Convergent Synthesis and Unexpected Ca^{2+}-Mobilizing Activity of 8-Substituted Analogues of Cyclic ADP-Carbocyclic-Ribose, a Stable Mimic of the $\mathbf{C a}^{2+}$-Mobilizing Second Messenger Cyclic ADP-Ribose

Satoshi Shuto,*,† Masayoshi Fukuoka, ${ }^{\dagger}$ Takashi Kudoh, ${ }^{\dagger}$ Clive Garnham, ${ }^{\ddagger}$ Antony Galione, ${ }^{\ddagger}$ Barry V. L. Potter, ${ }^{\S}$ and Akira Matsuda ${ }^{\dagger}$
Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, J apan, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K., and Wolfson Laboratory for Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K.

Received May 13, 2003

Abstract

Cyclic ADP-carbocyclic-ribose (cADPcR, 2) is a biol ogically and chemi cally stable equivalent of cyclic ADP-ribose (cADPR, 1), a Ca^{2+}-mobilizing second messenger. In this study, a series of 8 -substituted analogues of CADPCR, namely the 8 -chloro analogue 6 (8 -Cl-CADPCR), the 8 -azido analogue 7 ($8-\mathrm{N}_{3}-\mathrm{CADPCR}$), the 8 -amino analogue 8 ($8-\mathrm{NH}_{2}-\mathrm{CADPCR}$), and the 8 -phenylthio analogue 9 ($8-S P h-C A D P C R$), were designed as effective pharmacological tools for studies on cADPR-modulated Ca^{2+} signaling pathways. These target compounds were synthesized by a convergent route via 8-CI-CADPCR bisacetonide (14) as the common intermediate, in which a method for forming the intramolecular pyrophosphate linkage by activation of the phenylthiophosphate type substrate 15 with AgNO_{3} to produce $\mathbf{1 4}$ was used as the key step. The carbocydic anal ogues were tested for activity in the sea urchin egg homogenate system. Compounds were assessed for their calcium-mobilizing effects and their ability to cross-desensitize with calcium release induced by a normally maximal concentration of cADPR, as well as CADPR antagonism of CADPR-evoked calcium release. While cADPcR was 3-4 times more potent than cADPR, the 8 -substituted analogues were less efficacious, with 8 -SPh-cADPcR largely acting as a competitive antagonist. Most surprisingly, given that $8-\mathrm{N}_{3}$-CADPR and $8-\mathrm{NH}_{2}$-CADPR are known as potent antagonists, $8-\mathrm{N}_{3}-\mathrm{CADPcR}$ and $8-\mathrm{NH}_{2}-\mathrm{CADPcR}$ were full agonists, but ca. 80 and 2 times less potent than CADPR, respectively. These data contribute to developing structureactivity relationships for the interaction of cADPR with its receptor.

Introduction

Considerable attention has been focused on cyclic ADP-ribose (cADPR, 1), an intracellular Ca^{2+}-mobilizing adenine nucl eotide. ${ }^{2}$ cADPR has been shown to mobilize intracellular Ca^{2+} in various cells, such as sea urchin eggs, pancreatic beta cells, smooth muscles, cardiac muscles, T-lymphocytes, and cerebella neurons, indicating that it is a general mediator involved in Ca^{2+} signaling. ${ }^{3}$ The structure of CADPR has been investigated ${ }^{4}$ and was confirmed by X-ray crystallographic analysis as shown in Figure 1. ${ }^{4 \mathrm{c}}$

In cells, CADPR is synthesized from NAD ${ }^{+}$by ADPribosyl cyclases and acts as a second messenger; it is hydrolyzed rapidly by CADPR hydrolases to give the non- Ca^{2+} mobilizing metabolite ADP-ribose under physiol ogical conditions. ${ }^{3}$ CADPR is al so known to be readily hydrolyzed nonenzymatically at the unstable N-1-glycosidic linkage of its adenine moiety to give ADP-ribose, even in neutral aqueous solution. ${ }^{5}$ Consequently, the biological as well as chemical instability of CADPR limits, to some extent, further studies of its physiol ogical role. Therefore, stable anal ogues of CADPR exhibiting a $\mathrm{Ca}^{2+}-$ mobilizing activity in cells similar to that of CADPR are very useful in biological studies.

[^0]

1: $X=H$ (cADPR)
3: $X=\mathrm{Br}(8-\mathrm{Br}-\mathrm{cADPR})$
4: $X=N_{3}\left(8-N_{3}-c A D P R\right)$
5: $\mathrm{X}=\mathrm{NH}_{2}\left(8-\mathrm{NH}_{2}-\mathrm{CADPR}\right)$

2: $X=H$ (cADPcR)
6: $X=\mathrm{Cl}(8-\mathrm{Cl}-\mathrm{cADPcR})$
7: $X=N_{3}\left(8-N_{3}-c A D P c R\right)$
8: $\mathrm{X}=\mathrm{NH}_{2}\left(8-\mathrm{NH}_{2}-\mathrm{cADPcR}\right)$
9: $X=S P h$ (8-SPh-cADPcR)

Figure 1. Structures of CADPR (1), cADPcR (2), and their 8 -substituted analogues.

We designed cydic ADP-carbocyclic-ribose (cADPcR, 2) as a stable mimic of cADPR, ${ }^{6}$ in which the oxygen atom in the N-1-ribose ring of CADPR is replaced by a methylene group. We hypothesized that (1) the mimic should be resistant to both enzymatic and chemical hydrolysis, since it has a chemically and biologically stable N -alkyl linkage instead of the unstable N-1glycosidic linkage of CADPR, and that (2) the mimic, like cADPR, would effectively mobilize intracellular Ca^{2+} since it preserves all of the functional groups of CADPR except for the ring oxygen of the N -1-linked ribose and should have a conformation similar to that of CADPR. We recently accomplished the total synthesis of the mimic $\mathbf{2}$, showing that it is actually chemically and biologically stable.ff The preliminary evaluation of $\mathbf{2}$ injected into sea urchin eggs suggested that it seems to
have very potent Ca^{2+}-mobilizing activity. ${ }^{6 f}$ Therefore, studies on the mechanism of cADPR-modulated Ca^{2+} signaling pathways using the mimic 2 are now in progress.

CADPR and its analogues have been synthesized by enzymatic or chemoenzymatic methods using ADPribosyl cyclasefrom Aplysia californica, which mediates the intramolecular ribosylation of NAD^{+}and some modified NAD ${ }^{+}$(prepared chemically or enzymatically) at the N-1-position of the purine moiety, to yield CADPR or the corresponding analogues. ${ }^{7}$ These studies disclosed that some 8-substituted analogues of cADPR, such as $8-\mathrm{Br}-\mathrm{CADPR}$ (3), $8-\mathrm{N}_{3}-\mathrm{CADPR}$ (4), or $8-\mathrm{NH}_{2}-\mathrm{CADPR}$ (5), are antagonists of CADPR at its intracellular receptor, ${ }^{7 a}$ and these analogues have been effectively used as pharmacol ogical tools for the studies on CADPR-modulated Ca^{2+} signaling pathways. ${ }^{3}$

These findings prompted us to synthesize the 8-modified analogues of cADPcR, which were expected to possess the properties of both the carbocyclic analogue 2 and the 8-substituted cADPR analogues. F or example, $8-\mathrm{NH}_{2}-\mathrm{CADPcR}$ (8) was expected to be a chemi cally and biologically stable potent antagonist of cADPR, and 8-N N_{3}-CADPCR (7) might be used as an efficient photoaffinity labeling probe for CADPR-related proteins.

In this report, we describe the convergent synthesis of a series of 8 -substituted analogues of cADP cR, namely the 8-chloro analogue 6 ($8-\mathrm{Cl}-\mathrm{cADPcR}$), the 8 -azido analogue 7 ($8-\mathrm{N}_{3}-\mathrm{CADPcR}$), the 8-amino analogue 8 (8-NH2-CADPCR), and the 8-phenylthio analogue 9 (8-SPh-cADPcR) (Figure 1), and their effects on Ca^{2+} mobilization in the sea urchin homogenate system. The detailed Ca^{2+}-mobilizing activity of cADPcR is also described. The carbocydic analogues were tested for activity in sea urchin egg homogenate, a robust assay for calcium mobilization, and the system in which the calcium mobilizing properties of cADPR were first discovered. ${ }^{4 a}$

Results and Discussion

Synthetic Plan. M ost of the previous CADPR analogues have been synthesized by enzymatic or chemoenzymatic methods with ADP-ribosyl cyclase from A. californica as described above. ${ }^{7}$ Although the specificity of ADP-ribosyl cyclase is somewhat loose, the analogues obtained by this method are limited by the substrate specificity of the enzyme. ${ }^{7 p}$

On the other hand, in the chemical synthesis of CADPR and its analogues, the key intramolecular condensation step to form the pyrophosphate linkage has proved difficult, preventing completion of the chemical synthesis of the target CADPR anal ogues. ${ }^{8}$ H owever, in recent years, we have devel oped an efficient method for forming the intramolecular pyrophosphate linkage by activation of phenylthiophosphate type substrates, such as $\mathbf{1 0}$ or 11, with I_{2} or AgNO_{3} in the presence of molecular sieves (MS) 3A in pyridine, where the cyclization products $\mathbf{1 2}$ and $\mathbf{1 3}$ were obtained in 93% and 81\% yiel d, respectively (Scheme 1). ${ }^{6}$ Using this method we have successfully synthesized cADPcR (2) and its inosine congener. ${ }^{6 e, f}$ This represents a general method for synthesizing these types of biologically important cyclic nucleotides and particularly those chemically modified in the N-1-linked ribose moiety, which are not expected to be accessible by the chemoenzymatic route. ${ }^{6 \mathrm{~g}}$

Scheme 1

Encouraged by these results, we decided to synthesize the target 8-substituted CADPCR analogues 6-9 by a convergent route, as summarized in Scheme 2, using 8 -CI-cADPcR bis-acetonide (14) as the common intermediate. Acidic deprotection of $\mathbf{1 4}$ would readily provide $8-\mathrm{Cl}-\mathrm{CADPcR}$ (6). The other three targets 7, 8, and 9 would be obtained by nucleophilic addition-elimination reaction at the 8-position of $\mathbf{1 4}$ followed by deprotection. The intramolecular pyrophosphate linkage could be constructed according to the method described above: treatment of 8-chloro-5'-phenylthiophosphate substrate 15 with $\mathrm{AgNO}_{3} / \mathrm{MS} 3 \mathrm{~A}$ as a promoter ${ }^{6 c, \text { e,f }}$ was expected to give the cyclized 14. The substrate 15 would be provided from the 2-chloroi midazole nucl eoside derivative 16 and the optically active carbocydic amine 17, which could be prepared from 5-aminoimidazole-4carboxamide riboside (AICAR, 18) and commercially available (1R)-(-)-2-azabicyclo[2.2.1]hept-5-en-3-one (19). ${ }^{8 c}$

Construction of the \mathbf{N}-1-Carbocyclic-Ribosyladenosine Structure. An efficient method for constructing the N -1-carbocydlic-ribosyladenosine structure was essential for completing the synthesis of the targets. We previously found that treatment of the imidazole nucleoside $\mathbf{2 2}$ and the chiral carbocyclic amine $\mathbf{1 7}$ under mild basic conditions with $\mathrm{K}_{2} \mathrm{CO}_{3}$ provided the $\mathrm{N}-1$ -carbocyclic-ribosyladenosine derivative $\mathbf{2 3}$ in high yield (Scheme 3). ${ }^{6 f}$ Thus, construction of the 8-chloro-N-1-carbocyclic-ribosyl derivative $\mathbf{2 4}$ was investigated according to a similar procedure. A chloro group was introduced at the imidazole 2-position of the known imidazole nucleoside $\mathbf{2 0}^{8 \mathrm{c}}$ by treatment with N -chlorosuccinimide (NCS) in THF to give $\mathbf{2 1}$. The 2-chloroimidazole nucleoside 21 was heated in $\mathrm{HC}(\mathrm{OMe})_{3}$ under reflux in the presence of a catalytic amount of TFA to give the methoxymethylene derivative 16, which was next subjected to the pyrimidine ring-closure reaction. When a mixture of $\mathbf{1 6}$ and $\mathbf{1 7}$ (1.4 equiv) was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF at room temperature, the ringclosure reaction proceeded to give the desired product 24 in 89\% yield. The N-1-carbocyclic-ribosyladenine structure of $\mathbf{2 4}$ was confirmed by an NOE experiment; a correlation (19.6\%) between the $\mathrm{H}-2$ of the adenine and the C-1" of the cyclopentane ring was observed.

