Synthesis and Pharmacological Evaluation of 1-Oxo-2-(3-piperidyl)-1,2,3,4tetrahydroisoquinolines and Related Analogues as a New Class of Specific Bradycardic Agents Possessing I I_{f} Channel Inhibitory Activity

Hideki Kubota, Akio Kakefuda,* Toshihiro Watanabe, Noe Ishii, K oichi Wada, Noriyuki Masuda, Shuichi Sakamoto, and Shin-ichi Tsukamoto
Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co. Ltd., 21 Miyukigaoka, Tsukuba, I baraki 305-8585, J apan

Received April 15, 2003

Abstract

A series of 1-oxo-2-(3-piperidyl)-1,2,3,4-tetrahydroisoquinolines and related analogues were prepared and evaluated for their bradycardic activities in isolated right atrium and in anesthetized rats. (\pm)-6,7-Dimethoxy-2-\{1-[3-(3,4-methylenedioxyphenoxy)propyl]-3-piperidyl \}-1,2,3,4-tetrahydroisoquinoline (4) was chosen as a lead, and structural modifications were performed on the tetrahydroisoquinoline ring and the terminal aromatic ring. The modifications on the tetrahydroisoquinoline ring revealed that the 1-0xo-1,2,3,4-tetrahydroisoquinoline ring system was optimum structure for both in vitro potency and in vivo efficacy. Furthermore, methoxy, ethoxy, and methoxycarbonyl groups were identified as preferable substituents on the terminal aromatic ring. One of the 1-oxo-1,2,3,4-tetrahydroisoquinoline derivatives, (R)10a, was further evaluated for its bradycardic activity and inhibitory activity against I_{f} currents. Compound (R)-10a demonstrated potent bradycardic activity in rats with minimal influence on blood pressure after oral administration. The compound al so showed inhibition of I_{f} currents $\left(\mathrm{IC}_{50}=0.32 \mu \mathrm{M}\right)$ in guinea pig pacemaker cells.

I ntroduction

It has been shown that chronically el evated heart rate (HR) raises myocardial oxygen consumption and thereby results in a decline of cardiac energetic efficiency in patients with congestive heart failure, which originates from ischemic heart diseases. ${ }^{1}$ Recent studies demonstrated that an increase in HR is one of the major risk factors contributing to cardiovascular morbidity and mortality. ${ }^{2-5}$ Therefore, prevention of increased HR is thought to be a desirable therapeutic approach in patients with cardiac diseases. So-called β-blockers and some calcium channel inhibitors are reference drugs for bradycardia, but care must be taken in their use, due to their undesirable effects such as negative inotropic or hypotensive effects. ${ }^{6,7}$ These undesirable effects of the above drugs have encouraged the development of another class of bradycardic agents that selectively reduce HR without affecting either strength of heart contraction or blood pressure. This novel class, which have been termed "specific bradycardic agents"8 includes Zatebradine (UL-FS 49, 1), ${ }^{9-11}$ and I vabradine (S-16257, 2), ${ }^{12-14}$ for which clinical trials are under way. ${ }^{15,16}$ It has recently been revealed that these compounds inhibit one of the most important pacemaker channels, I_{f} channel, which locate in sinoatrial (SA) node pacemaker cells. ${ }^{11,13}$ It is therefore suggested that inhibition of I_{f} channel may be responsible for the bradycardic effects of specific bradycardic agents. ${ }^{14}$

Wefound a series of (\pm)-6,7-dimethoxy-2-(3-piperidyl)-1,2,3,4-tetrahydroisoquinoline derivatives which showed potent bradycardic activities. ${ }^{17}$ In particular, a 3-(3,4methylenedioxyphenoxy)propyl analogue (4) demon-

[^0]
Zatebradine (1)

Ivabradine (2)

3

strated potent and specific bradycardic activities comparable to those of Zatebradine. In addition, electrophysiological studies in SA node pacemaker cells indicated that compound $\mathbf{4}$ might act on I_{f} channel. ${ }^{17}$ We chose 4 as a lead for our program to investigate specific bradycardic agents, which focused on enhancement of

Scheme 1^{a}

a Conditions: (a) 3,4-dimethoxyphenethylamine, $\mathrm{NaBH}(\mathrm{OAC})_{3}, \mathrm{AcOH}, \mathrm{THF}$; (b) $\mathrm{CICO}_{2} \mathrm{Me}^{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$; (c) $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}, 3$ days; (d) 4 N HCl (g)/AcOEt; (e) $\mathrm{H}_{2}\left(3-4 \mathrm{~kg} / \mathrm{cm}^{2}\right.$), $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{AcOH}$; (f) 3-(aryloxy)propyl bromide ($9 \mathrm{a}-\mathbf{w}$), $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}, 80^{\circ} \mathrm{C}$; (g) H_{2}, $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$.

Scheme $\mathbf{2 a}^{\text {a }}$

15
16
${ }^{\text {a }}$ Conditions: (a) aminoactaldehyde dimethylacetal, $\mathrm{NaBH}(\mathrm{OAC})_{3}, \mathrm{AcOH}, \mathrm{THF}$; (b) 3,4-dimethoxybenzoyl chloride, Et ${ }_{3} \mathrm{~N}$, THF ; (c) c. HCl , AcOH ; (d) 4 N HCl (g)/AcOEt; (e) $\mathrm{H}_{2}\left(3-4 \mathrm{~kg} / \mathrm{cm}^{2}\right), 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{AcOH}$; (f) 3-(3,4-methylenedioxyphenoxy)propyl bromide (9 a), $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, $80^{\circ} \mathrm{C}$.
bradycardic activity. The program also aimed at elucidating the effects of the anal ogues on I_{f} channel as well as their structure-activity relationships (SAR).

Reiffen and co-workers reported the SAR of Zatebradine and its related anal ogues which revealed that the benzolactam system played a crucial role in exerting both potent bradycardic activity and selectivity versus blood pressure and cardiac contractility. ${ }^{10}$ In addition, a six-membered ring analogue (3) showed moderate bradycardic activity without affecting heart contraction or blood pressure. ${ }^{18}$ These facts prompted us to apply the benzolactam system to 4 , which gave 1 -oxo- $1,2,3,4$ tetrahydroisoquinoline derivatives. Subsequently, we attempted modifications of the C-3 and C-4 position of the isoquinoline ring. Last, we optimized the substitution pattern of the terminal aromatic ring. All compounds synthesized were evaluated for their bradycardic activities in isolated right atrium (in vitro assay). Compounds with high in vitro activities were studied for their effects on both HR and mean blood pressure (MBP) ${ }^{19}$ in rats (in vivo assay). Furthermore, (R)-10a was examined for its inhibitory activity against I_{f} currents in SA node pacemaker cells.

Chemistry

The 1-oxo-1,2,3,4-tetrahydroisoquinoline analogues (10) were prepared as shown in Scheme 1. The intermediate amine, $\mathbf{7}$, was prepared from the carbamate (6) by the cyclization conditions reported by Banwell et al. ${ }^{20}$ Subsequent debenzylation followed by N -alkylation with corresponding 3 -(aryloxy)propyl bromides ($9 \mathbf{a}-\mathbf{w}$) afforded the desired products, 10a-w. Compounds 10p and $\mathbf{1 0 f}$ were hydrogenated to give $\mathbf{1 1}$ and $\mathbf{1 2}$, respectively.

Scheme 2 shows the preparation of the 1,2-dihydro-1-oxoisoquinoline anal ogue (16). The dimethylacetal, 13, was cyclized under an acidic condition to give 14. Subsequent debenzylation and N -alkylation with bromide (9a) afforded 16.

The preparations of the 3,4-di hydro-4-oxoquinazoline analogue (20) and benzamide analogues, 21 and 22, were carried out as shown in Scheme 3. The piperidone (17) was reacted with hydroxylamine followed by reduction to give the primary amine, 18. The secondary amine (19) was prepared from 17 by reductive alkylation. Compound 18 was condensed with anthranilic acid and

Scheme 3^{a}

${ }^{\text {a }}$ Conditions: (a) 3-hydroxypiperidine, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}, 80{ }^{\circ} \mathrm{C}$; (b) $(\mathrm{COCI})_{2}, \mathrm{DMSO}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{CL}_{2},-70{ }^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}$; (c) O benzylhydroxyamine, pyridine; (d) LiAlH_{4}, THF, reflux; (e) $40 \% \mathrm{MeNH}_{2} / \mathrm{MeOH}, \mathrm{NaBH}$ (OAC$)_{3}, \mathrm{AcOH}$, THF; (f) 4,5-dimethoxyanthranilic acid, $\mathrm{EDC} \cdot \mathrm{HCl}, \mathrm{HOBt}, \mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$; (g) HC(OEt) $)_{3}, 150^{\circ} \mathrm{C}$; (h) 3,4-dimethoxybenzoyl chloride, AcOEt.

Scheme $\mathbf{4}^{\text {a }}$

a Conditions: (a) pyridine, reflux; (b) $\mathrm{NaH}, \mathrm{DMF}, 50^{\circ} \mathrm{C}$; (c) 4 N HCl (g)/AcOEt, MeOH ; (d) $9 \mathrm{a}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}, 80^{\circ} \mathrm{C}$.
then cyclized with triethyl orthoformate to give 20. Alternatively, benzoylation of 18 and 19 yielded benzamide analogues, 21 and 22, respectively.

For the 2,4-dioxo-1,2,3,4-tetrahydroquinazoline analogue, 27 (Scheme 4), aminopiperidine (24)21 was reacted with 2-ethoxy-4-oxo-1,3-benzoxazin (23), which was obtained from the corresponding anthranilic acid, ${ }^{22}$ to give 25. Compound 25 was cyclized using NaH and deprotected to afford the 2,4-dioxo-1,2,3,4-tetrahydroquinazoline analogue (26). Finally, compound 26 was converted to 27 by a similar procedure to that described above.

The enantiomers of 10a were prepared respectively from the enantiomers of $\mathbf{8}$, which were obtained using a conventional resolution technique. The absolute configuration of the enantiomers was determined by X-ray crystallographic analysis using (R)-10a. ${ }^{23}$

Pharmacology

In Vitro Assays. The compounds synthesized were tested for their bradycardic activities in the right atrium isolated from guinea pigs. The EC_{30} value means the concentration of the compound producing a 30% reduction from the initial spontaneous beat rates.

In Vivo Assays. The compounds with high in vitro activities were examined for their effects on both HR and MBP by intravenous (iv) administration of $3 \mathrm{mg} /$ kg in urethane-anesthetized rats. The effect was expressed as a maximal percent change from the initial value. Compound (R)-10a was further evaluated for its effect on both HR and MBP by oral (po) administration of $10 \mathrm{mg} / \mathrm{kg}$ in conscious rats.

Inhibitory Effect on $\mathbf{I}_{\mathbf{f}}$ Currents. Compound (R)10a was tested for its inhibitory effect on I_{f} currents in SA node pacemaker cells isolated from guinea pigs.

Results and Discussion

The structure of the novel compounds and their bradycardic activities in vitro and in vivo are summarized in Tables 1 and 2. Initially, modifications of the 1,2,3,4-tetrahydroisoquinoline ring were attempted (Table 1). Introduction of an oxo moiety at the isoquino-lineC-1 of 4 (10a) resulted in a 4-fold increase of in vitro potency ($\mathrm{EC}_{30}=0.067 \mu \mathrm{M}$). In vivo tests showed that compound 10a had potent bradycardic activity with a slight influence on MBP. The 1,2-dihydro analogue (16) was less potent than 10a, particularly in vivo. It is interesting to note that compound $\mathbf{1 6}$ showed weak

Table 1. Effect of Modifications of the 1,2,3,4-Tetrahydroisoquinoline Ring

a The concentration required to produce a 30% reduction from the initial spontaneous beat rates in right atrium of guinea pigs. Each value indicates a mean \pm SEM from three to six experiments. ${ }^{b}$ Percent change from the initial value in rats as mean \pm SEM from three
 $\mathrm{Et}_{2} \mathrm{O}$. ${ }^{\mathrm{e}}$ Mean from two experiments. ${ }^{\dagger}$ Not tested.
hypertensive activity (11% increase). The 3,4-dihydro4 -oxoquinazoline analogue (20) had less potency than 10a. In addition, compound $\mathbf{2 0}$ seemed to have a certain hypotensive effect despite its weaker bradycardic activity. The 2,4-dioxo-1,2,3,4-tetrahydroquinazoline analogue (27) was an even weaker agent. The ring-opening analogues (benzamide analogues), 21 and 22, showed considerably weak activities in comparison to 10a (EC_{30} $=0.42 \mu \mathrm{M}$ and $3.5 \mu \mathrm{M}$, respectively). These results allowed us to conclude that the 1-oxo-1,2,3,4-tetrahydroisoquinoline ring system was optimum for this part of the structure. The results also demonstrated that modifications on the isoquinoline $\mathrm{C}-3$ and $\mathrm{C}-4$ positions markedly and diversely affected not only the compounds' bradycardic potencies but also their effects on MBP. Despite the similarity in the electronic and steric characteristics of 10a and 22, a 50 -fold difference between their level of bradycardic activity in vitro was observed. The rigid bicyclic structure of 10a may contribute to the enhancement of in vitro activity by keeping the molecule in a desirable conformation. Thus we chose 10a as a new lead and proceeded to make further modifications on the terminal aromatic ring (Table 2).

