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A unifying principle of rational drug design is the use of either shape similarity or
complementarity to identify compounds expected to be active against a given target. Shape
similarity is the underlying foundation of ligand-based methods, which seek compounds with
structure similar to known actives, while shape complementarity is the basis of most receptor-
based design, where the goal is to identify compounds complementary in shape to a given
receptor. These approaches can be extended to include molecular descriptors in addition to
shape, such as lipophilicity or electrostatic potential. Here we introduce a new technique, which
we call shape signatures, for describing the shape of ligand molecules and of receptor sites.
The method uses a technique akin to ray-tracing to explore the volume enclosed by a ligand
molecule, or the volume exterior to the active site of a protein. Probability distributions are
derived from the ray-trace, and can be based solely on the geometry of the reflecting ray, or
may include joint dependence on properties, such as the molecular electrostatic potential,
computed over the surface. Our shape signatures are just these probability distributions, stored
as histograms. They converge rapidly with the length of the ray-trace, are independent of
molecular orientation, and can be compared quickly using simple metrics. Shape signatures
can be used to test for both shape similarity between compounds and for shape complementarity
between compounds and receptors and thus can be applied to problems in both ligand- and
receptor-based molecular design. We present results for comparisons between small molecules
of biological interest and the NCI Database using shape signatures under two different metrics.
Our results show that the method can reliably extract compounds of shape (and polarity) similar
to the query molecules. We also present initial results for a receptor-based strategy using shape
signatures, with application to the design of new inhibitors predicted to be active against HIV
protease.

Introduction

A universal problem in computer-aided drug design
is the comparison of molecular shape.1-3 In ligand-based
design, the underlying assumption is that a biologically
active compound is complementary in shape to some
target receptor, suggesting that molecules similar in
shape and electrostatic properties to a known active
compound will themselves be complementary to the
receptor and also active. In receptor-based design, the
structure of the target binding site is already known in
atomic detail, and the goal is to directly identify
compounds that are complementary to the site both in
shape and polarity.

A number of methods have been devised for screening
compound libraries for molecules likely to be active
against a selected target.4-12 Most of these take molec-
ular shape into account, either explicitly or implicitly.
Perhaps the most popular ligand-based strategy that
takes shape explicitly into account is CoMFA13,14 (com-
parative molecular field analysis) wherein the van der
Waals and electrostatic fields of molecules are sampled

over a grid and used as descriptors in a regression model
intended to predict biological activity. CoMFA thus
includes both molecular shape and polarity. The various
methods for defining pharmacophore models represent
ligand shape implicitly by incorporating some collection
of hydrogen bond acceptors and donors and regions of
steric bulk and imposing intergroup distance con-
straints; this 3D geometric information clearly depends
on molecular shape. A number of approaches have been
developed that compute topological descriptors of mol-
ecules, beginning with chemical structure or starting
with the wave function; such descriptors derive directly
from molecular shape. Even methods based on chemical
fingerprints include implicit shape information, since
only a restricted family of compounds will be compatible
with the chemical and connectivity information con-
tained in the fingerprint.

Receptor-based design strategies generally involve an
explicit representation of shape derived from an atomic-
resolution structure of the active site. For example,
UCSF DOCK15,16 packs the active site with spheres,
producing an efficient representation of the volume
available to accommodate a ligand and combines this
with positions of hydrogen bond acceptors and donors.
Docking algorithms such as FLOG,17 GOLD,18,19 and
FlexiDock20 use an all-atom representation of the active
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site and thus represent its geometry in fine detail.
Pharmacophore-like models can also be devised for
receptors, and these include shape information in the
same way as ligand-based models.

It is clear that shape information is key to the
identification of molecules that are likely to be biologi-
cally active. At the same time, this information is
difficult to efficiently encode and to use in database
searching, in either ligand- or receptor-based design.
CoMFA and pharmacophore methods use a large amount
of explicit information to encode shape, involving many
grid points or geometric constraints. Scanning a chemi-
cal library with a pharmacophore query involves much
computation, since each molecule must be repositioned
and flexed in order to determine if it can fit the model.
Similarly, receptor-based docking strategies require
many packed spheres and/or atom positions to encode
the shape of the active site, and again scanning a
chemical library with a docking program requires many
detailed calculations for each compound considered,
often involving molecular mechanics computations, or
at the very least “bump checks” to test shape compat-
ibility between receptor and ligand.

While improved efficiency in pharmacophore search
and docking methods has made such approaches usable
for screening chemical libraries, there is clearly no upper
limit on the number of compounds that we would like
to be able to consider. A method for rapidly comparing
shape constitutes a desirable addition to the computa-
tional arsenal for selecting active molecules. A method
for screening libraries by shape may by itself yield
compounds of great interest, and in addition such
compounds may then be passed down a “computing
pipeline” for additional screening (e.g. computation of
log P) or be used in detailed docking studies.

In this article we describe a novel approach we call
shape signatures for compactly representing molecular
shape and demonstrate how the method can be easily
applied to both ligand- and receptor-based molecular
design. Our approach uses ray-tracing to explore the
volume interior to a ligand or the space exterior to a
receptor site. Shape signatures are probability distribu-
tions derived from the aforementioned ray-traces, and
they serve as compact descriptors of shape requiring
modest storage space and which may be quickly com-
pared to test for shape similarity or complementarity.
While augmenting a chemical compound library with
shape signatures requires a significant computational
expense, this price need by paid only once, when the
signature component is added to the database; more-
over, these calculations, while significant, are tractable
and can be carried out using readily available computing
facilities.

We will discuss both the initial implementation of
shape signatures, which includes only shape informa-
tion, as well as extensions which couple the existing ray-
tracing technique with other computed molecular prop-
erties to define signatures with higher-dimensional
domains. Specifically, we will illustrate an approach
that includes the molecular electrostatic potential (MEP)
to define a two-dimensional (2D) signature. These 2D-
MEP-based signatures combine shape and polarity

information and can be used to select molecules that
are similar in shape and electrostatic potential to a
query.

Methods
Ray-tracing. In the shape signatures approach, the

shape of a molecule is assumed to coincide with its
solvent-accessible molecular surface,21-23 which is gen-
erated in the usual way by the points of contact of a
rolling spherical probe. In our application, we need a
detailed representation of the surface, which is best
realized by breaking the surface into small area ele-
ments. To accomplish this we use the smooth molecular
surface triangulator algorithm (SMART)24 which has
been described previously. SMART partitions the mo-
lecular surface into regular triangular area elements,
which are well-suited to the computations that follow.
The definition of the solvent-accessible molecular sur-
face depends on the choices of atomic radii, solvent probe
radius, and the density of element corners (vertexes) to
be generated. In this work, we use the PARSE25 atomic
radii, a radius for the solvent probe of 1.4 Å, and
vertexes spaced approximately 0.5 Å apart. Figure 1a
shows the chemical structure of the HIV protease
inhibitor Indinavir,34 and Figure 1b shows a triangu-
lated molecular surface for this molecule.

The volume defined by the molecular surface is
explored using a modified form of ray-tracing, a tech-
nique widely used in presentation graphics and com-
puter animation. In graphics-oriented applications, ray-
tracing means tracking the paths of light rays that
emanate from some number of defined sources and

Figure 1. (a) Structure of Indinavir, including substituent
terminology used here. (b) Indinavir with triangulated solvent-
accessible surface generated using SMART. The Indinavir
structure was taken from PDB entry 1HSG,34 which was also
the source of the atomic coordinates for native HIV protease
used in this work.