Synthesis of 8-Cl-cADPcR. 8-Cl-cADPcR (6) was successfully synthesized from the N -1-carbocyclic-ribo-syl-adenosine derivative 24, as shown in Scheme 4. After protection of the 5"-hydroxyl of 24 with a monomethoxytrityl (MMTr) group, the 5'-O-TBS group of the product 25 was removed with TBAF to give 26. Treatment of 26 with an S,S'-diphenylphosphorodi-thioate(PSS)/2,4,6-triisopropylbenzenesulfonyl chloride (TPSCI)/pyridine system ${ }^{9}$ gave the 5'-bis(phenylthio)phosphate 27 in 67% yield. After removal of the $5^{\prime \prime}-0-$

Scheme 2

MMTr group of 27, a phosphoryl group was introduced at the resulting 5"-primary hydroxyl of $\mathbf{2 8}$ using Y oshikawa's method with $\mathrm{POCl}_{3} /(\mathrm{EtO})_{3} \mathrm{PO},{ }^{10}$ followed by treatment of the product with $\mathrm{H}_{3} \mathrm{PO}_{2}$ and $\mathrm{Et}_{3} \mathrm{~N}^{11}$ in the presence of N -methylmaleimide (NMM) in pyridine, ${ }^{12}$ affording 5'-phenylthiophosphate 15 in 47% yield as the triethylammonium salt. When a solution of $\mathbf{1 5}$ in pyridine was added slowly to a mixture of a large excess of AgNO_{3} and $\mathrm{Et}_{3} \mathrm{~N}$ in the presence of MS 3 A in pyridine at room temperature, 6 c,e,f the desired cyclization product 14 was obtained in 88% yield. Finally, removal of the isopropylidene groups of $\mathbf{1 4}$ was carried out with aqueous $\mathrm{HCO}_{2} \mathrm{H}$ to furnish 8-CI-cADPcR (6).

Synthesis of the 8-Azido-, 8-Amino-, and 8-Phe-nylthio-cADPcR Analogues. The other three 8-substituted cADPcR analogues, 7, 8, and 9, were synthesized from the isopropylidene-protected 8-CI-CADPcR 14 via a nud eophilic addition-elimination reaction at the 8 -position. Thus, treatment of $\mathbf{1 4}$ with LiN_{3} or PhSH in pyridine at room temperature produced the corresponding 8-azido and 8-phenylthio derivatives 29 and 31 in excellent yields (Scheme 5). The azido group of $\mathbf{2 9}$ was readily reduced under usual catalytic hydrogenation conditions with $\mathrm{Pd}-\mathrm{C}$ to give the 8-ami no derivative 30. The isopropylidene groups of 29, 30, and 31 were removed with aqueous $\mathrm{HCO}_{2} \mathrm{H}$ to provide the target compounds, 8-N ${ }_{3}-\mathrm{CADPcR}$ (7), 8-NH2-CADPcR (8), and 8-SPh-cADPcR (9), respectively.

The results of this study as well as the previous syntheses of cADPcR (2) ${ }^{7 f}$ and its inosine congener ${ }^{7 c, e}$ clearly demonstrate that the strategy using a phenyl-thiophosphate-type substrate in the key intramolecular condensation reaction forming the pyrophosphate linkage is very efficient for the total syntheses of cADPRrelated compounds. ${ }^{13}$

Biology. In the sea urchin egg homogenate, CADPR (1) mobilizes sequestered Ca^{2+} from microsomal vesicles in a concentration-dependent fashion (Figure 2a)..14 Such Ca^{2+} release exhibits the property of self-induced desensitization, ${ }^{15}$ in that a subsequent challenge by a normally maximum concentration of CADPR (250 nM) is reduced depending on the initial concentration of the first CADPR challenge. We demonstrated the biol ogical properties of CADPCR (2) by showing that it was a potent Ca^{2+}-mobilizing molecule and that after sequestration of mobilized calcium it cross-desensitized with calcium release by the subsequent addition of a normally maximal concentration of cADPR (250 nM) in a concen-tration-dependent manner as for cADPR (Figure 2b).

Scheme 3^{a}

a Reagents and conditions: (a) NCS, THF, rt, 84\%; (b) $\mathrm{HC}(\mathrm{OMe})_{3}$, cat. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, reflux, 95% (16), quant \% (22); (c) $\mathbf{1 7}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$ or DMF, rt, 83\% (23), 89\% (24).

Interestingly, cADPcR, with an E_{50} value of 14.6 nM , was ca. 3-4 times more potent than CADPR (EC $\mathrm{E}_{50}=50$ nM). These qualitative data, showing that cADPcR is an even more potent Ca^{2+}-mobilizing agent than CAD$P R$, are in accord with the preliminary results by the injection of the compounds into sea urchin eggs. ${ }^{6 f}$

Next, the effects of a series of 8-substituted carbocyclic analogues of CADPR were examined. Surprisingly, both $8-\mathrm{N}_{3}-\mathrm{CADPcR}(7)$ and $8-\mathrm{NH}_{2}-\mathrm{CADPcR}(8)$ were full agonists, with EC_{50} values of $3.9 \mu \mathrm{M}$ (Figure 2 c) and 80 nM, respectively (Figure 2d), and were therefore ca. 80 and 2 times less potent than CADPR in mobilizing intracellular Ca^{2+}. This is in contrast to the effects of the corresponding non-carbocyclic analogues, $8-\mathrm{N}_{3}-$ CADPR and 8-NH ${ }_{2}$-CADPR, which are both antagonists. ${ }^{7 a}$ In addition, the 8-substituted carbocydic analogues 7 and 8 also exhibited the property of cross-desensitization with CADPR-induced Ca^{2+} release.

Further 8-substituted analogues were assessed. 8-CICADPcR (6) mobilized Ca^{2+} with a steep concentrationdependence (Figure 2e) with an EC_{50} of $19 \mu \mathrm{M}$, i.e., ca. 400 -fold less potent than CADPR. This compound, however, did not fully cross-desensitize with cADPR for reasons that are not immediately apparent. I ncreasing the size and hydrophobicity of the 8-substituted group in 8-SPh-cADPcR (9) dramatically altered its pharmacological properties. This compound had minimal Ca^{2+} mobilizing efficacy, while at high concentrations it behaved as a competitive cADPR antagonist (Figure 2f).

Scheme $4^{\text {a }}$

14

8-Cl-cADPcR (6)
${ }^{\text {a }}$ Reagents and conditions: (a) MMTrCI, pyridine, rt, 79\%; (b) TBAF, THF, AcOH, rt, 88\%; (c) PSS, TPSCI, py, rt, 67\%; (d) aq 80\% $\mathrm{AcOH}, \mathrm{rt}, 85 \%$; (e) 1) $\mathrm{POCl}_{3},(\mathrm{EtO})_{3} \mathrm{PO}, 0^{\circ} \mathrm{C}$, (2) $\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{NMM}$, pyridine, $\mathrm{rt}, 47 \%$; (g) $\mathrm{AgNO}_{3}, \mathrm{MS} 3 \mathrm{~A}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{py}, \mathrm{rt}, 88 \%$; (h) aq 60% $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{rt}, 98 \%$.

Scheme $5^{\text {a }}$

a Reagents and conditions: (a) $\mathrm{PhSH}, \mathrm{py}, \mathrm{rt}, 86 \%$ (29); (b) LiN_{3}, py, $50^{\circ} \mathrm{C}, 81 \%$; (c) $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 67 \%$; (d) aq $60 \% \mathrm{HCO}_{2} \mathrm{H}, \mathrm{rt}$, 97\% (7), 83\% (8), 88\% (9).

CADPcR is a highly potent agonist in sea urchin homogenates and indeed even more potent than CADPR itself. This is due either tolack of hydrolysis during the assay, or perhaps to a more favorableinteraction of the modified N-1-attached "northern ribose" 69 with the receptor, which would be rather surprising given that a potential H-bond acceptor has been deleted.

The simple expectation for the activity of the 8-substituted analogues reported here was that they would retain significantly the activity of their parent 8-substituted cADPR analogues, perhaps with some modulation of Ca^{2+}-mobilizing potency, but that the nature of the activity agonist vs antagonist would not be affected. If we leave aside the activity of the 8 -phenylthio analogue 9, which only begins to be apparent at high concentrations, it is very striking that all three of the other analogues 6, 7, and 8 that possess the 8-substitutions, previously shown to confer antagonist behavior to various degrees in the cADPR series, become agonists as their cADPcR counterparts. Nowhere is this more apparent than with $8-\mathrm{NH}_{2}-\mathrm{CADPcR}$ (8), which has a potency very close to cADPR itself. It is only possible to
speculate at this time as to the reasons behind this, but clearly deletion of the "northern" ribofuranosyl oxygen atom removes a structural motif in an extremely sensitive area that determines the fundamental activity. Interestingly, when cADPcR (2) and its 8-amino derivative 8 were examined for Ca^{2+}-mobilizing activity in another well characterized biological system, J urkat T-lymphocytes, both compounds were found to exhibit weak agonism, being about 5-10-fold less potent than cADPR. ${ }^{69}$ Thus, in a mammalian cell system, cADPcR behaves, in terms of potency, differently to in the invertebrate sea urchin system. H owever, $8-\mathrm{NH}_{2}$-CADPcR, while weak, does also exhibit agonist rather than antagonist properties, which is in qualitative agreement with the data reported here. No further interpretation on these relative aspects can be entered into at the present time, except insofar as it is known that these two receptors exhibit different recognition characteristics toward some CADPR analogues, ${ }^{3 h}$ pointing to not surprising potentially wider differences in protein structure and function. ${ }^{3}$ It is worth also noting that recently diverse analogues have been synthesized with more radical changes in the adenine ring and also in the "northern" ribose than those reported here. ${ }^{13}$ I nterestingly, some of these compounds, although substituted at the 8-position, like most of the compounds reported here, also appear in intact HeLa cells and rat brain microsomes to exhibit agonist rather than antagonist properties. ${ }^{13 b, c}$

Although the factors that control agonist/antagonist behavior in CADPR are not well understood, the present work provides new insight into them in analogues particularly close in structure to cADPR itself. It seems unlikely however that one unique motif is all pervading in this respect and more so that a global conformation is adopted in either mode, that may be perturbed by point changes in the molecule, for example by disruption of hydrogen bonds or changes in the conformation of the

Figure 2. Ca^{2+} rel ease by $C A D P R$ (1) and its carbocydic anal ogues in the sea urchin egg homogenate: (a) CADPcR (1), (b) CADPCR (2), (c) $8-\mathrm{N}_{3}-\mathrm{CADPcR}$ (7), (d) $3-\mathrm{NH}_{2}-\mathrm{CADPcR}$ (8), (e) 8-Cl-cADPcR (6), and (f) 8-SPh-cADPcR (9).
ribose groups. The previous preliminary ${ }^{1} \mathrm{H}$ NMR analysis suggested that an overall change in the conformation of CADPcR compared with natural CADPR is unlikely. ${ }^{6 f}$ F urther detailed studies to clarify the precise conformation of the molecules are required, particularly in relation to the biological activity. There is no doubt that this antagonist/agonist switch induced by a rather conservative carbocycle introduction is a novel effect that will stimulate further work toward this goal.

