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Predictive pharmacophore models were developed for a large series of piperidine- and
piperazine-based CCR5 antagonists as anti-HIV-1 agents reported by Schering-Plough Research
Institute in recent years. The pharmacophore models were generated using a training set
consisting of 25 carefully selected antagonists based on well documented criteria. The activity
spread, expressed in K;, of training set molecules was from 0.1 to 1300 nM. The most predictive
pharmacophore model (hypothesis 1), consisting of five features, namely, two hydrogen bond
acceptors and three hydrophobic, had a correlation (r) of 0.920 and a root mean square of 0.879,
and the cost difference between null cost and fixed cost was 44.46 bits. The model was cross-
validated by randomizing the data using the CatScramble technique. The results confirmed
that the pharmacophore models generated from the test set were not due to chance correlation.
The best model (hypothesis 1) was validated using test set molecules (total of 78) and performed
well in classifying active and inactive molecules correctly. The model was further validated by
mapping onto it a diverse set of six CCR5 antagonists identified by five different pharmaceutical
companies. The best model correctly predicted these compounds as being highly active. These
multiple validation approaches provide confidence in the utility of the predictive pharmacophore
model developed in this study as a 3D query tool in virtual screening to retrieve new chemical
entities as potent CCR5 antagonists. The model can also be used in predicting biological

activities of compounds prior to undertaking their costly synthesis.

Introduction

According to an UNAIDS report, about 42 million
people are living with HIV/AIDS at the end of 2002.1
There were 5 million new infections just in the past
year, and more than 3 million people died from this
deadly disease in 2002. These data show the enormity
of the AIDS epidemic in the world, especially affecting
sub-Saharan Africa and southeast Asia. The current
trend in infection rate suggests that by the end of 2010
another 45 million people will be infected with HIV in
the absence of effective global prevention measures. The
currently available drugs approved by the U.S. FDA are
only, until recently, reverse transcriptase and protease
inhibitors and their combinations. Although these drugs
are helping to reduce the morbidity and mortality of
HI1V infection, their very high cost is prohibitive for most
people infected in sub-Saharan Africa and third-world
countries. Besides, these drugs have well documented
side effects,?6 and development of resistance has been
reported.”~® Therefore, discovery of new classes of potent
and less-toxic anti-HIV-1 drugs with a different mech-
anism of action is urgently needed. The recent approval
of a new class of drug, known as entry/fusion inhibitor
T-20 (Fuzeone)'°-13 by the U.S. FDA, has generated
hope that it might help infected people who are resistant
to other available retroviral therapies. This new drug
has also showed promise and validated the notion that
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early stages of HIV infection, i.e., fusion/entry can be
effectively inhibited.14-16

The early step of HIV-1 infections starts when the
virus enters the target cells by attaching to the CD4
receptor and subsequently interacts with chemokine
receptors such as CXCR4 and CCR5.17720 CCR5 belongs
to the family of G-protein-coupled receptors (GPCR) and
was discovered as the major chemokine receptor for the
macrophage tropic strains (M-tropic) of HIV-1 to enter
into monocytes, macrophages, and T-cells based on the
observation that the -chemokines, MIP-1a, MIP-15,
and RANTES inhibit infection of CD4™" cells by nonsyn-
cytium-inducing (NSI) strains of HIV-1.2! The idea of
using CCR5 as a possible target for therapeutic inter-
vention emerged from the findings that some individu-
als who were homozygous for a defective CCR5 allele
with internal 32 base pair deletion (CCR5-A32) were
protected from HIV-1 infection and appeared to be
healthy.22=24 Since then, a great deal of activity in
identifying small-molecule drugs against this target has
been reported (recently elegantly reviewed by Kazmier-
ski et al.?®). The first discovery of a CCR5 inhibitor,
TAK-779, was reported by Takeda Chemical Industries
in Japan.2® Recently, Schering-Plough Research Insti-
tute in the U.S. has reported the systematic discovery
of highly potent CCR5 antagonists as anti-HIV-1 agents
in a series of publications.16:27-33 |n the absence of any
three-dimensional (3D) structure of CCR5, rational
design of inhibitors against this receptor using a struc-
ture-based approach is not feasible. Therefore, it is
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prudent to identify possible pharmacophores from a
series of CCR5 antagonists with binding (or inhibitory)
activities to understand the structural requirements for
potent and selective drugs against this target. A phar-
macophore represents the 3D arrangements of struc-
tural or chemical features of a drug (small organic
compounds, peptides, peptidomimetics, etc.) that may
be essential for interacting with the receptor for opti-
mum binding. These pharmacophores can be used in
different ways in drug design programs: (1) as a 3D
query tool in virtual screening to identify potential new
compounds from 3D databases of “drug-like”3*3% mol-
ecules with patentable structures different from those
already discovered; (2) to predict the activities of a set
of new compounds yet to be synthesized; (3) to under-
stand the possible mechanism of action. The concepts
of pharmacophore, their development techniques, and
applications have been elegantly compiled in a recently
published book.3® The pharmacophore generation ap-
proach is quite powerful and finds many applications
in drug discovery research.37-%6 According to a recent
report, it costs about $600 million to $800 million and
12—15 years to bring a compound from the identification
stage to the market.>” Pharmaceutical companies are
hard-pressed to take a multitude of rational design
approaches to shorten the time and reduce the cost of
identifying new chemical entities (NCEs). Hypothesis
generation by the Catalyst software is one of such
approaches that has been successfully used in drug
discovery and toxicology research (for comprehensive
reference lists, see http://www.accelrys.com/references/
rdd_pub.html#catalys). We have initiated a systematic
study toward developing pharmacophore models from
a large data set of CCR5 antagonists as part of our drug
discovery program. In this report, we present the
development of pharmacophore models of CCR5 antago-
nists as anti-HIV-1 agents using the Catalyst/HypoGen
module and validate the model not only on large test
sets of compounds but also on six of the most potent
and structurally diverse CCR5 antagonists identified by
five major pharmaceutical companies.