Substitution for the 3,4-methylenedioxy moiety of 10a by hydrogens (10b) caused a 6 -fold decrease of in
vitro activity. Among the monosubstituted anal ogues ($\mathbf{1 0 c} \mathbf{c}-\mathbf{e}$), the 4 -methoxy analogue ($\mathbf{1 0 e}$) showed the highest level of in vitro activity ($\mathrm{EC}_{30}=0.099 \mu \mathrm{M}$). Moreover, compound 10e had an equal in vivo potency to that of 10a. These results suggested that the substituent at the 4-position was important in both in vitro and in vivo activity. We then examined the effects of substituents at the 4 -position in terms of electronic, steric, and hydrophobic properties. Compounds with an electron-withdrawing group ($\mathbf{1 O f}-\mathbf{k}$) showed between $1 / 4$ and $1 / 10$ activity of $\mathbf{1 0 a}$. Among them, the nitro analogue (10f) alone exhibited striking hypertensive activity (41% increase) without bradycardic activity. The ethoxy analogue ($\mathbf{1 0 m}$) showed potent in vitro and in vivo activity, being comparable to those of the methoxy analogue (10e). However, the bulkier the ethereal alkyl groups from $\mathbf{1 0 m}$, the weaker in vitro potencies by the analogues ($\mathbf{1 0 n}-\mathbf{p}$). Compounds with hydrophilic substituents, namely the acetamide (10q), hydroxy (11), and amino (12) analogues had $1 / 10$ or less of the level of in vitro activity of 10a. It was noteworthy that the methoxycarbonyl analogue (10r) showed potent activity ($\mathrm{EC}_{30}=0.11 \mu \mathrm{M}$), whereas the carboxamide anal ogue (10s) had considerably weaker potency (EC_{30} $=5.7 \mu \mathrm{M})$, despite no significant differences between these compounds with respect to electronic and steric

Table 2. Effect of Modifications of the Terminal Aromatic Ring

compd	Ar	Right atrium EC_{30}, ${ }^{a} \mu \mathrm{M}$	Anesthetized rats \%change ${ }^{b}$ at $3 \mathrm{mg} / \mathrm{kg}$ iv		$\begin{gathered} \text { mp, C } \\ \left(\text { solvent }{ }^{d}\right) \end{gathered}$	formula	anal.
			HR	MBP			
10a		0.067 ± 0.003	-48 ± 5	-14 ± 4	$\begin{gathered} 212-217 \\ (\mathrm{~A}-\mathrm{N}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \\ \cdot \mathrm{HCl} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10b	$\mathrm{C}_{6} \mathrm{H}_{5}$	0.39 ± 0.03	-32 ± 4	3.2 ± 2	$\begin{gathered} 190-205 \\ (\mathrm{~A}-\mathrm{E}) \end{gathered}$	$\begin{aligned} & \mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4} \\ & \cdot \mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10c	$2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$	0.39 ± 0.04	N.T. ${ }^{\text {e }}$	N.T. ${ }^{\text {e }}$	$\begin{gathered} 195-199 \\ (\mathrm{~A}-\mathrm{N}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \\ \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10d	$3-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$	0.14 ± 0.02	-47^{f}	-11^{f}	$\begin{gathered} 189-194 \\ (\mathrm{~A}-\mathrm{N}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \\ \cdot \mathrm{HCl} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10e	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$	0.099 ± 0.02	-49 ± 3	-16 ± 4	$\begin{gathered} 199-207 \\ (\mathrm{~A}-\mathrm{N}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \\ \cdot \mathrm{HCl} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10 f	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$	0.27 ± 0.04	-5.6 ± 0.6	41 ± 7	$\begin{gathered} 221-229 \\ (\mathrm{~A}-\mathrm{E}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6} \\ \cdot \mathrm{HCl} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10 g	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}$	0.24 ± 0.03	-23 ± 2	-6.8 ± 9	$\begin{gathered} 207-212 \\ (\mathrm{~A}-\mathrm{N}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4} \\ \cdot \mathrm{HCl} \end{gathered}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10h	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}$	0.79 ± 0.4	N.T. ${ }^{e}$	N.T. ${ }^{\text {e }}$	$\begin{gathered} 217-231 \\ (\mathrm{~A}-\mathrm{E}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}_{3} \\ \cdot \mathrm{HCl} \end{gathered}$	C,H,N,Cl,F
10 i	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}$	0.24 ± 0.08	-39 ± 2	-17 ± 2	187-192 (N)	$\begin{aligned} & \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F} \\ & \cdot \mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	C,H,N, Cl, F
10j	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$	0.35 ± 0.06	-32 ± 3	-12 ± 5	$205-211$ (A)	$\begin{gathered} \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl} \\ \cdot \mathrm{HCl} \end{gathered}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10k	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$	0.47 ± 0.08	N.T. ${ }^{\text {e }}$	N.T. ${ }^{e}$	$\begin{gathered} 214-218 \\ (\mathrm{~A}-\mathrm{N}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Br} \\ \cdot \mathrm{HCl} \end{gathered}$	$\underset{1}{\mathrm{C}, \mathrm{H}, \mathrm{~N}, \mathrm{Br}, \mathrm{C}}$
101	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$	0.14 ± 0.02	-37^{f}	-12^{f}	$\begin{gathered} 205-209 \\ (\mathrm{~A}-\mathrm{N}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \\ \cdot \mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10m	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OEt}$	0.097 ± 0.01	-49^{\prime}	-7.8^{f}	$\begin{gathered} 208-213 \\ (\mathrm{~A}-\mathrm{N}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5} \\ \cdot \mathrm{HCl} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10n	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{On}-\mathrm{Pr}$	0.27 ± 0.03	N.T. ${ }^{e}$	N.T. ${ }^{e}$	$\begin{gathered} 178-185 \\ (\mathrm{~A}-\mathrm{E}) \end{gathered}$	$\begin{aligned} & \mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5} \\ & \cdot \mathrm{HCl} \cdot 0.1 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
100	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Oi}-\mathrm{Pr}$	0.33 ± 0.1	N.T. ${ }^{\text {e }}$	N.T. ${ }^{e}$	$\begin{gathered} 189-196 \\ (\mathrm{~A}-\mathrm{E}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5} \\ \cdot \mathrm{HCl} \end{gathered}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10p	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OBn}$	1.3 ± 0.3	N.T. ${ }^{\text {e }}$	N.T. ${ }^{e}$	$\begin{gathered} 187-192 \\ (\mathrm{~A}-\mathrm{N}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5} \\ \cdot \mathrm{HCl} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10q	4-C6 $\mathrm{H}_{4} \mathrm{NHCOMe}$	0.76 ± 0.18	N.T. ${ }^{\text {e }}$	N.T. ${ }^{\text {e }}$	$\begin{gathered} 220-232 \\ (\mathrm{~A}-\mathrm{E}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5} \\ \cdot \mathrm{HCl} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
11	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}$	0.89 ± 0.09	N.T. ${ }^{\text {e }}$	N.T. ${ }^{e}$	$\begin{gathered} 215-220 \\ (\mathrm{I}-\mathrm{M}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5} \\ \cdot \mathrm{HCl} \cdot 0.6 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}^{8}$
12	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$	1.6 ± 0.09	N.T. ${ }^{\text {e }}$	N.T. ${ }^{e}$	$\begin{gathered} 223-231 \\ (\mathrm{~A}-\mathrm{E}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \\ \cdot \mathrm{HCl} \end{gathered}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10r	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{Me}$	0.11 ± 0.02	$-30^{\text {f }}$	-2.3^{f}	$\begin{gathered} 202-207 \\ (\mathrm{~A}-\mathrm{N}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \\ \cdot \mathrm{HCl} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10s	$4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CONH}_{2}$	5.7 ± 0.5	N.T. ${ }^{\text {e }}$	N.T. ${ }^{e}$	$\begin{gathered} 208-214 \\ (\mathrm{~A}-\mathrm{N}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \\ \cdot \mathrm{HCl} \cdot 0.6 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10t		0.11 ± 0.01	-56 ± 0.3	-18 ± 2	$\begin{gathered} 196-203 \\ (\mathrm{~A}-\mathrm{N}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \\ \cdot \mathrm{HCl} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10u		0.13 ± 0.01	-44^{f}	-12^{f}	208-214 (P)	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \\ \cdot \mathrm{HCl} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10v		1.6 ± 0.3	N.T. ${ }^{e}$	N.T. ${ }^{e}$	$\begin{gathered} 108-111 \\ (\mathrm{~A}-\mathrm{N}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7} \\ \cdot \mathrm{HCl} \cdot 0.3 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10w		0.89 ± 0.1	N.T. ${ }^{e}$	N.T. ${ }^{\text {e }}$	$\begin{gathered} 210-219 \\ (\mathrm{~A}-\mathrm{N}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \\ \cdot \mathrm{HCl} \end{gathered}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$
10x		0.36 ± 0.02	N.T. ${ }^{e}$	N.T. ${ }^{e}$	$\begin{gathered} 195-199 \\ (\mathrm{~A}-\mathrm{M}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \\ \cdot \mathrm{HCl} \cdot 0.8 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$

${ }^{\mathrm{a}-\mathrm{c}}$ See the corresponding footnotes of Table 1. d Recrystallization solvents: A, AcOEt; N, CH ${ }_{3} \mathrm{CN}$; $\mathrm{E}, \mathrm{EtOH} ; \mathrm{M}, \mathrm{MeOH} ; \mathrm{I}$, i-PrOH; P, n-PrOH. e N ot tested. ${ }^{\dagger}$ Mean from two experiments. ${ }^{9}$ Calcd 7.27; found 6.82 .

Table 3. Enantiomers of Compound 10a

compd	right atrium $\mathrm{EC}_{30}{ }^{\text {a }} \mu \mathrm{M}$	anesthetized rats \% change ${ }^{\text {b }}$ at $3 \mathrm{mg} / \mathrm{kg} \mathrm{iv}^{\mathrm{c}}$		$\underset{\text { (solvent }^{\mathrm{mp}}}{\mathrm{c}, \mathrm{C}}$	formula	anal.
		HR	MBP			
10a	0.067 ± 0.003	-48 ± 5	-14 ± 4	212-217 (A-N)	$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{HCl}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$
(S)-10a	0.068 ± 0.005	-53 ± 3	-23 ± 2	200-202 (E)	$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{HCl}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$
(R)-10a	0.079 ± 0.007	-55 ± 2	-13 ± 2	190-194 (E)	$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O} 6 \cdot \mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$

properties. Based on these results, we performed correlation analyses using substituent parameters. We plotted $\mathrm{pEC}_{30}\left(-\log \mathrm{EC}_{30}\right)$ against three substituent parameters; π (hydrophobicity), σ_{p} (electronic property), and MR (steric bulk) ${ }^{24}$ (Figure 1). As shown in the Panel A, a characteristic reversed U-shape correlation was observed in the $\mathrm{pEC}_{30}-\pi$ plot, with a summit around $\pi=0$. In contrast, there seemed to be no correlation between $\mathrm{pEC} \mathrm{C}_{30}$ versus σ_{p} or MR (Panels B, C). It was assumed that appropriate hydrophobicity (around $\pi=$ 0) at the 4 -position was important to exert potent in vitro activity (e.g., methoxy, ethoxy, methoxycarbonyl). We madefurther modifications on the terminal aromatic ring. The 3,4-dimethoxy (10t) and 3,4-ethylenedioxy (10v) analogues showed potent in vitro and in vivo activities. However, the 3,4,5-trimethoxy anal ogue (10t) was a considerably weaker agent. There may be a limited bulk-tolerance in this region. Substitution for two oxygens of 10a by methylenes gave the indane analogue ($\mathbf{1 0 w}$), which showed 13 -fold less potent in vitro activity of 10a. The oxygen atoms on the aromatic ring of 10a may contribute to the potent in vitro activity by producing the appropriate hydrophobicity of the molecule, or by interacting directly with the active sites. The contribution of the oxygen atoms was also supported by the lower activity observed for the indole analogue (10x).

Last, the enantiomers of 10a were evaluated (Table 3). There was no significant difference in both in vitro activity and the effect on HR between the enantiomers. However, it was clear that (R)-10a had a lesser effect on MBP (13% decrease) than (S)-10a did (23\% decrease). Consequently, we recognized (R)-10a as an excellent "specific bradycardic agent".