Conclusion. A series of 8-substituted analogues of cADPcR was synthesized by a convergent route via 8-CIcADPcR bis-acetonide as the common intermediate, in which a method for forming the intramolecular pyrophosphate linkage by activation of the phenylthiophosphate moiety with AgNO_{3} was used as the key step. We have characterized quantitatively the more potent Ca^{2+} mobilizing activity of cADPcR than the natural second messenger CADPR. Additionally, to contribute toward the emerging SAR of CADPR, we have evaluated the 8-substituted analogues, most of which possess nonadditive and unexpected biological activity as agonists rather than antagonists. One, in particular, by means of a single substitution illustrates a dramatic switch from a highly potent antagonist to an almost equipotent
agonist. Elucidation of the structural basis for this effect will be of significant future interest.

Experimental Section

Chemical shifts are reported in ppm downfield from tetramethylsilane (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) or $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$. All of the ${ }^{1} \mathrm{H}$ NMR assignments described were in agreement with COSY spectra. Thin-layer chromatography was done on Merck coated plate $60 \mathrm{~F}_{254}$. Silica gel chromatography was done on Merck silica gel 5715. Reactions were carried out under an argon atmosphere.
2-Chloro-5-amino-1-[5-O-(tert-butyldimethylsilyl)-2,3-O-(isopropylidene)- β-d-ribofuranosyl]imidazole-4-nitrile (21). A mixture of $\mathbf{2 0}$ ($5.9 \mathrm{~g}, 15.0 \mathrm{mmol}$) and NCS (2.4 g , 18.0 mmol) in THF (150 mL) was stirred at room temperature for 10.5 h . After addition of saturated aqueous NaHCO_{3} (10 mL), the resulting solution was stirred at room temperature for 10 min and then evaporated. The residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 20 \% \mathrm{AcOEt}\right.$ in hexane) to give $21(5.4 \mathrm{~g}, 84 \%)$ as a yellow solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.84\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{J} \mathrm{I}^{\prime}, 2^{\prime}=4.0 \mathrm{~Hz}\right), 5.04(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}_{2}$), $4.97\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}^{2}, 1^{\prime}=4.0, \mathrm{~J}_{2,3}=6.8 \mathrm{~Hz}\right), 4.89$ (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J}_{3,2^{\prime}}=6.8, \mathrm{~J}_{3,4^{\prime}}=4.3 \mathrm{~Hz}$), 4.14 (ddd, $1 \mathrm{H}, \mathrm{H}-4^{\prime}$, $\mathrm{J}_{4^{\prime}, 3^{\prime}}=4.3$, J ${ }_{4}^{\prime}, 5^{\prime} \mathrm{a}=1.7, \mathrm{~J}_{4^{\prime}, 5^{\prime} \mathrm{b}}=0.9 \mathrm{~Hz}$), 4.02 (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}$, $\left.\mathrm{J}_{5^{\mathrm{a}}, 4^{\prime}}=1.7, \mathrm{~J}_{5^{\mathrm{a}}, 5^{\circ} \mathrm{b}}=11.7 \mathrm{~Hz}\right), 3.90\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}, \mathrm{J}_{5^{\mathrm{b}}, 4^{4}}=0.9\right.$, $\mathrm{J}_{5 \mathrm{~b}, 5^{\prime} \mathrm{a}}=11.7 \mathrm{~Hz}$), 1.59, 1.36 (each s, each 3 H , isopropyl CH_{3}),
0.93 (s, 9 H , tert-butyl), $0.14,0.13$ (each s , each 3 H , dimethyl); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$) $\delta 147.3,125.6,115.6,114.6,93.5$, $93.5,90.6,84.5,82.1,78.8,62.4,27.3,26.0,25.4,18.7,-5.4$ HRMS (FAB, positive) calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{Si} 429.1725$ $\left(\mathrm{MH}^{+}\right)$, found $429.1683 ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max } 250 \mathrm{~nm}$. Anal. ($\mathrm{C}_{18} \mathrm{H}_{29}$ $\left.\mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{Si}\right) \mathrm{C}, \mathrm{H}, \mathrm{Cl}, \mathrm{N}$.

2-Chloro-5-(methoxymethyleneamino)-1-[5-O-(tert-bu-tyldimethylsilyl)-2,3-0-(isopropylidene)- β-D-ribofurano-syl]imidazole-4-nitrile (16). A mixture of 21 ($4.7 \mathrm{~g}, 11 \mathrm{mmol}$) and TFA $(43 \mu \mathrm{~L}, 550 \mu \mathrm{~mol})$ in $(\mathrm{MeO})_{3} \mathrm{CH}(23.5 \mathrm{~mL}, 220 \mathrm{mmol})$ was stirred at $50^{\circ} \mathrm{C}$ for 10 min . The mixture was evaporated, and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, 20% AcOEt in hexane) to give 16 ($4.9 \mathrm{~g}, 95 \%$) as a yellow solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 5.94$ (d, $1 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{J} 1^{\prime}, 2^{\prime}=3.2 \mathrm{~Hz}$), 5.23 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J} 2^{\prime} 1^{\prime}=3.2$, $\left.\mathrm{J}_{2^{\prime}, 3^{3}}=6.8 \mathrm{~Hz}\right), 4.79\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{\prime} 3^{\prime}, \mathrm{J}_{3^{\prime}, 2^{2}}=6.8, \mathrm{~J}_{3,4^{\prime}}=5.1 \mathrm{~Hz}\right.$), 4.05 (m, $1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 3.98 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.83-3.76 (m, 2 H , H-5'), 1.58, 1.36 (each s, each 3 H , isopropyl CH_{3}), 0.89 (s, 9 H , tert-butyl), $0.06,0.05$ (each s, each 3 H , dimethyl); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67.8 \mathrm{MHz}\right) \delta 160.9,145.7,130.5,115.3,114.4,98.9$, 89.0, 85.7, 82.4, 80.3, 62.8, 55.2, 27.3, 25.9, 25.5, 18.4, -5.4; HRMS (FAB, positive) calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{CIN}_{4} \mathrm{O}_{5} \mathrm{Si} 471.1830$ $\left(\mathrm{MH}^{+}\right)$, found 471.1805 ; UV (MeOH) $\lambda_{\text {max }} 277 \mathrm{~nm}$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{31^{-}}\right.$ $\left.\mathrm{ClN}_{4} \mathrm{O}_{5} \mathrm{Si} \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{Si}\right) \mathrm{C}, \mathrm{H}, \mathrm{Cl}, \mathrm{N}$.

8-Chloro-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-(hydroxymethyl)cyclopentyl]-5'-O-(tert-butyldimethyl-silyl)-2, $\mathbf{3}^{\prime}-0$-isopropylideneadenosine (24). A mixture of $16(4.7 \mathrm{~g}, 10 \mathrm{mmol}), 17(2.7 \mathrm{~g}, 14 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{mg}$, 0.15 mmol) in DMF (65 mL) was stirred at room temperature for 20 h and then evaporated. The residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 90 \% \mathrm{AcOEt}\right.$ in hexane) to give 24 ($5.6 \mathrm{~g}, 89 \%$) as a white foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.17$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 6.07 (d, $1 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{J}_{\mathrm{r}^{\prime}, 2^{\prime}}=2.0 \mathrm{~Hz}$), $5.48\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}_{2^{\prime}, 1^{\prime}}=\right.$ $\left.2.0, \mathrm{~J} 2^{\prime}, 3^{\prime}=6.3 \mathrm{~Hz}\right), 5.32\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{J} 2^{\prime \prime}, 1^{\prime \prime}=5.2, \mathrm{~J} 2^{\prime \prime}, 3^{\prime \prime}=5.8\right.$ Hz), 4.99 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J}_{3,2^{\prime}}=6.3, \mathrm{~J}_{3,4^{\prime}}=3.8 \mathrm{~Hz}$), 4.74 (dd, 1 $\mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{J}_{3^{\prime \prime}, 2^{\prime \prime}}=5.8, \mathrm{~J}_{3^{\prime \prime}, 4^{\prime \prime}}=2.8 \mathrm{~Hz}$), $4.59\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 5^{\prime}-\mathrm{OH}\right)$, 4.52 (ddd, $1^{1} \mathrm{H}, \mathrm{H}-1^{\prime \prime}, \mathrm{J}_{1^{\prime \prime}, 2^{\prime \prime}}=5.2, \mathrm{~J} \mathrm{I}^{\prime \prime}, 6^{\prime \prime a}=9.8, \mathrm{~J} \mathrm{I}^{\prime \prime}, 6^{\prime \prime} \mathrm{b}=9.7 \mathrm{~Hz}$), 4.20 (ddd, $1 \mathrm{H}, \mathrm{H}-4^{\prime}$, J $4^{\prime}, 3^{\prime}=3.8$, J $4^{\prime}, 5^{\prime} \mathrm{a}=6.1, \mathrm{~J} 4^{\prime}, 5^{\circ} \mathrm{b}=6.1 \mathrm{~Hz}$), 3.80 (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{a}, \mathrm{J}_{5 " \mathrm{~s}, 4^{\prime \prime}}=3.8, \mathrm{~J}_{5 " \mathrm{~s}, 5^{\prime \prime} \mathrm{b}}=10.8 \mathrm{~Hz}$), $3.74-$ 3.68 (m, 3 H, H-5', H-5"b), 2.63 (m, 1 H, H-6"a), 2.54 (m, 1 H, H-4"), 2.45 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}$), 1.59, 1.56, 1.37, 1.31 (each s , each 3 H , isopropyl CH_{3}), 0.85 (s, 9 H , tert-butyl), 0.00, -0.02 (each s, each 3 H , dimethyl); NOE ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) irradiated $\mathrm{H}-2$, observed H-1" (19.6\%); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 67.8 \mathrm{MHz}\right) \delta 152.5$, $147.4,141.5,135.6,122.8,114.3,111.9,90.0,87.6,83.5,83.2$, 82.0, 81.5, 71.0, 64.7, 63.0, 44.9, 30.2, 28.1, 27.2, 25.9, 25.4, 25.3, 18.4, -5.3, -5.4; HRMS (FAB, positive) cal cd for $\mathrm{C}_{28} \mathrm{H}_{45}$ $\mathrm{CIN}_{5} \mathrm{O}_{7} \mathrm{Si} 626.2777\left(\mathrm{MH}^{+}\right)$, found 626.2747 ; UV (MeOH) $\lambda_{\text {max }}$ 263 nm , sh $300 \mathrm{~nm}\left(\epsilon=14860\right.$ at $\lambda_{\max }=263 \mathrm{~nm}(\mathrm{pH} 2.0)$); Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{ClN}{ }_{5} \mathrm{O}_{7} \mathrm{Si}\right) \mathrm{C}, \mathrm{H}, \mathrm{Cl}, \mathrm{N}$.

