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Some small molecules, often hits from screening, form aggregates in solution that inhibit many
enzymes. In contrast, drugs are thought to act specifically. To investigate this assumption, 50
unrelated drugs were tested for promiscuous inhibition via aggregation. Each drug was tested
against three unrelated model enzymes: â-lactamase, chymotrypsin, and malate dehydrogenase,
none of which are considered targets of these drugs. To be judged promiscuous, the drugs had
to inhibit all three enzymes, do so in a time-dependent manner, be sensitive to detergent and
to enzyme concentration, and form particles detectable by light scattering. Of the 50 drugs
tested, 43 were nonpromiscuous by these criteria. Surprisingly, four of the drugs showed
promiscuous, aggregation-based inhibition at concentrations below 100 µM: clotrimazole, benzyl
benzoate, nicardipine, and delavirdine. Three other drugs also behaved as aggregation-based
inhibitors, but only at high concentrations (about 400 µM). To investigate possible structure-
activity relationships among promiscuous drugs, five analogues of the antifungal clotrimazole
were studied. Three of these, miconazole, econazole, and sulconazole, were promiscuous but
the other two, fluconazole and ketoconazole, were not. Using recursive partitioning, these
experimental results were used to develop a model for predicting aggregate-based promiscuity.
This model correctly classified 94% of 111 compoundss47 aggregators and 64 nonaggregatorss
that have been studied for this effect. To evaluate the model, it was used to predict the behavior
of 75 drugs not previously investigated for aggregation. Several preliminary points emerge.
Most drugs are not promiscuous, even at high concentrations. Nevertheless, at high enough
concentrations (20-400 µM), some drugs can aggregate and act promiscuously, suggesting that
aggregation may be common among small molecules at micromolar concentrations, at least in
biochemical buffers.

Introduction

The efficiency of high throughput and virtual screen-
ing is compromised by hits that later prove to be false
positives. Some of these false positives are promiscuous
compounds that act noncompetitively and show little
relationship between structure and function. Recently,
we have found that one mechanism of inhibitor promis-
cuity is aggregate formation: individual molecules
group together to form particles 30-1000 nm in diam-
eter, and these aggregates are the active inhibitory
species.1

Although aggregation as a mechanism for inhibition
is a recent proposal, the problem of false positives from
screening is well-known. There is an extensive literature
on distinguishing compounds that may act as false
positives from those that are “lead-like” and “drug-
like.”2-9 Disconcertingly, we recently found that eight
widely studied lead inhibitors of kinases, such as
quercetin and rottlerin, also acted as promiscuous,
aggregation-based inhibitors.10 If these highly studied

molecules can act promiscuously, we wondered whether
drugs might do so as well.

To investigate this question, we tested 50 diverse
drugs for inhibition of three unrelated model enzymes:
â-lactamase, chymotrypsin, and malate dehydrogenase.
These enzymes recognize dissimilar ligands, and none
of them are considered targets for the drugs tested here.
To be judged as a promiscuous, aggregation-based
inhibitor, a drug had to meet the following criteria.
First, it had to inhibit all three enzymes. Second,
inhibition had to have properties characteristic of ag-
gregation-based inhibition, including time-dependence,
sensitivity to detergent, and sensitivity to enzyme
concentration. Finally, the drug had to form particles
detectable by light scattering. To compensate for these
fairly strict criteria of promiscuity, we initially tested
the drugs at concentrations between 10 and 400 µM.

As expected, most of the drugs were inactive against
all three enzymes, consistent with the “drug-like”
behavior of these compounds. Surprisingly, several of
the drugs acted as promiscuous, aggregation-based
inhibitors of the model enzymes. To investigate this
behavior further, we explored structure-activity (SAR)
and structure-property relationships (SPR) among a
larger set of over 100 known aggregators and non-
aggregators. We also studied the SAR of one family of

* Corresponding author: shoichet@cgl.ucsf.edu; phone: 415-514-
4126; fax: 415-502-1411.

⊥ These authors contributed equally to this work.
† Northwestern University.
‡ Pfizer Incorporated.
§ University of California.

4477J. Med. Chem. 2003, 46, 4477-4486

10.1021/jm030191r CCC: $25.00 © 2003 American Chemical Society
Published on Web 09/13/2003



promiscuous drugs in more detail and considered how
promiscuity related to structural changes among related
compounds.

Results
Fifty diverse drugs were tested for inhibition of three

unrelated model enzymes: â-lactamase, chymotrypsin,
and malate dehydrogenase (MDH). The drugs were
initially tested at 100 µM against â-lactamase, 250 µM

against chymotrypsin, and 400 µM against MDH. As
expected, most drugs, 35 of those tested, did not
significantly inhibit any of the enzymes (Table 1). These
35 were not considered further as candidates for pro-
miscuity.

