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We present a new method for constructing discriminating substructures by reassembling
common medicinal chemistry building blocks. The algorithm can be parametrized to meet
differing objectives: (1) to build features that discriminate for biological activity in a local
structural neighborhood, (2) to build scaffolds for R-group analysis, (3) to construct cluster
signatures that discriminate for membership in the cluster and provide a graphical representa-
tion for its members, and (4) to identify substructures that characterize major classes in a
heterogeneous compound set. We illustrated the results of the algorithm on a literature dataset
is of 118 compounds with in vitro inhibition data against recombinant human protein tyrosine
phosphatase 1B (PTP-1B).

Introduction

Identifying the structural feature responsible for the
pharmacological activity of a compound and finding
classes of compounds with enhanced activity are key
objectives of drug discovery research. A number of two-
dimensional (2D) and three-dimensional (3D) compu-
tational techniques have been developed to solve this
problem. In the 3D arena, these include pharmacophore
mapping,1 3- and 4-point pharmacophore-based similar-
ity searching2 and Comparative Molecular Field Analy-
sis3 (CoMFA). In the 2D arena, the oldest and most
widely used technique to identify chemical classes is
structure-based clustering.4,5 Compounds are typically
represented as binary fingerprints, and the Tanimoto
coefficient is used to measure the pairwise distance
between compounds.

Recursive partitioning6 (RP) has proved to be another
valuable tool for identifying structurally homogeneous
classes with high mean values for a biological activity.
It begins with a potentially large heterogeneous set of
compounds and attempts to produce smaller and more
homogeneous sets by finding features that successively
split a set of compounds into two subsets that are more
similar to each other in terms of their biological activity
than the original set. In the standard application of RP,
each feature can be used to divide the set of compounds
into two groups, those with the feature and those
without. Then the procedure is reapplied to each of the
daughter nodes. An extension to the standard RP
algorithm, called RP/SA,7 uses simulated annealing (SA)
to determine which molecular descriptors best partition
each node of the tree. In particular, the SA algorithm
searches for a combination of k features to maximize a
particular splitting criterion such as a t-statistic com-
paring the difference in the means of the two groups.

Although these tree classification algorithms can quickly
identify structurally homogeneous classes with high
mean activity, there is a disadvantage that they require
a numerical property for the splitting criterion.

Another problem with both clustering and tree clas-
sification algorithms is that they group compounds
based only on presence of common descriptors and, in
the case of tree algorithms, the common absence of
descriptors. But there is no indication that the com-
pounds in a group share a common substructure larger
than any structural features used by the classification
algorithm. Maximal common substructure (MCS) algo-
rithms8,9 can be used to build larger substructures.
However, this procedure is very sensitive to outliers,
which can reduce the MCS to a much smaller common
substructure, and it only produces one substructure.

Two recent papers address the problem of construct-
ing characterizing substructures for structural classes.
Nicolaou, et al.10 describe a phylogenetic-like tree
(PGLT) algorithm that is a method for analyzing large
heterogeneous datasets to identify chemical classes that
correlate with increased biological activity. For each root
node comprising a set of compounds, the PGLT algo-
rithm first clusters compounds into structurally homo-
geneous groups, then for each group, derives a chemical
fragment common to all molecules. The common frag-
ment is either the MCS of the compounds in the cluster
or the significant common substructure.10

Miller11 describes a chemical class generation proce-
dure implemented in the ChemTK software package.
Classes are generated on the basis of common scaffold.
Each scaffold is either a single ring system or several
ring systems each connected by an unbranched chain
of atoms. Thus, all atoms in a scaffold are connected to
at least two other atoms. Scaffolds are limited to those
comprising 2-4 rings, and scaffolds contained in fewer
than a threshold number of compounds in the target
set are eliminated.

We present a new method for constructing character-
izing features for structural classes. Leadscope auto-
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matically breaks down molecules into common struc-
turalfragmentssuchasfunctionalgroupsandheterocycles
when compounds are loaded into the system. The new
process we describe, Macrostructure Assembly (MSA),
reassembles structural fragments in a directed way to
produce larger substructures that are commonly occur-
ring within a group of compounds or that discriminate
for a biological response within the group. The struc-
tural fragments generated by the reassembly process
are guided by one of several, potentially conflicting,
objectives:

• Create substructures that discriminate for a biologi-
cal response within a designated set of compounds. With
this objective, the algorithm uses the response to
optimize the MSAs generated.