8-Chloro-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-[(5-monomethoxytrityl)oxymethyl]cyclopentyl]-5'-0-(tert-butyldimethylsilyl)-2, $\mathbf{3}^{\prime}$-0-isopropylideneadenosine (25). A mixture of $\mathbf{2 4}$ ($5.5 \mathrm{~g}, 8.8 \mathrm{mmol}$) and MMTrCl (5.4 $\mathrm{g}, 17.6 \mathrm{mmol}$) in pyridine (50 mL) was stirred at room temperature for 1.5 h and then evaporated. The residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 30 \%\right.$ AcOEt in hexane) to give $\mathbf{2 5}\left(6.2 \mathrm{~g}, 79 \%\right.$) as a yellow foam: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.63$ (s, $1 \mathrm{H}, \mathrm{H}-2$), $7.45-6.82(\mathrm{~m}, 15$ $\mathrm{H}, \mathrm{NH}, \mathrm{Ar}-\mathrm{H}), 6.08\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{I}^{\prime}, \mathrm{J} \mathrm{r}^{\prime}, 2^{\prime}=2.0 \mathrm{~Hz}\right), 5.52$ (dd, 1 $\left.\mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}_{2^{\prime}, 1^{\prime}}=2.0, \mathrm{~J}_{2^{\prime}, 3^{\prime}}=6.3 \mathrm{~Hz}\right), 5.13\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{J}_{2^{\prime \prime}, 1^{\prime \prime}}=\right.$ $\left.4.8 \mathrm{~J}_{2^{\prime \prime}, 3^{\prime \prime}}=6.8 \mathrm{~Hz}\right), 5.01\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J}_{3,2}=6.3, \mathrm{~J}_{3,4^{\prime}}=3.6\right.$ $\mathrm{Hz}), 4.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.56$ (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{J}_{3^{\prime \prime}, 2^{\prime \prime}}=6.8, \mathrm{~J}_{3^{\prime \prime}, 4^{\prime \prime}}$ $=6.8 \mathrm{~Hz}$), 4.22 (ddd, $1 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{J}_{4}{ }^{\prime} 3^{3}=3.6$, J $4^{\prime}, 5^{\prime} \mathrm{a}=6.5$, J $4^{\prime}, 5^{\circ} \mathrm{b}=$ $6.1 \mathrm{~Hz}), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{J}_{5^{\prime} \mathrm{a}, 4^{\prime}}=6.5\right.$, $\int_{5^{\prime} \mathrm{a}, 5^{\circ} \mathrm{b}}=10.7 \mathrm{~Hz}$), $3.70\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}, \mathrm{J}_{5^{\prime} \mathrm{b}, 4^{\prime}}=6.1\right.$, J $5^{\text {º }}, 5^{\circ} \mathrm{a}=$ 10.7 Hz), $3.34\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{a}, \mathrm{J}_{5^{\prime \prime}, 4^{\prime \prime}}=4.5, \mathrm{~J}_{5 " \mathrm{~m}, 5^{\prime \prime} \mathrm{b}}=9.0 \mathrm{~Hz}\right.$), 3.19 (dd, 1 H, H-5"b, J $\left.5^{\prime \prime} \mathrm{b}, 4^{\prime \prime}=6.5, \mathrm{~J}_{5 \times \mathrm{b}, 5^{\prime \prime} \mathrm{a}}=9.0 \mathrm{~Hz}\right), 2.52(\mathrm{~m}, 1$ H, H-6"a), 2.42-2.38 (m, 2 H, H-4", H-6"b), 1.60, 1.53, 1.39,
1.28 (each s, each 3 H , isopropyl CH_{3}), 0.88 (s, 9 H , tert-butyl), $0.02,0.01$ (each s, each 3 H , dimethyl); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 67.8$ $\mathrm{MHz}) \delta 158.5,152.8,146.4,144.6,144.5,141.1,135.7,135.0$, 130.4, 128.4, 127.7, 126.8, 122.8, 114.2, 113.1, 113.0, 90.0, 87.6, 86.2, 83.1, 82.4, 81.7, 64.8, 64.2, 63.0, 55.2, 44.9, 33.2, 27.7, 27.2, 25.9, 25.4, 25.3, 18.4, -5.3, -5.4; HRMS (FAB, positive) calcd for $\mathrm{C}_{48} \mathrm{H}_{61} \mathrm{CIN}_{5} \mathrm{O}_{8} \mathrm{Si} 898.3978$ (MH^{+}), found 898.3979; UV $(\mathrm{MeOH}) \lambda_{\max } 263 \mathrm{~nm}$, sh 301 nm . Anal. $\left(\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{CIN}_{5} \mathrm{O}_{8} \mathrm{Si}\right) \mathrm{C}$, $\mathrm{H}, \mathrm{Cl}, \mathrm{N}$.

8-Chloro-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-[(5-monomethoxytrityl)oxymethyl]cyclopentyl]-2,3'0isopropylideneadenosine (26). A mixture of 25 ($6.1 \mathrm{~g}, 6.8$ mmol), TBAF (1.0 M in THF, $15 \mathrm{~mL}, 15 \mathrm{mmol}$), and AcOH ($440 \mu \mathrm{~L}, 6.9 \mathrm{mmol}$) in THF (10 mL) was stirred at room temperature for 1 h and then evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 60 \%\right.$ AcOEt in hexane) to give 26 ($4.7 \mathrm{~g}, 88 \%$) as a yellow foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.44-6.81(\mathrm{~m}, 15 \mathrm{H}$, $\mathrm{NH}, \mathrm{Ar}-\mathrm{H}$), 6.00 (d, $1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime}, \mathrm{J}^{1} \mathrm{z}^{\prime}=5.0 \mathrm{~Hz}$), $5.28(\mathrm{~m}, 1 \mathrm{H}$, $5^{\prime}-\mathrm{OH}$), 5.11-5.09 (m, $2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-2^{\prime \prime}$), 5.02 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$, $\left.\mathrm{J}_{3,2^{\prime}}=5.8, \mathrm{~J}_{3^{\prime} 4^{\prime}}=1.0 \mathrm{~Hz}\right), 4.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.53(\mathrm{~m}, 1 \mathrm{H}$, H-3"), 4.45 (m, 1 H, H-4'), 3.91 (m, 1 H, H-5'a), 3.79 ($\mathrm{s}, 3 \mathrm{H}$, OCH_{3}), 3.75 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}$), 3.34 (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{a}, \mathrm{J} 5^{\prime \prime} \mathrm{a}, 4^{\prime \prime}=3.5$, $\mathrm{J}_{5 \times \mathrm{c}, 5^{\prime \prime} \mathrm{b}}=8.8 \mathrm{~Hz}$), $3.18\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{b}, \mathrm{J} 5^{\prime \prime} \mathrm{b}, 4^{\prime \prime}=5.6, \mathrm{~J} 5^{\prime \prime} \mathrm{b}, 5^{\prime \prime} \mathrm{a}=\right.$ 8.8 Hz), 2.45-2.38 (m, 3 H, H-4", H-6"), 1.64, 1.52, 1.38, 1.27 (each s, each 3 H , isopropyl CH_{3}); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 67.8 \mathrm{MHz}\right.$) $\delta 158.5,152.5,146.7,144.5,144.5,140.3,135.7,134.5,130.3$, $128.4,127.7,126.8,123.4,114.2,113.3,113.0,92.2,86.1,85.5$, 83.1, 82.2, 81.5, 81.2, 64.8, 64.2, 63.1, 55.2, 44.7, 33.4, 27.7, 27.5, 25.3, 25.3; HRMS (FAB, positive) calcd for $\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{ClN}_{5} \mathrm{O}_{8}$ $784.3113\left(\mathrm{MH}^{+}\right)$, found 784.3090; UV (MeOH) $\lambda_{\max } 264 \mathrm{~nm}$, sh 307 nm . Anal. ($\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{ClN} \mathrm{N}_{5} \mathrm{O}_{8}$) C, H, CI, N.

8-Chloro-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-[(5-monomethoxytrityl)oxymethyl]cyclopentyl]-5'-0-[bis(phenylthio)phosphoryl]-2 ,3'0-isopropylideneadenosine (27). After stirring a mixture of PSS ($7.6 \mathrm{~g}, 20 \mathrm{mmol}$) and TPSCI ($6.1 \mathrm{~g}, 20 \mathrm{mmol}$) in pyridine (40 mL) at room temperature for $2 \mathrm{~h}, \mathbf{2 6}(4.7 \mathrm{~g}, 5.9 \mathrm{mmol})$ was added, and the resulting mixture was stirred at room temperature for further 2 h . The mixture was evaporated, and the residue was partitioned between CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated, and the residue was purified by column chromatography ($\mathrm{SiO}_{2}, 60 \%$ AcOEt in hexane) to give $\mathbf{2 7}\left(4.1 \mathrm{~g}, 67 \%\right.$) as a yellow foam: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$) $\delta 7.66$ (s, $1 \mathrm{H}, \mathrm{H}-2$), 7.48-6.81 (m, 25 $\mathrm{H}, \mathrm{NH}, \mathrm{Ar}-\mathrm{H}), 6.13\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{J}_{1^{\prime}, 2}=1.3 \mathrm{~Hz}\right), 5.44(\mathrm{dd}, 1$ $\mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J} 2^{2}, 1^{\prime}=1.3$, J $\left.z^{2}, 3^{\prime}=6.3 \mathrm{~Hz}\right), 5.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 5.08$ (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=6.3$, J $3,4^{\prime}=3.4 \mathrm{~Hz}$), $4.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right)$, 4.50 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{3}^{\prime \prime}$), $4.42-4.33$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}$), 3.78 (s, 3 $\mathrm{H}, \mathrm{OCH}_{3}$), 3.33 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{a}$), 3.16 (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{b}, \mathrm{J} 5^{\prime \prime} \mathrm{b}, 4^{\prime \prime}=$ $4.0, \mathrm{~J} 5^{\prime \prime} \mathrm{b}, 5^{\prime 2}=8.6 \mathrm{~Hz}$), $2.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-6^{\prime \prime}\right), 1.61,1.52$ 1.38, 1.22 (each s, each 3 H , isopropyl CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 67.8$ $\mathrm{MHz}) \delta 158.5,152.6,146.7,144.5,144.5,135.6,135.3,135.3$, 135.1, 135.0, 130.3, 129.5, 129.3, 128.4, 127.7, 126.8, 125.9, 114.6, 113.2, 113.0, $90.1,86.2,85.7,85.6,83.7,82.5,81.6,81.3$, 66.2, 66.1, 64.8, 64.2, 55.2, 44.8, 33.4, 27.7, 27.1, 25.3; ${ }^{31}$ P NMR $\left(\mathrm{CDCl}_{3}, 202 \mathrm{MHz}\right.$, decoupled with ${ }^{1} \mathrm{H}$) $\delta 50.9$; HRMS (FAB, positive) calcd for $\mathrm{C}_{54} \mathrm{H}_{56} \mathrm{ClN}_{5} \mathrm{O}_{9} \mathrm{PS}_{2} 1048.2945\left(\mathrm{MH}^{+}\right)$, found 1048.2950; UV (MeOH) $\lambda_{\max } 254 \mathrm{~nm}$, sh 305 nm . Anal. ($\mathrm{C}_{54} \mathrm{H}_{55^{-}}$ $\mathrm{CIN}_{5} \mathrm{O}_{9} \mathrm{PS}_{2}$) C, H, CI, N.