Shape Signatures Journal of Medicinal Chemistry, 2003, Vol. 46, No. 26 5675



which are then reflected by objects in a scene. In its full
realization, ray-tracing takes into account the material
properties of objects as well as the atmosphere the rays
travel through. For our purposes of describing shape,
the requirements are simpler; we need only consider
“perfect” reflection from the molecular surface, as il-
lustrated in Figure 2. Furthermore, we have no light
sources, but rather start each ray from a randomly
selected point on the molecular surface and then allow
the ray to propagate by the rules of optical reflection.

In our approach, a ray is initiated at the midpoint of
a triangular surface element chosen at random, with
initial direction defined by selecting a second point at
random in a hemisphere centered at the midpoint of the
planar element. If we are generating a ray-trace for a
ligand or other small molecule, then the hemisphere lies
on the interior side of the element as determined by the
outward-facing surface normal (which is defined by the
SMART algorithm). If on the other hand we wish to
define the shape of a receptor site, then the hemisphere
lies on the outward side of the element, and the initial
ray propagation is directed toward the exterior of the
molecule. When performing such an exterior ray trace,
the user supplies a list of atoms that define the receptor
site of interest, and only those surface elements that
are close to the site atoms are involved in ray propaga-
tion, either as initiation points for new rays or as
reflection points.

Once a ray is initiated, it is propagated by the rules
of optical reflection, and reflection points are written
to a file. (The user specifies the number of reflections
to generate.) Three events may terminate the propaga-
tion of a ray: (1) the number of reflections equals the
number requested by the user; (2) the propagating ray
makes a “glancing” contact with a surface element or
strikes too close to the boundary between two adjacent
elements, leading to mathematical difficulties in com-
puting the reflection angle, or (3) the ray strikes no
surface element and heads out to infinitysthis is only
possible in exterior ray-traces of receptor sites. In case
1, the algorithm is finished. In cases 2 and 3, the ray-
trace is simply restarted at a newly chosen point on the
molecular surface. Figure 3 shows two ray-traces for
Indinavir, with 100 and 10000 reflection points.

Shape Signatures. A ray-trace provides raw infor-
mation about three-dimensional shape but is not useful
in itself. Our aim is to derive probability distributions
that characterize the ray-trace and to use these as
compact descriptors of shape (and, as we will later
demonstrate, molecular polarity as well). Shape signa-
tures are nothing but these ray-trace-derived probability

distributions. In this work, we will represent our prob-
ability distributions as histograms, but we recognize
that other representations (e.g. wavelets) are available
and may ultimately prove to be more useful.

We term the line segment that connects two succes-
sive reflection points a ray-trace segment. Perhaps the
simplest shape signature is the distribution of the
lengths of these segments. We call this a one-dimen-
sional (1D) signature to emphasize that the domain of
the probability distribution (namely segment length) has
one dimension. Figure 4 shows the distribution of
segment lengths for Indinavir, derived from 10000 and
50000-point ray-traces. It is observed that signatures
converge rapidly with increasing number of reflections
and are not sensitive to the initiation point of the ray-
trace.

We also define signatures with higher-dimensional
domains, which incorporate additional molecular de-
scriptors. One approach to generating two-dimensional
signatures is to associate a surface property, measured
at each reflection point, with the sum of the segment
lengths on either side of the reflection. An obvious and
important property is the molecular electrostatic po-
tential (MEP) computed over the molecular surface.
Figure 5a illustrates this approach to defining a two-
dimensional domain, and Figure 5b shows 2D MEP-
based signatures for Indinavir using 10000 and 50000
reflections. 2D-MEP signatures are joint probability
distributions for observing a sum of segment lengths
together with a particular value of the electrostatic

Figure 2. Geometry of ray-tracing. Here an incoming ray is
reflected by a single triangular element which forms part of
the molecular solvent-accessible surface. The component of the
incoming ray parallel to the plane is unchanged by reflection,
while the component perpendicular to the plane is reversed.

Figure 3. Ray-traces for Indinavir. (a) Low density (100
reflections). (b) High density (10000 reflections). Most of the
volume is densely filled, with the exception of two small
regions. In a Connolly representation of the surface these
regions would represent self-intersecting solvent-accessible
surface and would be removed from the triangulation; in the
SMART representation they are retained but are narrow and
of very small volume.
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potential at a given reflection point. They thus simul-
taneously encode information concerning shape and
polarity.

Shape signatures are clearly independent of molecular
orientation and furthermore involve no overlay of a grid
on the molecule (as in CoMFA), with accompanying
questions as to the effects of grid spacing and orienta-
tion on results. These constitute key advantages of our
approach.

Shape Signature Comparison. Clearly, shape sig-
natures are useful only in being compared. In brief, we
wish to use shape signatures to rapidly test for shape
similarity between one molecule and another, and shape
complementarity between a molecule and a protein
receptor site, representing ligand- and receptor-based
strategies.

We compare signatures by measuring the distance
between the associated histograms, using simple metrics
that can be computed quickly. The most elementary
metric is based on the L1 norm commonly used to
compare functions (eq 1):

Here the subscript i ranges over the union of all the
bins for histograms H1 and H2 (it is assumed throughout
that the bins for any two histograms will have the same
alignment and so fall into a simple one-one correspon-
dence). We assume that our probability distributions are
normalized, so that the sum of the histogram heights
over all the bins is unity; then under the L1 metric the
maximum distance between two histograms is 2, in
which case the histograms being compared have no

common support (i.e. no bin positions where both
functions simultaneously have nonzero height). The
minimum distance between two histograms, under this
or any other acceptable distance measure, is zero
(corresponding to the case where the distributions being
compared are identical).

It has been observed that histograms often feature a
dominant peak around 3 Å, which clearly arises from
ray-trace segments that “measure” small-scale as op-
posed to large-scale molecular shape. In an attempt to
amplify the sensitivity to overall molecular shape when
making comparisons, we have also used the following
modified metric (eq 2):

We call this a “ramp” metric since it weights the ith
term in the sum by a ramp function (the length di
associated with the ith bins of the histograms).

A key advantage of the shape signatures approach is
that a comparison using either of these metrics requires
little computing time, involving arithmetic on histo-
grams that typically have fewer than 50 bins. In this it
is comparable to chemical fingerprint methods, which
also require few operations to compare two molecules.

The analogues of the preceding metrics for 2D signa-
tures are

and

where index i varies over the length indices of the bins,
and j varies over the second dimension (which in all the
examples here will be an electrostatic potential scale).
2D signatures obviously require more arithmetic opera-
tions than 1D signatures to compare, but the compu-
tational expense is still limited and much closer to
fingerprint comparisons than to strategies that involve
docking or reorientation of the molecules being com-
pared.

Segment Culling. We have already noted that 1D
signatures typically include a large peak at about 3 Å
segment length. Closer examination of the ray-traces
from which the signatures are derived reveal a large
number of segments that span atomic diameters, as
illustrated in Figure 6. Since these would appear to
encode relatively little information about the overall
shape of the molecule, the ray-tracing program was
modified so that segments that involve reflections at the
same atom are discarded, and additional segments are
generated as needed to match the user-specified total
number of reflections. This segment “culling” ensures
that the surviving segments encode useful information
about the overall shape of the molecule being consid-
ered. Since this procedure entails a significant added
computational expense, some database searches were
performed both with and without segment culling, as
described below, to evaluate its merit.