Materials and Methods

Molecular Modeling. Molecular modeling was performed
on a Silicon Graphics Octane R12000 dual processor computer
(sgi, 1600 Amphitheater Parkway, Mountain View, CA 94043).
Catalyst 4.7 software (Accelrys Inc., San Diego, CA) was used
to generate pharmacophore models.

Biological Data. The sources of the biological activity data
(data for inhibition of RANTES binding to CCR5), represented
as K; in nM, were from the literature published by Schering-
Plough Research Institute, Kenilworth, NJ%7-28315859 (.S,
Patents 6,387,930 (2002) and 6,391,865 (2002)). The chemical
structures of the antagonists are listed in Charts 1 and 2. The
datasets were divided into a training set and a test set. For
estimation (prediction) purposes, the activity values were
classified as follows: K;(nM) =100 nM means the compounds
are highly active (represented as ++); 100 nM < K; (nM) =<
500 nM means the compounds are moderately active (repre-
sented as +); Ki (hM) > 500 nM means the compounds are
inactive (represented as —). This classification scheme was
created on the basis of the fact that the initial compound
screening program at Schering-Plough Research Institute to
find CCR5 antagonists identified a lead compound with an
activity (K;) of 1000 nM, and subsequent optimization of this
molecule generated several potent CCR5 antagonists. The
current literature data indicate that activity can reach sub-
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nanomolar levels. Therefore, we have chosen a much stricter
cutoff value of less than 500 nM to consider any compound
to be active. Because one of the major goals of pharmaco-
phore generation is to utilize it in searching (virtual screening)
3D drug-like chemical databases to identify lead compounds,
this classification scheme is more meaningful than actual
prediction values and may help in identifying lead com-
pounds with structures different from those reported in the
literature.

Criteria of Selecting Training Set. The most critical
aspect of pharmacophore hypothesis generation in the Catalyst
software is the selection of the training set. Some basic
strategies have been elegantly laid out by Li et al.®° The basic
guidelines are as follows. (1) A minimum of 16 diverse
compounds should be selected to avoid any chance correlation.
(2) The activity data should have a range of 4—5 orders of
magnitude. (3) The compounds should be selected to provide
clear and concise information and to avoid redundancy and
bias in terms of both structural features and activity range.
(4) The most active compounds should be included so that they
provide information on most critical features required as a
pharmacophore. (5) Inclusion of any compound known to be
inactive because of steric hindrance must be avoided because
current features in the Catalyst software cannot handle such
cases.

On the basis of the above criteria, we have selected 25
compounds for the training set and 78 compounds for the test
set.

Generation of Pharmacophores. All stereoisomeric cen-
ters in the molecules were appropriately assigned as indicated
in the original data sources using the Catalyst software.
Conformation models for all molecules (both training and test
sets) were generated using the Catalyst/ConFirm module
within the software, using the “best quality” conformational
search option. A maximum of 250 conformations were gener-
ated using Charmm force field parameters®! and a constraint
of 10 kcal mol~* energy thresholds above the global energy
minimum. Catalyst selects conformers using the Poling
algorithm,%2-84 which penalizes any newly generated conformer
if it is too close to any already found conformers. This method
ensures maximum coverage in conformation space. All other
parameters were set to the default settings. An initial analysis
of the “show function mapping” tools revealed that hydrogen
bond acceptor (HA), hydrophobic (HY), ring aromatic (RA),
and positive ionizable (PI) features could effectively map all
critical chemical/structural features of all the training set
molecules. During the initial phase of the hypothesis genera-
tion exercise, it was observed that only two features, i.e., HA
and HY, out of those four mentioned above dominated in most
of the useful hypotheses generated by the Catalyst software.
Also, the maximum number of hydrogen bond acceptor fea-
tures (HA) in those hypotheses was never more than two.
Therefore, those two features were used to generate 10
pharmacophore hypotheses from the training set, using a
default uncertainty value of 3. The minimum and maximum
count of features for HY was 0 and 5, respectively, whereas
for HA the values were 0 and 3, respectively. The Catalyst/
HypoGen module can only generate a maximum of five
features for a hypothesis.