8-Chloro-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-(hydroxymethyl)cyclopentyl]-5'-O-[bis(phenylthio)phos-phoryl]-2, 3^{\prime}-O-isopropylideneadenosine (28). A solution of $27(3.9 \mathrm{~g}, 3.7 \mathrm{mmol})$ in 80% aqueous $\mathrm{AcOH}(40 \mathrm{~mL})$ was stirred at room temperature for 6 h and then evaporated. The residue was partitioned between EtOAc and aqueous saturated NaHCO_{3}, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and then with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography ($\mathrm{SiO}_{2}, 3 \% \mathrm{MeOH}$ in CHCl_{3}) to give $28\left(2.4 \mathrm{~g}, 85 \%\right.$) as a white foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2), 7.49-7.27(\mathrm{~m}, 11 \mathrm{H}$, $\mathrm{NH}, \mathrm{Ar}-\mathrm{H}$), 6.13 (d, $1 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{I}^{\prime}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=1.0 \mathrm{~Hz}$), 5.43 (dd, 1 H , $\mathrm{H}-2^{\prime}$, J $\left.2^{\prime}, 1^{\prime}=1.0, \mathrm{~J}_{2,3}=6.2 \mathrm{~Hz}\right), 5.25\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{J} 2^{\prime \prime}, 1^{\prime \prime}=\right.$ $\left.5.4, \mathrm{~J}_{2^{\prime \prime}, 3^{\prime \prime}}=5.5 \mathrm{~Hz}\right), 5.07\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=6.2, \mathrm{~J}_{3^{\prime}, 4^{\prime}}=3.0\right.$

Hz), 4.68 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{J}_{3^{\prime \prime}, 2^{\prime \prime}}=5.5$, J $3^{\prime \prime} 4^{\prime \prime}=1.7 \mathrm{~Hz}$), $4.54(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}$), 4.41-4.31 (m, 3 H, H-4', H-5'), 3.73 (dd, 1 H, H-5"a, $\mathrm{J}_{5^{\prime \prime} \mathrm{a}, 4^{\prime \prime}}=3.7, \mathrm{~J}_{5^{\prime \prime}, 5^{\prime \prime} \mathrm{b}}=10.8 \mathrm{~Hz}$), $3.69\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{b}, \mathrm{J}_{5^{\prime \prime} \mathrm{b}, 4^{\prime \prime}}=\right.$ 2.6 , J $5^{\prime \prime \prime}, 5^{\prime \prime} \mathrm{a}=10.8 \mathrm{~Hz}$), $2.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-6^{\prime \prime} \mathrm{a}\right), 2.40(\mathrm{~m}, 1$ H, H-6"b), 1.61, $1.551 .38,1.30$ (each s, each 3 H , isopropyl $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67.8 \mathrm{MHz}\right) \delta 152.5,147.7,141.3,135.3$, $135.3,135.2,135.0,135.0,130.2,129.6,129.6,129.5,129.5$, 129.3, 129.3, 128.0, 126.0, 125.9, 125.7, 122.7, 114.5, 111.8, $90.2,86.8,85.7,83.8,83.3,82.3,81.4,70.4,66.2,66.1,64.5$, 44.8, 30.1, 28.0, 27.1, 25.2; ${ }^{31} \mathrm{P}$ NMR ($\mathrm{CDCl}_{3}, 202 \mathrm{MHz}$, decoupled with ${ }^{1} \mathrm{H}$) δ 51.1; HRMS (FAB, positive) calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{ClN}_{5} \mathrm{O}_{8} \mathrm{PS}_{2} 776.1744\left(\mathrm{MH}^{+}\right)$, found 776.1733 ; UV (MeOH) $\lambda_{\text {max }} 256 \mathrm{~nm}$, sh 304 nm . Anal. ($\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{ClN}_{5} \mathrm{O}_{8} \mathrm{PS}_{2}$) C, H, CI, N.

8-Chloro-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-(phosphonoxymethyl)cyclopentyl]-5'-0-[(phenylthio)-phosphoryl]-2, $\mathbf{3}^{\prime}-0$-isopropylideneadenosine (15). A mixture of $\mathrm{POCl}_{3}(93 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ and $28(78 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{PO}(\mathrm{OMe})_{3}(2.0 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 2 h . After addition of aqueous saturated $\mathrm{NaHCO}_{3}(3.0 \mathrm{~mL})$, the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . To the mixture was added triethylammonium acetate (TEAA, $2.0 \mathrm{M}, \mathrm{pH} 7.0,1.0 \mathrm{~mL}$) buffer and $\mathrm{H}_{2} \mathrm{O}(4.0 \mathrm{~mL})$, and the resulting solution was applied to a C_{18} reversed phase column ($1.1 \times 11 \mathrm{~cm}$). The column was devel oped using a linear gradient of $0-65 \% \mathrm{MeCN}$ in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,400 \mathrm{~mL}$). Appropriate fractions were evaporated, and excess TEAA was removed by C_{18} reversed phase col umn chromatography ($1.1 \times 11 \mathrm{~cm}$, eluted with 60% aqueous MeCN). Appropriate fractions were evaporated, and the residue was coevaporated with pyridine (1.0 $\mathrm{mL} \times 3$). A mixture of the residue, NMM ($68 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{H}_{3} \mathrm{PO}_{2}(62 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(85 \mu \mathrm{~L}, 0.60 \mathrm{mmol})$ was stirred at room temperature for 3.5 h . After addition of TEAA buffer ($2.0 \mathrm{M}, \mathrm{pH} 7.0,0.5 \mathrm{~mL}$), the resulting mixture was evaporated. The residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer diluted with TEAA buffer (2.0 M , $\mathrm{pH} 7.0,0.5 \mathrm{~mL}$) was evaporated. A solution of the residue in $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ was applied to a C_{18} reversed phase column (1.1 $\times 11 \mathrm{~cm})$, and the column was developed using a linear gradient of 0-40\% MeCN in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,400$ mL). Appropriate fractions were evaporated, and excess TEAA was removed by C_{18} reversed phase column chromatography ($1.1 \times 18 \mathrm{~cm}$, eluted with 40% aqueous MeCN) to give 15 (41 $\mathrm{mg}, 47 \%$) as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 500$ $\mathrm{MHz}) \delta 8.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.19-7.10(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.37(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.78\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$, J ${ }_{2,3}=6.1 \mathrm{~Hz}$), $5.23(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}-3^{\prime}, \mathrm{J}_{3,2^{\prime}}=6.1, \mathrm{~J} 3^{3,4^{\prime}}=2.5 \mathrm{~Hz}\right), 4.91-4.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1^{\prime \prime}, \mathrm{H}^{\prime \prime} \mathbf{2}^{\prime \prime}\right.$, $\left.\mathrm{H}-3^{\prime \prime}\right), 4.65$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 4.21 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}$), 4.06 ($\mathrm{m}, 1 \mathrm{H}$, $\left.\mathrm{H}-5^{\prime} \mathrm{b}\right), 4.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 3.14\left(\mathrm{q}, 6 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3 \mathrm{~Hz}\right.$), 2.59-2.54 (m, 2 H, H-4", H-6"a), 2.39 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}$), 1.62, $1.61,1.40,1.40$ (each s, each 3 H , isopropyl CH_{3}), 1.23 (t, 9 H , $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta 152.7$, 149.1, 147.4, 144.8, 133.7, 133.7, 132.7, 131.7, 130.1, 120.8, 118.5, 117.7, 93.9, 89.9, 89.8, 86.4, 86.0, 83.9, 83.2, 68.1, 67.9, 49.4, 46.2, 46.2, 35.5, 28.7, 38.6, 26.9, 26.8, 11.0; ${ }^{31}$ P NMR ($\mathrm{D}_{2} \mathrm{O}$, 202 MHz , decoupled with ${ }^{1} \mathrm{H}$) $\delta 1.08$ (s), 17.2 (s); HRMS (FAB, negative) calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{ClN}_{5} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{~S} 762.1167\left[(\mathrm{M}-\mathrm{H})^{-}\right.$], found 762.1165; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }}=263 \mathrm{~nm}$.