Implementation. Our goal is to begin with a data-
base of molecules, which we assume are saved in Tripos

Figure 4. 1D shape signatures for Indinavir, for (a) 10000
and (b) 50000 reflections. Integrated difference between the
two distributions is 0.037 probability unit. Difference between
20000 reflection distribution (not show) and 50000 reflection
distribution (b) is 0.023.
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MOL2 format and from this to generate a database of
1D- and 2D-MEP shape signatures. The molecules must
have 3D atomic coordinates and partial atomic charges
which we have assigned using the Gasteiger method26

for the work described here. Processing of the molecular
structure database is carried out using a C-shell script
which performs the following operations for each mol-
ecule:

(1) Generation of a triangulated surface using SMART,
which is implemented as a C program.

(2) Ray-tracing within the surface using a second C
program. Since this is the most computation-intensive
step, efficiency is an important concern. A fast algorithm
using a grid acceleration method is employed here. This
program creates a file with a specified number of ray-
trace segments.

(3) Accumulation of histograms is performed by a
third C program that reads the ray-trace file and sums
the occurrences of segment lengths, using a bin size
specified by the user. The program also computes the
electrostatic potential using the partial atomic charges
contained in the molecular structure file,

where Φ is the molecular electrostatic potential (MEP)
computed at reflection point rp, and the index j ranges
over all the atoms, which have positions rj (measured
in Å) and partial charges qj (measured in elementary
charge units). The MEP values computed at each
reflection point, along with the sum of the segment
lengths that adjoin the reflection point, are used to
accumulate a 2D-MEP-based signature as illustrated in
Figure 5. The resulting histograms are written to an
ASCII file, with a format that includes all pertinent
information (number of reflections, bin size, etc.)

Figure 5. (a) Scheme for defining a two-dimensional shape signatures domain. We compute the joint probability distribution for
observing a summed length of segments (1 and 2) on either side of a reflection point, together with the MEP computed at the
reflection. (b) 2D-MEP signatures for Indinavir, for 10000 and 50000 reflections.

Figure 6. Segment culling. The spheres represent atoms, the
heavy outline the solvent-accessible surface Here the ray-trace
includes several segments that span the diameter of a single
atom. These “uninformative” segments can be eliminated if
desired, thereby increasing the proportion of segments that
encode information about the overall shape of the molecule.

Φ(rp) ) ∑
j

qj

|rp - rj|
(5)
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(4) Finally, a PERL script adds the histogram infor-
mation generated in operation 3 to a growing database
of 1D- and 2D-MEP shape signatures.

In our implementation of shape signatures, the query
used to scan a database is itself a database of signatures
which could refer to a single object. The query database
could be generated from a set of small molecules, in
which case the same procedure described above is
employed, or a receptor site. In the latter case, the
procedure is similar, except that an exterior ray trace
is performed (typically over a protein), and the user
must specify a set of atoms that define the receptor site.
In either case, comparison of the query and target
database is effected using a C program that compares
each histogram in the query database against all those
in the target using one of the metrics described above
and writes out a hit list file that reports the best n hits
for each of the queries (the hit-list length n is chosen
by the user).

We note that while our metrics can readily compare
receptor sites and ligands for shape complementarity,
it is less straightforward to measure electrostatic com-
plementarity. For example, one might simply reverse
the sign of the electrostatic field for either query or
target signature and proceed using either of the existing
metrics; one then finds an exact match only if query and
target have exactly complementary shapes, and elec-
trostatic fields that are equal and opposite. This is an
extraordinarily stringent criterion, which would lead to
poor scores for clearly useful matches. In recognition of
this problem, we have not attempted to carry out 2D-
MEP searches using receptor-based queries.

Applications

Strategy. Our approach has been to first focus on a
small, manageable database of known composition and
to assess the efficacy of the shape signatures approach
in matching compounds similar in shape and polarity
under a variety of options (segment culling enabled or
disabled, along with use of either the L1 or R1 metric).
This provides the opportunity to evaluate the method
in a situation where potential hits (and misses) are
known beforehand and also to develop a sense for the
sizes of 1D and 2D scores that are associated with
“interesting” matches. This is a necessary prelude to
applying the method to larger and more diverse data-
bases.

Tripos Fragment Database. We initially applied
the shape signatures method to the Tripos fragment
database, a diverse collection of small molecules includ-
ing heterocycles, carbohydrates, amino acids, and nucle-
otides, which is supplied as a standard component of
the SYBYL molecular modeling package.20 This data-
base was especially useful for our initial tests given its
small size and its incorporation of multiple representa-
tives of each family of compound (ensuring that a given
query from the database will usually have several
potential matches). Very small fragments were removed
from the database at the start and also some perfectly
linear molecules (e.g. allene) which were not handled
well by the SMART surface algorithm. This left a total
of 235 compounds. Dummy atoms were removed from
the amino acids in the database, the resulting empty
valences filled with hydrogens, and the side chains of

glutamic acid, aspartic acid, lysine, and arginine modi-
fied to correspond to the ionized form. Gasteiger charges
were assigned to all the compounds in the final set, and
1D- and 2D-MEP signatures were generated using
either 50000 or 250000 reflections in each ray-trace in
separate computational experiments. The signatures
were assembled into databases as described above.

Each resulting database was compared against itself
(i.e. each compound in the database was used as a query
and compared against all the remaining compounds).
The L1 and R1 metrics (eqs 1-4) were used in separate
comparison. For each query, the 10 best (lowest-scoring)
hit compounds were retained. This self-comparison was
carried out for both the 50000- and 250000-reflection
databases, using 1D- and 2D-MEP signatures, and with
segment culling either enabled or disabled. Examination
of the hit compounds in the context of their scores were
used to propose score cutoffs to distinguish those
matches likely to be interesting.

NCI Database Preparation. The National Cancer
Institute compound database27-32 as bundled with the
SYBYL UNITY tools was used as a source of molecules
for creation of a shape signatures database with 1D- and
2D-MEP signatures. The starting database was screened
for all compounds with molecular weight less than 800
Da, yielding 113826 molecules. Gasteiger charges were
computed for all of the molecules in the resulting
working set. 1D- and 2D-MEP shape signatures were
computed for all the compounds, using a sixteen-
processor Beowulf cluster. It should be pointed out that
each processor was simply allotted a fraction of the
molecules to be analyzed, and there was no need to
employ the use of parallel code. 50000 reflections were
generated in the ray-trace for each compound, and
segment culling was employed, as described above. Of
the compounds processed, about 0.4% failed (in every
case due to an error in molecular surface generation),
yielding a total of 113331 compounds in the NCI shape
signatures database used in subsequent work. (No
attempt at this point has been made to carefully assess
the reasons for failure in surface generation or to explore
ways to reduce the error rate.) Preparation of the
database consumed approximately 100 hours wall-clock
time on a sixteen-processor cluster of 450 MHz Pentium-
III processors running under the Linux operating
system.

Comparison of Tripos Database against NCI. All
of the 1D and 2D signatures (50000 reflections per
signature) for the Tripos fragment database were used
as queries against the NCI shape signatures database
described above. The best 50 hits for each query were
collected. Searches were carried out using 1D- and 2D-
MEP signatures, along with either L1 or ramp metrics
(eqs 1-2, and 3-4, respectively) for a total of four
searches. Six query compounds, comprising a set that
is both structurally diverse and biologically interesting,
were selected for detailed examination here.