On the basis of in vitro and in vivo assay results, (R)10a was submitted to a further pharmacol ogical evaluation. Compound (R)-10a ($10 \mathrm{mg} / \mathrm{kg}$, the salt form) was orally administered to conscious rats and HR and MBP were monitored (Figure 2). Compound (R)-10a reduced spontaneous HR up to a 29% decrease with minimal influence on MBP. M oreover, its bradycardic effect was long-lasting (over 8 h).
The HR is regulated by an electrical impulse that originates in SA node pacemaker cells. In these cells, I_{f} channel is hypothesized to be responsible for the rate of Phase 4 slow depolarization, which affects the impulse frequency: 25,26 That is, activation of I_{f} channel leads to an increase in the impulse frequency ($=\mathrm{HR}$) through an increase of the rate of Phase 4 slow depoIarization. Thus we examined the effect of (R)-10a on I_{f} currents in SA node pacemaker cells using wholecell patch configuration. Compound (R)-10a inhibited I_{f} currents concentration-dependently with an IC_{50} value of $0.32 \mu \mathrm{M}$ (Figure 3), suggesting that the potent bradycardic effect of (R)-10a was associated

Figure 1. Plot of pEC 30 against π, σ_{p}, and MR of 4 -substituent, for 10b, 10e-0, 10q-s, 11, and 12.
with direct inhibition of I_{f} channel in SA node pacemaker cells.

Figure 2. Effects of (R)-10a on heart rate and mean blood pressure in conscious rats. Compound (R)-10a ($\mathbf{1 0} \mathbf{~ m g} / \mathrm{kg}$, the salt form) was orally administered at time 0 . The values are mean \pm SEM from four experiments.

Figure 3. Effects of (R)-10a on I_{f} currents. Each point represents mean \pm SEM from four experiments. The line represents the linear regression.

Conclusion

A series of 1-oxo-2-(3-piperidyl)-1,2,3,4-tetrahydroisoquinolines and related analogues, which were derived from 4, have been described as bradycardic agents. Introduction of an oxo moiety at the isoquinoline C-1 position gave the compound 10a, which had a 4 -fold higher in vitro potency. M odifications of the C-3 and C-4 positions of the tetrahydroisoquinoline ring markedly and diversely affected not only the compounds' bradycardic potencies but also their effects on MBP. M odifica-
tions of the terminal aromatic ring revealed that appropriate hydrophobicity (around $\pi=0$) at the 4-position was important to exert potent in vitro activity (e.g., methoxy, ethoxy, methoxycarbonyl). At the same time, it was found that the oxygen atoms on the aromatic ring contribute to the potent in vitro activity. The optical resol ution of 10a led to the finding that (R)10a was an excellent "specific bradycardic agent." On the basis of pharmacodynamic observation, it appears that (R)-10a was orally absorbed and its bradycardic effect was long-lasting. In electrophysiological studies, (R)-10a was found to inhibit I_{f} currents with an $I C_{50}$ value of $0.32 \mu \mathrm{M}$. The inhibition of I_{f} currents by (R)10a strongly suggested implication of I_{f} channel in the potent bradycardic activity of the compound. This study could provide a novel approach to I_{f} channel inhibitors with potent bradycardic activities.

Experimental Section

Chemistry. M elting points were determined with a Yanaco MP-500D melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a J EOL J NM-LA300 or a J EOL JNM-EX400 spectrometer and the chemical shifts are expressed in δ (ppm) values with tetramethylsilane as an internal standard (in NMR description, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, and $\mathrm{br}=$ broad peak). Mass spectra were recorded on a J EOL J MS-LX2000 spectrometer. For salts, assignments of ion peaks are based on the basic component. The elemental analyses were performed with a Yanaco MT-5 microanalyzer (C, H, N) and a Yokogawa IC7000 ion chromatographic analyzer (halogens) and were
within $\pm 0.4 \%$ of theoretical values, unless otherwise stated. The optical purity of optically active compounds were examined by analytical chiral column (Daicel CHIRALPAK AD, i.d. $=0.46 \mathrm{~cm}, \mathrm{I}=25 \mathrm{~cm}$). The HPLC condition was as follows: mobile phase, $\mathrm{i}-\mathrm{PrOH} /$ hexane $/ \mathrm{Et}_{2} \mathrm{NH}=500 / 500 / 1$; flow rate, $0.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength, 254 nm . Optical rotation measurements were obtained with a Horiba SEPA-200 polarimeter. Drying of organic sol utions during workup was done over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

Methyl (\pm)-N-(1-Benzyl-3-piperidyl)-N'-(3,4-dimethoxyphenethyl)carbamate (6). To a suspension of 1-benzyl-3piperidone monohydrochloride monohydrate 5 ($10.0 \mathrm{~g}, 44.3$ mmol) and 3,4-dimethoxyphenethylamine ($8.03 \mathrm{~g}, 44.3 \mathrm{mmol}$) in THF (100 mL) were added AcOH $(2.54 \mathrm{~mL}, 44.3 \mathrm{mmol})$ and $\mathrm{NaBH}(\mathrm{OAc})_{3}(10.3 \mathrm{~g}, 48.7 \mathrm{mmol})$, and the mixture was stirred at room temperature for 1 h . The reaction mixture was made al kaline with 5 N NaOH aq at $0^{\circ} \mathrm{C}$, then extracted with CHCl_{3} ($50 \mathrm{~mL} \times 2$). The combined extract was dried and concentrated in vacuo to give 1-benzyl-3-[(3,4-dimethoxyphenethyl) amino]piperidine (14.2 g) as a yellow oil. To a solution of compound obtained above ($14.2 \mathrm{~g}, 40.1 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(6.70 \mathrm{~mL}, 48.1$ mmol) in THF (100 mL) was added dropwise a solution of methyl chloroformate ($3.40 \mathrm{~mL}, 44.1 \mathrm{mmol}$) in THF (10 mL) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was concentrated in vacuo, and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$, then extracted with AcOEt ($50 \mathrm{~mL} \times 2$). The combined extract was washed with 1 N NaOH aq (100 mL) and was dried and concentrated in vacuo to give 6 ($16.2 \mathrm{~g}, 88 \%$ from 5) as a yellow oil. This material may be used next cyclization step or converted to its oxalate salt. The oxalate salt was obtained from MeOH -AcOEt as a colorless powder: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d 6) $\delta 1.68-1.78$ ($4 \mathrm{H}, \mathrm{m}$), $2.41(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.66(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.95-2.97(2 \mathrm{H}, \mathrm{m})$, $3.27-3.29(2 \mathrm{H}, \mathrm{m}), 3.60(3 \mathrm{H}, \mathrm{s}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.95$ $(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{s}), 6.86(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=7.2 \mathrm{~Hz}), 7.40(5 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 413\left(\mathrm{MH}^{+}\right)$.
(\pm)-2-(1-Benzyl-3-piperidyl)-6,7-dimethoxy-1-oxo-1,2,3,4tetrahydroisoquinoline (7). To a solution of $\mathbf{6}(6.31 \mathrm{~g}, 15.3$ mmol) and 4 -(dimethylamino)pyridine ($4.67 \mathrm{~g}, 38.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ was added dropwise a sol ution of trifluoromethanesulfonic anhydride ($10.3 \mathrm{~mL}, 61.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 3 days. The reaction mixture was partitioned between $\mathrm{CHCl}_{3}(50 \mathrm{~mL} \times 2)$ and $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$, and the CHCl_{3} layer was dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel ($\mathrm{CHCl}_{3} / \mathrm{MeOH}$ $=49 / 1)$ to give $7(3.11 \mathrm{~g}, 53 \%)$ as a yellow oil. This material may be converted to its hydrochloride salt. The hydrochride salt was obtained from EtOH-AcOEt as a colorless powder: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 1.74-1.83(4 \mathrm{H}, \mathrm{m}), 2.87(2 \mathrm{H}$, br s), $2.88(1 \mathrm{H}, \mathrm{br} s), 3.19-3.24(2 \mathrm{H}, \mathrm{m}), 3.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.44$ $(2 \mathrm{H}, \mathrm{br} 5), 3.75(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 4.32(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz})$, 4.85-4.87 (1H, m), $6.89(1 \mathrm{H}, \mathrm{s}), 7.34(1 \mathrm{H}, \mathrm{s}), 7.46-7.48(3 \mathrm{H}$, m), 7.59-7.61 ($2 \mathrm{H}, \mathrm{m}$), 10.64 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$); MS (FAB) m/z 381 $\left(\mathrm{MH}^{+}\right)$.
(\pm)-6,7-Dimethoxy-1-oxo-2-(3-piperidyl)-1,2,3,4-tetrahydroisoquinoline (8). To a solution of 7 ($3.09 \mathrm{~g}, 8.12 \mathrm{mmol}$) in AcOEt (40 mL) was added $4 \mathrm{~N} \mathrm{HCI}(\mathrm{g}) /$ AcOEt $(2.44 \mathrm{~mL}$, 9.75 mmol), and the mixture was concentrated in vacuo. To a solution of the residual solid in $\mathrm{AcOH}(20 \mathrm{~mL})$ was added Pd / C ($10 \mathrm{w} / \mathrm{w} \%, 339 \mathrm{mg}$), and the mixture was stirred under hydrogen pressure ($3-4 \mathrm{~kg} / \mathrm{cm}^{2}$) at room temperature for 24 h. The catalyst was removed by filtration and the filtrate was concentrated in vacuo. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(20$ mL) and made alkaline with 5 N NaOH aq at $0^{\circ} \mathrm{C}$, then extracted with $\mathrm{CHCl}_{3}(30 \mathrm{~mL} \times 2)$. The combined extract was dried and concentrated in vacuo to give 8 ($1.86 \mathrm{~g}, 79 \%$) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.58-1.73(2 \mathrm{H}, \mathrm{m})$, $1.80-1.90(2 \mathrm{H}, \mathrm{m}), 2.46-2.53(1 \mathrm{H}, \mathrm{m}), 2.66-2.72(1 \mathrm{H}, \mathrm{m})$, $2.84-2.87(2 \mathrm{H}, \mathrm{m}), 3.02-3.09(2 \mathrm{H}, \mathrm{m}), 3.41-3.53(2 \mathrm{H}, \mathrm{m}), 3.73$ $(3 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}), 4.59-4.66(1 \mathrm{H}, \mathrm{m}), 6.63(1 \mathrm{H}, \mathrm{s}), 7.60(1 \mathrm{H}$, s); MS (FAB) m/z $291\left(\mathrm{MH}^{+}\right)$.