Fifteen drugs inhibited at least one of the model
enzymes at the initial concentrations and were tested
against the other enzymes at concentrations up to 400
µM. Two of these, guanabenz and propantheline bro-
mide, did not inhibit either of the other two enzymes
significantly and were thus classified as nonpromiscu-
ous (Table 1). Another, nitrofurantoin, though relatively
potent against chymotrypsin and MDH, did not inhibit
â-lactamase measurably even at 400 µM. Moreover,
nitrofurantoin showed few of the enzymological features
characteristic of aggregate-forming promiscuous com-
pounds and did not form particles detectable by dynamic
light scattering (DLS) (data not shown); it was therefore
considered nonpromiscuous (Table 1). Five drugss
chlorambucil, sulfinpyrazone, indomethacin, tacrine,
and phenazopyridinesshowed significant inhibition of
all three model enzymes at a concentration of 400 µM.
However, even at 400 µM, inhibition never reached 50%
for all three enzymes, and for none of these five were
particles measurable by DLS. Thus, although these five
drugs showed activity that suggested promiscuous
behavior, they failed to meet our criteria for aggrega-
tion-based inhibition, and were considered nonpromis-
cuous, nonaggregate formers (Table 1). Of the 50 drugs
initially tested, 43 (86%) were classified as nonpromis-
cuous, nonaggregating molecules (Figure 1).

Three of the drugs testedsglyburide, mefenamic acid,
and oxaprozinswere classified as weakly promiscuous,
aggregate forming molecules (Figure 1). Although none
of these drugs were active against any of the model
enzymes at 100 µM concentrations, all three showed
enzymological features characteristic of aggregation-
based promiscuity1,10 at 400 µM. This is clearest for
glyburide and mefanamic acid, which inhibited all three
enzymes significantly at this concentration (Table 2).
Inhibition for both of these drugs increased significantly
on preincubation with the enzyme, and diminished
dramatically when enzyme concentration was increased
10-fold (Table 3). Both compounds showed significant
loss of inhibition in the presence of the mild, nonionic
detergent saponin (the mechanism of this effect will be
discussed elsewhere) (Table 4). Both drugs also formed
clearly measurable particles by DLS (Table 5). For
oxaprozin the classification is less certain, in that even
at 400 µM this drug did not inhibit â-lactamase signifi-
cantly (Table 2), nor was inhibition of chymotrypsin
sensitive to preincubation (Table 3). However, inhibition
did diminish significantly when the concentration of

Table 1. Inhibition by Nonpromiscuous Drugs of â-Lactamase,
Chymotrypsin, and MDHa

% inhibition

compound â-lactamase chymotrypsin MDH

4-aminophenyl sulfone <5 <5 11
5-aminosalicylic acid <5 <5 18c

amrinone <5 <5 <5e

azelaic acid <5 <5 8
carbamazepine <5 <5 8
carisoprodol <5 <5 <5
chlorambucil <5 23 44
chlorthalidone <5 <5 <5c

cinoxacin <5 <5 <5e

deferoxamine mesylate <5 <5 <5
diflunisal <5 13 <5
diphenhydramine <5 <5 <5
etodolac <5 <5 9
flutamide <5 <5 <5d

furosemide <5 <5 21
gemfibrozil <5 <5 14c

guaifenesin <5 <5 <5
guanabenz 83 <5 20
indomethacin <5 <5 7
lamotrigine <5 <5 11
lansoprazole <5 <5 <5
leflunomide <5 <5 12
lidocaine <5 <5 <5
mebendazole <5 <5 15
nitrofurantoin <5 91 97
omeprazole <5 <5 <5
ondansetron <5 <5 <5
phenazopyridine <5 96 34
primidone <5 <5 13
prazocin 13 <5 14d

propantheline bromide <5 96b <5
proptriptyline <5 <5 <5
riboflavin <5 <5 <5d

riluzole <5 <5 <5c

sulfadiazine <5 <5 <5c

sulfinpyrazone <5 27 83
tacrine <5 <5 83
tetraethylene pentamine <5 <5 <5
thalidomide <5 <5 <5
torasemide <5 <5 14
triamterene <5 <5 21e

trimethoprim <5 <5 <5
tripelennamine <5 <5 <5

a Drugs were assayed for â-lactamase inhibition at 100 µM,
chymotrypsin inhibition at 250 µM, and MDH inhibition at 400
µM, unless otherwise noted. b Inhibition is time dependent. c 200
µM. d 100 µM. e 50 µM.

Table 2. Inhibition by Promiscuous Drugs of â-Lactamase, Chymotrypsin, and MDH

IC50 (µM)
compound original target

therapeutic
concentration (µM) â-lactamase chymotrypsin MDH

clotrimazole sterol 14R-demethylase35 30a 36 20 85 35
benzyl benzoate scabies35 1.2 Mb 37 90 250 125
nicardipine Ca2+ channel35 0.184c 38 20 175 50
delavirdine reverse transcriptase39 0.038d 40 90 225 85
glyburide K+ channel35 0.215c 41 300 360 400
mefanamic acid cyclooxygenase35 83c 40 350 >400e 225
oxaprozin cyclooxygenase35 372c 42 >400 200 175

a Fungicidal concentration. b Topical dosage. c Mean maximum plasma concentration. d IC50. e 41% inhibition at 400 µM.
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chymotrypsin was raised 10-fold (Table 3) or when
saponin was used in the assay (Table 4), and oxaprozin
did form particles observable by DLS (Table 5).

