EtOAc}$) to yield the amine 12 ($235 \mathrm{mg}, 29 \%$): $\mathrm{mp}=$ $294-298{ }^{\circ}{ }^{\circ}$ ' $^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 8.86(\mathrm{~d}, 1 \mathrm{H}), 8.75(\mathrm{~d}, 1 \mathrm{H})$, $8.28(\mathrm{~d}, 1 \mathrm{H}), 7.72(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{t}, 1 \mathrm{H}), 7.38(\mathrm{t}, 1 \mathrm{H}), 6.21$ (bs, $2 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=196$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
7-Aza-5[H]-phenanthridin-6-one (13). The aniline 12 (50 $\mathrm{mg}, 0.25 \mathrm{mmol}$) was suspended in 1 mL of $\mathrm{H}_{2} \mathrm{O}$ and 0.7 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and cooled to $0^{\circ} \mathrm{C}$. A solution of $\mathrm{NaNO}_{2}(18 \mathrm{mg}, 0.26$ mmol in 0.2 mL of $\mathrm{H}_{2} \mathrm{O}$) was added to the acidic solution dropwise. The reaction mixture was warmed to room temperature and heated to $100^{\circ} \mathrm{C}$ for 3 h . The mixture was then cooled to room temperature, and some particulates were filtered off. The filtrate was set out overnight, and the resulting crystals were filtered off and triturated with boiling EtOAc and filtered. The resulting solid was characterized as the desired material 13 ($11.2 \mathrm{mg}, 22 \%$): $\mathrm{mp}=300-310^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }^{2}\right) \delta 11.91(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~d}, 1 \mathrm{H}), 8.43(\mathrm{~d}, 1 \mathrm{H})$, $7.85(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=197$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-Aza-5[H]-phenanthridin-6-one (15a). 4-Chloronicotinic acid ethyl ester 14a ($500 \mathrm{mg}, 2.7 \mathrm{mmol}$), boronic acid $\mathbf{1 0}$ (1.5 $\mathrm{g}, 6.1 \mathrm{mmol}$), sodium carbonate ($715 \mathrm{mg}, 6.6 \mathrm{mmol}$), and tetrakis triphenylphosphinepalladium (140 mg , catalyst) were suspended in DME (30 mL) and heated to $80^{\circ} \mathrm{C}$ overnight. The solvent was removed in vacuo and the residue was chromatographed on silica gel (50\% EtOAc/hexanes to 10\% $\mathrm{MeOH} / \mathrm{EtOAc}$) to yield the desired compound 15a as a yellow solid ($124 \mathrm{mg}, 24 \%$): $\mathrm{mp}=295-300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 11.80$ (bs, 1H), $9.43(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, 1 \mathrm{H}), 8.43(\mathrm{~m}, 2 \mathrm{H}), 7.62$ (t, 1H), $7.32(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=197$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N.

10-Aza-5[H]-phenanthridin-6-one (15b). The same procedure was used as 15a with boronic ester 10 and 2-chloropicolinic acid ethyl ester $\mathbf{1 4 b}$ to afford $\mathbf{1 5 b}$ as a yellow solid (34\%): $\mathrm{mp}=295-300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 11.90$ (bs, 1H), 9.06 (d, 1H), 8.63 (m, 2H), $7.69(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{t}, 1 \mathrm{H}), 7.40$ $(\mathrm{d}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=197$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}$, H, N.
Method A. Synthesis of 2-(6-Chloro-3-nitropyridin-2-yl)-N,N-diisopropylbenzamide (17a). The boronic acid $\mathbf{1}$ $(2.0 \mathrm{~g}, 8.0 \mathrm{mmol})$ was added to a solution of potassium carbonate (2.2 g in 8 mL of $\mathrm{H}_{2} \mathrm{O}$) and 2,5-dichloro-3-nitropyridine $\mathbf{1 6}(1.4 \mathrm{~g}, 7.3 \mathrm{mmol})$ in 100 mL of toluene/EtOH ($8: 1$). This mixture was deoxygenated in vacuo and refilled with nitrogen. After the mixture was stirred under nitrogen for 30 min, tetrakistriphenylphosphinepalladium (250 mg) was added to the mixture. The solution was heated to $80^{\circ} \mathrm{C}$ until complete conversion (no starting material) according to TLC (50:50 hexanes/EtOAc). The reaction mixture was then extracted with water and the toluene layer was dried and concentrated to yield a crude oil that was col umned on silica gel to afford the desired isomer 17a as a yellow oil ($1.20 \mathrm{~g}, 42 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~m}$, $1 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{bs}, 9 \mathrm{H}), 1.21(\mathrm{~d}, 3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=363$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{CIN}_{3} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
This material was carried on to the cyclization without further characterization. The undesired isomer 17b was also isol ated as a yellow oil ($1.01 \mathrm{~g}, 38 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.26$ (d, 1H), 7.45 (m, 4H), $7.34(\mathrm{t}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H})$, 1.37 (bs, 6H), $1.21(\mathrm{~d}, 6 \mathrm{H})$; MS $\left(\mathrm{ES}^{+}\right)=363$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20^{-}}\right.$ $\left.\mathrm{CIN}_{3} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

General Procedure for the Synthesis of Nitroamines 18b-g. Chloride 17a ($300 \mathrm{mg}, 0.83 \mathrm{mmol}$) was dissolved in THF (5 mL) followed by the addition of diisopropylethylamine ($160 \mu \mathrm{~L}, 0.91 \mathrm{mmol}$) and 2-(4-aminoethyl)morphol ine ($220 \mu \mathrm{~L}$, 1.66 mmol). The reaction mixture was heated to $65{ }^{\circ} \mathrm{C}$ overnight, and TLC analysis indicated a low running spot on the baseline (EtOAc). Water (5 mL) was added to the mixture
followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were dried and concentrated in vacuo to yield a crude foam that solidified upon drying in vacuo. The solid was triturated with hexanes and filtered to yield the desired amine 18b ($320 \mathrm{mg}, 85 \%$).

N,N-Diisopropyl-2-[6-(2-morpholin-4-ylethylamino)-3-nitropyridin-2-yl]benzamide (18b): yield $=85 \%$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 8.21(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 5 \mathrm{H}), 6.36(\mathrm{~d}, 1 \mathrm{H}), 3.97(\mathrm{~m}$, $1 \mathrm{H}), 3.70(\mathrm{~m}, 6 \mathrm{H}), 3.47(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 6 \mathrm{H})$, 1.48 (bs, 3H), 1.24 (bs, 3H), 1.06 (bs, 3H), 0.87 (bs, 3H); MS $\left(\mathrm{ES}^{+}\right)=456$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[6-(2-Diethylaminoethylamino)-3-nitropyridin-2-yl]N, N-diisopropylbenzamide (18c): yield $=92 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, 1 \mathrm{H}), 7.39(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 6.26(\mathrm{~d}$, 1H), $3.96(\mathrm{bs}, 1 \mathrm{H}), 3.50(\mathrm{bs}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 3 \mathrm{H})$, 1.86 (bs, 1H), 1.71 (m, 2H), 1.48 (bs, 3H), 1.35 (bs, 3H), 1.04 (t, 10H), 0.76 (bs, 3H). MS (ES $\left.{ }^{+}\right)=442$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{3}\right) \mathrm{C}$, H, N.

2-(6-Amino-3-nitropyridin-2-yl)-N,N-diisopropylbenzamide (18d): yield $=72 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, 1 \mathrm{H}), 7.42$ $(\mathrm{m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{~d}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H})$, $3.33(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{bs}, 6 \mathrm{H}), 0.99(\mathrm{bs}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ES}^{+}\right)=343$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N,N-Diisopropyl-2-[6-(4-isopropylpiperazin-1-yl)-3-ni-tropyridin-2-yl]benzamide (18e): yield $=83 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, 1 \mathrm{H}), 7.33-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{bs}, 1 \mathrm{H}), 6.51$ (d, 1H), 3.97 (bs, 1H), $3.76(\mathrm{~s}, 4 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H})$, $2.58(\mathrm{t}, 4 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, 6 \mathrm{H}), 1.00(\mathrm{~s}$, $3 \mathrm{H}), 0.67(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ES}^{+}\right)=454$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$, N.