A special concern when comparing a query against a
large database is the distribution of scores. To be useful,
a search method must exhibit a high degree of selectiv-
ity, so that truly interesting hits have scores that differ
markedly from the mean. In other words, it should be
possible to identify a reasonable cutoff score which can
be applied to extract a relatively small and meaningful
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set of hits from a diverse target database. To examine
the character of the scores distribution for shape
signatures, a special version of the search program for
the L1 metric was prepared which accumulated score
statistics in a file. Searches were carried out against
the NCI database using this program for all the
molecules in the Tripos fragment database, for both 1D-
and 2D-MEP signatures. It was thus possible to ac-
cumulate the distribution of scores from this relatively
large database and to express the number of observed
hits as a function of score for each query molecule.

Use of the NCI Database for Receptor-Based
Design. We used the HIV protease inhibitor Indinavir
as a starting framework. As shown in Figure 1a, the
compound includes pyridine (R1), tert-butyl formamide
(R2), phenyl (R3), and benzocyclopentanol (R4) as sub-
stituents, which are attached to a framework containing
piperazine, a peptide group, and a central hydroxyl
which marks the site of the transition state analogue
presented by the inhibitor.

Rather than attempt to find receptor-based matches
to the entire binding site, we took the approach of
finding matches to receptor subsites, which we defined
by excising these substituents one-at-a-time from the
experimental complex of the inhibitor and the native
protease molecule.34 In this way four separate subsites
were generated, each marked with a SYBYL dummy
atom attached to the portion of the inhibitor that
remained. One of these sites, R1, was largely exposed
to solvent and did not provide a well-defined, enclosed
pocket; it was omitted from the analysis below, and the
original substituent (pyridine) was retained at this
position.

Ray-tracing was performed in each pocket with 50000
reflections, and the ray-traces were used to generate 1D
histograms for the three sites considered (R2, R3, and
R4). These were used to search the NCI database for
compounds of shape similar to the pocket volumes (or
stated another way, of shape complementary to the
receptor subsites). Parameters were identical to those
used in the ligand-based searches.

Once a collection of hits was assembled for each
subsite, we were faced with the task of attaching these
to the framework. This was done using a custom SYBYL
application program called ALMS (Automated Ligand-
binding with Multiple Substitutions33) written in the
SYBYL programming language (SPL). In brief, each
nonring hydrogen of an NCI hit molecule was considered
as a possible attachment point, and each ring hydrogen
as a possible attachment point through an added
methylene carbon. In this way, a single hit molecule was
“exploded” into a family of fragments, each with a single
free valence, marked by a dummy atom. A fragment was
attached to the framework by removing the dummy
atoms on both the hit and the target inhibitor site and
replacing these with a single bond linking the inhibitor
and the fragment. The orientation of the newly attached
fragment was then optimized using FlexiDock, the
genetic-algorithm-based optimizer included with the
SYBYL modeling package. Default force-field settings
were used in FlexiDock (including hydrogens with
reduced van der Waals radius and epsilon parameter),
and in all calculations the genetic algorithm proceeded
for 500 generations.

Each framework variable site was considered indi-
vidually, with additions of all the fragments generated
from the best n hits for a particular site carried out with
the substituents of the starting inhibitor in place at all
the other sites. The FlexiDock inhibitor-receptor in-
teraction energies computed after adding all of the
fragments targeted to a particular site were used to
rank the fragments for that site. Next, the top k, m, and
n fragments for sites R2, R3, and R4, respectively, were
added in all possible combinations, with precomputed
optimized geometry, generating k × m × n ligand
molecules. A final energy minimization was performed
in the field of the frozen receptor for each ligand,
followed by an updated computation of the interaction
energy. The interaction energies so computed were used
to rank the table of putative inhibitors finally generated.

We will discuss ALMS, the system for the fragment-
based combinatorial construction of inhibitors used in
this study, in more detail elsewhere.

Results

Tripos Fragment Database. Table 1a shows hits
found for a selection of query compounds, where we have
compared the Tripos fragment database against itself,
with 50000 reflections per histogram using 1D signa-
tures and the L1 metric and with segment culling
enabled and disabled. Table 1b shows structures of the
top five hits for each of the six queries, for the case of
segment culling enabled.

It is seen that the 1D signatures perform well in
selecting compounds chemically or structurally similar
to the query. This observation is amplified by examining
all of the available data for the Tripos database.
Moreover, one compound of a class generally selects all
compounds of the same class present in the database;
for example, a fatty acid (laurate) selects all other fatty
acids present in the database, a carbohydrate (R-D-
glucopyranose) other carbohydrates, an amino acid
(lysine) other amino acids, etc. Dispensing with the
segment-culling procedure affects the size of the scores
slightly, usually making the distances between histo-
grams a bit smaller but clearly has little effect on the
rank order of hits in this example. Switching to the R1
metric changes the size of the scores as would be
expected but has little impact on the rank order of hits
for most of the queries. Again, eliminating segment
culling does perturb the scores but does not significantly
modify the order of hits. Given the similarity of these
results to those found under the L1 metric, they will not
be tabulated here. (The authors may be contacted for
these or any other results mentioned in this article but
not reported in detail.)

When used in the Tripos database self-comparison,
2D-MEP signatures produce results similar to those of
the 1D search but with some changes in hit ranking that
exhibit sensitivity to the electrostatic properties of query
and target compounds and with a much smaller number
of meaningful hits. This is not surprising, given that
the 2D-MEP searches select simultaneously on the basis
of shape and polarity and thus are more stringent than
1D searches. Examples of this are seen in Table 2 where
we present results for 2D-MEP signatures compared
under the L1 metric. For example, where the query
lysine selected methionine among the top five hits when
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only shape was considered (Table 1), the 2D search
results do not include this compound. Our initial experi-

ence with this metric suggests that meaningful 1D
matches between query and target usually involve

Table 1. (a) Results for Six Query Compounds: 1-D Shape Signature Self-Comparison of Tripos Fragment using L1 Metric

culling no culling

query hit score hit score

1,2,3,4-tetrahydroisoquinoline 1,2,3,4-tetrahydroquinoline 0.0370 1,2,3,4-tetrahydroquinoline 0.0173
isochroman 0.0386 isochroman 0.0316
1,2,3,4-tetrahydronaphthalene 0.0490 chroman 0.0399
chroman 0.0574 1,2,3,4-tetrahydronaphthalene 0.0475
indoline 0.0767 indan 0.0525

5H-dibenz[b,f]azepin dibenzocycloheptatriene 0.0351 dibenzocycloheptatriene 0.0332
dihydrophenanthrene 0.0482 dihydrophenanthrene 0.0384
thioxanthene 0.0578 thioxanthene 0.0466
dibenz[b,f]thiepin 0.0695 5H-dibenzo[b,f]-1,4-diazepine 0.0487
5H-dibenzo[b,f]-1,4-diazepine 0.0800 dibenz[b,f]thiepin 0.0578

1,4,6-gonatriene-3,17-dione 4,6-gonadiene-3,17-dione 0.0502 4,6-gonadiene-3,17-dione 0.0400
1,4-gonadien-3-one 0.0743 1,4-gonadien-3-one 0.0660
4-gonen-3-one 0.0984 4-gonen-3-one 0.0838
1,3,5(10)-gonatriene 0.0986 1,3,5(10)-gonatriene 0.0862
5(10)-gonen-3-one 0.1004 5(10)-gonen-3-one 0.0984