Four of the 50 drugs initially testedsclotrimazole,
benzyl benzoate, nicardipine, and delavirdineswere
unambiguously promiscuous, aggregate-forming inhibi-
tors at concentrations in the 100 µM range (Figure 2).
All four compounds inhibited the three model enzymes
(Table 2). All four had a pronounced incubation effect
and were highly sensitive to a 10-fold increase in
enzyme concentration (Table 3). For all four drugs,

saponin greatly reduced their potency against the three
model enzymes (Table 4). Finally, DLS experiments on
each of these drugs yielded high intensity, well-defined
autocorrelation functions, consistent with the presence
of particles 200-900 nm in diameter (Table 5, Figure
2). These features contrast markedly with negative
control compounds, such as benzo[b]thiophene-2-boronic
acid (BZBTH2B), a well-characterized, specific inhibitor
of â-lactamase that is unaffected by incubation, the
presence of saponin, or increases in enzyme concentra-
tion (Table 5). BZBTH2B, as well as two other control

Figure 1. Drugs assayed for promiscuous inhibition.
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compounds, the dye 8-anilino-1-naphthyl-sulfonic acid
(ANS) and the drug fluconazole (see below) did not
scatter light even at millimolar concentrations (Table
6, Figure 2).

To investigate possible structure-activity relation-
ships (SAR) within a family of promiscuous drugs, we
considered the behavior of five azole antifungal drugs
related to clotrimazole: miconazole, sulconazole, econa-
zole, ketoconazole, and fluconazole (Figure 3). Like
clotrimazole, three of thesesmiconazole, sulconazole,
and econazoleswere strongly promiscuous, aggregate-
forming molecules (Table 6), with IC50 values against
â-lactamase, chymotrypsin, and MDH in the 10 to 150
µM range. All three showed a strong incubation effect
and were highly sensitive to enzyme concentration and
the presence of saponin (Table 6), and all three strongly

scattered light (Figure 2, Table 6). Conversely, the
related antifungals fluconazole and ketoconazole (Figure
3) were not promiscuous (Table 6) and did not form
detectable aggregates in solution, even at millimolar
concentrations (Table 6, Figure 2). Whereas the number
of compounds considered here is small by SAR stan-
dards, making conclusions tentative, the principle dis-
tinguishing feature among these drugs appears to be
their hydrophobicity, with the aggregating promiscuous
azoles having clogP values above 5 and the nonprom-
iscuous azoles having clogP values well below 5 (below).

To investigate possible patterns among aggregating,
promiscuous inhibitors more broadly, we looked for
patterns among 47 molecules that have been shown
explicitly to form promiscuous aggregates in solution
(this work and also refs 1 and 10). We were especially
interested in features that would distinguish them from
64 molecules that have been shown explicitly not to
aggregate at micromolar concentrations (this work and
also refs 1, 10, and 11). First, we performed clustering
by structural similarity.12 Though there were a few
small clusters, we did not find this particularly informa-
tive or predictive.

Because aggregation may be considered a solubility
phenomenon, we asked if simple solubility parameters
would be sufficient to differentiate aggregate-formers
from nonaggregate-formers. In general, aggregators
typically have higher clogP values and lower solubility
than nonaggregating compounds. With a Gao13 solubil-
ity cutoff of 22.065 µM, 97 of the 111 compounds (87.4%)
are correctly classified. Correspondingly, a clogP value
of 3.633 successfully classifies 90 of 111 compounds
(81.1%). These results suggest that consideration of
either solubility or clogP alone may provide useful
differentiation between these classes of compounds, but
neither of these criteria, by themselves, is sufficient to
robustly distinguish aggregators from nonaggregators.

To develop a more precise model, we explored more
complex patterns with recursive partitioning (RP) analy-
sis of molecular descriptors.14 As used in chemical
informatics, RP explores the relationship between a
dependent variable, such as a biological activity or a
physical property (here aggregation) with various phys-
icochemical descriptors. There are many variants of RP
analysis, but the one we used here required a categorical
(e.g., “aggregator,” “nonaggregator”) dependent variable.
Descriptors and thresholds are sought to optimally
partition the data into two sets (nodes), at least one of
which is enriched in a particular category. Once a
suitable split is found, the two resulting nodes are then
themselves split, and this continues recursively until
the nodes are very small. This decision tree is ultimately
pruned back so that the final, unsplit nodes (terminal
nodes) are of some reasonable size as controlled by the
user. Simple measures such as “percent of categories
predicted correctly” are used to assess the validity of
the tree. The goal of this procedure was to select a small
number of properties to account for aggregation behav-
ior. For the 111 compounds, we considered a total of 260
physicochemical properties (see Methods), covering a
wide range of descriptor types. We included a descriptor
of our own design to reflect conjugation within a
molecule because we had noticed that many of the

Table 3. Effect of Incubation or Enzyme Concentration on
Inhibition

V IC50 with incubation
compound â-lactamase chymotrypsin MDH

v IC50
vs 10×

â-lactamase

BZBTH2Ba none N.A. N.A. none
clotrimazole 6-fold increase 2-fold 24-fold
benzyl

benzoate
>50-fold 3-fold 24-fold >50-fold

nicardipine >50-fold 3-fold no change >50-fold
delavirdine 19-fold 3-fold >50-fold 3-fold
glyburide 5-fold 6-fold 3-fold 5-fold
mefanamic

acid
3-fold 2-fold 3-fold >50-fold

oxaprozin N. A. increase >50-fold >50-foldb

a A specific, competitive, and reversible inhibitor of AmpC
â-lactamase.32 b Assay performed with chymotrypsin.