N,N-Diisopropyl-2-(5'-nitro-4-pyrrolidin-1-yl-3,4,5,6-tetrahydro-2H-[1,2]bipyridinyl-6'-yl)benzamide (18f): yield $=81 \% ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~m}$, $1 \mathrm{H}), 6.65(\mathrm{~d}, 1 \mathrm{H}), 4.45(\mathrm{bs}, 1 \mathrm{H}), 3.97(\mathrm{bs}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H})$, $3.05(\mathrm{t}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 5 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~d}, \mathrm{H}), 1.79(\mathrm{~s}$, $5 \mathrm{H}), 1.50(\mathrm{~m}, 6 \mathrm{H}), 1.21$ (bs, 3H), 1.00 (bs, 3H), 0.67 (bs, 3H). MS (ES ${ }^{+}$) 426. Anal. ($\left.\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N,N-Diisopropyl-2-[6-(4-methylpiperazin-1-yl)-3-nitro-pyridin-2-yl]benzamide (18g): yield $=83 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.19(\mathrm{~d}, 1 \mathrm{H}), 7.34-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{~d}, 1 \mathrm{H})$, 3.97 (s, 1H), 3.76 (bs, 4H), $3.28(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{t}, 4 \mathrm{H}), 2.33(\mathrm{~s}$, 3 H), 1.48 (bs, 3H), 1.22 (bs, 3H), 1.00 (bs, 3H), 0.68 (bs, 3H); $\mathrm{MS}\left(\mathrm{ES}^{+}\right)=426$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

General Procedure for the Synthesis of Anilines 19bg. Nitro compound $\mathbf{1 8 b}$ ($300 \mathrm{mg}, 0.66 \mathrm{mmol}$) was dissol ved in $\mathrm{MeOH}(20 \mathrm{~mL})$ with $\mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$, and the mixture was hydrogenated at 30 psi for 2 h . TLC indicated complete conversion of the nitro compound ($10 \% \mathrm{MeOH} / \mathrm{EtOAc}$). The reaction mixture was filtered through a plug of Celite, and the filtrate was concentrated and dried. The crude foam was used in the cyclization step without further purification (275 $\mathrm{mg}, 99 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}), 6.31$ (d, 1H), $4.75(\mathrm{bs}, 2 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 4 \mathrm{H}), 3.28(\mathrm{~m}, 3 \mathrm{H})$, $2.56(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~d}, 3 \mathrm{H}), 1.19(\mathrm{~d}, 3 \mathrm{H}), 1.00(\mathrm{~d}$, $3 \mathrm{H}), 0.83(\mathrm{~d}, 3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=426$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}$, N.

2-[3-Amino-6-(2-diethylaminoethylamino)pyridin-2-yl]-N,N-diisopropylbenzamide (19c): yield $=92 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, 1 \mathrm{H}), 6.33(\mathrm{~d}$, $1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~m}, 3 \mathrm{H}), 2.53(\mathrm{~m}, 7 \mathrm{H}), 1.74(\mathrm{~m}, 4 \mathrm{H})$, 1.48 (d, 3H), 1.26 (s, 6H), 1.16 (d, 3H), 1.02 (m, 6H), 0.82 (m, $6 \mathrm{H})$; $\mathrm{MS}\left(\mathrm{ES}^{+}\right)=412$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{1} \cdot 1.8 \mathrm{MeOH}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(3,6-Diaminopyridin-2-yl)-N,N-diisopropylbenzamide (19d): yield $=89 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~m}, 3 \mathrm{H})$, $7.28(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}), 6.45(\mathrm{~d}, 1 \mathrm{H}), 4.07(\mathrm{bs}, 2 \mathrm{H}), 3.78(\mathrm{~m}$, 1H), 3.32 (m, 1H), $1.50(\mathrm{~d}, 3 \mathrm{H}), 1.19$ (d, 3H), 1.01 (d, 3H), 0.89 (d, 3 H). Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O} \cdot 0.5 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[3-Amino-6-(4-isopropylpiperazin-1-yl)pyridin-2-yl]-N,N-diisopropylbenzamide (19e): yield $=98 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, 1 \mathrm{H}), 6.96(\mathrm{~d}, 1 \mathrm{H}), 6.56(\mathrm{~d}, 1 \mathrm{H})$, $3.68(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 5 \mathrm{H}), 2.63(\mathrm{~m}, 5 \mathrm{H}), 1.46(\mathrm{~d}, 3 \mathrm{H}), 1.15(\mathrm{~d}$, $3 \mathrm{H}), 1.08(\mathrm{~d}, 3 \mathrm{H}), 0.95(\mathrm{~d}, 3 \mathrm{H}), 0.68(\mathrm{~d}, 3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=424$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O} \cdot 0.7 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(5'-Amino-4-pyrrolidin-1-yl-3,4,5,6-tetrahydro-2H-[1,2]-bipyridinyl- 6 '-yl)-N,N-diisopropylbenzamide (19f): yield $=95 \%{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 3 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H})$, $2.66(\mathrm{~m}, 6 \mathrm{H}), 2.17(\mathrm{bs}, 1 \mathrm{H}), 1.98(\mathrm{bd}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 4 \mathrm{H}), 1.61$ (m, 2H), $1.49(\mathrm{~d}, 3 \mathrm{H}), 1.17(\mathrm{~d}, 3 \mathrm{H}), 0.98(\mathrm{~d}, 3 \mathrm{H}), 0.73(\mathrm{~d}, 3 \mathrm{H})$; $\mathrm{MS}\left(\mathrm{ES}^{+}\right)=448$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 0^{25} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N.

2-[3-Amino-6-(4-methylpiperazin-1-yl)pyridin-2-yl]-N,Ndiisopropylbenzamide (19g): yield $=89 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.42(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 6.97$ (d, 1H), 6.57 (d, 1H), 3.68 $(\mathrm{m}, 1 \mathrm{H}), 3.37(\mathrm{~m}, 7 \mathrm{H}), 2.51(\mathrm{t}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, 3 \mathrm{H})$, 1.15 (d, 3H), 0.96 (d, 3H), 0.68 (d, 3H); MS (ES +) = 396. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

General Procedure for the Cyclization of Anilines 19b-g. The crude aniline 19b ($270 \mathrm{mg}, 0.64 \mathrm{mmol}$) was dissolved in THF (20 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. A 2.0 M solution of LDA (1 mL) was added to the aniline, and the reaction mixture was slowly warmed to room temperature overnight. The mixture was quenched with water (10 mL) and extracted several times with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organics were dried and concentrated and the resulting solid was triturated with EtOAc (3 mL) and filtered, yielding the desired amine 4b ($125 \mathrm{mg}, 58 \%$).