R-D-glucopyranose â-D-mannopyranose 0.0417 R-D-mannopyranose 0.0376
â-D-galactopyranose 0.0420 â-D-mannopyranose 0.0379
R-D-mannopyranose 0.0559 â-D-galactopyranose 0.0391
R-D-galactopyranose 0.0744 R-D-galactopyranose 0.0560
â-D-glucopyranose 0.0748 â-D-glucopyranose 0.0766

lysine arginine 0.0862 methionine 0.0527
methionine 0.1024 arginine 0.0821
palmitoleate(C16) 0.1163 laurate(C12) 0.0959
glycerol(-H) 0.1179 palmitoleate(C16) 0.1004
oleate(C18) 0.1202 myristate(C14) 0.1006

adenine guanine 0.0626 guanine 0.0388
7H-purine 0.0712 7H-purine 0.0701
cytosine 0.0840 benzimidazole 0.0743
uracil 0.0854 1H-indazole 0.0747
benzopyrimidine 0.0860 benzoxazole 0.0775

Shape Signatures Journal of Medicinal Chemistry, 2003, Vol. 46, No. 26 5681



distances of less than 0.1 probability unit, while useful
2D hits are within 0.2 of the query; here, few of the hits
are closer than 0.2 probability units to the query, and
some have a distance of 1.5 or greater (2.0 is the
theoretical maximum distance under this metric). We
interpret this to mean that the Tripos fragment data-
base is too small to warrant the application of 2D-MEP
searching, and we turn our attention to the comparisons
between the fragment database and the much larger
and more diverse NCI compound library (discussed in
the next section).

The results found when comparing the fragment
databases prepared using 250000 reflections per com-
pound were essentially identical to those discussed
above, for all combinations of search type (1D or 2D)
and metric (L1 or R1) considered (data not shown). This
indicates that 50000 reflections per compound ensures
adequate convergence, at least for molecules found in
the Tripos fragment database.

CPU times for the Tripos fragment database self-
comparison (235 queries, 55225 comparisons) under the
L1 metric on a 1.5 GHz Pentium processor were 20.5 s
(1D search) and 53.7 s (2D-MEP search). Timings under
the R1 metric were essentially identical. These total
times correspond to approximately 370 µs for a single
1D comparison, 970 µs for a 2D-MEP comparison.

Tripos Fragment Database vs NCI. Table 3a lists
top 1D hits for molecules from the Tripos fragment
database used as queries against the NCI chemical
library. The format of the table follows that of Table
1a, using the same queries and displaying results for
1D shape signatures, but in this table the score columns
correspond to the use of different metrics L1 and R1,
rather than having segment culling enabled or disabled.

(Segment culling was used exclusively in preparation
of the NCI shape signatures database, so there is no
“nonculled” case to compare to.) The hits are labeled by
NCI compound IDs (CAS). The top five hit structures
for each query are displayed in Table 3(b).

We note at the outset that of the six queries shown,
only 1,2,3,4-tetradihydroisoquinoline and adenine are
in the NCI database subset used in these searches. In
the case of 1,2,3,4-tetradihydroisoquinoline, the NCI
entry (CAS #91-21-4) corresponding to the query is
selected as the top hit, while for adenine the corre-
sponding hit (CAS #73-24-5) appears in the third
position in the hit list. We note in the latter case that
the top hit (CAS #10325-61-8) differs from adenine
only in the substitution of an amine nitrogen with an
oxygen, leading to structures that are very similar in
shape; furthermore the scores of #73-24-5 and #10325-
61-8 differ by only 0.004 probability units. Given the
probabilistic nature of the method and the presence of
competing structures of almost identical shape, we feel
that it is inevitable that the “best “ chemical structure
will not always top the hit list. Also, small differences
in the conformation of query and target compounds may
influence the order of hits.

The other queries locate target compounds that are
generally of very similar structure. Some interesting
and initially unexpected hits: for query 1,2,3,4-tetradi-
hydroisoquinoline, the hit #578-54-1 is seen to have
the same structure as the query, but with the amine-
containing ring opened; for query 5H-dibenz[b,f]azepin,
hit #6279-16-9 is similar to the query, but with the
central ring opened. This ability to locate “approximate”
matches is an interesting feature of the shape signa-
tures approach. We also point out hit #82-53-1 for

Table 2. Results for Six Query Compounds: 2D-MEP Shape Signature Self-Comparison of Tripos Fragment Database Using L1
Metric

culling no culling

query hit score hit score

1,2,3,4-tetrahydroisoquinoline 1,2,3,4-tetrahydroquinoline 0.0847 1,2,3,4-tetrahydroquinoline 0.0762
1,2,3,4-tetrahydronaphthalene 0.1496 1,2,3,4-tetrahydronaphthalene 0.1307
indoline 0.1732 indoline 0.1320
acenaphthene 0.1908 indan 0.1554
indan 0.2161 acenaphthene 0.1804

5H-dibenz[b,f]azepin dibenzocycloheptatriene 0.1116 dibenzocycloheptatriene 0.1031
acridan 0.2089 acridan 0.1538
5H-dibenzo[b,f]-1,4-diazepine 0.2109 5H-dibenzo[b,f]-1,4-diazepine 0.1672
1,2,3,4-tetrahydroisoquinoline 0.2268 phenanthridine 0.1762
1,2,3,4-tetrahydroquinoline 0.2292 dihydrophenanthrene 0.1802

1,4,6-gonatriene-3,17-dione 4,6-gonadiene-3,17-dione 0.0888 4,6-gonadiene-3,17-dione 0.0852
5a-gonane-3,17-dione 0.1383 5a-gonane-3,17-dione 0.1383
1,4-gonadien-3-one 0.2028 1,4-gonadien-3-one 0.2097
5a-gonan-3-one 0.2031 4-gonen-3-one 0.2122
5a-gonan-17-one 0.2211 5a-gonan-3-one 0.2221

2-deoxy-â-D-ribofuranose â-D-ribofuranose 0.2292 â-D-glucopyranose 0.2223
â-D-glucopyranose 0.2368 R-D-fructofuranose 0.2317
R-D-fructofuranose 0.2480 R-D-mannopyranose 0.2437
R-D-galactopyranose 0.2616 â-D-ribofuranose 0.2445
R-D-mannopyranose 0.2696 R-D-glucopyranose 0.2575

lysine arginine 0.6615 arginine 0.6617
ethanolamine 0.7882 ethanolamine 0.7621
choline 1.2682 choline 1.2442
D-Threose 1.5332 D-Threose 1.4601
D-xylose 1.5667 D-xylose 1.4912

adenine pteridine 0.4025 benzothiazole 0.3493
benzothiazole 0.4321 pteridine 0.3816
guanine 0.4394 thiazole 0.3981
7H-purine 0.4427 7H-purine 0.4254
indene 0.4614 guanine 0.4265
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query query 5H-dibenz[b,f]azepin, which clearly bears
a weak resemblance to the query despite a low score.