Table 4. Effect of Saponin on Inhibition of â-Lactamase,
Chymotrypsin, and MDH

v IC50 with saponin

compound â-lactamase chymotrypsin MDH

BZBTH2Ba none N.A. N.A.
clotrimazole >50-foldb >50-foldb >50-foldc

benzyl benzoate >50-foldc 19-foldd 7-foldc

nicardipine >50-foldb 2-foldd 49-foldc

delavirdine 24-foldc 3-foldc >50-foldc

glyburide 49-foldc 8-foldc 24-foldc

mefanamic acid 3-foldc 2-foldb increase
oxaprozin N.A. 2-foldb >50-foldc

a A specific, competitive, and reversible inhibitor of AmpC
â-lactamase.32 b 0.1 mg/mL saponin. c 1.0 mg/mL saponin. d 0.2
mg/mL saponin.

Table 5. Dynamic Light Scattering of Several Promiscuous
Drugsa

compound

IC50 vs
â-lactamase

(µM)

DLS
conc
(µM)

intensity
(kcps)

diameter
(nm)

50 mM KPi 0.1 ( 0.01 no particles
BZBTH2Bb 0.1 100 0.9 ( 0.2 no particles
ANSc >1600 1000 0.5 ( 0.1 no particles
clotrimazole 20 50 35.9 ( 12.6 323.2 ( 31.8
benzyl benzoate 90 250 30.5 ( 2.3 893.1 ( 56.4
nicardipine 20 60 23.8 ( 3.3 514.7 ( 67.8
delavirdine 90 100d 43.3 ( 2.3 207.2 ( 15.2
glyburide 300 400 24.4 ( 4.2 302.1 ( 9.9
mefanamic acid 350 200d 29.9 ( 7.2 >1000
oxaprozin >400 1000d 6.7 ( 1.6 >1000

a DLS performed in 50 mM KPi at the concentration given under
“DLS conc”; kcps, kilocounts per second. b A specific, competitive,
and reversible inhibitor of AmpC â-lactamase.32 c ANS is a dye
that is known not to aggregate.43 d Assay in 5 mM KPi.
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aggregate-formers were extensively conjugated
(max•conj•path, see Methods).

We then used RP analysis, as implemented in the
Accelrys’ Cerius-2 modeling package15 to identify a few

Figure 2. Autocorrelation functions from DLS of strong aggregate formers and fluconazole, a negative control.

Table 6. Inhibition and Aggregate Formation by Azole Antifungals

clotrimazole miconazole sulconazole econazole fluconazole ketoconazole

therapeutic concentration (µM) 30a 20 40a 28 <80a 28 26a 29 22b 6b

IC50 (µM) vs â-lactamase 20 40 14 25 >400 >150c

IC50 (µM) vs chymotrypsin 85 125 110 150 >400 >150c

IC50 (µM) vs MDH 35 25 20 25 >400 >150c

V IC50 with incubationd 6-fold 2-fold 13-fold 19-fold none none
v IC50 vs 10× â-lactamase 24-fold 5-fold > 50-fold 24-fold none none
v IC50 with saponind >50-folde >50-folde 16-foldf >50-foldf none none
dynamic light scattering data

DLS concentration (µM) 50 20 20 35 1000 150
intensity (kcps) 35.9 ( 12.6 18.7 ( 2.6 20.0 ( 2.4 21.9 ( 1.9 0.3 ( 0.0 0.3 ( 0.1
diameter (nm) 323.2 ( 31.8 390.4 ( 30.4 331.6 ( 15.2 284.4 ( 16.1 no particles no particles

a Fungicidal concentration. b Mean maximum plasma concentration. c Ketoconazole is insoluble at higher concentrations. d Assay
conducted with â-lactamase. e 0.1 mg/mL saponin. f 1.0 mg/mL saponin.
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descriptors that correlate with aggregation and to build
a predictive model. Over the course of several dozen RP
experiments, we systematically adjusted the RP param-
eters and assessed which descriptors were used most
often; we routinely generated RP models that predicted
90-97 of the 111 compounds correctly. Regardless of
our changes, we found that the first split was always
based on the Gao aqueous solubility.13 When we re-
moved the Gao solubility as an independent variable,
we found that either another calculated solubility
measure, the “Lee solubility,” or the Daylight clogP16

were used for the first split. Interestingly, the ACD/
Labs17 “sol. in pure water (mol/L)” or QikProp18 “aq
solubility in micrograms/mL” were never used for any
split in any RP experiment we performed. Since both
solubility models with which we built reasonable RP
models are not commercially available, and the two
commercial methods we tried were not useful in our
studies, we excluded our two solubility models to build
a model that could be more easily implemented by
others. In doing so, we found that excluding solubility
actually allowed us to build RP models with a higher
prediction success rate by using clogP as the first split,
even though a model with just a single split on clogP
performs less well than the Gao solubility alone.