2-(2-Morpholin-4-ylethylamino)-5H-benzo[c][1,5]-naphthyridin-6-one (4b): yield $=58 \% ; \mathrm{mp}=250-255{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 11.46$ (s, 1H), $8.70(\mathrm{~d}, 1 \mathrm{H}), 8.32(\mathrm{~d}, 1 \mathrm{H})$, 7.92 (t, 1H), 7.71 (t, 1H), 7.49 (d, 1H), 6.82 (d, 1H), 6.63 (t, 1H), $3.66(\mathrm{~m}, 4 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 4 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=325$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(2-Diethylami noethylamino)-5H-benzo[c][1,5]-naphthyridin-6-one (4c): yield $=45 \%$; $\mathrm{mp}=114-116^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d 6) $\delta 11.40(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~d}, 1 \mathrm{H}), 8.24(\mathrm{~d}, 1 \mathrm{H})$, 7.84 (t, 1H), 7.65 (t, 1H), 7.41(d, 1H), 6.70 (d, 1H), 3.39 (m, $2 \mathrm{H}), 2.49(\mathrm{~m}, 6 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t} .6 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{-}\right)=233$. Anal. ($\left.\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Amino-5H-benzo[c][1,5]naphthyridin-6-one (4d): yield $=75 \% ; \mathrm{mp}=310-315{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}\right) \delta 11.42(\mathrm{~s}$, 1H), $8.50(\mathrm{~d}, 1 \mathrm{H}), 8.26(\mathrm{~d}, 1 \mathrm{H}), 7.85(\mathrm{t}, 1 \mathrm{H}), 7.66(\mathrm{t}, 1 \mathrm{H}), 7.44$ (d, 1H), $7.70(d, 1 H), 6.02(d, 2 H) ; M S\left(E S^{+}\right)=212$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O} \cdot 0.10 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(4-I sopropylpiperazin-1-yl)-5H-benzo[c][1,5]naph-thyridin-6-one (4e): yield $=57 \%$; $\mathrm{mp}=260-264^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{2}$) $\delta 11.48$ (s, 1H), 8.63 (d, 1H), 8.25 (d, 1H), 7.86 (t, $1 \mathrm{H}), 7.67(\mathrm{t}, 1 \mathrm{H}), 7.53(\mathrm{~d}, 1 \mathrm{H}), 7.10(\mathrm{~d}, 1 \mathrm{H}), 3.55(\mathrm{t}, 4 \mathrm{H}), 2.68$ $(\mathrm{m}, 1 \mathrm{H}), 2.56(\mathrm{t}, 4 \mathrm{H}), 1.00(\mathrm{~d}, 6 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=323$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(4-Pyrrolidin-1-ylpiperidin-1-yl)-5H-benzo[c][1,5]-naphthyridin-6-one hydrochloride (4f•HCI): yield $=52 \%$; $\mathrm{mp}=170-175^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 7.89(\mathrm{~d}, 1 \mathrm{H}), 7.80(\mathrm{~d}, 1 \mathrm{H})$, $7.54(\mathrm{t}, 1 \mathrm{H}), 7.43(\mathrm{t}, 1 \mathrm{H}), 6.94(\mathrm{~d}, 1 \mathrm{H}), 6.54(\mathrm{~d}, 1 \mathrm{H}), 4.08(\mathrm{~d}$, 2 H), $3.63(\mathrm{t}, 2 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{t}, 2 \mathrm{H}), 2.11-$ $2.2(\mathrm{~m}, 4 \mathrm{H}), 1.94(\mathrm{q}, 2 \mathrm{H}), 1.63(\mathrm{q}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O} \cdot 1 \mathrm{H}_{2} \mathrm{O}\right.$. $1.4 \mathrm{HCl}) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(4-Methylpiperazin-1-yl)-5H -benzo[c][1,5]naph-thyridin-6-one (4g): yield $=45 \% ; \mathrm{mp}=283-285^{\circ} \mathrm{C}$; $^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.50(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, 1 \mathrm{H}), 8.27(\mathrm{~d}, 1 \mathrm{H}), 7.88(\mathrm{t}, 1 \mathrm{H})$, $7.69(\mathrm{t}, 1 \mathrm{H}), 7.56(\mathrm{~d}, 1 \mathrm{H}), 7.14(\mathrm{~d}, 1 \mathrm{H}), 3.56(\mathrm{t}, 4 \mathrm{H}), 2.46(\mathrm{t}$, $4 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ES}^{+}\right)=295$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

General Procedure for Salt Formation ($\mathbf{4 g} \cdot \mathbf{M s O H}$). The free base $\mathbf{4 g}$ ($1.0 \mathrm{~g}, 3.4 \mathrm{mmol}$) was suspended in hot THF (200 mL) followed by the addition of methanesulfonic acid (326 mg , 3.4 mmol). Stirring was continued overnight, and the resulting solid was collected by vacuum filtration and dried in vacuo to yield the mesylate salt $\mathbf{4 g} \cdot \mathrm{MsOH}(1.28 \mathrm{~g}, 97 \%)$: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 7.74(\mathrm{~d}, 2 \mathrm{H}), 7.48(\mathrm{t}, 1 \mathrm{H}), 7.40(\mathrm{t}, 1 \mathrm{H}), 6.78(\mathrm{~d}, 1 \mathrm{H}), 6.37(\mathrm{~d}$, $1 \mathrm{H}), 4.09(\mathrm{~d}, 2 \mathrm{H}), 3.55(\mathrm{~d}, 2 \mathrm{H}), 3.08(\mathrm{t}, 2 \mathrm{H}), 2.92-2.96(\mathrm{~m}, 5 \mathrm{H})$, 2.74 (s, 3H). Anal. ($\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O} \cdot \mathrm{MsOH}$) C, H, N .

Method B. Synthesis of 2-(6-Chloro-3-nitropyridin-2yl)benzoic Acid Ethyl Ester (21a). The boronic ester 20 ($16.0 \mathrm{~g}, 61.0 \mathrm{mmol}$), dichloronitropyridine 16 ($11.7 \mathrm{~g}, 61 \mathrm{mmol}$), and potassium carbonate ($21 \mathrm{~g}, 152 \mathrm{mmol}$) were dissolved in toluene/EtOH ($20: 1,300 \mathrm{~mL}$). This mixture was purged of oxygen and refilled several times with nitrogen. Then, tet-
rakistriphenylphosphinepalladium ($\sim 2 \mathrm{~g}$) was added followed by heating the mixture to $80{ }^{\circ} \mathrm{C}$ overnight. The reaction mixture was then concentrated in vacuo and partitioned between EtOAc $(200 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. The organic layer was dried with sodium sulfate and concentrated in vacuo. The crude residue was chromatographed using a gradient system (5\% EtOAc/hexanes to 20% EtOAc/hexanes). The final product 21a ($\mathrm{R}_{\mathrm{f}}=0.3,10 \%$ EtOAc/hexanes) was isolated as a lowmelting solid/foam ($8.40 \mathrm{~g}, 45 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}$, $1 \mathrm{H}), 8.14(\mathrm{~d}, 1 \mathrm{H}), 7.65(\mathrm{t}, 1 \mathrm{H}), 7.55(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, 1 \mathrm{H}), 4.16$ (q, 2H), $1.19(\mathrm{t}, 3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=307$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{CIN}_{2} \mathrm{O}_{4}\right) \mathrm{C}$, H, N. The undesired isomer 21b $\left(\mathrm{R}_{\mathrm{f}}=0.2,10 \% \mathrm{EtOAc}\right.$ hexanes) was also isolated ($6.9 \mathrm{~g}, 35 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $8.32(\mathrm{~d}, 1 \mathrm{H}), 7.92(\mathrm{~d}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 4 \mathrm{H}), 4.25(\mathrm{dd}, 2 \mathrm{H}), 1.21(\mathrm{t}$, $3 \mathrm{H})$; MS $\left(\mathrm{ES}^{+}\right)=$307. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{CIN}_{2} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Synthesis of 2-[6-(4-Methylpiperazin-1-yl)-3-nitropy-ridin-2-yl]benzoic Acid Ethyl Ester (22a). The chloride 21a ($7.12 \mathrm{~g}, 23.2 \mathrm{mmol}$) was dissolved in THF (250 mL). Diisopropylethylamine ($3.3 \mathrm{~g}, 25.5 \mathrm{mmol}$) was added to this solution followed by N -methylpiperazine ($4.6 \mathrm{~g}, 46.4 \mathrm{mmol}$). This mixture was heated to $60^{\circ} \mathrm{C}$ overnight until complete conversion of the chloride was evident by TLC (R_{f} of diamine $=0.1$, EtOAc). The reaction was worked up by removal of THF and partitioning between water (200 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. After two more extractions with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$, the organic layer was dried with sodium sulfate and concentrated in vacuo to yield the crude diamine 22a as a yellow oil (6.56 $\mathrm{g}, 77 \%)$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~d}, 1 \mathrm{H}), 8.07(\mathrm{~d}, 1 \mathrm{H}), 7.58(\mathrm{t}$, $1 \mathrm{H}), 7.48(\mathrm{t}, 1 \mathrm{H}), 7.26(\mathrm{~d}, 1 \mathrm{H}), 6.60(\mathrm{~d}, 1 \mathrm{H}), 4.13(\mathrm{q}, 2 \mathrm{H}), 3.73$ $(\mathrm{t}, 4 \mathrm{H}), 2.46(\mathrm{t}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{t}, 3 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ES}^{+}\right)=371$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(3-Nitro-6-pi perazin-1-ylpyridin-2-yl)benzoic Acid Ethyl Ester (22b): yellow oil; yield $=90 \%$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.32$ (d, 1H), 8.07 (d, 1H), 7.58 (t, 1H), 7.48 (t, 1H), 7.25 (d, $1 \mathrm{H}), 6.60(\mathrm{~d}, 1 \mathrm{H}), 4.14(\mathrm{dd}, 2 \mathrm{H}), 3.72(\mathrm{~m}, 4 \mathrm{H}), 2.97(\mathrm{~m}, 2 \mathrm{H})$, $2.57(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{bs}, 1 \mathrm{H}), 1.13(\mathrm{t}, 3 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=357$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S,S)-5-[6-(2-Ethoxycarbonylphenyl)-5-nitropyridin-2-yl]-2,5-diazabicyclo[2.2.1]heptane-2-carboxylic acid tertbutyl ester (22c): yellow oil; yield = 82\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.34(\mathrm{~d}, 1 \mathrm{H}), 8.09(\mathrm{~d}, 1 \mathrm{H}), 7.58(\mathrm{t}, 1 \mathrm{H}), 7.51(\mathrm{t}, 1 \mathrm{H}), 7.25(\mathrm{~d}$, $1 \mathrm{H}), 6.29(\mathrm{~d}, 1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{dd}, 2 \mathrm{H})$, 3.54 (m, 2H), $3.40(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{t}$, $3 \mathrm{H})$; MS $\left(\mathrm{ES}^{+}\right)=469$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[6-(4-Cyclopropylmethylpiperazin-1-yl)-3-nitropyri-din-2-yl]benzoic acid ethyl ester (22d): yellow oil; yield $=83 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~d}, 1 \mathrm{H}), 8.08(\mathrm{~d}, 1 \mathrm{H}), 7.58(\mathrm{t}$, $1 \mathrm{H}), 7.48(\mathrm{t}, 1 \mathrm{H}), 7.25(\mathrm{~d}, 1 \mathrm{H}), 6.60(\mathrm{~d}, 1 \mathrm{H}), 4.13(\mathrm{dd}, 2 \mathrm{H}), 3.75$ $(\mathrm{m}, 4 \mathrm{H}), 2.58(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{t}, 3 \mathrm{H}), 0.87(\mathrm{~m}, 1 \mathrm{H})$, $0.53(\mathrm{~m}, 2 \mathrm{H}), 0.10(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=411$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}\right)$ C, H, N.