3-(Aryloxy)propyl Bromide 9a-x: General Procedure. The synthesis of 3-(3,4-methylenedioxyphenoxy)propyl bromide
(9a) is typical. To a solution of sesamol ($6.91 \mathrm{~g}, 50.0 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$ were added $\mathrm{K}_{2} \mathrm{CO}_{3}(10.4 \mathrm{~g}, 75.0 \mathrm{mmol})$ and 1,3-dibromopropane ($25.4 \mathrm{~mL}, 250 \mathrm{mmol}$), and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 7 h . After being cooled at room temperature, the mixture was concentrated in vacuo. The residue was taken up with CHCl_{3} (100 mL), and the CHCl_{3} layer was washed with 0.2 N NaOH aq ($100 \mathrm{~mL} \times 2$), then dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane/AcOEt $=9 / 1$) to give 9a ($9.61 \mathrm{~g}, 74 \%$) as a colorless solid: ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.14-2.41 ($2 \mathrm{H}, \mathrm{m}$), $3.59(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 4.03(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $5.9 \mathrm{~Hz}), 5.91(2 \mathrm{H}, \mathrm{s}), 6.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,2.4 \mathrm{~Hz}), 6.50(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 259$ $\left(\mathrm{MH}^{+}\right), 261\left(\mathrm{MH}^{+}+2\right)$.
General Procedure for the Preparation of (\pm)-2-\{ 1-[3-(Aryloxy)propyl]-3-piperidyl\}-6,7-dimethoxy-1-oxo-1,2,3,4tetrahydroisoquinoline 10a-x. The compounds were pre pared by treatment of 8 with 9 .
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(3,4-methylenedioxyphenoxy)-propyl]-3-piperidyl $\}$-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10a). To a solution of 8 ($581 \mathrm{mg}, 2.00 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ (10 mL) were added $\mathrm{K}_{2} \mathrm{CO}_{3}(304 \mathrm{mg}, 2.20 \mathrm{mmol})$ and 9 a ($544 \mathrm{mg}, 2.10 \mathrm{mmol}$), and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h . After being cooled at room temperature, the mixture was concentrated in vacuo. The residue was partitioned between $\mathrm{CHCl}_{3}(30 \mathrm{~mL} \times 2)$ and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, then the CHCl_{3} layer was dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=49 / 1\right)$ to give the free base of 10a (962 mg, 100%) as a slightly yellow oil. This material was converted to its hydrochloride salt by treating with 4 N HCl (g)/AcOEt ($0.600 \mathrm{~mL}, 2.40 \mathrm{mmol}$). The crude salt was recrystallized from AcOEt- $\mathrm{CH}_{3} \mathrm{CN}$ to give $\mathbf{1 0 a}$ ($780 \mathrm{mg}, 77 \%$) as a colorless powder: mp 212-217 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) δ $1.74-1.95(4 \mathrm{H}, \mathrm{m}), 2.15-2.20(2 \mathrm{H}, \mathrm{m}), 2.86-2.92(3 \mathrm{H}, \mathrm{m})$, 3.16-3.22 (3H, m), 3.39-3.49 (4H, m), 3.77 (3H, s), 3.82 (3H, s), $3.98(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.86-4.92(1 \mathrm{H}, \mathrm{m}), 5.96(2 \mathrm{H}, \mathrm{s})$, $6.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,2.2 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 6.82$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.38(1 \mathrm{H}, \mathrm{s}), 10.47(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; MS (FAB) m/z $469\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$, Cl .
(\pm)-6,7-Dimethoxy-2-[1-(3-phenoxypropyl)-3-piperidyl]-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10b): (84\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2}$ - $\mathrm{d}_{6} \delta 1.75-1.95$ ($4 \mathrm{H}, \mathrm{m}$), 2.19-2.26 (2H, m), 2.86-2.89 (3H, m), 3.18-3.25 (3H, m), $3.40-3.50(4 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.06(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $6.0 \mathrm{~Hz}), 4.88-4.93(1 \mathrm{H}, \mathrm{m}), 6.90(1 \mathrm{H}, \mathrm{s}), 6.93-6.98(3 \mathrm{H}, \mathrm{m})$, $7.30(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{s}), 10.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{MS}$ (FAB) m/z $425\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N, Cl.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(2-methoxyphenoxy)propyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10c): (69\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 1.75-$ $1.96(4 \mathrm{H}, \mathrm{m}), 2.20-2.24(2 \mathrm{H}, \mathrm{m}), 2.86-2.89(3 \mathrm{H}, \mathrm{m}), 3.19-$ $3.30(3 \mathrm{H}, \mathrm{m}), 3.39-3.52(4 \mathrm{H}, \mathrm{m}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.82$ $(3 \mathrm{H}, \mathrm{s}), 4.04(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.88-4.94(1 \mathrm{H}, \mathrm{m}), 6.86-6.94$ $(3 \mathrm{H}, \mathrm{m}), 6.97-6.99(2 \mathrm{H}, \mathrm{m}), 7.38(1 \mathrm{H}, \mathrm{s}), 10.53(1 \mathrm{H}, \mathrm{br}$ s); MS (FAB) m/z $455\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N, Cl.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(3-methoxyphenoxy)propyl]-3-piperidyl \}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10d): (16\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6) $\delta 1.74-$ $2.00(4 \mathrm{H}, \mathrm{m}), 2.18-2.20(2 \mathrm{H}, \mathrm{m}), 2.85-2.92(3 \mathrm{H}, \mathrm{m}), 3.20-$ 3.47 (7H, m), 3.73 ($3 \mathrm{H}, \mathrm{s}$), 3.77 ($3 \mathrm{H}, \mathrm{s}$), $3.82(3 \mathrm{H}, \mathrm{s}), 4.05(2 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.80-4.90(1 \mathrm{H}, \mathrm{m}), 6.48-6.56(3 \mathrm{H}, \mathrm{m}), 6.90(1 \mathrm{H}$, s), $7.16-7.22$ ($1 \mathrm{H}, \mathrm{m}$), 7.38 ($1 \mathrm{H}, \mathrm{s}$), 10.30 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$); MS (FAB) $\mathrm{m} / \mathrm{z} 455\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(4-methoxyphenoxy)propyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10e): (80\%); ${ }^{1}$ H NMR (400 MHz, DMSO-d $_{6}$) $\delta 1.75-$ $1.95(4 \mathrm{H}, \mathrm{m}), 2.14-2.21(2 \mathrm{H}, \mathrm{m}), 2.86-2.89(3 \mathrm{H}, \mathrm{m}), 3.16-$ $3.24(3 \mathrm{H}, \mathrm{m}), 3.39-3.50(4 \mathrm{H}, \mathrm{m}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.82$ $(3 \mathrm{H}, \mathrm{s}), 3.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.86-4.92(1 \mathrm{H}, \mathrm{m}), 6.85-6.90$
($5 \mathrm{H}, \mathrm{m}$), $7.38(\mathrm{H}, \mathrm{s}), 10.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 455$ $\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(4-nitrophenoxy)propyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10f): (81\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz DMSO-d) $\delta 1.76-$ $1.96(4 \mathrm{H}, \mathrm{m}), 2.25-2.28(2 \mathrm{H}, \mathrm{m}), 2.88(3 \mathrm{H}, \mathrm{br}$ s), 3.17-3.30 $(3 \mathrm{H}, \mathrm{m}), 3.41-3.51(4 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 4.24(2 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.86-4.92(1 \mathrm{H}, \mathrm{m}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=9.6 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{s}), 8.23(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 10.33(1 \mathrm{H}, \mathrm{br}$ s); MS (FAB) m/z $470\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot \mathrm{HCl} \cdot\right) \mathrm{C}, \mathrm{H}$, N, Cl.
(\pm)-2-\{ 1-[3-(4-Cyanophenoxy)propyl]-3-piperidyl\}-6,7-dimethoxy-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10g): (72\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 1.75-$ 1.96 ($4 \mathrm{H}, \mathrm{m}$), 2.21-2.25 (2H, m), 2.86-2.89 (3H, m), 3.16$3.24(3 \mathrm{H}, \mathrm{m}), 3.40-3.51(4 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 4.17$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.12(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.8 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{s}), 7.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz}), 10.38(1 \mathrm{H}, \mathrm{br}$ s); MS (FAB) m/z $450\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}$, N, Cl.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(4-trifluoromethylphenoxy)-propyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10h): (61\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d $) ~ \delta 1.76-1.99(4 \mathrm{H}, \mathrm{m}), 2.21-2.28(2 \mathrm{H}, \mathrm{m}), 2.86-2.93$ $(3 \mathrm{H}, \mathrm{m}), 3.17-3.25(3 \mathrm{H}, \mathrm{m}), 3.41-3.51(4 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s})$, $3.82(3 \mathrm{H}, \mathrm{s}), 4.16(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.87-4.93(1 \mathrm{H}, \mathrm{m}), 6.90$ $(1 \mathrm{H}, \mathrm{s}), 7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{s}), 7.67(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.8 \mathrm{~Hz}), 10.54(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; MS (FAB) m/z $493\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}, \mathrm{F}$
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(4-fluorophenoxy)propyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10i): (71\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d) $\delta 1.75-$ $1.96(4 \mathrm{H}, \mathrm{m}), 2.17-2.21(2 \mathrm{H}, \mathrm{m}), 2.86-2.89(3 \mathrm{H}, \mathrm{m}), 3.16-$ $3.24(3 \mathrm{H}, \mathrm{m}), 3.40-3.51(4 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.04$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.90(1 \mathrm{H}, \mathrm{s}), 6.94-6.98$ ($2 \mathrm{H}, \mathrm{m}$), $7.10-7.16(2 \mathrm{H}, \mathrm{m}), 7.38(1 \mathrm{H}, \mathrm{s}), 10.33(1 \mathrm{H}, \mathrm{br}$ s); MS (FAB) m/z $443\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}_{3} \cdot \mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, $\mathrm{N}, \mathrm{Cl}, \mathrm{F}$.
(\pm)-2-\{ 1-[3-(4-Chlorophenoxy)propyl]-3-pi peridyl\}-6,7-dimethoxy-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10j): (75\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d) $\delta 1.75-$ $1.95(4 \mathrm{H}, \mathrm{m}), 2.19-2.23(2 \mathrm{H}, \mathrm{m}), 2.86-2.89(3 \mathrm{H}, \mathrm{m}), 3.17-$ $3.22(3 \mathrm{H}, \mathrm{m}), 3.39-3.49(4 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.06$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.87-4.93(1 \mathrm{H}, \mathrm{m}), 6.90(1 \mathrm{H}, \mathrm{s}), 6.97(2 \mathrm{H}$, $\mathrm{dt}, \mathrm{J}=10.4,2.4 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.4,2.4 \mathrm{~Hz}), 7.38(1 \mathrm{H}$, s), 10.59 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$); MS (FAB) m/z $459\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-2-\{ 1-[3-(4-Bromophenoxy)propyl]-3-piperidyl $\}$-6,7-dimethoxy- -1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10k): (40\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 1.75-$ $1.95(4 \mathrm{H}, \mathrm{m}), 2.17-2.24(2 \mathrm{H}, \mathrm{m}), 2.86-2.89(3 \mathrm{H}, \mathrm{m}), 3.17-$ $3.24(3 \mathrm{H}, \mathrm{m}), 3.39-3.50(4 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.06$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.86-4.92(1 \mathrm{H}, \mathrm{m}), 6.90(1 \mathrm{H}, \mathrm{s}), 6.93(2 \mathrm{H}$, $\mathrm{dt}, \mathrm{J}=10.4,2.8 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{s}), 7.46(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.4,3.2$ Hz), $10.54(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 503\left(\mathrm{MH}^{+}\right), 505\left(\mathrm{MH}^{+}+\right.$ 2). Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Br} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Br}, \mathrm{Cl}$.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(4-methylphenoxy)propyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (101): (70\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d) δ 1.75$1.95(4 \mathrm{H}, \mathrm{m}), 2.17-2.20(2 \mathrm{H}, \mathrm{m}), 2.23(3 \mathrm{H}, \mathrm{s}), 2.86-2.89(3 \mathrm{H}$, m), 3.17-3.22 (3H, m), 3.39-3.50 (4H, m), $3.77(3 \mathrm{H}, \mathrm{s}), 3.81$ $(3 \mathrm{H}, \mathrm{s}), 4.01(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.86-4.89(1 \mathrm{H}, \mathrm{m}), 6.83(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.09(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.38(1 \mathrm{H}$, s), $10.52(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 439\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(4-ethoxyphenoxy)propyl]-3-piperidyl \}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10m): (67\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) $\delta 1.29$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.74-1.95(4 \mathrm{H}, \mathrm{m}), 2.16-2.19(2 \mathrm{H}, \mathrm{m})$, 2.86-2.89 (3H , m), 3.16-3.30 (3H, m), 3.39-3.50 (4H, m), 3.77 $(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.94(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}), 3.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $6.0 \mathrm{~Hz}), 4.86-4.92(1 \mathrm{H}, \mathrm{m}), 6.83-6.88(4 \mathrm{H}, \mathrm{m}), 6.90(1 \mathrm{H}, \mathrm{s})$, $7.38(1 \mathrm{H}, \mathrm{s}), 10.40(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; MS (FAB) m/z $469\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(4-propoxyphenoxy)propyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10n): (80\%); ${ }^{\text {TH }}$ NMR (400 MHz , DMSO-d ${ }_{6}$) $\delta 0.96$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 1.64-1.73(2 \mathrm{H}, \mathrm{m}), 1.75-1.95(4 \mathrm{H}, \mathrm{m})$, $2.18(2 \mathrm{H}, \mathrm{br}$ s), 2.86-2.89 (3H, m), 3.20-3.22 (3H, m), 3.39$3.48(4 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.84(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8$ $\mathrm{Hz}), 3.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.86(4 \mathrm{H}, \mathrm{s}), 6.90$ ($1 \mathrm{H}, \mathrm{s}$), $7.38(1 \mathrm{H}, \mathrm{s}), 10.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 483\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{HCl} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(4-isopropoxyphenoxy)pro-pyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hy drochloride (100): (84\%); ${ }^{14}$ NMR (400 MHz, DMSO-d $_{6}$) δ $1.21(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{s}), 1.75-1.95(4 \mathrm{H}, \mathrm{m}), 2.14-2.21(2 \mathrm{H}$, m), 2.86-2.89 (3H , m), 3.16-3.24 (3H, m), 3.39-3.50 (4H , m), $3.77(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 4.42-4.51$ $(1 \mathrm{H}, \mathrm{m}), 4.86-4.92(1 \mathrm{H}, \mathrm{m}), 6.85(4 \mathrm{H}, \mathrm{s}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.38(1 \mathrm{H}$, s), 10.44 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$); MS (FAB) m/z $483\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-2-\{ 1-[3-(4-Benzyloxyphenoxy)propyl]-3-pi peridyl\}-6,7-dimethoxy-1-oxo-1,2,3,4-tetrahydroisoquinoline Hy drochloride (10p): (91\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) δ 1.74-1.95 (4H, m), 2.18 ($2 \mathrm{H}, \mathrm{br}$ s), 2.86-2.89 (3H, m), 3.17$3.22(3 \mathrm{H}, \mathrm{m}), 3.39-3.49(4 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 4.01$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J})=6.4 \mathrm{~Hz}), 4.87-4.92(1 \mathrm{H}, \mathrm{m}), 5.03(2 \mathrm{H}, \mathrm{s}), 6.87-6.90$ (3H, m), 6.92-6.96 (2H , m), 7.30-7.44 (6H, m), 10.54 (1H, br s); MS (FAB) m/z $531\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}$, N, Cl.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(4-Acetamidophenoxy)pro-pyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hy drochloride (10q): (67%); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{2}$) δ $1.74-1.95(4 \mathrm{H}, \mathrm{m}), 2.00(3 \mathrm{H}, \mathrm{s}), 2.19(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.86-2.89(3 \mathrm{H}$, m), 3.16-3.24 (3H, m), 3.40-3.50(4H, m), $3.77(3 \mathrm{H}, \mathrm{s}), 3.81$ $(3 \mathrm{H}, \mathrm{s}), 4.01(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.86-4.92(1 \mathrm{H}, \mathrm{m}), 6.87(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.38(1 \mathrm{H}, \mathrm{s}), 7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2$ $\mathrm{Hz}), 9.86(1 \mathrm{H}, \mathrm{s}), 10.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 482\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(4-methoxycarbonylphenoxy)-propyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10r): (65\%); ${ }^{1 H}$ NMR (400 MHz , DMSO-d) $\delta 1.75-1.95(4 \mathrm{H}, \mathrm{m}), 2.24-2.27(2 \mathrm{H}, \mathrm{m}), 2.86-2.89(3 \mathrm{H}, \mathrm{m})$, $3.18-3.26(3 \mathrm{H}, \mathrm{m}), 3.40-3.50(4 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}$, s), $3.82(3 \mathrm{H}, \mathrm{s}), 4.16(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 4.88-4.94(1 \mathrm{H}, \mathrm{m})$, $6.90(1 \mathrm{H}, \mathrm{s}), 7.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{s}), 7.92(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.4 \mathrm{~Hz}), 10.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 483\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-2-\{ 1-[3-(4-Aminocarbonylphenoxy)propyl]-3-piper-idyl\}-6,7-dimethoxy-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10s): (33\%); ${ }^{1 H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) $\delta 1.75-1.96(4 \mathrm{H}, \mathrm{m}), 2.23(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.86-2.93(3 \mathrm{H}, \mathrm{m}), 3.17-$ $3.25(3 \mathrm{H}, \mathrm{m}), 3.41-3.51(4 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.13$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 4.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.90(1 \mathrm{H}, \mathrm{s}), 6.99(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.8 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.38(1 \mathrm{H}, \mathrm{s}), 7.85-7.87(3 \mathrm{H}, \mathrm{m})$, 10.44 (1 H, br s); MS (FAB) m/z $468\left(\mathrm{MH}^{+}\right)$. Anal. ($\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5}$. $\left.\mathrm{HCl} \cdot 0.6 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-6,7-Dimethoxy-2-\{1-[3-(3,4-dimethoxyphenoxy)pro-pyl]-3-piperidyl $\}$-1-oxo-1,2,3,4-tetrahydroisoquinoline Hy drochloride (10t): (88%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2}$ -) δ $1.75-1.99(4 \mathrm{H}, \mathrm{m}), 2.15-2.22(2 \mathrm{H}, \mathrm{m}), 2.86-2.90(3 \mathrm{H}, \mathrm{m})$, 3.17-3.25 (3H , m), 3.40-3.50 (4H, m), 3.68 (3H, s), 3.74 (3H, s), $3.77(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.00(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 4.87-$ $4.93(1 \mathrm{H}, \mathrm{m}), 6.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8,2.8 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $2.8 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.38(1 \mathrm{H}, \mathrm{s})$, 10.48 (1H, br s); MS (FAB) m/z $485\left(\mathrm{MH}^{+}\right)$. Anal. ($\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}$. $\mathrm{HCl}) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(3,4-ethylenedioxyphenoxy)-propyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10u): (81%); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }^{2}$) $\delta 1.75-1.94(4 \mathrm{H}, \mathrm{m}), 2.17(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.88(3 \mathrm{H}, \mathrm{br}$ s), 3.19-3.22 (3H, m), 3.38-3.48(4H, m), $3.77(3 \mathrm{H}, \mathrm{s}), 3.82$ $(3 \mathrm{H}, \mathrm{s}), 3.96(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 4.16-4.17(2 \mathrm{H}, \mathrm{m}), 4.20-4.21$ $(2 \mathrm{H}, \mathrm{m}), 4.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8,2.8 \mathrm{~Hz}), 6.47$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.38$ ($1 \mathrm{H}, \mathrm{s}$), $10.61(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; MS (FAB) m/z $483\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(3,4,5-trimethoxyphenoxy)-propyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10v): (63\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 1.75-1.96(4 \mathrm{H}, \mathrm{m}), 2.17-2.19(2 \mathrm{H}, \mathrm{m}), 2.86-2.90(3 \mathrm{H}$, m), 3.17-3.25 (3H, m), 3.41-3.50 ($4 \mathrm{H}, \mathrm{m}$), $3.57(3 \mathrm{H}, \mathrm{s}), 3.76$ $(6 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.05(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz})$, $4.87-4.93(1 \mathrm{H}, \mathrm{m}), 6.25(2 \mathrm{H}, \mathrm{s}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.38(1 \mathrm{H}, \mathrm{s}), 10.52$ (1H, br s); MS (FAB) m/z $515\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7} \cdot \mathrm{HCl} \cdot\right.$ $0.3 \mathrm{H}_{2} \mathrm{O}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(5-indanyloxy)propyl]-3-pi-peridyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10w): (70\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$) $\delta 1.74-$ $2.03(6 \mathrm{H}, \mathrm{m}), 2.15-2.22(2 \mathrm{H}, \mathrm{m}), 2.77(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}), 2.81$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 2.86-2.89(3 \mathrm{H}, \mathrm{m}), 3.16-3.24(3 \mathrm{H}, \mathrm{m})$, $3.39-3.50(4 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.01(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $6.4 \mathrm{~Hz}), 4.86-4.92(1 \mathrm{H}, \mathrm{m}), 6.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,2.4 \mathrm{~Hz}), 6.82$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.38$ $(1 \mathrm{H}, \mathrm{s}), 10.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 465\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(5-i indoloxy)propyl]-3-piper-idyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (10x): (70\%); ${ }^{1 H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 1.75-1.96$ $(4 \mathrm{H}, \mathrm{m}), 2.21(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.86-2.89(3 \mathrm{H}, \mathrm{m}), 3.18-3.26(3 \mathrm{H}$, $\mathrm{m}), 3.42-3.52(4 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.04(2 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=6.4 \mathrm{~Hz}), 4.87-4.93(1 \mathrm{H}, \mathrm{m}), 6.32(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}), 6.74$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8,2.4 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0$ $\mathrm{Hz}), 7.27-7.29(2 \mathrm{H}, \mathrm{m}), 7.38(1 \mathrm{H}, \mathrm{s}), 10.42(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 10.96$ (1H, s); MS (FAB) m/z $464\left(\mathrm{MH}^{+}\right)$. Anal. ($\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \cdot \mathrm{HCl} \cdot$ $\left.0.8 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-6,7-Dimethoxy-2-\{ 1-[3-(4-hydroxyphenoxy)propyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (11). To a solution of 10p ($486 \mathrm{mg}, 0.856 \mathrm{mmol}$) in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(10 \mathrm{w} / \mathrm{w} \%, 49 \mathrm{mg})$, and the mixture was stirred under hydrogen atmosphere at room temperature for 5 h . The catalyst was removed by filtration and the filtrate was concentrated in vacuo. The residual solid was recrystallized from i-PrOH-MeOH to give 11 (315 mg , 77%) as a colorless powder: $\mathrm{mp} 215-220^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 1.74-1.95(4 \mathrm{H}, \mathrm{m}), 2.17$ (2H, br s), 2.86$2.89(3 \mathrm{H}, \mathrm{m}), 3.17-3.22(3 \mathrm{H}, \mathrm{m}), 3.39-3.48(4 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}$, s), $3.82(3 \mathrm{H}, \mathrm{s}), 3.94(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}), 4.87-4.93(1 \mathrm{H}, \mathrm{m})$, $6.69(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=9.6,3.2 \mathrm{~Hz}), 6.76(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.0,3.2 \mathrm{~Hz})$, $6.90(1 \mathrm{H}, \mathrm{s}), 7.36(1 \mathrm{H}, \mathrm{s}), 9.00(1 \mathrm{H}, \mathrm{s}), 10.56(1 \mathrm{H}, \mathrm{br}$ s); MS (FAB) m/z $441\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{HCl} \cdot 0.6 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N, Cl. Cl calcd 7.27 found 6.82 .
(\pm)-2-\{ 1-[3-(4-Aminophenoxy)propyl]-3-piperidyl\}-6,7-dimethoxy-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride (12): prepared from 10f by a procedure similar to that described for $\mathbf{1 1}$ (64\%): mp 223-231 ${ }^{\circ} \mathrm{C}$ (from AcOEtEtOH); ${ }^{1 \mathrm{H}}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 1.73-1.92(4 \mathrm{H}, \mathrm{m})$, $2.10-2.13(2 \mathrm{H}, \mathrm{m}), 2.81-2.83(3 \mathrm{H}, \mathrm{m}), 2.86-2.89(3 \mathrm{H}, \mathrm{m}), 3.16$ ($3 \mathrm{H}, \mathrm{br}$ s), 3.33-3.48 (4H, m), 3.77 (3H, s), $3.81(3 \mathrm{H}, \mathrm{s}), 3.91$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 4.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz})$, $6.69(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{s}), 7.38(1 \mathrm{H}, \mathrm{s}), 10.38(1 \mathrm{H}$, br s); MS (FAB) m/z $440\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}$, N, Cl.