The model that emerged from the RP analysis cor-
rectly classifies the aggregation behavior of 104 of 111
compounds (93.7%) (Figure 4). The descriptors used
were the Daylight clogP; an electropological state in-
dex19 denoted as “S•sssN,” which corresponds to
nitrogen single bonded to three heavy atoms; our
max•conj•path descriptor; and the presence or absence
of carboxylic acid. From our model, we identify six RP
nodes, three of which consist predominantly or com-
pletely of aggregators (nodes 2, 4, and 5), and three of
which are primarily or completely nonaggregators (nodes
1, 3, and 6). Of the three nodes in which aggregators
predominate, node 2 consists of higher clogP compounds

without ionizable tertiary nitrogens or carboxylic acids,
node 4 consists of carboxylic acids with very high clogP
values, and node 5 consists of lower clogP compounds
with extensive conjugation.

Seven of 111 compounds are classified incorrectly by
this model including (Figure 5): compound 11 (17-
(2-amino-ethylamino)-3-methoxy-10,13-dimethyl-hexa-
decahydro-cyclopenta(a)henanthren-11-ol), compound 21

(3-(4-(dimethylamino)-benzylidene)-1,3-dihydro-indol-2-
one), delavirdine, quercetin, and U0126, which have
been experimentally shown to form aggregates (this
work and ref 10), and protriptyline and SB203580, both

Figure 3. Comparison of the structures of fluconazole and ketoconazole, nonaggregate formers, with the aggregate formers
clotrimazole, econazole, miconazole, and sulconazole.

Figure 4. Recursive partitioning (RP) analysis of 111 aggre-
gators and nonaggregators. Each branch contains the physi-
cochemical criterion used to split a group of compounds; T
indicates compounds that satisfy this criterion, and F indicates
compounds that do not. Terminal nodes are green and coded
as “NON” if they consist predominantly or completely of
nonaggregators, red and coded as “AGG” if they are predomi-
nantly or completely aggregators. Nodes with more compounds
are identified by larger circles.
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of which do not aggregate (this work and ref 10). Our
RP model predicts SB203580 to be a node 5 aggregator.
However, we would not expect a conformation with the
coplanar ortho phenyl rings to be of sufficiently low
energy to actually allow them to be in conjugation, so
that the max•conj•path of 23 we assign to it is
excessive; this compound may actually belong in node
6. Conversely, compound 2 and quercetin we predict
to be node 6 nonaggregators. We note that the
max•conj•path for each compound is 17, which is very
near the decision point of 18.5, above which compounds
are assigned as node 5 aggregators. We can currently
offer no rationalization for the other incorrectly classi-
fied compoundsscompound 1 (node 6), delavirdine (node
6), U0126 (node 6), and protriptyline (node 2).

Since we did not have a readily available set of
untested compounds on which to gauge the predictive-
ness of our RP model, we decided to construct a
“negative control” set of known drugs. We term this a
negative control set because we assume that the number
of aggregators in such a set will be relatively small
(Figure 1). We chose 75 frequently prescribed, orally
available drugs20,21 that were not included among the
111 used in constructing our RP model. The RP model
predicts that 16 of these 75 drugs (21%) are aggregate-
formers (Table 7). Coincidentally, we included the drug
Glyburide in the negative control set and found that our

model predicts it to be a node 2 aggregator. Though it
was not included in the set of 111 compounds used to
build the model, we have found that it behaves as a
weak promiscuous aggregator (Tables 2-5). This en-
couraged us to use our RP to predict the behavior of
two other drugs that also fall in this borderline region,
mefenamic acid and oxaprozin. Our model predicts both
oxaprozin and mefenamic acid to be node 3 nonaggre-
gators, though the latter is very close to the split
between nodes 3 and 4.

Discussion
Of the 50 diverse drugs initially tested, 43 (86%) were

nonpromiscuous, nonaggregate forming compounds,
consistent with the expectation that drugs have been
optimized to be well-behaved, highly specific molecules.
Surprisingly, four drugs (8%) showed strongly promis-
cuous, aggregation-based inhibition of the three model
enzymes. How can this non-“drug-like” behavior be
reconciled with the fact that these four molecules are,
in fact, drugs? If drugs can behave promiscuously, what
conclusions can we draw about promiscuous screening
hits? What, if anything, can be concluded about the sort
of molecules that are likely to behave in this manner?