Reduction/Cyclization To Form 4g. The crude diamine 22a was dissolved in MeOH (300 mL). Wet Raney nickel was added (500 mg , catalytic amount) followed by dropwise addition of hydrazine hydrate ($4.1 \mathrm{~g}, 82 \mathrm{mmol}$). The mixture was heated to reflux and monitored by TLC until completion (approximately 3 h). The product R_{f} value was 0.1 in 10% $\mathrm{MeOH} / E t O A c$. The Raney nickel was then filtered off, the filtrate was concentrated, and the solid that resulted was filtered off and triturated with 50 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and filtered. The resulting light-yellow solid was dried under high vacuum for 2 h to yield $\mathbf{4 g}$ ($4.1 \mathrm{~g}, 84 \%$). This material was spectroscopically identical to the product isolated from method A.
(S,S)-5-(6-Oxo-5,6-dihydrobenzo[c][1,5]naphthyridin-2-yl)-2,5-diazabicyclo[2.2.1]heptane-2-carboxylic acid tertbutyl ester (4h): yield $=36 \%$; $\mathrm{mp}=259-261^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 11.44(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, 1 \mathrm{H}), 8.26(\mathrm{~d}, 1 \mathrm{H}), 7.67(\mathrm{t}$, 1H), $7.45(\mathrm{~d}, 1 \mathrm{H}), 6.85(\mathrm{t}, 1 \mathrm{H}), 4.92(\mathrm{dd}, 2 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 3.30$ (s, 1H), 3.23 (m, 1H), 1.96 (d, 2H), 1.60 (s, 9H). Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S,S)-2-(2,5-Diazabicyclo[2.2.1]hept-2-yl)-5H-benzo[c]-[1,5]naphthyridin-6-one trifluoroacetate (4i-TFA). This compound was made by the deprotection of the Boc group of compound $\mathbf{4 e}$ by 10% TF A/DCM (16 h). Removal of the sol vent
afforded the TFA salt of $\mathbf{4 i}$ as an off-white solid (98\%): $\mathrm{mp}=$ $160-165{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}\right) \delta 11.54(\mathrm{~s}, 1 \mathrm{H}), 8.68$ (d, 1H), $8.59(\mathrm{~d}, 1 \mathrm{H}), 7.90(\mathrm{t}, 1 \mathrm{H}), 7.72(\mathrm{t}, 1 \mathrm{H}), 7.61(\mathrm{~d}, 1 \mathrm{H}), 6.92(\mathrm{~d}$, $1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~m}, 2 \mathrm{H}), 2.19$ (d, 1H), $2.00(d, 1 H)$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O} \cdot 1.1\right.$ TFA•0.4H $\left.{ }_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N.

2-Piperazin-1-yl-5H-benzo[c][1,5]naphthyridin-6-one (4j): yield $=95 \%$; $m p=250-252^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) δ $11.56(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{bs}, 1 \mathrm{H}), 8.65(\mathrm{~d}, 1 \mathrm{H}), 8.27(\mathrm{~d}, 1 \mathrm{H}), 7.87(\mathrm{t}$, $1 \mathrm{H}), 7.70(\mathrm{t}, 1 \mathrm{H}), 7.61(\mathrm{~d}, 1 \mathrm{H}), 7.21(\mathrm{~d}, 1 \mathrm{H}), 3.61(\mathrm{t}, 4 \mathrm{H}), 3.26$ (bs, 4 H). Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O} \cdot 0 \cdot 5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S,S)-2-(5-Methyl-2,5-diazabicyclo[2.2.1]hept-2-yl)-5H-benzo[c][1,5]naphthyridin-6-one mesylate (4k•MsOH). This compound was made by alkylation of compound $\mathbf{4 j}$ as described in the literature. ${ }^{35}$ Salt formation was performed by suspending the free base ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) in THF (20 mL) followed by the addition of MsOH ($35 \mathrm{mg}, 0.36 \mathrm{mmol}$). The resulting salt precipitated out and was collected by filtration ($110 \mathrm{mg}, 26 \%$ overall): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 8.19$ (d, 1H), 8.01 (d, $1 \mathrm{H}), 7.71(\mathrm{t}, 1 \mathrm{H}), 7.59(\mathrm{t}, 1 \mathrm{H}), 7.18(\mathrm{~d}, 1 \mathrm{H}), 6.48(\mathrm{~d}, 1 \mathrm{H}), 4.88$ $(\mathrm{m}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H})$, $2.79(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N} 4 \mathrm{O} \cdot 1.1 \mathrm{MsOH} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}\right)$ C, H,N.