Assessment of the Quality of Pharmacophore Hypoth-
eses. (a) Cost Function Analysis. The quality of the
generated pharmacophore hypotheses was evaluated by con-
sidering the cost functions (represented in bits unit) calculated
by the Catalyst/HypoGen module during hypothesis genera-
tion. Details of the cost function were reported by Sutter et
al.® In brief, the cost (total cost) of a hypothesis is calculated
by the following equation:

cost = eE + wW + cC

where e, w, and c are the coefficients associated with the error
(E), weight (W), and configuration (C) components, respec-
tively.

The other two important cost calculations are the “fixed cost”
and the “null cost”. The “fixed cost” represents the simplest
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Chart 1. Chemical Structures of 25 Training Set Compounds?
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a All structures were drawn using ISIS Draw 2.5 (MDL Information Systems, Inc., San Leandro, CA). Numbers represent the compound
numbers.
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Chart 2. Chemical Structures of 78 Test Set Compounds?
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Chart 2 (Continued)
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Chart 2 (Continued)
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a All structures were drawn using ISIS Draw 2.5 (MDL Information Systems, Inc., San Leandro, CA). Numbers represent the compound

numbers.

model that perfectly fits the data and is calculated by the
following equation:

fixed cost = eE(x=0) + wW(x=0) + cC

where x is the deviation from the expected values of weight
and error.

The null cost is the cost of a pharmacophore when the
activity data of every molecule in the training set is the
average value of all activities in the set and the pharmacophore
has no features. Therefore, the contribution from the weight
or configuration component does not apply. The null cost is
calculated from the following equation:

null cost = eE(x.=%)
where y.st 1S the averaged scaled activity of the training set
molecules.

It has been suggested in the Catalyst software that the
differences between cost of the generated hypothesis and the
null hypothesis cost should be as large as possible; a value of
40—60 bits difference may indicate that most probably it has
a 75—90% chance of representing a true correlation in the data
set used. The total cost of any hypothesis should be toward
the value of fixed cost to represent any meaningful model. Two
other very important output parameters are the configuration
cost (also known as entropy cost) and the error cost. The former
depends on the complexity of the pharmacophore hypothesis
space. Any value higher than 17 may indicate that the
correlation from any generated pharmacophore is most likely
due to chance, and some attention has to be given to selecting
the training set molecules. The entropy cost value can be
reduced by limiting the minimum and maximum features. The
error cost increases as the value of the root mean square (rms)
increases. The rms deviations represent the quality of the
correlation between the estimated and the actual activity data.

(b) Cross-Validation Test. A validation technique, termed
CatScramble, available in the Catalyst/HypoGen module was
used to further assess the statistical significance of the
pharmacophore hypotheses generated from the training set
molecules. This validation technique is based on Fischer’s
randomization test. The purpose of this test is to validate the
strong correlation between chemical structures and biological
activity. The activity values of the training set molecules are
reassigned by randomization using the CatScramble tech-
nique, and new spreadsheets are created. The number of
spreadsheets depends on what level of statistical significance
one wants to achieve. For a 95% confidence level, 19 spread-
sheets are created. For 98% and 99% confidence levels, 49 and
99 spreadsheets, respectively, are created. In our validation
test, we selected the 95% confidence level, and 19 spreadsheets
were created by the CatScramble command. These spread-

Table 1. Results Obtained from Pharmacophore Hypothesis
Generation Using the Training Set Molecules?

hypothesis total error correlation

no. cost cost rms (r) features®

1 112.50 93.77 0.879 0.920 HA, HA, HY, HY, HY

2 113.21 94.18 0.898 0.917 HA, HY, HY, HY, HY

3 113.81 93.60 0.872 0.925 HA, HA, HY, HY, HY

4 114.24 95.29 0.946 0.907 HA, HY, HY, HY, HY

5 114.97 96.79 1.007 0.893 HA, HY, HY, HY

6 115.02 96.86 1.011 0.892 HY, HY, HY, HY, HY

7 115.68 94.46 0.910 0.920 HY, HY, HY, HY

8 115.89 97.55 1.037 0.886 HA, HY, HY, HY, HY

9 116.73 98.11 1.058 0.881 HA, HY, HY, HY, HY
10 117.32 98.95 1.090 0.873 HA, HA, HY, HY

2 Null cost = 146.71. Fixed cost = 102.25. Configuration = 17.0.
All costs are in units of bits. ® HA, hydrogen bond acceptor. HY,
hydrophobic.

sheets were used to generate hypotheses using exactly the
same features and parameters as used in generating the
original pharmacophore hypotheses.