In reconciling the promiscuous activity of these
molecules with their status as drugs, two aspects of
their behavior bear consideration. First, the drugs are

Figure 5. Structures of compounds that were incorrectly classified by the RP model. (A) Compounds that were incorrectly predicted
as nonaggregate formers. (B) Compounds that were incorrectly predicted as aggregate formers.

Table 7. 75 Drugs in Negative Control Set with RP Predictions

drug predicted node predicted behavior

hydroxyzine, meclizine, nefazodone, trazodone 1 non-aggregator
celecoxib, desogestrel, estradiol, ethinylestradiol, felodipine, fenofibrate,

glimepiride, glyburide, irbesartan, mestranol, nortriptyline, sertraline,
simvastatin

2 aggregator

ibuprofen, valsartan 3 non-aggregator
montelukast 4 aggregator
alprazolam, clonazepam 5 aggregator
acetaminophen, acyclovir, allopurinol, amoxicillin, atenolol, benzonatate, bupropion,

captopril, cefprozil, cephalexin, cetirizine, cimetidine, ciprofloxacin,
clindamycin, clonidine, diazepam, digoxin, divalproexsodium, doxycycline,
folic acid, gabapentin, gatifloxacin, glipizide, hydrochlorothiazide,
isosorbidemononitrate, levofloxacin, levothyroxine, lisinopril, lorazepam,
metaxalone, methylprednisolone, metoclopramide, metoprololsuccinate,
metoprololtartrate, metronidazole, mirtazapine, nabumetone, naproxen,
nifedipine, olanzapine, penicillinvk, phenytoin, prednisone, rabeprazole,
ramipril, risperidone, rofecoxib, spironolactone, sulfamethoxazole,
temazepam, tetracycline, triamcinolone, warfarin

6 non-aggregator
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being tested in a simple buffer that is very different from
the in vivo environment. The protein-rich environment
of the latter may well obviate the aggregation of these
compounds. For topical drugs such as clotrimazole and
benzyl benzoate, their formulation as creams may serve
the same role. Second, the drugs were tested at concen-
trations that, certainly for systemic drugs such as
delavirdine, are orders of magnitude higher than their
IC50 values against their canonical targets. Although a
role for aggregation in the physiological actions and side
reactions of these drugs cannot be completely discounted
at this time, the easier interpretation of these results
is that, under screening conditions, even some drugs can
act promiscuously, through aggregation.

Aggregation-based inhibition may be a common fea-
ture among false positive screening hits, but if drugs
can also behave this way, how useful is this property
for separating true from false positives in screening? We
contend that a molecule that is active in a screen
because it is an aggregator is unlikely to be an interest-
ing hit. The observation that some drugs can aggregate
and act nonspecifically does not imply there is reason
to believe that a new hit, active through aggregation,
may be a specific ligand for the target of that screen.
Conversely, aggregate-mediated inhibition at micro-
molar concentrations does not preclude specific, mono-
meric inhibition at nanomolar concentrations (e.g.,
nicardipine and delavirdine).

The promiscuous behavior of these drugs, though
admittedly a small percentage of the total number of
drugs tested, does raise the question of whether “drug-
like” has any strong physicochemical or chemical infor-
matics meaning. To explore this question, we analyzed
the structures of all molecules that we have investigated
for aggregation-based promiscuity. At least 47 com-
pounds have been explicitly shown to be aggregation-
based, promiscuous inhibitors (this paper and refs 1 and
10) and another 64 compounds have been explicitly
shown to be nonaggregators at micromolar concentra-
tions (mostly this paper but also refs 1, 10, and 11).
Using chemical similarity, we were unable to reliably
separate compounds that inhibit promiscuously through
aggregation from those that do not (data not shown).
Physical chemical criteria were more dependable; re-
cursive partitioning analysis based on these criteria
produced a model that classified compounds according
to descriptors including clogP, the presence or absence
of ionizable groups, and the extent of conjugation
(Figure 4). This model correctly classifies 104 of the 111
total compounds, and can distinguish the four promis-
cuous azole antifungals, miconazole, sulconazole, econa-
zole, and clotrimazole (node 2), from the nonpromiscu-
ous azoles fluconazole (node 6) and ketoconazole (node
1).

There is always the danger in classification or QSAR
of overfitting. The RP model has the advantage of
simplicity, only five splits are made on four descriptors
(Figure 4). Certain aspects of the model are of concern.
Some of the nodes are small; node 1 contains five
compounds, while node 3 has only three. Node 2
contains 29 compounds, almost all aggregators, yet the
physicochemical characteristics of the node (high clogP
without tertiary nitrogens or carboxylic acids) could be
characteristic of many drug-like compounds. For this

reason, we decided to choose another set of known drugs
as a “negative control”, a set of compounds within which
we expected few aggregate-formers (Table 7).