(\pm)-N-(1-Benzyl-3-piperidyl)-N'-(2,2-dimethoxyethyl)-3,4-dimethoxybenzamide (13). To a suspension of 5 (4.51 $\mathrm{g}, 20.0 \mathrm{mmol}$) and aminoacetal dehyde dimethylacetal (2.10 g , 20.0 mmol) in THF (50 mL) were added AcOH ($2.29 \mathrm{~mL}, 40.0$ mmol) and $\mathrm{NaBH}(\mathrm{OAC})_{3}(5.09 \mathrm{~g}, 24.0 \mathrm{mmol})$, and the mixture was stirred room temperature for 3 h . The mixture was made alkaline with 5 N NaOH aq at $0^{\circ} \mathrm{C}$, then extracted with CHCl_{3} $(40 \mathrm{~mL} \times 2)$. The combined extract was dried and concentrated in vacuo to give 1-benzyl-3-[(2,2-dimethoxyethyl)amino]piperidine $(4.12 \mathrm{~g})$ as a brown oil. To a solution of compound obtained above ($1.39 \mathrm{~g}, 5.00 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.767 \mathrm{~mL}, 5.50 \mathrm{mmol})$ in THF (20 mL) was added dropwise a solution of 3,4-dimethoxybenzoyl chloride ($1.05 \mathrm{~g}, 5.25 \mathrm{mmol}$) in THF (5 mL) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 3 h . The resulting mixture was concentrated in vacuo and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, then extracted with AcOEt (30 $\mathrm{mL} \times 2$). The combined extract was washed with 1 N NaOH aq (30 mL) and was dried and concentrated in vacuo. The
residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=99 / 1\right)$ to give $13(2.11 \mathrm{~g}, 70 \%$ from 5) as a brown oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.51-1.89(4 \mathrm{H}, \mathrm{m})$, $2.10(2 \mathrm{H}, \mathrm{br}$ s), 2.74-2.84(2H, m), 3.34-3.68(10H, m), 3.80 $(3 \mathrm{H}, \mathrm{s}), 3.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.81-6.88$ (3H, m), 7.24-7.33 (5H, m); MS (FAB) m/z $443\left(\mathrm{MH}^{+}\right)$.
(\pm)-2-(1-Benzyl-3-piperidyl)-6,7-dimethoxy-1-oxo-1,2dihydroisoquinoline (14). To a solution of $13(2.10 \mathrm{~g}, 4.75$ mmol) in $\mathrm{AcOH}(5 \mathrm{~mL})$ was added $\mathrm{c} . \mathrm{HCl}(5 \mathrm{~mL})$, and the mixture was stirred at room temperature for 24 h . The mixture was poured into $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and made alkaline with 5 N NaOH aq at $0{ }^{\circ} \mathrm{C}$, then extracted with $\mathrm{CHCl}_{3}(30 \mathrm{~mL} \times 2)$. The combined extract was dried and concentrated in vacuo. The residue was purified by col umn chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=49 / 1\right)$ to give 14 ($1.13 \mathrm{~g}, 52 \%$) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.64-1.80(3 \mathrm{H}, \mathrm{m})$, $1.93-1.96(1 \mathrm{H}, \mathrm{m}), 2.18(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.31-2.36(1 \mathrm{H}, \mathrm{m})$, 2.77-2.80 (1H, m), 2.97-2.99 (1H, m), $3.57(2 \mathrm{H}, \mathrm{s}), 3.98(3 \mathrm{H}$, s), $3.99(3 \mathrm{H}, \mathrm{s}), 5.15-5.19(1 \mathrm{H}, \mathrm{m}), 6.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz})$, 6.72 (1H, s), $7.24-7.37$ (6H, m), $7.80(1 \mathrm{H}, \mathrm{s}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ $379\left(\mathrm{MH}^{+}\right)$.
(\pm)-6,7-Dimethoxy-1-oxo-2-(3-piperidyl)-1,2-dihydroisoquinoline Hydrochloride (15). To a solution of 14 (1.10 g, 2.91 mmol) in AcOEt (10 mL) was added $4 \mathrm{~N} \mathrm{HCI}(\mathrm{g}) / \mathrm{AcOEt}$ ($0.873 \mathrm{~mL}, 3.49 \mathrm{mmol}$), and the mixture was concentrated in vacuo. To a solution of the residual solid in $\mathrm{AcOH}(10 \mathrm{~mL}$) was added $\mathrm{Pd} / \mathrm{C}(10 \mathrm{w} / \mathrm{w} \%, 110 \mathrm{mg}$), and the mixture was stirred under hydrogen pressure ($3-4 \mathrm{~kg} / \mathrm{cm}^{2}$) at room temperature for 2 days. The catalyst was removed by filtration and the filtrate was concentrated in vacuo. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and made alkaline with 5 N NaOH aq at $0{ }^{\circ} \mathrm{C}$, then extracted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL} \times 2)$. The combined extract was dried and concentrated in vacuo to give the free base of $\mathbf{1 5}$ ($811 \mathrm{mg}, 97 \%$) as a slightly yellow oil. This material was converted to its hydrochloride salt by treating with $4 \mathrm{~N} \mathrm{HCl}(\mathrm{g}) /$ AcOEt ($1.05 \mathrm{~mL}, 4.22 \mathrm{mmol}$). The crude salt was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$ to give $\mathbf{1 5}$ ($600 \mathrm{mg}, 64 \%$) as a slightly yellow powder: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 1.84-$ $2.09(4 \mathrm{H}, \mathrm{m})$, 2.87 ($1 \mathrm{H}, \mathrm{br}$ s), 3.27-3.29 (3H , m), $3.86(3 \mathrm{H}, \mathrm{s})$, $3.89(3 \mathrm{H}, \mathrm{s}), 5.21-5.22(1 \mathrm{H}, \mathrm{m}), 6.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.17$ $(1 \mathrm{H}, \mathrm{s}), 7.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{s}), 9.13(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, 9.59 (1H, br s); MS (FAB) m/z $289\left(\mathrm{MH}^{+}\right)$.
(\pm)-6,7-Dimethoxy-2-\{1-[3-(3,4-methylenedioxyphenoxy)-propyl]-3-piperidyl\}-1-oxo-1,2-dihydroisoquinoline Hy drochloride (16): prepared from 15 by a procedure similar to that described for 10a (67\%): mp 205-208 ${ }^{\circ} \mathrm{C}$ (from AcOEt$\mathrm{CH}_{3} \mathrm{CN}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 1.89-2.21(6 \mathrm{H}, \mathrm{m})$, 2.97-3.00 (1H , m), 3.23-3.57 (5H, m), 3.86 (3H, s), 3.89 (3H, s), $3.98(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 5.32(1 \mathrm{H}$, br s), $5.95(2 \mathrm{H}, \mathrm{s}), 6.38$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,2.4 \mathrm{~Hz}), 6.63-6.66(2 \mathrm{H}, \mathrm{m}), 6.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.4 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{s}), 7.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{s})$, 10.76 (1H, br s); MS (FAB) m/z $467\left(\mathrm{MH}^{+}\right)$. Anal. ($\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}$. $\mathrm{HCl}) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
1-[3-(3,4-Methylenedioxyphenoxy)propyl]-3-piperidone (17). To a solution of (\pm)-3-hydroxypiperidine ($1.21 \mathrm{~g}, 12.0$ mmol) in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ were added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.82 \mathrm{~g}$, 13.2 $\mathrm{mmol})$ and $9 \mathrm{a}(3.26 \mathrm{~g}, 12.6 \mathrm{mmol})$, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 h . After being cooled at room temperature, the mixture was concentrated in vacuo. The residue was partitioned between $\mathrm{CHCl}_{3}(40 \mathrm{~mL} \times 2)$ and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, then the CHCl_{3} layer was dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=24 / 1\right)$ to give (\pm)-3-hydroxy-1-[3-(3,4-methylenedioxyphenoxy)propyl] piperidine ($3.35 \mathrm{~g}, 12.0 \mathrm{mmol}$). To a cooled $\left(-70^{\circ} \mathrm{C}\right)$ solution of $(\mathrm{COCl})_{2}(2.06 \mathrm{~mL}, 24.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise a solution of DMSO (2.13 $\mathrm{mL}, 30.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and the mixture was stirred at $-70{ }^{\circ} \mathrm{C}$ for 10 min . To the mixture was added dropwise a solution of compound obtained above ($3.35 \mathrm{~g}, 12.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-70^{\circ} \mathrm{C}$, and the mixture was stirred at ambient temperature for 1 h . To the mixture was added $\mathrm{Et}_{3} \mathrm{~N}$ ($6.69 \mathrm{~mL}, 48.0 \mathrm{mmol}$), and the mixture was allowed to warm and stir at $0^{\circ} \mathrm{C}$ for 1 h . To the mixture was added sat. NaHCO_{3} aq (20 mL), and the mixture was partitioned between CHCl_{3}
($30 \mathrm{~mL} \times 2$) and $\mathrm{H}_{2} \mathrm{O}\left(40 \mathrm{~mL}\right.$). The CHCl_{3} layer was dried and concentrated in vacuo to give 17 ($3.40 \mathrm{~g}, 99 \%$) as a light yellow oil. This compound was used in the next step without further purification.
(\pm)-3-Amino-1-[3-(3,4-methylenedioxyphenoxy)propyl]piperidine (18). To a solution of 17 ($3.40 \mathrm{~g}, 12.0 \mathrm{mmol}$) in pyridine (30 mL) was added O-benzylhydroxylamine hydrochloride ($2.11 \mathrm{~g}, 13.2 \mathrm{mmol}$), and the mixture was stirred at room temperature for 18 h , then concentrated in vacuo. After coevaporated with toluene, the residue was partitioned between $\mathrm{CHCl}_{3}(30 \mathrm{~mL} \times 2)$ and 0.2 N NaOH aq (40 mL). The CHCl_{3} layer was dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} /\right.$ $\mathrm{MeOH}=49 / 1)$ to give O-benzyl 1-[3-(3,4-methylenedi oxyphenoxy)propyl]-3-piperidone oxime ($4.44 \mathrm{~g}, 11.6 \mathrm{mmol}$) as a yellow oil. To a suspension of $\mathrm{LiAlH}_{4}(1.10 \mathrm{~g}, 29.0 \mathrm{mmol})$ in THF (20 mL) was added a solution of compound obtained above (4.44 $\mathrm{g}, 11.6 \mathrm{mmol}$) in THF (10 mL), and the mixture was stirred under reflux for 1 h . After being cooled at room temperature, to the cooled $\left(-40^{\circ} \mathrm{C}\right)$ mixture were added dropwise $\mathrm{H}_{2} \mathrm{O}$ (3 $\mathrm{mL}), 1 \mathrm{~N} \mathrm{NaOH}$ aq (3 mL), and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$, then the mixture was stirred at room temperature for 2 h . The precipitate was filtered off, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=22 / 3\right)$ to give $18(1.93 \mathrm{~g}, 60 \%)$ as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05-1.17$ (1H, m), 1.49$1.98(6 \mathrm{H}, \mathrm{m}), 2.02-2.08(1 \mathrm{H}, \mathrm{m}), 2.46-2.51(2 \mathrm{H}, \mathrm{m}), 2.64-$ $2.67(1 \mathrm{H}, \mathrm{m}), 2.78-2.93(2 \mathrm{H}, \mathrm{m}), 3.93(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}), 5.90$ $(2 \mathrm{H}, \mathrm{s}), 6.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,2.4 \mathrm{~Hz}), 6.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4$ $\mathrm{Hz}), 6.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 279\left(\mathrm{MH}^{+}\right)$.
(\pm)-3-Methylamino-1-[3-(3,4-methylenedioxyphenoxy)propyl]piperidine (19). To a solution of $17(416 \mathrm{mg}, 1.50$ mmol) and $40 \% \mathrm{MeNH}_{2} / \mathrm{MeOH}(349 \mathrm{mg}, 4.50 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ were added $\mathrm{AcOH}(0.258 \mathrm{~mL}, 4.50 \mathrm{mmol})$ and NaBH $(\mathrm{OAC})_{3}(413 \mathrm{mg}, 1.95 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 17 h . The reaction mixture was made alkaline with 1 N NaOH aq at $0^{\circ} \mathrm{C}$, then extracted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL} \times 2)$. The combined extract was dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=22 / 3\right)$ to give 19 (286 mg, 65\%) as a slightly yellow oil: ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.27-1.30(1 \mathrm{H}, \mathrm{m}), 1.51-2.23(7 \mathrm{H}, \mathrm{m}), 2.32(2 \mathrm{H}, \mathrm{br}$ s), $2.47(3 \mathrm{H}, \mathrm{s}), 2.51-2.53(2 \mathrm{H}, \mathrm{m}), 2.65-2.79(2 \mathrm{H}, \mathrm{m}), 2.85-$ $2.89(1 \mathrm{H}, \mathrm{m}), 3.93(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}), 5.90(2 \mathrm{H}, \mathrm{s}), 6.32(1 \mathrm{H}$, dd, J $=8.4,2.4 \mathrm{~Hz}), 6.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 8.4 Hz); MS (FAB) m/z $293\left(\mathrm{MH}^{+}\right)$.
(\pm)-6,7-Dimethoxy-3-\{ 1-[3-(3,4-methylenedioxyphenoxy)-propyl]-3-piperidyl\}-4-oxo-3,4-dihydroquinazoline $\mathbf{H y}$ drochloride (20). To a solution of $18(418 \mathrm{mg}, 1.50 \mathrm{mmol})$ in $\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}(8 \mathrm{~mL})$ were added HOBt (101 mg, 0.750 mmol$)$, EDC $\cdot \mathrm{HCl}(316 \mathrm{mg}, 1.65 \mathrm{mmol})$, and 4,5-dimethoxyanthranilic acid ($311 \mathrm{mg}, 1.58 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 6 h . The mixture was partitioned between $\mathrm{CHCl}_{3}(20 \mathrm{~mL} \times 2)$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and the CHCl_{3} layer was dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right.$ $=49 / 1)$ to give (\pm)-2-amino-4,5-dimethoxy-N-\{1-[3- (3,4-methylenedioxyphenoxy) propyl]-3-piperidyl\}benzamide (623 mg, $1.36 \mathrm{mmol})$ as a yellow oil. A solution of compound obtained above ($613 \mathrm{mg}, 1.34 \mathrm{mmol}$) in $\mathrm{HC}(\mathrm{OEt})_{3}(8 \mathrm{~mL})$ was stirred under reflux for 21 h . After being cooled at room temperature, the mixture was concentrated in vacuo and the residue was partitioned between $\mathrm{CHCl}_{3}(20 \mathrm{~mL} \times 2)$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and the CHCl_{3} layer was dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=49 / 1\right)$ to give the free base of $\mathbf{2 0}$ ($545 \mathrm{mg}, 87 \%$) as a slightly yellow oil. This material was converted to its hydrochloride salt by treating with $4 \mathrm{~N} \mathrm{HCl}(\mathrm{g}) / \mathrm{AcOEt}(0.350$ $\mathrm{mL}, 1.40 \mathrm{mmol})$. The crude salt was recrystallized from AcOEt- $\mathrm{CH}_{3} \mathrm{CN}$ to give 20 ($300 \mathrm{mg}, 44 \%$) as a slightly yellow powder: mp $142-146{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ 1.98-2.04 (3H, m), 2.16-2.19 (3H, m), 2.96-2.99 (1H, m), $3.23-3.26(2 \mathrm{H}, \mathrm{m}), 3.48-3.58(2 \mathrm{H}, \mathrm{m}), 3.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.88$ $(3 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 3.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{br} \mathrm{s})$,
$5.95(2 \mathrm{H}, \mathrm{s}), 6.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,2.4 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $2.4 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{s}), 7.46(1 \mathrm{H}, \mathrm{s})$, $8.33(1 \mathrm{H}, \mathrm{s}), 10.85(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; MS (FAB) m/z $468\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot \mathrm{HCl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-3,4-Dimethoxy-N-\{ 1-[3-(3,4-methylenedioxyphenoxy)-propyl]-3-piperidyl\}benzamide Hydrochloride (21). To a solution of 18 ($167 \mathrm{mg}, 0.600 \mathrm{mmol}$) in AcOEt (3 mL) was added a solution of 3,4-dimethoxybenzoyl chloride (126 mg , $0.630 \mathrm{mmol})$ in $\operatorname{AcOEt}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 14 h . The mixture was partitioned between AcOEt ($15 \mathrm{~mL} \times 2$) and 1 N NaOH aq (30 mL) , and the AcOEt layer was washed with sat. $\mathrm{NaCl}(20$ $\mathrm{mL})$, then dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right.$ $=49 / 1)$ to give the free base of $\mathbf{2 1}(266 \mathrm{mg}, 100 \%)$ as a slightly yellow oil. This material was converted to its hydrochloride salt by treating with $4 \mathrm{~N} \mathrm{HCl}(\mathrm{g}) / \mathrm{AcOEt}(0.180 \mathrm{~mL}, 0.720$ $\mathrm{mmol})$. The crude salt was recrystallized from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$ to give 21 ($188 \mathrm{mg}, 65 \%$) as a slightly pink powder: mp 165$167{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) $\delta 1.60-1.93$ ($4 \mathrm{H}, \mathrm{m}$), 2.13-2.22 (2H, m), 2.75-2.99 (2H, m), $3.26(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.50-$ $3.59(2 \mathrm{H}, \mathrm{m}), 3.81-3.85(6 \mathrm{H}, \mathrm{m}), 3.96-3.99(2 \mathrm{H}, \mathrm{m}), 4.28(2 /$ $3 \mathrm{H}, \mathrm{br} s), 4.49(1 / 3 \mathrm{H}, \mathrm{br}$ s), $5.96(2 \mathrm{H}, \mathrm{s}), 6.37-6.40(1 \mathrm{H}, \mathrm{m})$, $6.65(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,3.6 \mathrm{~Hz}), 7.02$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.45-7.71(2 \mathrm{H}, \mathrm{m}), 8.44(2 / 3 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0$ $\mathrm{Hz}), 8.95(1 / 3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 10.20(2 / 3 \mathrm{H}, \mathrm{br}$ s), 11.11 (1/ $3 \mathrm{H}, \mathrm{br} \mathrm{s})$; MS (FAB) m/z $443\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{HCl}\right)$ C, H, N, Cl.
(\pm)-3,4-Dimethoxy-N-methyl-N'-\{ 1-[3-(3,4-methylene-dioxyphenoxy)propyl]-3-piperidyl\}benzamide Hydrochloride (22): prepared from 19 by a procedure similar to that described for 21 (58\%): mp 178-181 ${ }^{\circ} \mathrm{C}$ (from EtOH); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 1.82-1.94(4 \mathrm{H}, \mathrm{m}), 2.14(2 \mathrm{H}, \mathrm{br}$ s), 2.85 (3H, s), $2.87(2 \mathrm{H}, \mathrm{br}$ s), 3.19-3.22 (4H, m), 3.48-3.51 (1H, m), $3.78(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.98(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 5.96(2 \mathrm{H}, \mathrm{s})$, $6.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8,2.8 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d} \mathrm{J}=2.8 \mathrm{~Hz}), 6.82$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.99-7.02(3 \mathrm{H}, \mathrm{m}), 10.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \mathrm{MS}$ (FAB) m/z $457\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(\pm)-N-(1-tert-Butoxycarbonyl-3-piperidyl)-3,4-dimeth-oxy-6-(ethoxycarbonylamino)benzamide (25). To a solution of tert-butyl 3-aminopiperidin-1-carboxylate (24) ${ }^{21}$ in pyridine (15 mL) was added 6,7-dimethoxy-2-ethoxy-4-oxo-1,3benzoxazin $23^{22}(1.26 \mathrm{~g}, 5.00 \mathrm{mmol})$, and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 2 h . After being cool ed at room temperature, the mixture was concentrated in vacuo. The residue was partitioned between $\mathrm{CHCl}_{3}(30 \mathrm{~mL} \times 2)$ and $5 \%(\mathrm{w} / \mathrm{v})$ citric acid aq (30 mL), and the CHCl_{3} layer was dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane/AcOEt = 1/2) to give 25 (1.95 $\mathrm{g}, 86 \%)$ as a col orless foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.33$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.45(9 \mathrm{H}, \mathrm{s}), 1.66-2.04(4 \mathrm{H}, \mathrm{m}), 3.25-3.76$ $(4 \mathrm{H}, \mathrm{m}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 4.05(1 \mathrm{H}, \mathrm{br}$ s), 4.13-4.23 ($2 \mathrm{H}, \mathrm{m}$), $6.89(1 \mathrm{H}, \mathrm{br}$ s), $8.11(1 \mathrm{H}, \mathrm{s}), 10.74(1 \mathrm{H}, \mathrm{br}$ s); MS (FAB) $\mathrm{m} / \mathrm{z} 452\left(\mathrm{MH}^{+}\right)$.
(\pm)-6,7-Dimethoxy-2,4-dioxo-3-(3-piperidyl)-1,2,3,4-tetrahydroquinazoline Hydrochloride (26). To a suspension of $\mathrm{NaH}(60 \%, 344 \mathrm{mg}, 8.59 \mathrm{mmol})$ in DMF $(30 \mathrm{~mL})$ was added dropwise a solution of $\mathbf{2 5}(1.94 \mathrm{~g}, 4.30 \mathrm{mmol})$ in DMF (10 mL), and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 h . After being cooled at room temperature, to the mixture was added $\mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$, then extracted with $\mathrm{CHCl}_{3}(40 \mathrm{~mL} \times 2)$. The combined extract was dried and concentrated in vacuo. The residual solid was recrystallized from AcOEt-hexane to give (\pm)-3-(1-tert-butoxycarbonyl-3-piperidyl)-6,7-dimethoxy-2,4-dioxo-1,2,3,4tetrahydroquinazoline ($1.19 \mathrm{~g}, 2.93 \mathrm{mmol}$) as a beige powder. To a solution of the compound obtained above in $\mathrm{MeOH}(5 \mathrm{~mL}$) was added $4 \mathrm{~N} \mathrm{HCl}(\mathrm{g}) / \mathrm{AcOEt}(3.63 \mathrm{~mL}, 14.5 \mathrm{mmol})$, and the mixture was stirred at room temperature for 10 h . The mixture was concentrated in vacuo, and the residual solid was recrystallized from MeOH to give 26 ($850 \mathrm{mg}, 58 \%$ from 25) as a colorless powder: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$) $\delta 1.73-1.79$ $(2 \mathrm{H}, \mathrm{m}), 1.91-1.94(1 \mathrm{H}, \mathrm{m}), 2.41-2.47(1 \mathrm{H}, \mathrm{m}), 2.76-2.79(1 \mathrm{H}$, m), 3.24-3.29(2H, m), 3.73-3.76(1H, m), 3.79(3H, s), 3.83
(3H, s), 5.14-5.20 (1H , m), $6.71(1 \mathrm{H}, \mathrm{s}), 7.27(1 \mathrm{H}, \mathrm{s}), 8.98(1 \mathrm{H}$, br s), 9.40 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), 11.33 ($1 \mathrm{H}, \mathrm{s}$); MS (FAB) m/z 306 (MH+).
(\pm)-6,7-Dimethoxy-3-\{ 1-[3-(3,4-methylenedioxyphenoxy)-propyl]-3-piperidyl\}-2,4-dioxo-1,2,3,4-tetrahydroquinazoline Hydrochloride (27): prepared from 26 by a procedure similar to that described for 10a (45\%): mp 227-233 ${ }^{\circ} \mathrm{C}$ (from CH_{3} CN-MeOH); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 1.76-1.78$ (1 H , $\mathrm{m}), 1.96(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.08(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.41-2.50(1 \mathrm{H}, \mathrm{m}), 2.92-$ $2.95(1 \mathrm{H}, \mathrm{m}), 3.25-3.30(3 \mathrm{H}, \mathrm{m}), 3.51-3.65(2 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}$, $\mathrm{s}), 3.83(3 \mathrm{H}, \mathrm{s}), 3.97(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 5.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.95$ $(2 \mathrm{H}, \mathrm{s}), 6.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,2.8 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4$ $\mathrm{Hz}), 6.71(1 \mathrm{H}, \mathrm{s}), 6.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{s}), 10.64$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), 11.37 ($1 \mathrm{H}, \mathrm{s}$); MS (FAB) m/z $484\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7} \cdot \mathrm{HCl} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(S)-(-)-6,7-Dimethoxy-1-oxo-2-(3-piperidyl)-1,2,3,4-tetrahydroisoquinoline D-Tartrate ((S)-8) and (R)-(+)-6,7-Dimethoxy-1-oxo-2-(3-piperidyl)-1,2,3,4-tetrahydroisoquinoline l-Tartrate ((R)-8). To a sol ution of $8(1.60 \mathrm{~g}, 5.51$ mmol) in EtOH (20 mL) was added a solution of D-tartaric acid ($826 \mathrm{mg}, 5.51 \mathrm{mmol}$) in EtOH (8 mL), and the mixture was concentrated in vacuo. The residual solid was recrystallized four times from $95 \%(\mathrm{v} / \mathrm{v}) \mathrm{EtOH}$ aq ($25-50 \mathrm{~mL}$) to give (S)-8 ($650 \mathrm{mg}, 27 \%, \mathrm{t}_{\mathrm{R}}=12.3 \mathrm{~min} ., 99.8 \% \mathrm{ee}$) as a col orless powder: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 1.69-1.89(4 \mathrm{H}, \mathrm{m}), 2.70-$ $2.76(1 \mathrm{H}, \mathrm{m}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 2.97-3.03(1 \mathrm{H}, \mathrm{m}), 3.12-$ $3.19(2 \mathrm{H}, \mathrm{m}), 3.45(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}$, s), 3.87 ($2 \mathrm{H}, \mathrm{s}$), 4.72 (1 H , br s), 6.89 ($1 \mathrm{H}, \mathrm{s}$), 7.37 ($1 \mathrm{H}, \mathrm{s}$); MS (FAB) m/z $291\left(\mathrm{MH}^{+}\right) ;[\alpha]^{25} \mathrm{D}=-26.8^{\circ}(\mathrm{c}=1.0, \mathrm{MeOH})$. The mother liquor of (S)-8 was concentrated in vacuo. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and made alkaline with 1 N NaOH aq, then extracted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL} \times 2)$. The combined extract was dried and concentrated in vacuo. To a solution of the residual oil in EtOH (10 mL) was added a solution of L-tartaric acid ($320 \mathrm{mg}, 2.13 \mathrm{mmol}$) in EtOH (6 mL), and the mixture was concentrated in vacuo. The residual sol id was recrystallized two times from $95 \%(\mathrm{v} / \mathrm{v}) \mathrm{EtOH}$ aq ($30-50 \mathrm{~mL}$) to give (R)-8 ($460 \mathrm{mg}, 19 \%, \mathrm{t}_{\mathrm{R}}=16.2 \mathrm{~min} ., 99.7 \%$ ee) as a colorless powder: $[\alpha]^{25} \mathrm{D}=+28.8^{\circ}(\mathrm{c}=1.0, \mathrm{MeOH})$. The ${ }^{1} \mathrm{H}$ NMR and mass spectra of (R)-8 were identical to those observed for (S)-8.
(S)-(-)-6,7-Dimethoxy-2-\{ 1-[3-(3,4-methylenedioxyphen-oxy)propyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride ((S)-10a): prepared from (S)-8 by a procedure similar to that described for 10a ($81 \%, \mathrm{t}_{\mathrm{R}}=23.8$ min., >99.8\% ee): mp 200-202 ${ }^{\circ} \mathrm{C}$ (from EtOH); $[\alpha]^{25}{ }_{\mathrm{D}}=$ $-16.8^{\circ}(\mathrm{c}=1.0, \mathrm{MeOH})$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
(R)-(+)-6,7-Dimethoxy-2-\{ 1-[3-(3,4-methylenedioxyphen-oxy)propyl]-3-piperidyl\}-1-oxo-1,2,3,4-tetrahydroisoquinoline Hydrochloride ((R)-10a): prepared from (R)-8 by a procedure similar to that described for 10a ($83 \%, \mathrm{t}_{\mathrm{R}}=28.3$ min., $>99.8 \%$ ee): $\mathrm{mp} 190-194{ }^{\circ} \mathrm{C}$ (from EtOH); $[\alpha]^{25} \mathrm{D}=$ $+16.6^{\circ}(\mathrm{c}=1.0, \mathrm{MeOH})$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{HCl} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}$, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$.