We stress that in any method that “collapses” a large
space of chemical structures onto a comparatively small

Table 3. (a) Results for Six Query Compounds: 1D Shape Signature Comparison of Tripos Fragment Database against the NCI
Database using L1 and R1 Metrics

L1 metric R1 metric

query hit score hit score

1,2,3,4-tetrahydroisoquinoline 91-21-4 0.0291 91-21-4 0.1153
10500-57-9 0.0336 10500-57-9 0.1409
529-35-1 0.0348 578-54-1 0.1428
578-54-1 0.0380 493-05-0 0.1534
24206-39-1 0.0397 529-35-1 0.1743

5H-dibenz[b,f]azepin 833-48-7 0.0324 833-48-7 0.1404
1211-06-9 0.0360 1211-06-9 0.1673
10354-00-4 0.0415 10354-00-4 0.1789
82-53-1 0.0441 42263-75-2 0.2142
6279-16-9 0.0488 51087-02-6 0.2300

1,4,6-gonatriene-3,17-dione 24640-00-4 0.0450 6126-58-5 0.2289
10448-96-1 0.0556 24640-00-4 0.2561
438-67-5 0.0570 6968-06-5 0.2672
5976-74-9 0.0576 20919-82-8 0.2908
6126-58-5 0.0584 3601-97-6 0.2963

R-D-glucopyranose 488-66-4 0.0546 74561-03-8 0.2223
23559-36-6 0.0548 488-66-4 0.2548
74561-03-8 0.0553 488-64-2 0.2548
16505-91-2 0.0607 6623-68-3 0.2548
39392-65-9 0.0655 2037-48-1 0.2549

Lysine 5329-79-3 0.0478 37149-01-2 0.1874
110-97-4 0.0486 6963-39-9 0.1882
5343-35-1 0.0552 110-97-4 0.2107
37149-01-2 0.0555 6281-43-2 0.2201
7356-00-5 0.0563 104-50-7 0.2224

adenine 10325-61-8 0.0271 10325-61-8 0.0944
54346-27-9 0.0304 54346-27-9 0.0988
73-24-5 0.0310 5426-35-7 0.1178
1123-54-2 0.0343 73-24-5 0.1178
2227-98-7 0.0353 19165-47-0 0.1178
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descriptor space there must be a significant number of
false positives, as typified by this example.

Hits under the R1 metric are similar to those under
L1, involving for some queries the introduction of new
hits, but more often simply the reordering in ranking
of existing hits. We will not present hit structures for
the R1 metric, since this would largely reproduce the
L1 results.

In Table 4a we present the results for the six query
compounds when used in 2D-MEP searches against the
NCI database. Despite the much larger size of the NCI
database compared to the Tripos fragment database,
only three of the queries (1,2,3,4-tetrahydroisoquinoline,
5H-dibenz[b,f]azepin, and adenine) have clearly signifi-
cant hits (with top scores less than 0.1) and one other
(1,4,6-gonatriene-3,17-dione) has hits of borderline sig-

nificance (with scores all larger than 0.15). Structures
for the three low-scoring queries are shown in Table 4b.

Examination of these hits and comparison to Table
3b illustrate the role that electrostatics plays in select-
ing compounds under a 2D-MEP search. The hits for
1,2,3,4-tetrahydroisoquinoline all exhibit an electrone-
gative nitrogen in a position identical or close to that
found in the query. This is not the case for the 1D search
(Table 3b, first row), where there is less consistency in
the appearance of electronegative atoms in the hits. (We
point out in both the 1D- and 2D-MEP searches, the
query compound appears as the top hit.) For 5H-dibenz-
[b,f]azepin, the top 2D-MEP hit has somewhat weaker
shape similarity compared to the top 1D hit, including
a cyclopropyl motif not found in the query; at the same
time it includes an electronegative nitrogen at a position

Table 4. (a) Results for Six Query Compounds, 2D-MEP Shape Signature Comparison of Tripos Fragment Database against the NCI
Database using L1 and R1 Metrics

L1 metric R1 metric

query hit score hit score

1,2,3,4-tetrahydroisoquinoline 91-21-4 0.0701 91-21-4 0.5232
635-46-1 0.0816 635-46-1 0.6553
1484-19-1 0.0940 1484-19-1 0.6977
1780-19-4 0.0983 5344-99-0 0.7295
5344-99-0 0.1011 1780-19-4 0.8070

5H-dibenz[b,f]azepin 30646-39-0 0.0947 30646-39-0 0.8078
16886-10-5 0.1079 3377-71-7 0.9075
32446-13-2 0.1089 16886-10-5 0.9104
3377-71-7 0.1126 32446-13-2 0.9166
833-48-7 0.1167 833-48-7 0.9411

1,4,6-gonatriene-3,17-dione 56763-86-1 0.1524 20056-05-7 1.3418
734-32-7 0.1645 56763-86-1 1.3451
93998-31-3 0.1682 74924-17-7 1.4169
20056-05-7 0.1693 734-32-7 1.4949
74924-17-7 0.1702 71837-43-9 1.5131

R-D-glucopyranose 52019-14-4 0.1815 52019-14-4 1.4065
49871-87-6 0.1833 58691-27-3 1.4270
58691-27-3 0.1912 49871-87-6 1.4514
7404-25-3 0.2015 2280-44-6 1.5418
14215-77-1 0.2018 14215-77-1 1.5520

Lysine 42021-74-9 0.5473 85385-47-3 4.1381
58048-33-2 0.5549 58048-33-2 4.2359
58048-35-4 0.5684 42021-74-9 4.2441
37082-52-3 0.5719 78582-26-0 4.3301
78582-26-0 0.5721 62194-88-1 4.3458

adenine 73-24-5 0.0683 73-24-5 0.5048
28128-33-8 0.1537 28128-33-8 1.0824
7390-62-7 0.1581 7390-62-7 1.2106
2846-89-1 0.1744 2846-89-1 1.2491
3647-48-1 0.1820 1904-98-9 1.2947
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homologous to that of the query. The top hit is followed
by hits that arguably exhibit weaker shape similarity
to the query than some of the corresponding 1D hits,
but which include an electronegative nitrogen at a
position similar to the query. Finally, hit #5 for the 2D-
MEP search is the compound found as hit #1 in the 1D
search. For adenine, the 2D-MEP search produces hits
which in every case contain nitrogens at positions
homologous to the query. Compound #2846-89-1 is an
interesting “substructure match”. The top hit in this
case is the query, while in the 1D search the query
molecule appears as the #3 hit.

Searching our NCI shape signature database (113,331
compounds) using a 1D query required on average 133
s on a 450 MHz Pentium-III processor running the
Linux operating system. This corresponds to 1.17 ms
per comparison (which should be compared to the figure
of 370 µs quoted above for a 1.5 GHz machine). The
average time per comparison for a 2D-MEP search was
3.7 ms.

Score Distributions. A special concern is the dis-
tribution of scores for 1D- and 2D-MEP searches against
a large and diverse database such as NCI. We have
already indicated the range of scores that appear to
indicate close similarity between query and target under
the L1 metric; for 1D searches, a distance of 0.05 or less
usually corresponds to strong shape similarity, while
the range 0.05-0.1 is a borderline region where inter-
esting hits may be mixed with “substructure” matches.
For 2D-MEP searches under L1 the corresponding
ranges are 0-0.1 and 0.1-0.2. We expect that even with
a large database such as NCI, there should be a
relatively small number of close hits for a given query.
In contrast, we expect that the vast majority of target
compounds should be unambiguously assigned as weak
matches.

We computed score distributions under the L1 metric
for the compounds of Table 3 when used as queries
against the NCI database. In Figure 7a we show the
distribution of 1D scores for 1,2,3,4-tetrahydroisoquino-
lineand and in 7b the distributions of 2D-MEP scores
for this molecule. These plots include a logarithmic axis
for the number of compounds observed for a given range
of scores. Figures 8a and 8b show the same distributions
but with linear vertical axes. Figure 7 highlights the
numbers of compounds observed at the extreme left of
the distribution, where structurally interesting matches
are expected, while Figure 8 provides a better sense of
the shapes of the distributions, which appear to be
locally Gaussian but with a significant shoulder. The
distributions for the other query molecules are overall
very similar to the ones shown.