The model predicts that 16 of the 75 negative control
drugs would aggregate (Table 7). One of these, gly-
buride, is a weakly promiscuous, aggregating compound
that we tested earlier (Table 2) but did not include
among the 111 compounds used for building the RP
model. The untested 15 drugs in the negative control
set that the model classifies as aggregators constitute
testable predictions. Of these, 13 are strong predictions;
alprazolam and clonazepam, predicted to fall in node
5, are benzodiazepines, a structure type in which the
three-ring fused system has been shown to be signifi-
cantly noncoplanar.22 This suggests that max•conj•path
values for these compounds (19 and 20, respectively),
which are already barely above the split value, are
excessive. Among the more interesting predictions are
the four steroids predicted to aggregate and the five
steroids predicted not to aggregate; our training set of
111 includes only three steroids, all aggregators.1 We
have provided the full list of 111 molecules, and their
categorization as aggregators or nonaggregators, in
SMILE string format downloadable from the ACS
website (Supporting Information, table S1).

In beginning this investigation, it was our hope that
drugs would not show aggregation-based promiscuity,
allowing us to draw a clear, physical distinction between
“drug-like” molecules, which do not aggregate at micro-
molar concentrations, and non-“drug-like” molecules,
which do. Indeed, this was the case for most of the drugs
tested here, but not all. Aggregate formation has now
been shown to occur among screening hits,1 among true
lead compounds,10 and now drugs. The fact that ag-
gregate-based inhibition occurs even in drugs, which
have presumably been optimized for specificity, suggests
that aggregate formation may be common at micromolar
levels. It may be interesting to consider larger studies
to investigate just how common such molecules are,
especially among pharmaceutically and biologically
relevant compound libraries.

Experimental Section
Materials. AmpC â-lactamase was purified as described.23

Loracarbef was a gift from Larry Blaszczak at Eli Lilly
(Indianapolis, IN). Lamotrigine was purchased from Kempro-
tec (Middlebrough, UK), and tacrine from Butt Park (Bath,
UK). Ondansetron HCl and torasemide were purchased from
Sequoia (Oxford, UK), oxalacetic acid from Fluka (St. Louis,
MO), saponin from Calbiochem (La Jolla, CA), nitrocefin from
Oxoid, Ltd (Basingstoke, UK), riluzole from Matrix (Columbia,
SC), oxaprozin from Maybridge (Cornwall, UK), mefenamic
acid from Lancaster (Boston, MA), indomethacin from Cayman
(Ann Arbor, MI), gemfibrozil from Spectrum (Gardena, CA),
and benzyl benzoate from Chemserve-AS (West Chester, PA).
Delavirdine, ketconazole, and glyburide were purchased from
Biomol (Plymouth Meeting, PA), and flutamide from LKT-Labs
(St. Paul, MN). Azelaic acid and triamterene were purchased
from Alfa (Ward Hill, MA). Tetraethylene pentamine, 4-ami-
nophenyl sulfone, and 5-aminosalicylic acid were purchased
from Acros (Pittsburgh, PA). Carbamazepine, carisoprodol,
chlorambucil, clotrimazole, diflunisal, diphenhydramine, flu-
conazole, lidocaine, miconazole, nicardipine, primidone, pro-
pantheline bromide, riboflavin, sulfinpyrazone, and trimetho-
prim were purchased from IGN (Pittsburgh, PA). R-Chymo-
trypsin, N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, malate de-
hydrogenase, â-nicotinamide adenine dinucleotide, chlortha-
lidone, cinoxacin, deferoxamine mesylate, econazole, etodolac,
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furosemide, guaifenesin, guanabenz, amrinone, lansoprazole,
leflunomide, mebendazole, nitrofurantoin, omeprazole, phen-
azopyridine, prazocin, protriptyline, sulfadiazine, sulconazole,
thalidomide, and tripelennamine were purchased from Sigma-
Aldrich (St. Louis, MO). All materials were used as supplied
by the manufacturer, without further purification.

Enzyme Assays. Compounds were tested for inhibition of
â-lactamase, chymotrypsin, and malate dehydrogenase. Unless
otherwise stated, assays were performed in 50 mM potassium
phosphate (KPi) buffer, pH 7.0, at room temperature. Stocks
of substrates and inhibitors were typically prepared at 10 mM
in dimethyl sulfoxide (DMSO), with the following exceptions:
chlorambucil, glyburide, indomethacin, mefenamic acid, ox-
aprozin, and sulfinpyrazone were prepared at 50 mM in
DMSO, whereas 5-aminosalicylic acid, deferoxamine, diphen-
hydramine, flutamide, guaifenesin, guanabenz, lidocaine, pro-
pantheline bromide, protriptyline, tacrine, and tripelennamine
were prepared at 10 mM in 50 mM KPi buffer. No more than
5% DMSO was present in any assay, and results were
controlled for the presence of DMSO. All reactions were
monitored on a HP8453 spectrophotometer.

For most â-lactamase assays, inhibitor and 1 nM enzyme
were incubated for 5 min, and the reaction was initiated with
200 µM nitrocefin. For â-lactamase assays without incubation,
inhibitor and 200 µM nitrocefin were mixed, and the reaction
was initiated with 1 nM enzyme. For all assays with a 10-fold
increase in â-lactamase, inhibitor and 10 nM enzyme were
incubated for 5 min, and the reaction was initiated with 100
µM loracarbef. Loracarbef was used because it was a slower
substrate for the enzyme and allowed for the measurement of
reaction rate over a 5-min interval, even with a 10-fold increase
in enzyme concentration. Hydrolysis was monitored at 260 nm
for loracarbef and at 482 nm for nitrocefin.