Correlation Analyses. Three descriptors for aromatic substituents, namely, π, σ_{p}, and MR, were attempted in the correlation analyses for $\mathbf{1 0 b}, \mathbf{1 0 e -} \mathbf{0}, \mathbf{1 0 q}-\mathbf{s}, \mathbf{1 1}$, and $\mathbf{1 2}$. Data analyses were carried out using Microsoft Excel Version 2000 (Microsoft Corporation) running on Windows 2000.

Pharmacology. In Vitro Assay. Male Hartley guinea pigs ($250-400 \mathrm{~g}$) were sacrificed by cervical dislocation, and their hearts were removed rapidly. Right atrium were cut from the heart and mounted vertically in a 30 mL organ bath containing Tyrode's solution at $37{ }^{\circ} \mathrm{C}$ and equilibrated with $95 \% \mathrm{O}_{2}$ and $5 \% \mathrm{CO}_{2}$. Tension was placed on the atria by suspending a 1 g mass from it. The atria was allowed to equilibrate for 90 min , the bath solution was exchanged every 15 min before a compound treatment. Amplitude of contraction was measured isometrically by a force-displacement transducer (Nihon K ohden SB-1T) and measured with a cardiotachometer (Nihon Kohden AT-600G) triggered by the contraction. After initial spontaneous beat rates were recorded, a compound was added cumulatively to the bath solution at 45 min intervals, and a concentration-response curve was constructed. The effects
of compounds were presented the percent change from the initial beat rates.