Given these distributions, we can directly compute the
cutoff score needed to select a specified percentage of
compounds in the NCI database. For a database of this
size, two useful cutoffs are those needed to select 0.1%
and 0.01% of the compounds, corresponding to ap-
proximately 100 and 10 compounds. Analysis of the
distributions for the selected compounds reveals a range
of 1D scores of 0.04-0.06 to select the top 0.01 percentile
of hits, and a range of 0.06-0.09 to select the top 0.1
percentile. For the 2D-MEP distributions, the ranges
are 0.11-0.21 and 0.16-0.33. (The 2D-MEP ranges
excludes the values for Lysine, which are 0.59 and 0.69

for the 0.1 and 0.01 percentile cutoffs, respectively.
These values are anomalous and merely reflect the fact
that the query was positively charged while the target
database contains mostly neutral compounds.) The
cutoff ranges we observe are in reasonable agreement
with the qualitative values based on the self-comparison
of the Tripos fragment database.

Figure 7. Score Distributions for (a) 1D and (b) 2D-MEP
searches against the NCI Database. Vertical axis is number
of observed hits; horizontal axis is score. (Logarithmic vertical
axis.)

Figure 8. Score Distributions for (a) 1D and (b) 2D-MEP
searches against the NCI Database. Vertical axis is number
of observed hits; horizontal axis is score. (Linear vertical axis.)
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We will further explore the characteristics of the score
distributions in later work. For now we point out that
the distributions (Figure 8) give the strong impression
of being well-represented by a sum of two Gaussians,
an observation that may be of practical significance for
developing rapid tests for the significance of hits. We
also note the secondary peak for the 2D-MEP distribu-
tion at the theoretical maximum score of 2.0. We believe
this arises from a near-total separation between the
distributions of those positively and negatively charged
molecules in the database. We will attempt to verify this
hypothesis in future work.

Receptor-Based Design. Figure 9 shows the recep-
tor subsite created by removing the R2 substituent (tert-
butyl formamide) from the Indinavir framework, along
with the associated ray-trace. As described above,
subsites were created using the same approach at the
R3 and R4 positions (not shown).

The top fifty hits for each of the subsite queries were
examined, and it was found that in each hit set there
were many examples of closely related structures (this
was especially the case with the R4 list). Subsets of
structures with high similarity were identified in each
list, and only one representative compound from each
set was retained in an effort to assemble a structurally
diverse group of NCI hit compounds for each subsite.
This yielded 27 compounds for R2, 40 for R3 and 12 for
R4. After exploding each hit by assignment of all possible
attachment points, there were a total of 377 fragments
for R2, 275 for R3 and 108 for R4. Each fragment was
attached to its target inhibitor site and optimized as
described above. Our selection of NCI hit compounds
implied a total of 11196900 possible inhibitor structures.
Table 5 shows the best three fragments for each subsite,
ranked by FlexiDock energy realized after attachment
and optimization, along with the CAS ID number for
the source NCI compound. We also show for comparison
the substituent found at the same position in Indinavir.

To construct a collection of trial inhibitor structure,
the best 10 fragments for each of the three variable sites
were selected, and inhibitors were constructed using all
possible combinations of the selected fragments. Each
selected fragment was attached to its target site with
the FlexiDock-optimized conformation determined in
the first phase of the procedure. This produced 1000
initial structures. Interaction- and self-energies of all
the compounds were computed by a utility in ALMS,

which continued by ranking the compounds in order of
ascending energy. The best fifty compounds were se-
lected for energy minimization in the field of the frozen
receptor.

The last phase of this “semiautomated” inhibitor
design included generating a rough estimate of binding
energy for each of the best fifty inhibitors. This involved
removing the inhibitor (with optimized geometry) from
the receptor and allowing it to minimize in isolation.
Subtracting this minimized energy from the self-energy
of the compound when docked provided an estimate of
inhibitor strain energy, and this positive quantity was
then added to the optimized inhibitor-receptor interac-
tion energy to provide a binding energy estimate.
Obviously this simple estimate did not take entropic
factors into account nor receptor flexibility.

All computations with SYBYL were carried out on a
Silicon Graphics Fuel workstation. Total computing
time can be divided into that required for the following
phases: Attachment of 760 fragments to their respective
inhibitor sites, followed by optimization using Flexi-
Dock, 5.45 h; generation of 1000 trial inhibitors, and
initial computation of interaction energy, 1.49 h; final
minimization (1000 steps max.) of best 50 inhibitors,
4.7 h. Total CPU time was thus approximately 11.6 h.
The time required to scan the NCI database using the
receptor-based shape signature queries was approxi-
mately 9 min (carried out on 550 MHz Pentium-III
processors running Linux).

Three representative inhibitors proposed by this
procedure are shown in Table 6, along with their
estimated binding energies. Indinavir is included for
comparison (it’s binding energy estimate was derived
from the crystal structure, using the same protocol

Figure 9. Ray-traces in HIV protease subsite R2 (as defined
in the text). Protein atoms involved in defining a site are
orange; framework atoms are colored by atom type. All subsite
atoms appear in capped-stick rendering.

Table 5. Best NCI-Derived Fragments for Sites R1, R2, and
R3a

a CAS number of source compound lower-left; optimized Energy
(kcal/mol) upper-right. Corresponding groups in Indinavir shown
for comparison. Attachment points indicated by “*”.
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described above). Most of the top-ranking inhibitors
involve combinations of a small selection of substituents
at the three variable sites; all of the best-scoring
compound had the same fragment (derived from com-
pound #18650-61-8) at the R3 position. Twenty-three
of the inhibitors designed by our procedure have an
estimated binding energy lower than -100 kcal/mol and
are predicted to be better binders than Indinavir.

Discussion

Since shape signatures is a new method, we have
presented here a fairly detailed description of the effects
of various assumptions that may be employed, such as

the inclusion or exclusion of the segment culling pro-
cedure, number of reflections generated when preparing
the signatures, the incorporation or omission of elec-
trostatic information, and the choice of a metric to be
used when making comparisons. While many of these
results would have been left out in the discussion of a
more mature technique, here they play a valuable role
in demonstrating the sensitivity of the method to the
choices made for various parameters.

First, it is clear from the results presented here that
the method works well in selecting compounds on the
basis of shape. (We point out that another laboratory
has adopted and extended our approach, also with good

Table 6. Selection of Best Inhibitors Constructed using Shape Signatures and ALMSa

a Energies are after 1000 steps (max.) maximization with MaxMin2 and corresponding to a binding-energy estimate as described in
the text.
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results.35,36) In the case of the Tripos fragment database
self-comparison, the method not only produces a com-
pound of the same or similar chemical class as best hit
for a given query, it is generally observed that all
compounds of the class appear at or near the top of the
hit list (Table 1). This is true under both metrics
considered, with hit rankings largely unchanged upon
replacing L1 scores with R1 scores, which are uniformly
larger in magnitude. Furthermore, the results are
affected only slightly by inclusion of the segment culling
procedure. This gives the strong sense that the method
is robust, with results that are relatively insensitive to
the detailed choice of parameters. It also calls into
question the utility of segment culling, which appears
to have only a small impact on the results, in most cases
merely changing the rank order of hits. Segment culling
is an attractive (albeit computationally expensive) idea
and was introduced early in the development of the
method; it was used in the generation of the shape
signature augmentation to the NCI database used here.
However, comparison with results generated with this
feature turned off indicate that it may represent a waste
of computing resources. (We note that the distributions
generated with and without culling are significantly
different and cannot be “mixed and matched”; thus, once
the NCI database was generated using this feature,
query databases destined to be compared against NCI
also needed to be generated with segment culling
enabled.) Similarly, the insensitivity of results to the
choice of metric makes it likely that future work will
focus on the simpler L1 form.