For chymotrypsin assays, inhibitor and 28 nM enzyme were
incubated for 5 min and the reaction was initiated with 200
µM N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide. For chymo-
trypsin assays without incubation, inhibitor and 200 µM
N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide were mixed, and the
reaction was initiated with 28 nM enzyme. Reaction progress
was monitored at 410 nm. For malate dehydrogenase assays,
inhibitor and 2 nM enzyme were incubated for 5 min, and the
reaction was initiated with 200 µM oxalacetic acid and 200
µM â-NADH. For malate dehydrogenase assays without
incubation, inhibitor, 200 µM oxalacetic acid, and 200 µM
â-nicotinamide adenine dinucleotide were mixed, and the
reaction was initiated with 2 nM enzyme. Reaction progress
was monitored at 340 nm. Several drugs at 400 µM absorbed
light at 340 nm, and it was necessary to test them at lower
concentrations.

When used, saponin was present at 0.1, 0.2, or 1.0 mg/mL,
and was added before the 5 min enzyme-inhibitor incubation
period. Results were controlled for the presence of saponin.

Dynamic Light Scattering (DLS). Drugs were dissolved
to 10 or 50 mM in DMSO or 50 mM KPi buffer, and diluted
with filtered 5 or 50 mM KPi. All compounds were analyzed
with a 3 W argon-ion laser at 514.4 nm with a BI-9000 and
BI-200 optical systems from Brookhaven Instrument Corpora-
tion. The laser power and integration times were comparable
for all experiments on this instrument. Calculation of mean
particle diameter was performed by the cumulant analysis tool
of a 400-channel BI9000AT digital autocorrelator, with the last
eight channels used for baseline calculation. The detector angle
was 90°. Each diameter and intensity value represents four
or more independent measurements at room temperature. For
several drugs, light scattering data was also measured on a
DynaPro MS/X instrument, which gave qualitatively similar
results, although, as expected, the intensities of the scattered
light differed between the two instruments.

Recursive Partitioning (RP). From the list of compounds
studied explicity for aggregation behavior, we excluded one
aggregator, tris(dicarboxymethylene)fullerene-C31 and three
nonaggregators, deferoxamine, BZBTH2B,1 and suramin.10

These four compounds were excluded from our analysis
because of difficulties in generating three-dimensional struc-

tures or physicochemical descriptors. We were left with a set
of 111 compounds for our study.

A total of 260 descriptors were used in the statistical
analyses. These are listed here by category, with the total
number of descriptors for each category following in paren-
theses. Accelrys’ Cerius-2 descriptors:15 Jurs surface area
descriptors (29), electrotopological state indices (34), Ghose-
Crippen AlogP atom types (78), shadow indices (10), subgraph
counts (5), Kier & Hall chi connectivity indices (10), InfoCon-
tent (5), kappa shape indices (6), HOMO/LUMO energies (4),
principal moments of inertia (mag, X, Y, Z) (4), miscellaneous
descriptors (25): charge, apol, dipole-mag, V-ADJ-mag,
V-DIST-mag, E-ADJ-mag, E-DIST-mag, RadOfGyration, area,
density, Hbond acceptor, Hbond donor, JX, Fh2o, foct, MolRef,
Hf, MW, AlogP98, PHI, Wiener, Zagreb, Sr, Vm, HF•MOPAC.
ACD/Labs descriptors17 (7):

pKa, logP, sol. in pure water (mol/L), sum of N+O, sum of
NH+OH, total score, rotatable bonds. Daylight clogP;16 Qik-
Prop descriptors18 (37); Miscellaneous descriptors (4): Gao
aqueous solubility,13 Lee solubility (Lee, P., Pharmacia Corp.,
unpublished), Barone - Chanon complexity (“bcComplexity”),24

bcComplexity/number of heavy atoms (“bcAComplexity”), to-
pological polar surface area,25 max•conj•path.

The max•conj•path variable was calculated as follows: By
inspecting the graph of each molecule, we counted the maxi-
mum number of heavy atoms that can be in conjugation with
each other, and we refer to this as “max•conj•path.” Sup-
porting Information Figure S1 shows examples of simple
compounds (not part of our study) for illustration of our
procedure. Compound “a” has a max•conj•path value of 6
because the geometry of the sulfonamide group prevents
conjugation beyond that of the isolated phenyl rings. By
contrast, compounds b-f all have rings or functional groups
which can assume planar conformations and thus conjugate
more extensively. We also consider compounds such as ben-
zophenone (compound “d”) to conjugate extensively, even
though it has contiguous single bonds. Note, however, that we
do not do any conformational analysis when assigning
max•conj•path, and there may be examples (such as with
benzodiazepines, discussed above) where conjugation appar-
ently allowed from the chemical graph is probably not feasible.

RP analysis was performed with the Accelrys’ Cerius-2
modeling package.15
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