2-(4-Methyl-4-oxypiperazin-1-yl)-5H-benzo[c][1,5]naph-thyridin-6-one (41). This compound was synthesized by oxidation of $\mathbf{4 g}$ ($200 \mathrm{mg}, 0.68 \mathrm{mmol}$) with mCPBA (235 mg , 1.0 mmol) in dichloroethane. After the mixture was stirred overnight, the solid that precipitated out was filitered off, dissolved in water (5 mL), and extracted with EtOAc (3×10 mL). The aqueous layer was acidified with citric acid and extracted again with EtOAc $(3 \times 10 \mathrm{~mL})$ to remove traces of m-chlorobenzoic acid. The remaining aqueous layer was concentrated down, and the desired N -oxide 41 precipitated out and was collected by filtration (158 mg, 75\%): mp=300$320^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 7.63(\mathrm{~d}, 1 \mathrm{H}), 7.53(\mathrm{~d}, 1 \mathrm{H}), 7.32$ $(\mathrm{m}, 2 \mathrm{H}), 6.60(\mathrm{~d}, 1 \mathrm{H}), 6.16(\mathrm{~d}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{t}, 2 \mathrm{H})$, $3.55(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{t}, 2 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{ES}^{+}\right)=311$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{\circ}\right.$ $\left.0.4 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(4-Cyclopropylmethylpiperazin-1-yl)-5H-benzo[c][1,5]-naphthyridin-6-one mesylate ($4 \mathrm{~m} \cdot \mathrm{MsOH}$): yield $=82 \%$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 8.55(\mathrm{~d}, 1 \mathrm{H}), 8.17(\mathrm{~d}, 1 \mathrm{H}), 7.76(\mathrm{t}, 1 \mathrm{H}), 7.58(\mathrm{t}$, 1H), $7.46(\mathrm{~d}, 1 \mathrm{H}), 7.05(\mathrm{~d}, 1 \mathrm{H}), 3.49(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~m}, 4 \mathrm{H}), 2.12$ $(\mathrm{m}, 2 \mathrm{H}), 0.77(\mathrm{~m}, 1 \mathrm{H}), 0.39(\mathrm{~m}, 2 \mathrm{H}), 0.00(\mathrm{~m}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O} \cdot 1.15 \mathrm{M}\right.$ sOH$\left.\cdot 0.7 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Procedure for Synthesizing Chloracetyl Derivatives 23 and 27. Amine 4d (or 4n) was dissolved in DMA, and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. Triethylamine (1.1 equiv) and chloroacetyl chloride ($0.44 \mathrm{~mL}, 5.5 \mathrm{mmol}$) were added. The reaction mixture was stirred at room temperature under nitrogen overnight. Solvent was evaporated under reduced pressure, and to the resulting brown residue was added water and $10 \% \mathrm{NaHCO}_{3}$. Solid was collected by filtration to yield chloride 23 as a white solid ($1.03 \mathrm{~g}, 84 \%$): $\mathrm{mp}=287-$ $290{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d6) $\delta 11.81(\mathrm{~s}, 1 \mathrm{H}), 10.94(\mathrm{~s}, 1 \mathrm{H}), 8.66$ $(\mathrm{d}, 1 \mathrm{H}), 8.31(\mathrm{~d}, 1 \mathrm{H}), 8.20(\mathrm{~d}, 1 \mathrm{H}), 7.96(\mathrm{t}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H})$, 4.42 (s, 2H). Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Chloro-N-(6-oxo-5,6-di hydrobenzo[c][1,5]naphthy-ridin-3-yl)acetamide (27): yield $=87 \%$; $\mathrm{mp}=280-284^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 11.82(\mathrm{~s}, 1 \mathrm{H}), 10.86(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~m}$, $2 \mathrm{H}), 8.26(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{t}, 1 \mathrm{H}), 7.71(\mathrm{t}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

General Procedure for the Amination of Chlorides 23 and 27. The chloride 23 ($690 \mathrm{mg}, 2.4 \mathrm{mmol}$) was suspended in DMA (20 mL) followed by addition of dimethylamine (2.0 M solution in THF , $6 \mathrm{~mL}, 12 \mathrm{mmol}$). The mixture was heated to $80^{\circ} \mathrm{C}$ overnight, and the resulting mixture was stripped of solvent and washed with water (50 mL). The resulting solid was suspended in THF followed by addition of $\mathrm{HCl}(2.0 \mathrm{M}$ in $\left.E t_{2} \mathrm{O}, 1.2 \mathrm{~mL}, 2.4 \mathrm{mmol}\right)$ and precipitation of a solid. The resulting solid was triturated with diethyl ether and collected via filtration to afford the desired amine 24a as a white solid ($727 \mathrm{mg}, 82 \%$).

2-Dimethylamino-N-(6-0xo-5,6-dihydrobenzo[c][1,5]-naphthyridin-2-yl)acetamide hydrochloride (24a•HCI):
$m p=195-198^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 7.87(\mathrm{~d}, 1 \mathrm{H}), 7.76(\mathrm{~d}, 1 \mathrm{H})$, 7.56 (t, 1H), 7.47 (m, 2H), 7.06 (d, 1H), 4.15 (s, 2H), 3.00 (s, 6 H). Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O} \cdot 1.0 \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(6-Oxo-5,6-dihydrobenzo[c][1,5]naphthyridin-2-yl)-2-piperidin-1-ylacetamide hydrochloride ($\mathbf{2 4 b} \cdot \mathbf{H C l}$): yield $=87 \% ; \mathrm{mp}=175-180^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 8.03(\mathrm{bd}, 1 \mathrm{H})$, $7.90(\mathrm{~d}, 1 \mathrm{H}), 7.66(\mathrm{t}, 1 \mathrm{H}), 7.59(\mathrm{~d}, 1 \mathrm{H}), 7.54(\mathrm{t}, 1 \mathrm{H}), 7.22(\mathrm{~d}$, 1H), $4.12(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 1.86(\mathrm{~m}, 6 \mathrm{H})$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N -(6-0xo-5,6-dihydrobenzo[c][1,5]naphthyridin-2-yl)-2-(4-pyrrolidin-1-ylpiperidin-1-yl)acetamide•HCI (24cHCI): yield $=92 \% ; \mathrm{mp}=196-200^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 7.61$ $(\mathrm{m}, 2 \mathrm{H}), 7.47(\mathrm{t}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H})$, $3.50(\mathrm{~s}, 2 \mathrm{H}), 3.33(\mathrm{~m}, 4 \mathrm{H}), 2.68(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~m}, 3 \mathrm{H}), 1.87-$ $2.12(\mathrm{~m}, 6 \mathrm{H})$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(4-I sopropylpiperazi $n-1-y l)-N-(6-o x o-5,6-d i h y d r o-$ benzo[c][1,5]naphthyridin-2-yl)acetamide hydrochloride (24d•2HCl): yield $=90 \%$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) ~ \delta 7.92(\mathrm{~d}, 1 \mathrm{H})$, $7.80(\mathrm{~d}, 1 \mathrm{H}), 7.59(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}, 1 \mathrm{H}), 7.16(\mathrm{~d}, 1 \mathrm{H}), 3.54(\mathrm{~m}$, 1H), $3.49(\mathrm{~s}, 2 \mathrm{H}), 3.32(\mathrm{~m}, 4 \mathrm{H}), 2.87(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~d}, 6 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O} \cdot 2.0 \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(3,5-Dinitropyridin-2-yl)-N,N-diisopropylbenzamide (26): yellow foam; yield $=85 \%$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $9.55(\mathrm{~d}, 1 \mathrm{H}), 9.05(\mathrm{~d}, 1 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, 2 \mathrm{H}), 4.02(\mathrm{bs}$, 1H), 3.43 (bs, 1H), 1.33 (bs, 6H), 1.20 (bs, 6H). Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-Amino-5H-benzo[c][1,5]naphthyridin-6-one (4n). The cyclization to form amine $\mathbf{4 n}$ was accomplished through the diamine cyclization with LDA in the same manner as amine 4d (48\%): $\mathrm{mp}=300-310^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 11.46$ (bs, 1H), $8.49(\mathrm{~d}, 1 \mathrm{H}), 8.17(\mathrm{~d}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{t}, 1 \mathrm{H}), 7.51$ (t, 1H), $6.79(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~d}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O} \cdot 1.0 \mathrm{H}_{2} \mathrm{O}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Dimethylamino-N-(6-oxo-5,6-dihydrobenzo[c][1,5]-naphthyridin-3-yl)acetamide hydrochloride (28a•HCI): yield $=83 \% ; m p=285-289^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 7.82(\mathrm{~d}, 1 \mathrm{H})$, $7.76(\mathrm{~d}, 1 \mathrm{H}), 7.70(\mathrm{~d}, 1 \mathrm{H}), 7.63(\mathrm{t}, 1 \mathrm{H}), 7.50(\mathrm{t}, 1 \mathrm{H}), 7.40(\mathrm{~d}$, 1 H), $4.16(\mathrm{~s}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 6 \mathrm{H})$. Anal. ($\left.\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \cdot 1.0 \mathrm{HCl}\right)$ C, H, N.