8-Chloro-cyclic ADP-carbocyclic-ribose Diacetonide (14). To a mixture of $\mathrm{AgNO}_{3}(34 \mathrm{mg}, 200 \mu \mathrm{~mol}), \mathrm{Et}_{3} \mathrm{~N}(27 \mu \mathrm{~L}$, $200 \mu \mathrm{~mol}$), and MS 3A (820 mg) in pyridine (7 mL) was added a solution of $14(8.1 \mathrm{mg}, 9.4 \mu \mathrm{~mol})$ in pyridine (7 mL) slowly over 15 h , using a syringe-pump, at room temperature in the dark. The MS 3A was filtered off with Celite and washed with $\mathrm{H}_{2} \mathrm{O}$. To the combined filtrate and washings was added TEAA buffer ($2.0 \mathrm{M}, \mathrm{pH} 7.0,1 \mathrm{~mL}$), and the resulting solution was evaporated. The residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was evaporated. A solution of the residue in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,5 \mathrm{~mL}$) was applied to a C_{18} reverse phase col umn ($1.1 \times 11 \mathrm{~cm}$), and the column was developed using a linear gradient of $0-40 \%$ MeCN in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,200 \mathrm{~mL}$). Appropriate fractions were evaporated, and excess TEAA was removed by C_{18} reverse phase col umn chromatography ($1.1 \times 11 \mathrm{~cm}$, el uted with 20% aqueous MeCN) to give $\mathbf{1 4}$ [123.5 OD_{263} units ($(=14860$), 88%,
calculated using $\epsilon=14860$ at $\lambda_{\text {max }}=263 \mathrm{~nm}$ of $\mathbf{2 4}(\mathrm{pH} 2.0)$] as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 8.75$ (s, $1 \mathrm{H}, \mathrm{H}-2), 6.39\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.86\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}_{2,3}=5.6\right.$ Hz), 5.47 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J}_{3,2^{\prime}}=5.6$, J ${ }_{3,4^{4}}=2.3 \mathrm{~Hz}$), $4.83-4.81$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-1^{\prime \prime}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$), $4.55\left(\mathrm{~m}, \mathrm{I}^{\prime} \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.15(\mathrm{~m}, 1 \mathrm{H}$, H-5"a), 4.04 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{H}-5^{\prime \prime} \mathrm{b}$), 3.87 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}$), 3.16 ($\mathrm{q}, 6 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3 \mathrm{~Hz}$), $3.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime} \mathrm{a}\right), 2.87(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{H}-4^{\prime \prime}$), 2.75 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}$), 1.60, 1.59, 1.42, 1.38 (each s, each 3 H , isopropyl CH_{3}), $1.23\left(\mathrm{t}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta 152.8,150.0,146.6,144.8,121.1$, $117.3,115.2,113.0,93.7,89.9,89.8,89.6,87.5,86.1,84.2,72.6$, 69.3, 67.1, 49.5, 46.7, 46.6, 30.9, 28.9, 28.8, 27.2, 26.9, 11.0; ${ }^{31}$ P NMR ($\mathrm{D}_{2} \mathrm{O}, 202 \mathrm{MHz}$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta-10.56(\mathrm{~d}, \mathrm{~J}=$ $16.5 \mathrm{~Hz}),-10.71(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz})$; HRMS (FAB, negative) calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{ClN}_{5} \mathrm{O}_{12} \mathrm{P}_{2} 652.0976$ [(M -H$)^{-}$], found 652.0963; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }}=263 \mathrm{~nm}$.
8-Chloro-cyclic ADP-carbocyclic-ribose (6). A solution of 14 ($98.3 \mathrm{OD}_{263}$ units) in 60% aqueous $\mathrm{HCO}_{2} \mathrm{H}(1 \mathrm{~mL})$ was stirred at room temperature for 3.5 h and then evaporated. After the residue was coevaporation with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL} \times 3)$, the resulting residue was dissolved in TEAB buffer ($0.1 \mathrm{M}, \mathrm{pH}$ $7.0,30 \mu \mathrm{~L}$) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and the solution was lyophilized to give 6 ($96.8 \mathrm{OD}_{263}$ units, 98%) as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}$) $\delta 9.13$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$), 6.13 ($\mathrm{d}, 1 \mathrm{H}$, $\mathrm{H}-1^{\prime}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=6.3 \mathrm{~Hz}$), $5.16\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}^{2}, 1^{\prime}=6.3, \mathrm{~J}_{2,3^{\prime}}=4.8\right.$ $\mathrm{Hz}), 4.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right)$, 4.62 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J} 3^{\prime}, 2^{2}=4.8$, J $3^{\prime}, 4^{\prime}$ $=2.4 \mathrm{~Hz}), 4.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\prime} 5^{\prime} \mathrm{a}\right), 4.38-4.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-4^{\prime}\right)$, 4.21 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{J} 3^{\prime \prime}, 2^{\prime \prime}=4.4, \mathrm{~J} 3^{\prime \prime} 4^{\prime \prime}=4.4 \mathrm{~Hz}$), $4.17(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}-5^{\prime \prime}\right), 4.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}\right), 3.16\left(\mathrm{q}, 6 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3 \mathrm{~Hz}\right)$, 3.02 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{\sigma}^{\prime \prime} \mathrm{a}$), 2.51 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$), 2.37 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}$), 1.23 (t, $9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (potassium salt, $\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$) $\delta 151.8,147.6,145.8,142.5,119.7,91.0,86.1$, 79.6, 74.7, 74.2, 71.5, 66.3, 65.7, 64.7, 43.7, 29.0; 31P NMR ($\mathrm{D}_{2} \mathrm{O}$, 202 MHz , decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta-9.29(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}),-10.31$ (d, J $=11.4 \mathrm{~Hz}$); HRMS (FAB, negative) calcd for $\mathrm{C}_{16} \mathrm{H}_{21^{-}}$ $\mathrm{CIN}_{5} \mathrm{O}_{12} \mathrm{P}_{2} 572.0350\left[(\mathrm{M}-\mathrm{H})^{-}\right]$, found 572.0359 ; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }}$ $=263 \mathrm{~nm}$. The absol ute amount of $\mathbf{6}$ was calculated using $\epsilon=$ 14860 at $\lambda_{\max }=263 \mathrm{~nm}$ of $\mathbf{2 4}$ (pH 2.0)
8-Azido-cyclic ADP-carbocyclic-ribose Diacetonide (29). A mixture of $14(9.0 \mathrm{mg}, 12 \mu \mathrm{~mol})$ and $\mathrm{LiN}_{3}(23 \mathrm{mg}, 48 \mu \mathrm{~mol})$ in pyridine (5.0 mL) was stirred at $50{ }^{\circ} \mathrm{C}$ for 4 days. After addition of TEAA buffer ($2.0 \mathrm{M}, \mathrm{pH} 7.0,0.5 \mathrm{~mL}$), the resulting solution was evaporated, and the residue was partitioned between AcOEt and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was evaporated, and a solution of the residue in $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ was applied to a C_{18} reverse phase column ($1.1 \times 12 \mathrm{~cm}$). The col umn was developed using a linear gradient of $0-40 \%$ MeCN in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,300 \mathrm{~mL}$). Appropriate fractions were evaporated, and excess TEAA was removed by C_{18} reverse phase column chromatography ($1.1 \times 11 \mathrm{~cm}$, eluted with 30% aqueous $\mathrm{Me}_{3} \mathrm{CN}$) to give $\mathbf{2 9}$ ($7.4 \mathrm{mg}, 81 \%$) as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 6.16$ (d, $1 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=1.2 \mathrm{~Hz}$), 5.81 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}_{2^{\prime}, 1^{\prime}}=1.2$, $\left.\mathrm{J}^{2}, 3^{\prime}=5.9 \mathrm{~Hz}\right), 5.45\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J} 3,2^{\prime}=5.9\right.$, J $3^{\prime} 4^{\prime}=2.2 \mathrm{~Hz}$), 4.89-4.85 (m, 3 H , H-1", H-2", H-3"), 4.58 (m, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.17$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{a}$), 4.08 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{H}-5^{\prime \prime} \mathrm{b}$), 3.94 ($\mathrm{m}, 1 \mathrm{H}$, H-5'b), 3.20 ($\mathrm{q}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3 \mathrm{~Hz}$), 3.14 (m, $1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{a}$), 2.91 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$), 2.76 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}$), 1.63, 1.63, 1.45, 1.43 (each s, each 3 H , isopropyl CH_{3}), $1.28\left(\mathrm{t}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=\right.$ 7.3 Hz); ${ }^{13} \mathrm{C}$ NMR (D2O, 125 MHz) δ 152.1, 151.8, 149.6, 145.6, $120.6,117.2,115.2,92.4,89.6,89.4,87.4,86.0,84.2,72.4,69.2$, 67.2, 49.5, 46.8, 31.1, 28.9, 28.8, 27.1, 26.9, 11.0; ${ }^{31}$ P NMR ($D_{2} \mathrm{O}$, 202 MHz , decoupled with 1 H) $\delta-10.57$ (d, J $=15.3 \mathrm{~Hz}$), $-10.69(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}) ;$ HRMS (FAB, negative) calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{P}_{2} 659.1380\left[(\mathrm{M}-\mathrm{H})^{-}\right]$, found 659.1345 ; UV $\left(\mathrm{H}_{2} \mathrm{O}\right)$ $\lambda_{\text {max }}=284 \mathrm{~nm}$.
8-Amino-cyclic ADP-carbocyclic-ribose Diacetonide (30). A mixture of 29 ($181 \mathrm{OD}_{284}$ units, $9.9 \mu \mathrm{~mol}$) and 10% $\mathrm{Pd}-\mathrm{C}(1.1 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was stirred under atmospheric pressure of H_{2} at $50^{\circ} \mathrm{C}$ for 30 min . The $\mathrm{Pd}-\mathrm{C}$ was filtered off with Celite and washed with $\mathrm{H}_{2} \mathrm{O}$, and the combined filtrate and washing was evaporated to give 30 ($139 \mathrm{OD}_{277}$ units, 87%) as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 8.60$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$), $6.16\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{I}^{\prime}\right), 5.93\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Z}^{\prime}, \mathrm{J}^{2}, 3^{\prime}=5.7\right.$
$\mathrm{Hz}), 5.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=5.7 \mathrm{~Hz}\right), 4.83\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{I}^{\prime \prime}\right.$ H-2", H-3"), 4.55 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 4.18 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{a}$), 4.04 (m, $2 \mathrm{H}, \mathrm{H}^{-5} 5^{\prime} \mathrm{a}, \mathrm{H}-5^{\prime \prime} \mathrm{b}$), 3.88 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}$), $3.20\left(\mathrm{q}, 6 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}\right.$, $\mathrm{J}=7.3 \mathrm{~Hz}$), 3.13 (m, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{a}\right), 2.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 2.79$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}$), 1.64, 1.63, 1.47, 1.42 (each s , each 3 H , isopropyl CH_{3}), $1.28\left(\mathrm{t}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$) $\delta 157.9,149.6,117.1,115.2,91.9,89.8,89.3$, 87.3, 85.9, 84.3, 72.2, 69.0, 67.1, 49.5, 46.5, 30.8, 28.9, 28.7, 27.1, 26.9, 11.0; ${ }^{31}$ P NMR ($\mathrm{D}_{2} \mathrm{O}, 202 \mathrm{MHz}$, decoupled with ${ }^{1} \mathrm{H}$) $\delta-10.38(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}),-10.64(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz})$; HRMS (FAB negative) cal cd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{P}_{2} 633.1475\left[(\mathrm{M}-\mathrm{H})^{-}\right.$], found 633.1480; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }}=277 \mathrm{~nm}$.

8-Phenylthio-cyclic ADP-carbocyclic-ribose Diacetonide (31). A mixture of $\mathbf{1 4}$ ($9.0 \mathrm{mg}, 12 \mu \mathrm{~mol}$) and PhSH (49 $\mu \mathrm{L}, 48 \mu \mathrm{~mol}$) in pyridine (1.0 mL) was stirred at room temperature for 1.5 h . After addition of TEAA buffer (2.0 M , $\mathrm{pH} 7.0,0.5 \mathrm{~mL}$), the resulting solution was evaporated. The residue was partitioned between AcOEt and $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was evaporated. A solution of the residue in $\mathrm{H}_{2} \mathrm{O}$ $\left(5.0 \mathrm{~mL}\right.$) was applied to a C_{18} reverse phase column (1.1×11 cm), and the col umn was developed using a linear gradient of $0-50 \% \mathrm{MeCN}$ in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,200 \mathrm{~mL}$). Appropriate fractions were evaporated, and excess TEAA was removed by C_{18} reverse phase col umn chromatography ($1.1 \times$ 11 cm , eluted with 30% aqueous MeCN) to give 31 (8.5 mg , $119 \mathrm{OD}_{286}$ units, 86\%) as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}$) $\delta 8.73$ (s, $1 \mathrm{H}, \mathrm{H}-2$), $7.66-7.51$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{Ar}-$ H), 6.41 (d, $1 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime}, \mathrm{J}^{\prime}, 2^{2}=1.2 \mathrm{~Hz}$), 5.91 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}^{\prime}, 1$ $\left.=1.2, \mathrm{~J} 2^{2}, 3^{\prime}=5.9 \mathrm{~Hz}\right), 5.48\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{\prime} 3^{\prime}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=5.9, \mathrm{~J}_{3^{\prime}, 4^{\prime}}=\right.$ $2.6 \mathrm{~Hz}), 4.83-4.78$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-1^{\prime \prime}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$), 4.57 (m, 1 H , H-4'), 4.19 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{a}$), 4.12-4.08 (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}$, H-5" $)^{\prime}$), 3.91 (m, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}\right)$, 3.20 ($\mathrm{q}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3 \mathrm{~Hz}$), 3.13 (m, 1 H, H-6"a), 2.91 (m, 1 H, H-4"), 2.78 (m, 1 H, H-6"b), 1.64, 1.61, 1.46, 1.41 (each s, each 3 H , isopropyl CH_{3}), 1.28 (t, 9 H , $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$) $\delta 156.7$ 152.2, 151.0, 145.9, 136.8, 133.1, 133.0, 129.9, 122.3, 117.3, $115.2,113.0,93.4,89.7,89.5,89.5,87.5,85.9,84.1,72.5,69.3$, $67.2,49.5,46.6,46.6,30.9,28.9,27.2,26.9,11.0 ;{ }^{31 P}$ NMR ($D_{2} \mathrm{O}$, 202 MHz , decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta-10.78(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}),-10.94$ (d, J = 15.3 Hz); HRMS (FAB, negative) calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{5}$ $\mathrm{O}_{12} \mathrm{P}_{2} \mathrm{~S} 726.1400\left[(\mathrm{M}-\mathrm{H})^{-}\right]$, found 724.1427; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max }=$ 286 nm.