In Vivo Assay. General Procedure: Male Wister rats (270350 g) were anesthetized with pentobarbital ($1.0 \mathrm{~g} / \mathrm{kg}$ ip for iv study, $60 \mathrm{mg} / \mathrm{kg}$ ip for po study). One polyethylene cannulae (PE-50) was implanted in the common carotid artery and one was implanted in the right jugular vein. The other ends of catheters were routed to an exit site at the back of the neck. Blood pressure was measured with a pressure transducer (Nihon Kohden DX-100) coupled to the cannula introduced into carotid artery and a pressure amplifier (Nihon Kohden AP-621G), and continuously recorded via a polygraph system. Mean blood pressure (MBP) ${ }^{19}$ was calculated from the following formula: $\mathrm{MBP}=\mathrm{DBP}+(\mathrm{SBP}-\mathrm{DBP}) / 3$, where DBP represents diastolic blood pressure and SBP represents systolic blood pressure. Heart rate was measured with a cardiotachometer (Nihon Kohden AT-600G) triggered by the pulsewave of blood pressure.
iv Study: After the general procedure, a test compound as an aqueous solution (or a saline) was administered intravenously through the catheter implanted into the jugular vein at a dose of $3 \mathrm{mg} / \mathrm{kg}$ (the salt form).
po Study: The animals were allowed to recover for 1 to 2 days after operation, during which time they were housed in individually with free access to rat chow and water. After a 30 min measurement period to establish baseline values, a test compound as an aqueous solution (or a saline) was administered orally by gavage at a dose of $10 \mathrm{mg} / \mathrm{kg}$ (the salt form).