N-(6-0xo-5,6-dihydrobenzo[c][1,5]naphthyridin-3-yl)-2-piperidin-1-ylacetamide hydrochloride ($28 \mathrm{~b} \cdot \mathrm{HCl}$): yield $=82 \%$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 8.03(\mathrm{bd}, 1 \mathrm{H}), 7.90(\mathrm{~d}, 1 \mathrm{H}), 7.66(\mathrm{t}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, 1 \mathrm{H}), 7.54(\mathrm{t}, 1 \mathrm{H}), 7.22(\mathrm{~d}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 3.63$ $(\mathrm{s}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 1.86(\mathrm{~m}, 6 \mathrm{H})$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \cdot\right.$ $1.0 \mathrm{HCl}) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

N-(6-0xo-5,6-dihydrobenzo[c][1,5]naphthyridin-3-yl)-2-(4-pyrrolidin-1-ylpiperidin-1-yl)acetamide mesylate (28c-2MsOH): yield = 89\%; ${ }^{1}$ H NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) ~ \delta 7.48(\mathrm{~d}, 1 \mathrm{H}), 7.31$ $(\mathrm{d}, 1 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H})$, $3.43-3.31(\mathrm{~m}, 5 \mathrm{H}), 3.22(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~m}, 2 \mathrm{H})$, $2.48(\mathrm{~s}, 6 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.65(\mathrm{~m}, 6 \mathrm{H})$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2}\right.$. $\left.2 \mathrm{H}_{2} \mathrm{O} \cdot 2 \mathrm{MsOH}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(4-Dimethylaminopiperidin-1-yl)-N-(6-oxo-5,6-di-hydrobenzo[c][1,5]naphthyridin-3-yl)acetamide hydrochloride ($28 \mathrm{~d} \cdot \mathrm{HCl}$): yield = 89\%; ${ }^{1}$ HNMR ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 7.78(\mathrm{~d}$, $1 \mathrm{H}), 7.60(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{t}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 3 \mathrm{H}), 3.47$ $(\mathrm{s}, 2 \mathrm{H}), 3.40(\mathrm{~m}, 4 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~d}, 6 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 2.25 \mathrm{H}_{2} \mathrm{O} \cdot 1 \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

PARP-1 Inhibition Assay. Purified recombinant human PARP from Trevigan (Gaithersburg, MD) was used to determine the $I C_{50}$ values of a PARP inhibitor. The PARP enzyme assay is set up on ice in a volume of $100 \mu \mathrm{~L}$ consisting of 50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.0), 2 \mathrm{mM} \mathrm{MgCl} 2,30 \mu \mathrm{~g} / \mathrm{mL}$ of DNase activated herring sperm DNA (Sigma, MO), $30 \mu \mathrm{M}[3 \mathrm{H}]-$ nicotinamide adenine dinucl eotide ($67 \mathrm{mCi} / \mathrm{mmol}$), $75 \mu \mathrm{~g} / \mathrm{mL}$ PARP enzyme, and various concentrations of the compounds to be tested. The reaction is initiated by incubating the mixture at $25{ }^{\circ} \mathrm{C}$. After 15 min of incubation, the reaction was terminated by adding $500 \mu \mathrm{~L}$ of ice-cold 20% (w/v) trichloroacetic acid. The preci pitate formed is transferred onto a glass fiber filter (Packard Unifilter-GF/B) and washed three times with ethanol. After the filter is dried, the radioactivity is determined by scintillation counting.

Methods for Determining EC $\mathbf{5 0}_{50}$ Values. The $\mathrm{H}_{2} \mathrm{O}_{2}$ cytotoxicity assay was utilized for EC_{50} determination as outlined by our group in a previous publication. ${ }^{25}$ P388D1 cells (CCL46, ATCC, Rockville, MD), derived from murine-macrophagelike tumor, were maintained in Dulbeco's modified Eagle medium (DMEM) with 10% horse serum and 2 mM Lglutamine. The cytotoxicity assay was set up in a 96-well plate. In each well, $190 \mu \mathrm{~L}$ cells were seeded at $2 \times 10^{6} / \mathrm{mL}$ density. To determine the EC_{50}, the concentration of a compound required to achieve 50% reduction of cell death, a doseresponsive experiment was conducted. The inhibitors were added to the media with final concentrations of $0.01,0.03,0.1$, $0.3,1,3,10$, and $30 \mu \mathrm{M}$. Each data point was an average of quadruplicate measurements. After 15 min of incubation with the inhibitors, $5 \mu \mathrm{~L}$ of freshly prepared $\mathrm{H}_{2} \mathrm{O}_{2}$ was added to the cells to a final concentration of 2 mM . Cells were returned to a $37{ }^{\circ} \mathrm{C}$ incubator for 4 h . At the end of the incubation, $25 \mu \mathrm{~L}$ of supernatant were sampled from the cell media to determine the level of lactate dehydrogenase released from dead cells. We used an LDH assay adapted from Sigma Co. (St. Louis, MO) and followed the experimental procedure according to the manufacturer. The LDH activity was determined by monitoring the rate of decrease of NADH absorbency at 340 nM . Background LDH activity was subtracted. The group without drug treatment was used to calculate total cell death due to $\mathrm{H}_{2} \mathrm{O}_{2}$ treatment. The EC_{50} was determined from a doseresponse curve.

Methods for Solubility Testing. The sol ubility data was recorded by a Nepheloskan Ascent Instrument, type 750 manufactured by Labsystems. The instrument settings were the following: PMT voltage =300; lamp voltage $=10.0$. The first step is to prepare the vehicles in which solubility values are desired. The following vehicles were used for evaluation: 50 mM citrate buffer (pH 4.0), 70 mM phosphate buffer saline (PBS) (pH 7.4). Citrate buffer was prepared by dissolving 10.5 g of citric acid in 1000 mL of deionized (DI) water and adjusting the pH using 10 N NaOH . PBS was prepared by dissolving 1.9 g of $\mathrm{KH}_{2} \mathrm{PO}_{4}, 8.1 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$, and 4.1 g of NaCl in 1000 mL of DI water and adjusting the pH using 10 N NaOH . The test compounds were dissolved in the vehicle at $5 \mathrm{mg} / \mathrm{mL}$. The mixtures were vortexed for 5 s , sonicated for 10 min at $37^{\circ} \mathrm{C}$, and then vortexed again for 5 s . The samples ($400 \mu \mathrm{~L}$ of each) were transferred to a 96 -well plate and immediately analyzed for turbidity.

Methods for Evaluating the Degradation of $\mathbf{4 g}$ in Microsomal Enzymes. Compound $\mathbf{4 g} \cdot \mathrm{MsOH}(100 \mu \mathrm{M})$ was incubated with pooled liver microsomes (0.1 or $1.0 \mathrm{mg} / \mathrm{mL}$) from rat, dog, monkey, or human and with an NADPHgenerating system (1 mM NADP ${ }^{+}, 10 \mathrm{mM}$ glucose 6-phosphate, $1 \mathrm{U} / \mathrm{mL}$ glucose 6-phosphate dehydrogenase, 5 mM MgCl) in 100 mM potassium phosphate buffer, pH 7.4 . The reactions were initiated by substrate addition. Incubations were carried out at $37^{\circ} \mathrm{C}$. Aliquots of $300 \mu \mathrm{~L}$ were withdrawn at various time points and mixed with $500 \mu \mathrm{~L}$ of acetonitrile to stop the reaction. Quantitation was performed on an LC/MS/MS system consisting of an Agilent 1100 HPLC system with a YMC basic reversed-phase column coupled to a Micromass Ultima mass spectrometer.