Results and Discussions

Pharmacophore Generation. A set of 10 pharma-
cophore hypotheses were generated using 25 training
set compounds listed in Chart 1. The results of the
hypotheses, which include different cost values calcu-
lated during hypotheses generation along with rms
deviations, correlation (r), and pharmacophore features,
have been listed in Table 1. The value of total cost of
each hypothesis was close to the fixed cost values, which
is expected for good hypotheses. The entropy (configu-
ration cost) values of the hypotheses was also within
the allowed range. The difference between null hypoth-
esis and the fixed cost and the total cost of the best
hypothesis (hypothesis 1) were 44.46 and 34.21 bits,
respectively. These values were somewhat lower than
recommended in the Catalyst software (see Catalyst
Tutorial at www.accelrys.com). Despite the recom-
mendation, lower values in cost differences have been
reported by the developer of the Catalyst software in
one of their case study reports published on their Web
site (http://www.accelrys.com/cases/D1Agonists_full.html)
as well as by others.®8 The possible explanations for the
lower values provided in those reports were that (1) the
molecules in the training set were fairly rigid and (2)
the training set molecules were structurally homolo-
gous. In our case, the most likely cause for the lower
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Table 2. Actual and Estimated Activities of Training Set
Molecules Calculated on the Basis of Hypothesis 1
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Table 3. Results from Cross-Validation Run Using
CatScramble?

Kj (nM)2 activity scale
no compd no. fit actual estimated actual estimated
1 2 7.49 68 78 ++ ++
2 6 6.89 110 310 + +
3 8 6.83 86 350 ++ +
4 11 6.71 360 460 + +
5 12 8.10 54 19 ++ ++
6 13 8.00 190 24 + ++
7 14 8.34 62 11 ++ ++
8 18 8.86 2 3.3 ++ ++
9 20 9.05 2 2.1 ++ ++
10 21 8.18 78 16 ++ ++
11 27 9.06 3.4 21 ++ ++
12 30 9.04 3 2.2 ++ ++
13 32 8.98 1.1 25 ++ ++
14 3 9.05 2.1 2.1 ++ ++
(Sch-351125)
15 52 6.97 1300 260 - +
16 61 8.84 1 3.4 ++ ++
17 63 8.49 5 7.7 ++ ++
18 71 8.36 3 10 ++ ++
19 74 8.03 12 22 ++ ++
20 77 10.42 0.1 0.09 ++ ++
21 78 6.83 590 360 - +
22 79 9.56 0.3 0.65 ++ ++
23 86 9.11 2.2 1.8 ++ ++
24 92 8.92 2.1 29 ++ ++
25 100 8.88 1.3 3.1 ++ ++

a Data for inhibition of RANTES binding to CCR5 are from
references listed in Materials and Methods.

values was probably due to structural homology in the
training set molecules. In both cases, the pharmaco-
phore models were further cross-validated using a data
randomization technique incorporated in the Catalyst
software, and the models were shown to be valid and
useful. We also followed the same approach to validate
our model, which will be discussed in the next section.

Out of 10 hypotheses, seven had five feature hypoth-
eses whereas three had four feature hypotheses. Out of
seven five-feature hypotheses, two had two hydrogen
bond acceptors and three hydrophobic features, four had
one hydrogen bond acceptor and four hydrophobic
features, and one had five hydrophobic features. Among
three four-feature hypotheses, one had one hydrogen
bond acceptor and three hydrophobic, one had two
hydrogen bond acceptors and two hydrophobic, and the
last one had all hydrophobic features. Hypotheses 1 and
3 had the best values in terms of total cost, error cost,
rms differences, and the highest correlation and utilized
identical features, namely, two hydrogen bond acceptors
and three hydrophobic. Hypothesis 3 estimated the
activities almost similarly (data not shown) to hypoth-
esis 1. We have selected hypothesis 1 as the best phar-
macophore. Table 2 shows the actual and estimated K;
values of training set compounds calculated on the basis
of hypothesis 1. On the basis of the activity scale
assigned and described in the Materials and Methods,
only one highly active (++) compound was estimated
to have moderate activity (+), one moderately active
compound was estimated to be highly active, and two
inactive (—) compounds were estimated to have moder-
ate activity.