Inhibitory Effect on $\mathbf{I f}_{\mathrm{f}}$ Currents. SA node cell dissociation: Male Hartley guinea pigs ($250-400 \mathrm{~g}$) were sacrificed by cervical dislocation, and their hearts were removed quickly and placed in Tyrode's solution. The SA node region was isolated and incubated in Ca^{2+}-free Tyrode's solution containing $3 \mathrm{mg} / \mathrm{mL}$ collagenase (Worthington Type II) at $37{ }^{\circ} \mathrm{C}$ for 30 min . After incubation, the tissue was placed in a KB recovery solution and agitated by suction using a blunt glass pipet to release single cells. Pacemaker cells isol ated from SA node were transferred to a recording chamber on the stage of microscope (Nikon) and were perfused continuously with the external solution. Electrical recording of I_{f} current: Membrane currents were measured using a conventional whole-cell patch configuration. Recording electrodes were pulled from a glass tube with an inner filament (Narishige GD-1.5) using a micropipet puller (Sutter Instrument P-97/IVF), and were fired-polished on a microforge (Narishige MF-9). The electrodes had a resistance of about 3-5 $\mathrm{M} \Omega$ when filled with the internal solution. Whole-cell membrane currents were recorded in voltage-clamp mode using a high-impedance patch clamp amplifir (Axon Instruments Axopatch 200A). Voltage clamp steps were control led and applied by the pCLAMP version 6.0.3 software (Axon Instruments) via an analogue to digital conversion board (Axon Instruments Digidata 1200A) running on Windows 95. The currents were low-pass filtered at 1 kHz and were sampled at 1.25 kHz . All data were stored on the floppy disks. I I_{f} currents were elicited by a hyperpolarization voltage step pulses from a holding potential of -40 mV to -120 mV for 1 s , which were applied to cells every 5 s . After recording stable I_{f} currents as control, the solution perfused to cells was changed to the external solution containing a test compound at a certain concentration, and then I_{f} currents were successively recorded for further $7-8 \mathrm{~min}$. The inhibitory effect of a test compound on I_{f} currents was evaluated as a percent inhibition of the initial amplitude of I_{f} currents. Concentra-tion-response relationship was constructed from the average of percent inhibition of I_{f} currents obtained from a single cell at each concentration.

External solution (Tyrode's solution) (mM): $\mathrm{NaCl}, 140 ; \mathrm{KCl}$, 5.4; $\mathrm{CaCl}_{2}, 1.8 ; \mathrm{M} \mathrm{gCl}_{2}, 0.5$; HEPES, 5 ; glucose, 10. Ca^{2+}-free Tyrode's solution (mM): $\mathrm{NaCl}, 140 ; \mathrm{KCl}, 5.4 ; \mathrm{MgCl}_{2}, 3.5$; HEPES, 5; glucose, 10; taurine, 20; EGTA, 0.05. KB recovery solution (mM): KCI, 70; HEPES, 5; glucose, 10; taurine, 20; K_{2} ATP, $5 ; \mathrm{MgSO}_{4}, 5 ; \mathrm{KH}_{2} \mathrm{PO}_{4}, 20$; glutamic acid, 5; creatine, 5; succinic acid, 5 . Internal solution (mM): $\mathrm{KCl}, 140 ; \mathrm{MgCl}_{2}$,

3; HEPES, 11; K ${ }_{2}$ ATP, 3; GTP (Na salt), 0.4; triphosphocreatine, 5 . All solution were adjusted to pH 7.2 .

Acknowledgment. We thank Dr. T. Satoh for performing the I_{f} currents experiments, Dr. H. Nakahara for carrying out the X-ray analysis. We also thank Drs. A. Tanaka and T. Y asunaga for his useful advises, and members of the Division of Analytical Research for performing instrumental analyses.

References

(1) Yamakawa, H.; Takeuchi, M.; Takaoka, H.; Hata, K.; M ori, M.; Yokoyama, M. Negative chronotropic effect of β-blockade therapy reduces myocardial oxygen expenditure for nonmechanical work. Circulation 1996, 94, 340-345.
(2) Kannel, W. B.; K annel, C.; Paffenbarger, R. S., J r.; Cupples, A. Heart rate and cardiovascular mortality: The Framingham study. Am. Heart J. 1987, 113, 1489-1494.
(3) Shaper, A. G.; Wannamethee, G.; Macfarlane, P. W.; Walker, M. Heart rate, ischemic heart disease, and sudden cardiac death in middle-aged British men. Br. Heart J. 1993, 70, 49-55.
(4) Platini, P.; J ulius, S. Heart rate and the cardiovascular risk. J. Hypertension 1997, 15, 3-17.
(5) Platini, P. Heart rate as a risk factor for atherosclerosis and cardiovascular mortality. Drugs 1999, 57 (5), 713-724.
(6) Opie, L. H. Pharmacology of acute effort angina. Cradiovasc. Drugs Ther. 1989, 3, 257-270.
(7) Kern, M. J.; Deligonul, U.; Labovitz, A. Influence of drug therapy on the ischemic response to acute coronary occlusion in man: Supply side economics. Am. Heart J. 1989, 118, 361-380.
(8) Kobinger, W.; Lilie, C. Specific bradycardic agents-a novel pharmacological class? Eur. Heart J. 1987, 8 (Suppl. L), 7-15.
(9) K obinger, W.; Lillie, C. Cardiovascular characterization of ULFS 49, 1,3,4,5-tetrahydro-7,8-dimethoxy-3-[3-[[2-(3,4-dimethoxy-phenyl)ethyl]methylamino]propyl]-2H-3-benzazepin-2-one hydrochloride, "a new specific bradycardic agent". Eur. J . Pharmacol. 1984, 104, 9-18.
(10) Reiffen, M.; Eberlein, W.; Muller, P.; Psior, M.; Noll, K.; Heider, J.; Lillie, C.; K obinger, W.; Luger, P. Specific bradycardic agents. 1. Chemistry, pharmacology, and structure-activity relationships of substituted benzazepinones, a new class of compounds exerting antiischemic properties. J. Med. Chem. 1990, 33, 14961504
(11) Goethals, M.; Raes, A.; von Bogaert, P. P. Use-dependent block of the pacemaker current I_{f} in rabbit sinoatrial node cells by zatebradine (UL-FS 49). Circulation 1993, 88, 2389-2401.
(12) Gardiner, S. M.; Kemp, P. A.; March, J. E.; Bennett, T. Acute and chronic cardiac and regional haemodynamic effects of the novel bradycardic agent, S-16257, in conscious rats. Br. J. Pharmacol. 1995, 115, 579-586.
(13) Bois, P.; Bescond, J.; renaudon, B.; Lenfant, J. Mode of action of bradycardic agent, S-16257, on ionic currents of rabbit sinoatrial node cells. Br. J. Pharmacol. 1996, 118, 1051-1057.
(14) Thollon, C.; Bidouard, J. P.; Cambarrat, C.; Lesage, J.; Reure, H.; Delescluse, I.; Vian, J.; Peglion, J. L.; Vilaine, J. P. Stereospecific in vitro and in vivo effects of the new sinos node inhibitor (+)-S-16257. Eur. J. Pharmacol. 1997, 339, 43-51.
(15) Baiker, W.; Czako, E. V.; Keck, M.; Nehmiz, G. Efficacy and duration of action three doses of Zatebradine (UL-FS 49CL) in patients with chronic angina pectoris compared to placebo. Hjalmarson, A., Remme, W. J., Eds. In Sinus node inhibitors; Springer-Verlag: New York, 1991; pp 55-63.
(16) Ragueneau, I.; Laveille, C.; J ochemsen, R.; Resplandy, G.; FunckBrentano, C.; J aillon, P. Pharmacokinetic-pharmacodynamic modeling of the effects of Ivabradine, a direct sinos node inhibitor, on heart rate in healthy volunteers. Clin. Pharmacol. Ther. 1998, 64, 192-203.
(17) Kubota, H.; Kakefuda, A.; Watanabe, T.; Taguchi, Y.; Ishii, N.; Masuda, N.; Sakamoto, S.; Tsukamoto, S. (\pm)-2-(3-Piperidyl)-1,2,3,4-tetrahydroisoquinolines as a New Class of Specific Bradycardic Agents. Bioorg. Med. Chem. Lett. 2003, 13, 21552158.
(18) Kobinger, W.; Lillie, L. AQ-A 39 (5,6-dimethoxy-2(3\{[2-(3,4dimethoxy)phenylethyl]methylamino\}propyl)phthalimidine), a specific bradycardic agent with direct action on the heart. Eur. J. Pharmacol. 1981, 72, 153-164.
(19) Berne, R. M.; Levy, M. N. The Arterial System. In Cardiovascular Physiology, 6th ed.; Mosby-Year Book, Inc.: St. Louis, 1992; pp 135-151.
(20) Banwell, M. G.; Bissett, B. D.; Busato, S.; Cowden, C. J.; Hockless, D. C. R.; Holman, J. W.; Read, R. W.; Wu, A. W. Trifluoromethanesulfonic anhydride-4-(N,N-dimethylamino)pyridine as a reagent combination for effecting Bischler-Napieralski cyclization under mild conditions: Application to the total synthesis of the Amaryllidaceae alkaloids N-Methylcrinasiadine, Anhydrolycorinone, Hippadine and Oxoassoanine. J. Chem. Soc., Chem. Commun. 1995, 2551-2553
(21) de Costa, B. R.; Dominguez, C.; He, X.; Williams, W.; Radesca, L.; Bowen, W. Synthesis and biological evaluation of conformationally restricted 2-(1-pyrrolidinyl)-N-[2-(3,4-dichlorophenyl)-ethyl]-N-methylethylenediamines as σ receptor ligands. 1. Pyrrolidine, piperidine, homopiperidine, and tetrahydroisoquinoline classes. J. Med. Chem. 1992, 35, 4334-4343.
(22) Krantz, A.; Spencer, R. W.; Tam, T. F.; Liak, T. J .; Copp, L. J .; Thomas, E. M.; Rafferty, S. P. Design and synthesis of 4H-1,3-benzoxazin-4-ones as potent alternate substrate inhibitors of human leukocyte elastase. J. Med. Chem. 1990, 33, 464-479.
(23) Nakahara, H. Yamanouchi Pharmaceutical Co. Ltd. Unpublished results.
(24) Skagerberg, B.; Bonelli, D.; Clementi, S.; Cruciani, G.; Ebert. Principal properties for aromatic substituents. A multivariate approach for design in QSAR. Quant. Struct.-Act. Relat. 1989, 8, 32-38.
(25) Difrancesco, D. The contribution of the "pacemaker" current (I_{f}) to generation of spontaneous activity in rabbit sino-atrial node myocytes. J. Physiol. 1991, 434, 23-40.
(26) Difrancesco, D. Pacemaker mechanisms in cardiac tissue. Annu. Rev. Physiol. 1993, 55, 451-467.

J M 0301742

[^0]: * To whom correspondence should be addressed. Tel: +81-29-8541577. Fax: +81-29-852-5387. E-mail: kakefuda@yamanouchi.co.jp.