Methods for Evaluating Pharmacokinetic Samples of $\mathbf{4 g}, \mathbf{4 I}, \mathbf{4 j}, \mathbf{4 m}$, and 24c. The selected PARP-1 inhibitors were dosed as an intravenous bolus into male Wistar rats at $10 \mathrm{mg} /$ kg over 5 min (5 mL total volume). One animal was sacrificed at each time point, and samples from the desired tissues or plasma were collected and assayed as described below.

Sample Preparation. The calibration standards covered the range $1-1000 \mathrm{ng} / \mathrm{m}$. The quality control (QC) standard ranges were $3,30,300$, and $800 \mathrm{ng} / \mathrm{mL}$. A 1:10 dilution of the $800 \mathrm{ng} / \mathrm{mL}$ QC sample was run. Sample from tissue, calibration standards, and QC samples were subjected to protein precipitation by acetonitrile followed by filtration in an Anasys, Captiva 96 -well filter plate. All samples were analyzed on a LC/MS/MS (MicroMass Ultima) with an electrospray source in positive ion mode.

Analytical Method for 4g. Mobile phase: isocratic, acetonitrile (ACN), and 0.1% formic acid in water. Column: YMC Basic, $3 \mu \mathrm{~m}, 4.0 \mathrm{~mm} \times 50.0 \mathrm{~mm}$. Injection volume: $10 \mu \mathrm{~L}$.

Analytical Method for 4j. Mobile phase: gradient of ACN and 10 mM NH 4 AC (ammonium acetate), $15-75 \%$ ACN linear gradient from 0 to 2.0 min was run, followed by isocratic 75% ACN until 2.4 min . From 2.4 to 4.0 min , the column was reequilibrated at 15% ACN. Column: Phenomenex Aqua, 3 $\mu \mathrm{m}$ C18 125A, $30 \mathrm{~mm} \times 4.60 \mathrm{~mm}$. Injection volume: $10 \mu \mathrm{~L}$.

Analytical Method for $\mathbf{4 m}$. Mobile phase: gradient of ACN and 10 mM NH 44 AC (ammonium acetate), $15-75 \%$ ACN linear gradient from 0 to 2.0 min was run, followed by isocratic 75% ACN until 2.4 min . From 2.4 to 4.0 min , the column was reequilibrated at 15% ACN. Column: Phenomenex Aqua, 3 $\mu \mathrm{m}$ C18 125A, $30 \mathrm{~mm} \times 4.60 \mathrm{~mm}$. Injection volume: $20 \mu \mathrm{~L}$.

Analytical Method for 41. Mobile phase: gradient of ACN and $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{AC}$ (ammonium acetate), 15-75\% ACN linear gradient from 0 to 2.0 min was run, followed by isocratic 75\% ACN until 2.4 min . From 2.4 to 4.0 min , the column was reequilibrated at 15% ACN. Column: YMC Basic, $3 \mu \mathrm{~m}, 4.0$ $\mathrm{mm} \times 50.0 \mathrm{~mm}$. Injection volume: $10 \mu \mathrm{~L}$.

Analytical Method for 24c. Mobile phase: isocratic, acetonitrile (ACN), and 0.1% formic acid in water. Column: YMC Cyno, $3 \mu \mathrm{~m}$ 120A, $30 \mathrm{~mm} \times 50.0 \mathrm{~mm}$. Injection volume: $25 \mu \mathrm{~L}$.

Method for Testing PARP Inhibitors in Focal Cerebral Ischemic Stroke. Transient focal ischemic stroke was modeled in rats using the intraluminal thread procedure as modified by Belayev. ${ }^{31}$ Male Sprague-Dawley rats (280-320 g, Charles River, Wilmington, MA) were anesthetized with isofluorane. A polylysinized 3-0 suture was inserted through the internal carotid artery into the origin of the middle cerebral artery (MCA). The suture is removed after 2 h of MCA occlusion.

Permanent focal cerebral ischemic stroke was modeled in rats using a modification of the method described by Chen et al. ${ }^{32}$ Male Long Evans rats (280-350 g, Harlan-Sprague Dawley, Indianapolis, IN) were anesthetized with isofluorane. The right and left common carotid arteries and the right distal MCA were exposed and isolated. The distal MCA was cauterized, and the carotids were transiently occluded for 90 min . ${ }^{36}$

All drugs were administered 30 min after the start of MCA occlusion. F or both models, the brains were collected into cold PBS at 24 h after ischemia. The brains were sliced and processed for TTC histochemistry, and the apparent infarcts were measured using computer-assisted planimetry. In the transient paradigm, total infarcts average $350 \mathrm{~mm}^{3}$ including both cortical and subcortical tissue. In the permanent model, the infarcts were exclusively cortical and averaged $180 \mathrm{~mm}^{3}$. The effect of drug treatment is expressed as the percent reduction in infarct volume compared to coincident vehicle controls. Statistical significance was determined using the Student t test with a confidence interval accepted when $\rho \leq$ 0.05 .

Method for Testing PARP Inhibitors in Myocardial Ischemia Assay. ${ }^{33}$ The compounds were solubilized in either 70 mM phosphate-buffered saline $(\mathbf{4 g})$ or 50 mM citrate buffer ($\mathbf{4 m}$ and 24c). The only deviation from the literature assay was that half of the desired compound was administered as a bolus dose 5 min before the ischemic event and the other half of the compound was given as a bolus dose 5 min before reperfusion.

References

(1) Herceg, Z.; Wang, Z. Q. Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Mol. Cell. Biol. 1999, 19, 5124-5133.
(2) Decker, P.; Isenberg, D.; Muller, S. Inhibition of caspase-3mediated poly(ADP-ribose) polymerase (PARP) apoptotic cleavage by human PARP autoantibodies and effect on cells undergoing apoptosis. J. Biol. Chem. 2000, 275, 9043-9046.
(3) Yu, S.-W.; Wang, H.; Poitras, M. F.; Coombs, C.; Bowers, W. J.; Federoff, H. J.; Poirer, G. G.; Dawson, T. M.; Dawson, V. L. Mediation of Poly(ADP-ribose) Polymerase-1-Dependent Cell