Pharmacophore Assessment. Cross-Validation
Study. The quality of the pharmacophore was assessed
using the CatScramble technique in the Catalyst. The
purpose of using this technique is to randomize the
activity data among the training set compounds and to

total fixed correlation configuration
validation cost cost rms () cost
Results for Unscrambled
112,50 102.25 0.88 0.920 17.00
Results for Scrambled

trial_1 139.57 101.34 1.73 0.636 16.12
trial_2 128.71 101.01 1.45 0.767 15.79
trial_3 12461 98.68 1.34 0.812 13.47
trial_4 136.70 101.05 1.65 0.680 15.83
trial_5 133.56 102.29 1.57 0.711 17.07
trial_6 128.06 100.54 1.43 0.773 15.32
trial_7 132.78 98.56 1.60 0.706 13.34
trial_8 133.95 101.16 1.61 0.693 15.94
trial_9 126.25 101.29 1.31 0.822 16.07
trial_10 135.68 101.23 1.60 0.711 16.01
trial_11 134,00 101.52 1.59 0.706 16.30
trial_13 132,73 102.18 1.53 0.733 16.96
trial_14 127.83 100.83 1.42 0.779 15.76
trial_15 131.25 100.47 1.54 0.728 15.26
trial_16  135.75 99.42 1.63 0.703 14.20
trial_17 125.80 101.28 1.31 0.821 16.06
trial_18 136.58 100.45 1.65 0.684 15.23
trial_19  131.25 99.93 147 0.774 14.71

2 Null cost = 146.71. All costs are in units of bits.

generate pharmacophore hypotheses using the same
features and parameters used to develop the original
pharmacophore hypothesis. If the randomized sets
generate pharmacophores with similar or better cost
values, rms, and correlation, then the original pharma-
cophore can be considered as generated by chance. The
results of the CatScramble runs are listed in Table 3,
and the data clearly indicate that all values generated
after randomization produced hypotheses with no pre-
dictive value. Besides, out of 19 runs, only 2 had a
correlation close to 0.82, but the rms deviations were
very high and the total cost values were close to the null
cost, which is not desirable for a good hypothesis. This
cross-validation technique provided confidence on the
pharmacophore generated from the training set mol-
ecules.

The selected pharmacophore was further validated by
three techniques: (@) by assessing the predictive ability
of the pharmacophore on a large set of test set mol-
ecules; (b) by verifying whether a series of potent and
structurally unrelated CCR5 antagonists reported by
five major pharmaceutical companies can effectively
map onto the pharmacophore and predict and classify
the activity of these antagonists correctly; (c) by incor-
porating an external set of negative controls consisting
of five marketed drugs acting on central nervous
systems (CNS), which target different G-protein-coupled
receptors other than CCRS5. This validation should
confirm that the pharmacophore does not predict those
drugs as “highly active” (represented as +) CCR5
antagonists.

Validation of Pharmacophores. 1. Validation of
Pharmacophore Using Test Set Compounds. The
validity of any pharmacophore model needs to be
ascertained by applying that model to the test set to
find out how correctly the model predicts the activity
of the test set molecules and, most importantly, whether
it can identify active and inactive molecules correctly.
We have validated the selected pharmacophore with a
large test set containing 78 piperidine- and piperazine-
based CCR5 antagonists obtained from the same labo-
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Table 4. Actual and Estimated Activities of Test Set Compounds Calculated on the Basis of Hypothesis 1

Ki (nM)2 activity scale Ki (nM)2 activity scale
no. compdno. actual estimated actual estimated no compd no. actual estimated actual estimated
1 1 58 14 ++ ++ 40 55 30 270 ++ +
2 3 33 19 ++ ++ 41 56 20 270 ++ +
3 4 25 3.1 ++ ++ 42 57 8 130 ++ +
4 5 55 75 ++ ++ 43 58 5 18 ++ ++
5 7 155 300 + + 44 59 12 19 ++ ++
6 9 33 530 ++ ++ 45 60 7 9.6 ++ ++
7 10 596 290 - - 46 62 5 17 ++ ++
8 15 8 130 ++ ++ 47 64 3 130 ++ +
9 16 29 3.8 ++ ++ 48 65 5 51 ++ ++
10 17 25 9.2 ++ ++ 49 66 15 72 ++ ++
11 19 48 16 ++ ++ 50 67 0.7 44 ++ ++
12 22 9 6 ++ ++ 51 68 2.7 26 ++ ++
13 23 4 3.2 ++ ++ 52 69 5.23 19 ++ ++
14 24 33 29 ++ ++ 53 70 18 120 ++ +
15 25 33 3.2 ++ ++ 54 72 10 6.3 ++ ++
16 26 >30 2.7 ++ 55 73 10 11 ++ ++
17 28 18 3.6 ++ ++ 56 75 11 29 ++ ++
18 29 45 6.7 ++ ++ 57 76 38 7.5 ++ ++
19 31 1.1 3 ++ ++ 58 80 2.3 2.5 ++ ++
20 33 26 4.6 ++ ++ 59 81 8.8 24 ++ ++
21 34 >30 2.5 ++ 60 82 0.4 2 ++ ++
22 35 7 2.5 ++ ++ 61 83 1.2 5.2 ++ ++
23 36 43 2.7 ++ ++ 62 84 0.7 4.9 ++ ++
24 37 >30 2.7 ++ 63 85 4.7 4.1 ++ ++
25 39 >30 3.6 ++ 64 87 2 2.1 ++ ++
26 40 >30 1.9 ++ 65 88 14 2.6 ++ ++
27 41 16 2.4 ++ ++ 66 89 8.1 4.1 ++ ++
28 42 19 2.4 ++ ++ 67 90 11 4.4 ++ ++
29 43 5.3 7.8 ++ ++ 68 91 3.3 2.4 ++ ++
30 44 7.6 5.2 ++ ++ 69 93 3.2 3.3 ++ ++
31 45 30 430 ++ + 70 94 5.7 3.1 ++ ++
32 46 24 3.6 ++ ++ 71 95 60 0.07 ++ ++
33 47 3.8 2.6 ++ ++ 72 96 315 0.38 + ++
34 48 4.4 26 ++ ++ 73 97 43 3.2 ++ ++
35 49 20 380 ++ + 74 98 25 4.1 ++ ++
36 50 5.6 2.2 ++ ++ 75 99 5.3 3.3 ++ ++
37 51 30 590 ++ - 76 101 7 110 ++ +
38 53 440 380 + + 77 102 2.3 150 ++ +
39 54 62 50 ++ ++ 78 103 (Sch-350634) 7 14 ++ ++