8-Azido-cyclic ADP-carbocyclic-ribose (7). Compound 7 (63.3 OD 283 units, 97%) was obtained from $29\left(65.0 \mathrm{OD}_{282}\right.$ units) as described for the synthesis of 6 as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}$) $\delta 9.13$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$), 5.93 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=6.2 \mathrm{~Hz}$), $5.17\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}^{2}, 1^{\prime}=6.2\right.$, $\left.\mathrm{J} z^{\prime}, 3^{\prime}=5.7 \mathrm{~Hz}\right), 4.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime \prime}\right), 4.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.55$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}$), 4.41 (m, $\left.2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-4^{\prime}\right), 4.27$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}$), 4.22 (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$), 4.12 (m, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}\right)$, 3.22 (m, 6 H, CH ${ }_{2} \mathrm{~N}$), 3.09 (m, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{a}\right), 2.58$ (m, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 2.46$ (m, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}\right)$ $1.30\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta 152.4$ 149.6, 146.4, 139.6, 120.7, 91.2, 87.6, 81.5, 74.6, 75.8, 73.4, 68.1, 67.6, 67.1, 49.5, 45.7, 30.9, 11.0; ${ }^{31}$ P NMR ($\mathrm{D}_{2} \mathrm{O}, 202 \mathrm{MHz}$ decoupled with ${ }^{1} \mathrm{H}$) $\delta-9.30(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}),-10.26(\mathrm{~d}, \mathrm{~J}=$ 11.4 Hz); HRMS (FAB, negative) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{P}_{2}$ $579.0754\left[(\mathrm{M}-\mathrm{H})^{-}\right]$, found 579.0792; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max }=283$ nm . The absolute amount of 7 was calculated using $\epsilon=18215$ at $\lambda_{\text {max }}=281 \mathrm{~nm}$ of 8 -azido-cADPR (4). ${ }^{\text {a }}$

8-Amino-cyclic ADP-carbocyclic-ribose (8). Compound 8 (19.8 OD 277 units, 83\%) was obtained from 30 (23.9 OD 277 units) as described for the synthesis of 6 as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}$) $\delta 8.96$ (s, $1 \mathrm{H}, \mathrm{H}-2$), 5.90 (d, $1 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=6.3 \mathrm{~Hz}$), 5.24 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}_{2^{\prime}, 1^{\prime}}=6.3$ J $\left.2^{\prime}, 3^{\prime}=5.7 \mathrm{~Hz}\right), 4.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime \prime}\right), 4.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.52$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}$), 4.36 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-4^{\prime}$), 4.23-4.19 (m, 3 H , H-3", H-5"), 4.09 (m, 1 H, H-5'b), 3.19 (q, 6 H, CH $2 \mathrm{~N}, \mathrm{~J}=7.3$ Hz), 3.03 (m, 1 H, H-6"a), 2.54 (m, 1 H, H-4"), 2.43 ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{H}-6^{\prime \prime} \mathrm{b}$), 1.27 (t, $9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{D}_{2} \mathrm{O}$ 125 MHz) $\delta 158.3,150.4,149.6,144.3,120.6,90.8,87.4,81.5$, 76.5, 75.4, 73.4, 68.1, 67.6, 66.8, 49.5, 45.6, 30.8, 11.0; ${ }^{31}$ P NMR $\left(\mathrm{D}_{2} \mathrm{O}, 202 \mathrm{MHz}\right.$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta-9.32(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz})$, -10.19 (d, J $=11.4 \mathrm{~Hz}$); HRMS (FAB, negative) calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{P}_{2} 553.0849\left[(\mathrm{M}-\mathrm{H})^{-}\right.$], found 553.0839; UV $\left(\mathrm{H}_{2} \mathrm{O}\right)$
$\lambda_{\text {max }}=277 \mathrm{~nm}(\mathrm{pH} 7.0)$. The absolute amount of 6 was calculated using $\epsilon=16000$ at $\lambda_{\text {max }}=274 \mathrm{~nm}$ of 8 -amino-cADPR (5). ${ }^{7 a}$

8-Phenylthio-cyclic ADP-carbocyclic-ribose (9). A solution of 31 ($117 \mathrm{OD}_{286}$ units) in aqueous $60 \% \mathrm{HCO}_{2} \mathrm{H}(1.0 \mathrm{~mL}$) was stirred at room temperature for 1.5 h and then evaporated. A solution of the residue in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,5.0$ mL) was applied to a C_{18} reverse phase col umn ($1.1 \times 15 \mathrm{~cm}$), and the column was developed using a linear gradient of $0-35 \%$ MeCN in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,200 \mathrm{~mL}$). Appropriate fractions were evaporated under the reduced pressure, and excess TEAA was removed by C_{18} reverse phase column chromatography ($1.1 \times 11 \mathrm{~cm}$, eluted with 30% aqueous MeCN) to give 9 (104 OD_{286} units, 89\%) as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 9.11$ (s, 1 $\mathrm{H}, \mathrm{H}-2), 7.67-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{J} \mathrm{r}^{\prime}, 2^{\prime}=\right.$ 6.4 Hz), 5.20 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J} z^{\prime}, 1^{\prime}=6.4$, J $z^{\prime}, 3^{\prime}=5.9 \mathrm{~Hz}$), 4.92 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime \prime}$), 4.64 (m, $\left.1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.56$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}$), 4.41 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 4.36 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$), 4.22 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}$), 4.19 (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$), 4.11 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}$), 3.20 ($\mathrm{q}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=$ 7.3 Hz), 3.04 (m, 1 H, H-6"a), 2.55 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$), 2.40 ($\mathrm{m}, 1$ $\mathrm{H}, \mathrm{H}-\mathrm{G}^{\prime \prime} \mathrm{b}$), 1.27 (t, $9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$, $125 \mathrm{MHz}) \delta 157.1,152.5,150.8,146.7,136.9,133.1,133.0$, 130.0, 122.5, 92.7, 87.8, 81.6, 76.7, 76.0, 73.4, 68.2, 67.5, 66.9, 49.5, 45.7, 31.0, 11.0; ${ }^{31}$ P NMR ($D_{2} \mathrm{O}, 202 \mathrm{MHz}$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta-9.27(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}),-10.24(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz})$; HRMS (FAB, negative) cal cd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{~S} 646.0774\left[(\mathrm{M}-\mathrm{H})^{-}\right]$, found 646.0762; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }}=285 \mathrm{~nm}$. The absolute amount of 9 was calculated using $\epsilon=15265$ at $\lambda_{\text {max }}=285 \mathrm{~nm}$ based on the total phosphate analysis using $\mathrm{KH}_{2} \mathrm{PO}_{4}$ as a standard.
Biological Assay. Sea urchin eggs from Lytechinus pictus (Marinus, Long Beach, CA) were obtained by intracoelomic injection of 0.5 M KCl , shed into artificial seawater (in mM , $\mathrm{NaCl} 435, \mathrm{MgCl}_{2} 40, \mathrm{MgSO}_{4} 15, \mathrm{CaCl}_{2} 11, \mathrm{KCl} 10, \mathrm{NaHCO}_{3}$ 2.5, EDTA 1, and [pH 8]), dejellied by passing through $90 \mu \mathrm{~m}$ nylon mesh, and then washed twice by centrifugation. Homogenates of sea urchin eggs were prepared as described previously. ${ }^{2}$ Briefly, eggs were disrupted in an intracellular-like medium consisting of 250 mM potassium gluconate, 250 mM N -methylglucamine, 20 mM HEPES, and $1 \mathrm{mM} \mathrm{MgCl}{ }_{2}$, pH 7.2] supplemented with 1 mM ATP, $10 \mathrm{U} / \mathrm{mL}$ creatine kinase, and 10 mM phosphocreatine and protease inhibitors. Ca^{2+} concentrations were measured with fluo-3 ($3 \mu \mathrm{M}$) at $17{ }^{\circ} \mathrm{C}$, using $500 \mu \mathrm{~L}$ of continuously stirred homogenate in a fluorimeter (Perkin-EImer LS-50B) at 506 nm excitation and 526 nm emission.

Acknowledgment. This investigation was supported by Grant-in-Aid for Creative Scientific Research (13NP0401) and Research Fellowships for Young Scientists (M.F.) from theJ apan Society for the Promotion of Science and The WellcomeTrust (A.G.) and Well come Trust Project Grant No. 55709 (B.V.L.P and A.G). We are grateful to Ms. H. Matsumoto, A. Maeda, S. Oka, and N. Hazama (Center for Instrumental Analysis, Hokkaido University) for technical assistance with NMR, MS, and elemental analysis.