Comparison against the NCI database using the
Tripos compounds as queries likewise produced a set
of close structural matches for each of the queries, with
shape similarity clearly correlated to a small 1D score.
Noteworthy are the appearance of approximate and
substructure matches as the scores increase; this is a
feature of shape signatures comparisons that we have
noted in other contexts and will comment on at greater
length elsewhere. A general impression is that as scores
increase, one observes first close matches, then hits that
correspond to substructures or rearrangements of the
query, and finally to hits that exhibit no clear similarity
to the query. We feel that this is a positive feature of
the method, since it is often desirable to identify
compounds that have at least partial similarity to an
active compound and which may be able to mimic a
subset of the interactions of the query with a target
receptor. Repeating our experience with the Tripos
database self-comparison, the choice of metric had little
impact on the results; the only exceptions were observed
in those cases (e.g. lysine under 2D-MEP searching)
where there were no strong matches to start with.

The inclusion of electrostatics is shown to have
significant impact on the hits collected for a given query.
In the case of the Tripos fragment database self-
comparison, there is inadequate chemical diversity for
electrostatics to make a meaningful difference in the
search, but when comparing against the NCI database,
the 2D-MEP signatures lead to the selection of com-
pounds that have significantly greater electrostatic
similarity to the queries. This is reflected in the ap-
pearance of atoms with high partial charge at positions
in the hits similar to the query. It is also leads to a much

smaller number of meaningful hits. This is a conse-
quence of shape and electrostatic information being
given equal emphasis in the scoring, leading to a very
stringent criterion for the identification of a close match.
For example, lysine, a positively charged molecule, finds
no close 2D-MEP matches in our version of the NCI
database, after finding many shape-similar compounds
under a 1D search. On the other hand, using adenine
as a query locates compounds that are similar in both
shape and polarity under a 2D-MEP search. Moreover,
compounds with electrostatic features similar to the
query are promoted in the hit list over molecules that
exhibit shape-similarity only. In future work, we will
explore modified procedures that allow adjustment of
the emphasis given to shape and electrostatics when
carrying out searches. One useful way to achieve this
might be to first screen the database compounds against
a query on the basis of shape alone and then to apply
2D-MEP comparisons to reorder the hits based on
electrostatic similarity.

It is obviously important to have some criteria for
assessing the significance of the hit scores produced in
a shape signatures search. The scores for 1D- and 2D-
MEP searches against the NCI database are not nor-
mally distributed, and it is inappropriate to use z-scores
to test for the significance of hits. However, for the
queries that we have considered here, meaningful hits
appear in the extreme tail of the distribution, and the
typical score cutoffs we have proposed lead to selection
of a very small percentage of compounds from the
database. We stress that while the distributions of
scores are of intrinsic interest, as a matter of practice
the user of shape signatures decides at the outset how
many hits to retain in a given search. From this
viewpoint, evidence as to the range of scores likely to
correspond to close matches is helpful in determining
if the number of hits collected was appropriate. The
most important observation concerning the distributions
is that close matches between compounds, under either
1D or 2D-MEP searches, are found far from the median,
and that it appears to be possible to apply score cutoffs
in a reasonably consistent manner to select interesting
hits.

Turning to the receptor-based application presented
here, we note that shape signatures was used only to
collect the raw material to use with ALMS and could
just as well have been used to “feed” any of a number
of other design strategies. Most of the computational
effort was expended on fragment reorientation and
energy minimization. Nonetheless the contribution of
shape signatures in selecting fragments complementary
in shape to the receptor subsites we defined was clearly
a critical step. We point out that we could have simply
used the entire active site as query, and we made initial
attempts at this; however, it soon became apparent that
only the interior of the binding site presented a well-
defined target for the ray-tracing procedure, so that
some approach would need to be developed to “cap” the
ends of the active site channel. Including the Indinavir
framework in the site thus provided a means to delin-
eate smaller, well-defined regions for ray-tracing and
shape signature computation. Furthermore, the rela-
tively small size of our compound database (∼113000
molecules) suggested a greater chance of success in
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matching smaller subsites, as opposed to finding a close
fit to the entire channel. Of course, modifying an
existing active compound is a popular method for
generating new leads, and our approach falls under this
well-respected tradition.

While our receptor-based strategy produced a number
of interesting compounds, there are some important
caveats with this procedure. First, it is clearly less
straightforward to develop a receptor-based approach,
since active sites differ dramatically in shape, and a
method for restricting the ray-trace to a region of
interest may not always be immediately apparent.
While our approach of using a framework to define
subsites should be widely applicable, even in the case
of our demonstration calculation it was necessary to
omit one site (R1) from consideration due to its large
solvent accessibility. Second, our approach does not take
into account synthetic feasibility; fragments are at-
tached to the framework with no regard to the existence
of a synthetic route for preparing the derivative and
with no regard to the cost or availability of the necessary
reagents. Third, we are currently limited to using shape
signatures in 1D mode to select fragments, since shape
similarity can be used directly to select compounds
complementary in shape to a receptor site, but not
complementary in electrostatic potential, at least as-
suming our current metrics. All of these issues will be
addressed in future work. (We stress that while elec-
trostatics was not taken into account in selection of
fragments by shape signatures, it was taken into
account by ALMS when the fragments were finally
attached and their orientations optimized.)

Perhaps the most important unanswered question
concerning shape signatures is the influence of confor-
mation on the identification of similar compounds, an
issue which we have not addressed in this report. While
we have some evidence that comparisons made using
shape signatures are not extremely sensitive to confor-
mational differences, we nonetheless recognize this as
an important concern and will discuss this question in
detail elsewhere. We would point out that given the
speed of the method, this issue is relatively easy to
address. For a given query, one can easily generate
alternate conformers and use these separately to scan
a target database. Provided that one of the query
conformers is found in the database, a close match is
sure to be identified.

We finally note that even in the case of our receptor-
based strategy, shape signatures is a comparatively easy
technique to apply. Especially for ligand-based applica-
tions the method does not require extensive experience
in constructing queries, adjustment of numerous pa-
rameters, or sophistication in the interpretation of
results, which can be serious drawbacks with other
methods. Moreover, it directly addresses those features
of molecules, namely their shape and surface properties,
which are most critical to determining their biological
activity. In this it is more efficient than those methods
that focus on chemical structure, where shape and
electrostatics are merely implied by chemical connectiv-
ity, and where one must take care to identify compounds
that, while different in chemical structure, are closely
similar in shape.

Conclusions

We have presented a new method, shape signatures,
which we feel has great promise in the area of computer-
aided molecular design. The technique focuses on shape
rather than chemical structure, is independent of mo-
lecular orientation, and permits very rapid screening
of large databases for compounds with properties simi-
lar to a query molecule. We have demonstrated that the
method works well in selecting molecules on the basis
of shape and polarity and have applied it in a receptor-
based strategy where it led to the construction of
compounds predicted to have better binding energy than
the initial lead.

While the method is useful as it stands, we are
working to address a number of issues that need to be
resolved to extend the range of application of the
technique. Chief among these are the incorporation of
conformational flexibility into the method and for ap-
plication in receptor-based strategies the development
of a new metric that can handle electrostatic comple-
mentarity. We will also seek to introduce more “chemi-
cal intelligence” into our approaches, especially as
regards identifying fragments that will be compatible
with known synthetic strategies.
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