a Data for inhibition of RANTES binding to CCR5 are from references listed in Materials and Methods.

ratory as that of the training set compounds. This
approach eliminates any interlaboratory variation in the
data, which can introduce additional noises in the
biological activity data. This validation gives additional
confidence in the usability of the selected pharmaco-
phore. The estimated activities were scored using
hypothesis 1 and reported in Table 4. Out of 69 highly
active compounds, 57 were accurately classified as
highly active and 10 were classified as moderately
active, whereas only two highly active compounds were
classified as inactive. One moderately active compound
was classified as highly active, and one inactive com-
pound was classified as moderately active. The selected
pharmacophore clearly showed minimal failure in clas-
sifying compounds correctly.

We have selected one of the most potent compounds
reported and introduced as a clinical candidate by the
Schering-Plough group,?® Sch-351125 (also termed SCH-
C; compound 38 in Chart 1 and Table 2) [Figure 1A],
and one of the most inactive compounds reported by this
group (compound 52 in Chart 1 and Table 2) from the
training set [Figure 1B], and one potent “next genera-
tion” CCR5 antagonist known as Sch-350634 (compound
103 in Chart 2 and Table 4) from the test set [Figure
1C] to show how these molecules mapped onto the
selected hypothesis. The “best fit” option was selected
in all cases. Compound 38 mapped onto all five features

very well, whereas in the case of compound 103, it
mapped to all but one hydrogen bond acceptor feature.
The most inactive compound in the dataset (compound
52) missed one hydrogen bond acceptor feature and one
hydrophobic feature. Other inactive compounds also
missed one or more features.

2. Validation of Pharmacophore Using Structur-
ally Diverse and Potent CCR5 Antagonists in
Either Clinical or Preclinical Development. One
of the major goals of this study was to generate a
predictive pharmacophore that can be utilized as a
query tool51:5367-70 to search 3D databases of diverse
drug-like compounds to identify new molecules with
potent CCR5 inhibitory activities. This is of utmost
importance to pharmaceutical companies for finding
new chemical entities with potent activity against a
target disease so that they can be patented and if
clinically effective will add value to the company. We
have initiated a validation study of the usefulness of
the selected pharmacophore by using it to map on some
potent diverse CCR5 antagonists, which have been
either clinically introduced or under preclinical develop-
ment. The rationale of this approach is that if the
pharmacophore maps well onto those antagonists and
predicts activities well, the pharmacophore is expected
to be useful as a search tool to identify new CCR5
antagonists. The diversity of these compounds was
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Sch-351125
(SCH-C)
Comp. No. 38

K=2.1nM

Comp. No. 52
K =1300 nM
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Sch-350634
Comp. No. 103
K=7 nM

Figure 1. Mapping of two of the most active and one of the most inactive CCR5 antagonists onto the selected pharmacophore
(hypothesis 1) (A) compound 38 (Sch-351125, also known as SCH-C) from the training set; (B) compound 103 (Sch-350634) from
test set; (C) the most inactive compound in the entire set, compound 52. The green and blue contours represent hydrogen bond

acceptor (HA) and hydrophobic (HY) features, respectively.

analyzed by calculating their Tanimoto coefficients. The
QikSim option within QikProp software (Schrodinger,
San Diego, CA) was used to calculate the Tanimoto
coefficients. The mappings were done in Catalyst using
the “best fit” option. Results of this study have been
incorporated in Table 5 and Figure 2. No attempts were
made to directly compare the estimated activities with
actual activities of these six compounds because the data
were collected from different laboratories and the activ-
ity data were also reported differently by different
groups and in some cases no detailed activity data have
been reported (especially in the patents). For example,
TAK-779 was reported to have an ICsp of 1.4 nM in an
assay measuring binding of [12°1]-RANTES to Chinese
hamster ovary (CHO)/CCRS5 cells, whereas the activities
of the two compounds from Merck Research Laborato-
ries have been reported as ICsy values in an assay
assessing their ability to displace [*2°1]-labeled MIP-1a
from the CCRS5 receptor expressed on CHO cell mem-
branes. In the case of the Schering-Plough reported
compounds, activity data used to generate the pharma-
cophores were based on an assay for binding of [*251]-
RANTES to the CCR5 receptor expressed on CHO cell
membranes, similar to that reported by Takeda group
for TAK-779% but expressed as K; values.