Supporting Information Available: HPLC charts of the final compounds 6-9. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) This report constitutes Part 234 of Nucleosides and Nucleotides. For Part 223, see Minakawa, N.; Ono, Y.; Matsuda, A. A versatile modification of on-column oligodeoxynucleotides using a coppercatalyzed oxidative acetylenic coupling reaction. Submitted for publication.
(2) Clapper, D. L.; Walseth, T. F.; Dargie, P. J .; Lee, H. C. Pyridine nucleotide metabol ite stimulate calcium release from sea urchin egg microsomes desensitized to inositol triphosphate. J. Biol. Chem. 1987, 262, 9561-9568.
(3) (a) Galione, A. Cyclic ADP-ribose: a new way to control calcium. Science 1993, 259, 325-326. (b) Lee, H. C.; Galione, A.; Walseth, T. F. Vitamines Hormones 1994, 48, 199-257. (c) Dousa, T. P.; Chini, E. N.; Beers, K. W. Adenine nucleotide diphosphates:
emerging second messengers acting via intramolecular Ca^{2+} release. Am J. Physol. 1996, 271, C1007-C1024. (d) Lee, H. C. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol. Rev. 1997, 77, 1133-1164. (e) Lee, H. C. Calcium signaling by cyclic ADP-ribose and NAADP. A decade of exploration. Cell. Biochem. Biophys. 1998, 28, 1-17. (f) Galione, A.; Cui, Y.; Empson, R.; I ino, S.; Wilson, H.; Terrar, D. Cydic ADP-ribose and the regulation of calcium-induced calcium release in eggs and cardiac myocytes. Cell Biochem. Biophys. 1998, 28, 19-30. (g) Guse, A. H. Cyclic ADP-ribose: A novel $\mathrm{Ca}^{2+}-$ mobilising second messenger. Cel Signal. 1999, 11, 309316. (h) Guse, A. H. Cyclic ADP-ribose. J. Mol. Med. 2000, 78, 26-35. (h) Lee, H. C. Physiological functions of cydic ADP-ribose and NAADP as calcium messengers. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 317-345. (i) Cyclic ADP-ribose and NAADP: Structures, Metabolism and Functions; Lee, H. C., Ed.; Kluwer Academic Publishers: Dordrecht, 2002.
(4) (a) Lee, C. H.; Walseth, T. F.; Bratt, G. T.; Hayes, R. N.; Clapper, D. L. Structural determination of a cyclic metabolite of NAD^{+} with intracellular Ca^{2+}-mobilizing activity. J . Biol. Chem. 1989, 264, 1608-1615. (b) Kim, H.; J acobson, E. L.; J acobson, M. K. Position of cyclization in cyclic ADP-ribose. Biochem. Biophys. Res. Commun. 1993, 194, 1143-1147. (c) Lee, H. C.; Aarhus, R.; Levitt, D. The crystal structure of cydic ADP-ribose. Nature Struct. Biol. 1994, 1, 143-144. (d) Gu, Q.-M.; Sih, C. J. Cyclic ADP-ribose. Synthesis and structural assignment. J. Am. Chem. Soc. 1994, 116, 7481-7486. (e) Wada, T.; I nageda, K.; Aritomo, K.; Tokita, K.; Nishina, H.; Takahashi, K.; Katada, T.; Sekine, M. Structural characterization of cyclic ADP-ribose by NMR spectroscopy. Nucleosides Nucleotides 1995, 14, 1301-1341.
(5) Lee, H. C.; Aarhus, R. Wide distribution of an enzyme that catal yzes the hydrolysis of cyclic ADP-ribose. Biochim. Biophys. Acta 1993, 1164, 68-74.
(6) (a) Shuto, S.; Shirato, M.; Sumita, Y.; Ueno, Y.; Matsuda, A. Synthesis of cydic IDP-carbocydic-ribose, a stable mimic of cydic ADP-ribose. Significant facilization of the intramolecular condensation reaction of N -1-(carbocyclic-ribosyl) inosine $5^{\prime}, 6^{\prime \prime}$ Diphosphate derivatives by an 8 -bromo-substitution at the hypozanthine moiety. J . Org. Chem. 1998, 63, 1986-1994. (b) Shuto, S.; Shirato, M.; Sumita, Y.; Ueno, Y.; Matsuda, A. Synthetic studies of carbocyclic analogues of cyclic ADP-ribose. F ormation of a cyclic dimer, a 36-membered-ring product, in the condensation reaction of an 8 -Bromo- N^{1}-[5-(phenylthiophosphoryl) carbocyclic-ribosyl] Jinosine 5'-phosphate derivative mediated by AgNO_{3}. Tetrahedron Lett. 1998, 39, 7341-7344. (c) Fukuoka, M.; Shuto, S.; Minakawa, N.; Ueno, Y.; Matsuda, A. Alternative synthesis of cyclic IDP-carbocyclic ribose. Efficient cyclization of an 8 -bromo- ${ }^{1}$-[5-(phosphoryl) carbocyclic-ribosyl $]$ inosine 5^{\prime} phenylthiophosphate derivative mediated by iodine. Tetrahedron Lett. 1999, 40, 5361-5364. (d) Sumita, Y.; Shirato, M.; Ueno, Y.; Matsuda, A.; Shuto, S. Toward the total synthesis of cyclic ADP-carbocyclic ribose. Formation of the intramolecular pyrophosphate linkage by a conformation-restriction strategy in a syn-form using a halogen substitution at the 8 -position of the adenine ring. Nucleosides Nucleotides Nucleic Acids 2000, 19, 175-188. (e) Fukuoka, M.; Shuto, S.; Minakawa, N.; Ueno, Y.; Matsuda, A. An efficient synthesis of cyclic IDP- and cyclic 8 -bromo-IDP-carbocyclic-riboses using a modified Hata condensation method to form an intramol ecular pyrophosphate linkage as a key step. An entry to a general method for the chemical synthesis of cyclic ADP-ribose analogues. J. Org. Chem. 2000, 65, 5238-5248. (f) Shuto, S.; Fukuoka, M.; Manikowsky, M.; Ueno, T.; Nakano, T.; Kuroda, R.; Kuroda, H.; Matsuda, A. Total synthesis of cyclic ADP-carbocyclic-ribose, a stable mimic of Ca^{2+-}-mobilizing second messenger cyclic ADP-ribose. J. Am. Chem. Soc. 2001, 123, 8750-8759. (g) Guse, A. H.; Cakir-Kiefer C.; Fukuoka, M.; Shuto, S.; Weber, K.; Matsuda, A.; Mayer, G. W.; Oppenheimer, N.; Schuber, F.; Potter, B. V. L. Novel hydrol ysis-resistant anal ogues of cyclic ADP-ribose: modification of the "northern" ribose and calcium release activity. Biochemistry 2002, 41, 6744-6751.
(7) (a) Walseth, T. F.; Lee, H. C. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca^{2+} release. Biochim. Biophys. Acta 1993, 1178, 235-242. (b) Lee, H. C.; Aarhus, R.; Walseth, T. F. Science 1993, 261, 352-355. (c) Walseth, T. J.; Aarhus, R.; Lerr, J. A.; Lee, H. C. Identification of cyclic ADPribosebinding proteins by photoaffinity labeling. J. Biol. Chem. 1993, 268, 26686-26691. (d) Graeff, R. M.; Walseth, T. J.; Fryxell, K.; Branton, W. D.; Lee, H. C. Enzymatic synthesis and characterizations of cyclic GDP-ribose. J. Biol. Chem. 1994, 269, 30260-30267. (e) Zhang, F.-J.; Sih, C. J . Enzymatic cyclization of $1, \mathrm{~N}^{6}$-etheno-nicotinamide adenine dinucleotide. Bioorg. Med. Chem. Lett. 1995, 5, 1701-1706. (f) Zhang, F.-J.; Gu, Q.-M.; J ing, P. C.; Sih, C. J. Enzymatic cyclization of nicotinamide adenine dinucleotide phosphate (NADP). Bioorg. Med. Chem. Lett. 1995, 5, 2267-2272. (g) Zhang, F.-J.; Yamada, S.; Gu, Q.-M.; Sih, C. J. Synthesis and characterization of cyclic ATP-ribose: a potent mediator of calcium release. Bioorg. Med. Chem. Lett. 1996, 6,

1203-1208. (h) Zhang, F.-J .; Sih, C. J . Novel enzymatic cyclizations of pyridine nucleotide anal ogues: cyclic-GDP-ribose and cyclic-HDP-ribose. Tetrahedron. Lett. 1995, 36, 9289-9292. (i) Zhang, F-J.; Sih, C. J. Novel analogues of cyclic ADP-ribose: 9 -cyclic etheno-ADP-ribose and cyclic etheno-CDP-ribose. Bioorg. Med. Chem. Lett. 1996, 6, 2311-2316. (j) Ashamu, G. A.; Galione, A.; Potter, B. V. L. Chemoenzymatic synthesis of analogues of the second messenger candidate cyclic adenosine 5'-diphosphate ribose. J. Chem. Soc. Chem. Commun. 1995, 1359-1356. (k) Bailey, B. C.; Fortt, S. M.; Summerhill, R. J.; Galione, A.; Potter, B. V. L. Cyclic aristeromycin diphosphate ribose: a potent and poorly hydrolysable Ca^{2+}-mobilising mimic of cyclic adenosine diphosphate ribose. FEBS Lett. 1996, 379, 227-230. (I) Bailey, V. C.; Sethi, J . K.; Fortt, S. M.; Galione, A.; Potter, B. V. L. 7-Deaza cyclic adenosine 5'-di phophate ribose: first example of a Ca^{2+}-mobilizing partial agonist related to cyclic adenosine 5^{\prime}-diphosphate ribose. Chem. Biol. 1997, 4, 51-60. (m) Bailey, V. C.; Sethi, J. K.; Galione, A.; Potter, B. V. L. Synthesis of 7 -deaza-8-bromo cyclic adenosine 5^{\prime}-diphosphate ribose: the first hydrolysis resistant antagonist at the CADPR receptor. J. Chem. Soc. Chem. Commun. 1997, 695-696. (n) Sethi, J. K.; Empson, R. M.; Bailey, V. C.; Potter, B. V. L.; Galione, A. 7-Deaza-8-bromo-cyclic ADP-ribose, the first mem-brane-permeant, hydrolysis-resistant cyclic ADP-ribose antagonist. J. Biol. Chem. 1997, 272, 16358-16363. (o) Ashamu, G. A.; Sethi, J. K.; Galione, A.; Potter, B. V. L. Roles for adenosine ribose hydroxyl groups in cyclic adenosine 5^{\prime}-Diphosphate ribosemediated Ca²+ release. Biochemistry 1997, 36, 9509-9517. (p) Zhang, F.-J.; Gu, Q.-M.; Sih, C. J . Bioorganic chemistry of cyclic ADP-ribose (cADPR). Bi oorg. Med. Chem. 1999, 7, 653-664. (q) Wong, L.; Aarhus, R.; Lee, H. C.; Walseth, T. F. Cyclic 3-deazaadenosine diphosphoribose: a potent and stable analogue of cyclic ADP-ribose. Biochim. Biophys. Acta 1999, 1472, 555-564.
(8) (a) Gu, Q.-M.; Sih, C. J. Cyclic ADP-ribose: synthesis and structural assignment. J.Am. Chem. Soc. 1994, 116, 7481-7486. (b) Fortt, S.; Potter, B. V. L.: An approach to a carbocyclic anal ogue of cyclic adenosine 5^{\prime}-diphosphate ribose. The synthesis and bisphosphorylation of N^{1}-[(1S,3R)-3-(hydroxymethyl)cyclo-pent-1-yl]inosine. Tetrahedron Lett. 1997, 38, 5371-5374. (c) Hutchinson, E.J.; Taylor, B. F.; Blackburn, G. M. Stereospecific synthesis of 1,9 -bis (β-D-glycosyl) adenines: a chemical route to stable analogues of cyclic-ADP ribose (CADPR). J. Chem. Soc. Chem. Commun. 1997, 1859-1860.
(9) (a) Nakagawa, I.; K onya, S.; Ohtani, S.; Hata, T. A "capping" agent: ${ }^{1}$-S-phenyl P2-7-methylguanosine-5'-pyrophosphorothioate. Synthesis 1980, 556-557. (b) Sekine, M.; Kamimura, T.; Hata, T. A convenient method for the synthesis of P^{1}-(7methylguanosine 5^{\prime}) P^{2}-(ribonucleoside- 5^{\prime}) di phosphates. J. Chem. Soc., Perkin Trans. 1 1985, 997-1000. (c) Sekine, M.; Nishiyama, S.; Kamimura, T.; Osaki, Y.; Hata, T. Chemical synthesis of capped oligoribonucleotides, $\mathrm{m}^{7} \mathrm{G}^{5} \mathrm{ppp}$ AUGACC. Bull. Chem. Soc. J pn. 1985, 58, 850-860. (d) Fukuoka, K.; Suda, F.; Suzuki, R.; Ishikawa, M.; Takaku, H.; Hata, T. Large scale synthesis of cap part in messenger RNA using a new type of bifunctional phosphorylating reagent. Nucleosides Nucleotides 1994, 13, 1557-1567.
(10) Yoshikawa, M.; Kato, T.; Takenishi. T. Studies of Phosphorylation. III. Selective phosphorylation of unprotected nucleosides. Bull, Chem. Soc. J pn. 1969, 42, 3505-3508.
(11) Hata, T.; Kamimura, T.; Urakami, K.; Kohno, K.; Sekine, M.; Kumagai, I.; Shinozaki, K.; Miura, K. A new method for the synthesis of oligodeoxyribonucleotides bearing a 5 -terminal phosphate group. Chem. Lett. 1987, 117-120.
(12) NMM was used as a scavenger of PhSH produced in the reaction. When the reaction performed without NMM, the yield of $\mathbf{1 5}$ was low.
(13) The method has been successfully employed for the synthesis of CADPR analogues by other groups: (a) Galeone, A.; Mayol, L.; Oliviero, G.; Piccialli, G.; Varra, M. Synthesis of a novel N-1 carbocyclic, N - 9 butyl analogue of cyclic ADP ribose (CADPR). Tetrahedron 2002, 58, 363-368. (b) Huang, L.-J .; Zhao, Y.-Y.; Yuan, L.; Min J.-M.; Zhang L.-H. Chemical synthesis and calcium release activity of $N 1$-ether strand substituted CADPR mimic. Bioorg. Med. Chem. Lett. 2002, 12, 887-890. (c) Huang, L.-J.; Zhao, Y.-Y.; Yuan, L.; Min J.-M.; Zhang L.-H. Syntheses and calcium-mobilizing evaluations of N1-glycosyl-substituted stable mimics of cyclic ADP-ribose. J Med Chem. 2002, 45, 5340-52.
(14) Dargie, P. J.; Agre, M. C.; Lee, H. C. Comparison of Ca^{2+} mobilizing activities of cyclic ADP-ribose and inositol trisphosphate. Cell Regul. 1990, 1, 279-290.
(15) Thomas, J. M.; Summerhill., R. J .; Fruen., R. J .;Bradley, R. C.; Grant C. G. A. Calmodulin Dissociation Mediates Desensitization of the CADPR-Induced Ca^{2+} Release Mechanism. Curr. Biol. 2002, 12, 2018-2022.

[^0]: * Corresponding author. Tel: 81-11-706-3229. Fax: 81-11-7064980. E-mail: shu@pharm.hokudai.ac.jp.
 ${ }^{\dagger}$ Hokkaido University.
 \ddagger University of Oxford.
 § University of Bath.