Death by Apoptosis-I nducing Factor. Science 2002, 297, 259263.
(4) Rolli, V.; O'F arrell, M.; Menissier-de Murcia, J.; de Murcia, G. Random mutagenesis of the poly(ADP-ribose) polymerase catalytic domain reveals amino acids involved in polymer branching. Biochemistry 1997, 36, 12147-12154.
(5) de Murcia, G.; Schreiber, V.; Molinete, M.; Saulier, B.; Poch, O.; Masson, M.; Niedergang, C.; Menissier de Murcia, J. Structure and function of poly(ADP-ribose) polymerase. Mol. Cell. Biochem. 1994, 138, 15-24.
(6) J eggo, P. A. DNA repair: PARP-another guardian angel? Curr. Biol. 1998, 8, R49-R51.
(7) Takahashi, K.; Pieper, A. A.; Croul, S. E.; Zhang, J .; Snyder, S. H.; Greenberg, J. H. Post-treatment with an inhibitor of poly-(ADP-ribose) polymerase attenuates cerebral damage in focal ischemia. Brain Res. 1999, 829, 46-54.
(8) Nagayama, T.; Simon, R. P.; Chen, D.; Henshall, D. C.; Pei, W.; Stetler, R. A.; Chen, J . Activation of poly(ADP-ribose) polymerase in the rat hippocampus may contribute to cellular recovery following sublethal transient global ischemia. J. Neurochem. 2000, 74, 1636-1645.
(9) Eliasson, M. J.; Sampei, K.; Mandir, A. S.; Hurn, P. D.; Traystman, R. J.; Bao, J .; Pieper, A.; Wang, Z. Q.; Dawson, T. M.; Snyder, S. H.; Dawson, V. L. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat. Med. 1997, 3, 1089-1095.
(10) Pieper, A. A.; Walles, T.; Wei, G.; Clements, E. E.; Verma, A.; Snyder, S. H.; Zweier, J. L. Myocardial postischemic injury is reduced by polyADPribose polymerase-1 gene disruption. Mol. Med. 2000, 6, 271-282.
(11) Abdelkarim, G. E.; Gertz, K.; Harms, C.; K atchanov, J .; Dirnagl, U.; Szabo, C.; Endres, M. Protective effects of PJ 34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke. Int. J. Mol. Med. 2001, 7, 255-260.
(12) Watson, C. Y.; Whish, W. J.; Threadgill, M. D. Synthesis of 3 -substituted benzamides and 5 -substituted isoquinolin-1(2H)ones and preliminary evaluation as inhibitors of poly(ADPribose)polymerase (PARP). Bioorg. Med. Chem. 1998, 6, 721734.
(13) Griffin, R. J.; Srinivasan, S.; Bowman, K.; Calvert, A. H.; Curtin, N. J.; Newell, D. R.; Pemberton, L. C.; Golding, B. T. Resistancemodifying agents. 5. Synthesis and biological properties of quinazol inone inhibitors of the DNA repair enzyme poly(ADPribose) polymerase (PARP). J. Med. Chem. 1998, 41, 5247-5256.
(14) Li, J. H.; Serdyuk, L.; Ferraris, D. V.; Xiao, G.; Tays, K.; Kletzly, P. W.; Li, W.; Lautar, S.; Zhang, J.; Kalish, V. Synthesis of 5[H]-Phenanthridin-6-ones as potent poly(ADP-ribose)polymerase-1 (PARP1) inhibitors. Bioorg. Med. Chem. Lett. 2001, 11, 16871690.
(15) Ruf, A.; de Murcia, G.; Schulz, G. E. Inhibitor and NAD+ binding to poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling. Biochemistry 1998, 37, 38933900.
(16) White, A. W.; Almassy, R.; Calvert, A. H.; Curtin, N. J .; Griffin, R. J .; Hostomsky, Z.; Maegley, K.; Newell, D. R.; Srinivasan, S.; Golding, B. T. Resistance-modifying agents. 9. Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase. J. Med. Chem. 2000, 43, 4084-4097.
(17) Canan Koch, S. S.; Thoresen, L. H.; J ayashree, G. T.; Maegley, K. A.; Almassy, R. J.; Li, J.; Yu, X.-H.; Zook, S. E.; Kumpf, R. A.; Zhang, C.; Boritzki, T. J.; Mansour, R. N.; Zhang, K. E.; Ekker, A.; Calabrese, C. R.; Curtin, N. J.; Kyle, S.; Thomas, H. D.; Wang, L.-Z.; Calvert, A. H.; Golding, B. T.; Griffin, R. J.; Newell, D. R.; Webber, S. E.; Homstomsky, Z. Novel tricyclic poly(ADP-ribose) polymerase 1 inhibitors with potent anticancer chemopotentiating activity: Design, synthesis and X-ray cocrystal structure. J. Med. Chem. 2002, 45, 4961-4974.
(18) Shinkwin, A. E.; Whish, W. J.; Threadgill, M. D. Synthesis of thiophenecarboxamides, thieno[3,4-c]pyridin-4(5H)-ones and thieno[3,4-d]pyrimidin-4(3H)-ones and preliminary evaluation as inhibitors of poly(ADP-ribose)polymerase (PARP). Bioorg. Med. Chem. 1999, 7, 297-308.
(19) Rocca, P.; Cochennec, C.; Marsais, F.; Thomas-dit-Dumont, L.; Mallet, M.; Godard, A.; Queguiner, G. First Metalation of Aryl Iodides: Directed Ortho-Lithiation of I odopyridines, HalogenDance, and Application to Synthesis. J . Org. Chem. 1993, 58, 7832-7838.
(20) Park, Y.-T.; J ung, C.-H.; Kim, M.-S.; Kim, K.-W. Photoreaction of 2-Halo-N-pyridinylbenzamide: Intramolecular Cyclization Mechanism of Phenyl Radical Assisted with n-Complexation of Chlorine Radical. J. Org. Chem. 2001, 66, 2197-2206.
(21) Rocca, P.; Marsais, F.; Godard, A.; Queguiner, G. Connection between Metalation and Cross-Coupling Strategies. A New

Convergent Route to Azacarbazoles. Tetrahedron 1993, 49, 4964.
(22) Guillier, F.; Nivoliers, F.; Godard, A.; Marsais, F.; Queguiner, G.; Siddiqui, M. A.; Snieckus, V. Combined Metalation-Palladium-Catalyzed Cross Coupling Strategies. A Formal Synthesis of the Marine Alkaloid Amphimedine. J. Org. Chem. 1995, 60, 292-296.
(23) Kristensen, J.; Lysen, M.; Vedso, P.; Begtrup, M. Synthesis of ortho substituted arylboronic esters by in situ trapping of unstable lithio intermediates. Org. Lett. 2001, 3, 1435-1437.
(24) Banasik, M.; Komura, H.; Shimoyama, M.; Ueda, K. Specific inhibitors of poly(ADP-ribose)synthetase and mono(ADP-ribosyl)transferase. J. Biol. Chem. 1992, 267, 1569-1575.
(25) Zhang, J .; Lautar, S.; Huang, S.; Ramsey, C.; Cheung, A.; Li, J . H. GPI 6150 prevents $\mathrm{H}(2) \mathrm{O}(2)$ cytotoxicity by inhibiting poly-(ADP-ribose) polymerase. Biochem. Biophys. Res. Commun. 2000, 278, 590-598.
(26) Beyan, C. D.; Lloyd, R. S. A high throughput screening method for the determination of aqueous drug solubility using laser nephelometry in microtiter plates. Anal. Chem. 2000, 72, 17811787.
(27) The structure of compound $\mathbf{4 I}$ was deduced from ${ }^{1} \mathrm{H}$ NMR.
(28) Bergstad, K.; Backvall, J. E. Mild and Efficient Flavin-Catalyzed H2O2 Oxidation of Tertiary Amines to Amine N-Oxides. J. Org. Chem. 1998, 63, 6650-6655.
(29) Guengerich, F. P. Cytochrome P450. Enzyme Systems That MetaboliseDrugs and Other Xenobiotics; Wiley-VCH: Weinheim, Germany, 2002; pp 33-67.
(30) Silverman, R. B. Pathways for Drug Deactivation and Elimination. The Organic Chemistry of Drug Design and Drug Action; Academic Press: London, 1992; pp 287-351.
(31) Belayev, L. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 1996, 27, 1616-1622.
(32) Chen, S. T. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke 1986, 17, 738743.
(33) Wayman, N.; McDonald, M. C.; Thompson, A. S.; Threadgill, M. D.; Thiemermann, C. 5-Aminoisoquinoline, a potent inhibitor of poly (adenosine 5'-phosphate ribose) polymerase, reduces myocardial infarct size. Eur. J. Pharmacol. 2001, 430, 93-100.
(34) Kukreja, R. C.; Qian, Y. Z.; Okubo, S.; Flaherty, E. E. Role of protein kinase C and 72 kDa heat shock protein in ischemic tolerance following heat stress in the rat heart model. Mol. Cell. Biochem. 1999, 195, 123-131.
(35) Romanelli, M. N.; Manetti, D.; Scapecchi, S.; Borea, P. A.; Dei, S.; Bartolini, A.; Ghelardini, C.; Gualtieri, F.; Guandalini, L.; Varani, K. Structure-activity relationships of a unique nicotinic ligand: N1-Dimethyl-N4-phenylpiperazinium iodide (DMPP). J. Med. Chem. 2001, 44, 3946-3955.
(36) Takahashi, K.; Greenberg, J. H.; J ackson, P.; Maclin, K.; Zhang, J. Neuroprotective effects of inhibiting poly(ADP-ribose) synthetase on focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 1997, 17, 1137-1142.

J M 030109S

[^0]: * To whom correspondence should be addressed. Phone: (410) 631 8126. Fax: (410) 631-6797. Email: ferrarisd@guilfordpharm.com.