The first CCR5 antagonist reported in the literature
was TAK-779 (compound 104 in Table 5), which was
discovered by Takeda Chemical Industries, Japan. The
selected hypothesis mapped onto this molecule reason-
ably well but completely missed one of the two hydrogen
bond acceptor features (Figure 2A). Although the esti-

mated K; value (72 nM) was somewhat higher than
others in this validation, the mapping correctly classi-
fied this molecule as a highly active (++) CCR5 antago-
nist.

Merck Research Laboratories has recently published
a series of papers on CCR5 antagonists.”>~8 One of the
most potent analogues belonging to substituted phen-
ylpiperidines (compound 105 in Table 5) mapped to four
of the five features very well and missed one of the
two HA features (Figure 2B). The estimated activity (K;
for RANTES binding to CCR5) was 2.6 nM and cor-
rectly classified the molecule as highly active. One of
the other potent CCR5 antagonists reported by Merck,
an analogue of 1,3,4-substituted pyrrolidine (compound
106 in Table 5), mapped to hypothesis features differ-
ently from the previous two compounds. One of the four
hydrophobic features did not map on the molecule, but
all hydrogen bond acceptor features mapped very well
(Figure 2C). The mapping estimated the activity (K; for
RANTES binding to CCR5) to be 1.9 nM and classified
the molecule as highly active.

Pfizer has recently reported piperidine-based CCR5
antagonists in their patent,8485 and although no specific
activity data were available for these molecules, we have
selected one compound (compound 107 in Table 5) for
validation of the selected pharmacophore. This molecule
also mapped very similarly to the Merck compound
(compound 106) where all but one feature (HY) did not
map (Figure 2D). The estimated activity (K; for RANTES
binding to CCR5) was 2.0 nM and classified as highly
active.
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Table 5. Results of Validation with Structurally Unrelated Potent CCR5 Antagonists from Five Pharmaceutical Companies
Tanimoto ICso (nM) K; (nM)
Comp. Structure Activity
Company CAS # Coefficient®  RANTES
No. (Code when available) MIP-1o | Actual Estim. Scale
o
104 i Takeda 263765-56-6 0.442 1.4 - - 72 ++
TAK-779
S ?
105 “gi" O Merck 502173-16-2 0.478 - 0.1 - 2.6 ++
ONP
o, O P
106 & ° : L Merck Not Registered 0.583 - 0.8 - 1.9 ++
o
7 EA
107 N N 0 Pfizer 277744-99-7 0.455 - - - 2.0 ++
oA
i L
N 0NN
108 c./QNLH GSK Not Registered 0.568 - - - 2.0 ++
N ;N 5 Ono
o
109 e Pharmace  342394-93-8 0.576 2.0 6.1 ++
uticals
E913
o "
103 o Schering 306293-41-4 0.861 7 14 ++
Sch-350634
!
N. N.O
38 ° Schering 305792-46-5 1.000 2.1 2.1 ++

SCH-C

(Sch-351125)

a Tanimoto coefficients were calculated using QikSim option in QikProp software (Schrodinger, San Diego, CA).

GlaxoSmithKline has also recently claimed hetero-
anilide derivatives as CCR5 antagonists in a patent.86.87

No specific information was available on their binding
activities. We have selected one such compound (com-
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Compound No. 105
(Merck)

Compound No. 104
(Takeda)

Compound No. 107

Compound No. 106
(Merck) (Pfizer)

1 Compound No. 109
Compound No. 108 onty)

(GSK)

Figure 2. Mapping of six structurally diverse CCR5 antagonists developed as clinical or preclinical candidates by five
pharmaceutical companies onto the selected pharmacophore (hypothesis 1) (A) compound 104 (TAK-779) from Takeda Chemical
Industries, Japan; (B) compound 105 from Merck Research Laboratories; (C) compound 106 from Merck Research Laboratories;
(D) compound 107 from Pfizer; (E) compound 108 from GlaxoSmithKline; (F) compound 109 (E913) from Ono Pharmaceuticals,
Japan. The contour notations are same as in Figure 1.

pound 108 in Table 5) and wanted to verify whether the selected hypothesis. This molecule also mapped to
this molecule, like others mentioned above, maps onto all the features in the hypothesis except one HA feature
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Table 6. Results of Validation with Five Marketed CNS Drugs (Negative Control) Known To Target GPCR Receptors Other than

CCR5
Name of the
Marketed Drug Target GPCR of Structure of the K; (nM) Activity
(Company)* the Drug Drug’ Estimated® Scale
Ropinirole H
Dopamine Ne_~
310 ++
(D2/D3)
(GlaxoSmithKline)
o}
Sumatriptan N
Serotonin NT
320 ++
(5-HT1D) i N
(GlaxoSmithKline) N
Clozapine cl
Serotonin ()q /N\Q
7128 -
(5-HT2A/2C) &N
(Novartis)

Buprenorphine

Opioid (K)
(Reckitt Benckiser)
Morphine
(AstraZeneca,
Opioid (p)

Purdue Frederick,
Roxane, Elkins-

Sinn, Faulding)

410 ++

5700 -

a Obtained from Physician’s Desk Reference (PDR), 2002. P Structures obtained from http://chembank.med.harvard.edu/bioactives/.

¢ Estimated based on Hypothesis-1.

and the estimated activity (K; for RANTES binding to
CCR5) was 2.0 nM, showing that this molecule belongs
to the highly active class.

Finally, we have selected for validation a spiroketopi-
perizine-based CCRS5 inhibitor (code-named E913; com-
pound 109 in Table 5) reported recently by Ono Phar-
maceuticals in Japan. The ICso value of this molecule
in the [*?°1]-labeled MIP-1a binding assay was reported
as 2 nM. This molecule mapped very well to four
features out of five. In this case, one of the hydrogen
bond acceptor features was further away from the
molecule. The estimated activity was 6.1 nM (K; for
RANTES binding to CCR5) and correctly classified the
molecule as highly active. It is apparent from this
mapping study that although the pharmacophore con-
tains five features, three hydrophobic and two hydrogen
bond acceptors, the most active compounds can be
mapped with a combination of four features. In all the
above cases, four features effectively classified all six
very potent and diverse CCR5 antagonists as highly
active in conformity with the reported results. The
absence of one feature from most of the non-Schering
compounds possibly indicates that these molecules may

have alternative binding modes. Nevertheless, the
pharmacophore was successful in mapping all these
molecules and classified them accurately.

The above validation study with hypothesis 3 resulted
in very similar results and accurately classified all the
above molecules as highly active (data not shown).

The validation study with six different classes of
CCR5 antagonists suggested that the selected pharma-
cophore was capable of mapping a diverse group of
compounds quite effectively and provided confidence
that this pharmacophore could be used as a search
query to identify CCR5 antagonists from drug-like
chemical libraries.

3. Validation of Pharmacophore Using Structur-
ally Diverse Marketed CNS Drugs Known To
Target GPCRs Other Than CCRb5. We selected a set
of five diverse marketed CNS drugs, which target a
variety of GPCRs other than CCR5, as negative controls
to validate that the CCR5-based pharmacophore did not
predict these non-CCRS5 targeted compounds as “highly
active”. The drug Ropinirole from GlaxoSmithKline,
which targets dopamine receptor D2/D3, was predicted
to have poor activity (300 nM). One of the two selected
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serotonin receptor antagonists, Sumatriptan from Glaxo-
SmithKline that targets the 5-HT1D receptor, was also
predicted to have similar poor activity. The other
serotonin receptor antagonist, Clozapine from Novartis,
which targets 5-HT2A/2C, was predicted to be inactive
(7128 nM). Similarly, the selected pharmacophore pre-
dicted poor activity (410 nM) for one of the opioid
receptor (K) antagonists, Buprenorphine, and no activity
(5700 nM) for the other opioid receptor (1) antagonist
morphine. The results and the structures of these drugs
were reported in Table 6.

This validation reconfirmed the usefulness of the
derived pharmacophore model, which most likely will
be effective in identifying compounds that target CCRS5.

Conclusions

We initiated a systematic study to develop pharma-
cophores from a large series of piperidine- and pipera-
zine-based CCR5 antagonists reported by the Schering-
Plough Research Institute. The purpose of this study
was twofold: (1) to generate pharmacophores as a
powerful search tool to be used as a 3D query to identify
new chemical entities from chemical databases as
potential CCR5 antagonists and (2) to utilize the phar-
macophore as a predictive tool for estimating biological
activity of virtual compounds or compounds designed
on the basis of structure—activity analyses. The study
presented here clearly indicates that the selected phar-
macophore can be used for the above two purposes. The
pharmacophore successfully predicted biological activi-
ties of six very diverse classes of CCR5 antagonists from
five different pharmaceutical companies and classified
them accurately. It confirmed that correct mapping to
four out of five features is sufficient to identify com-
pounds successfully. The selected pharmacophore is
expected to help in identifying new classes of CCR5
inhibitors as HIV-1 entry inhibitors.
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