• Create substructures that discriminate for member-
ship in a set of structurally homogeneous compounds.
These MSAs have application to structure-based clus-
tering and provide signatures that summarize of the
structural contents of the clusters.

• Create large, commonly occurring substructures.
MSAs generated from this objective provide scaffolds
for R-group analysis within a congeneric series.

Methods

Molecular Building Blocks. The initial set of
molecular building blocks are those defined in the
Leadscope Structural Feature Hierarchy.12 This is based
on structural features and combinations of features
commonly used for experimental design in drug discov-
ery programs. When Leadscope loads a set of compounds
to create a project, the software performs a systematic
substructure analysis using predefined structural fea-
tures stored in a feature library. The structural features
chosen for analysis are motivated by those typically
found in small molecule drug candidates. At the present
time, the feature library contains over 27 000 structural
features. The major structural classes include: amino
acids; bases, nucleosides; benzenes; naphthalenes; car-
bocycles; carbohydrates; elements; functional groups;
heterocycles; natural products; peptidomimetics; phar-
macophores; protective groups and spacer groups. The
features represent a wide range of structural specificity
from very specific substructures such as benzene, 1-hy-
droxymethyl, 3-methoxy to generic features such as the
pharmacophores which define pairs of generalized phys-
icochemical atom types joined by a path of atoms/bonds
of indeterminant type.

The Algorithm. The algorithm is guided by one of
the three objectives described above: it searches for (1)
large, commonly occurring substructures; (2) substruc-
tures that discriminate for a biological response; or (3)
substructures that discriminate for membership in a set
of compounds. It is further controlled by a set of
adjustable parameters:

Minimum Compounds per MSA. This parameter
eliminates MSAs that are not contained in a minimum
number of compounds and restricts MSAs to those that
occur most commonly within the target set.

Minimum Number of Atoms per MSA. This param-
eter controls the size of MSAs that are generated.

Maximum Number of Rotatable Bonds per MSA. This
parameter can be used to control the flexibility of the
MSAs that are generated.

Minimum Absolute z-Score per MSA. This parameter
can be used to filter the MSAs that discriminate for a
biological response. Higher values restrict MSAs to
those that occur in compounds with unusually high or
low mean values of the response. The z-score compares
the mean activity of a subset to the expected value
according to eq 1:

where xj1, xj0 are the mean activities of the subset and
full set, respectively, n1 and n0 are the set sizes and s0

2

is the sample variance of the full set.
The algorithm proceeds in three phases: preprocess-

ing, the iterative feature reassembly phase, and a
postprocessing phase.

Preprocessing. 1. Filter/process structural features.
This step prepares the basic structural building blocks
used for MSA generation. First, generic features such
as pharmacophore binding pairs are eliminated as
building blocks. Second, most pattern modifiers are
removed from structural feature templates. These pat-
tern modifiers are atom/bond restrictions that control
the external environment of a template match. For
example, an atom modifier may require that the match-
ing atom be closed; that is, the atom matching the
template atom may have no neighbors except those
matching neighbors of the template atom.

2. Generate ring systems. This step generates ad-
ditional structural building blocks by identifying all
unique ring systems within the target compound set. If
a ring has an exocylic tautomeric bond to the ring, the
exocylic, tautomeric atoms are included in the ring
system. In such cases, the ring both with and without
exocyclic tautomers is also kept.

3. Prune building block list. This step removes
duplicate and infrequent templates that may be gener-
ated in the previous steps. The Leadscope Feature
Hierarchy contains numerous rings so many ring sys-
tems identified in step 2 will be duplicates. As another
example, the building blocks derived from pyridine,
4-alkyl, and pyridine, 4-methyl will be identical because
the atom restriction that differentiated them are re-
moved in step 1. Those templates that occur less
frequently than the specified parameter for minimum
compounds per MSA are also removed from consider-
ation, since any MSA built from them, by definition,
would be too infrequent to keep.

Reassembly Phase. Repeat for user-specified num-
ber of cycles:

1. Prioritize templates. The list of building block
templates is prioritized using a scoring function applied
to each template Ti based on the general formula w1Fi
+ w2Si + w3Zi. Fi is the frequency of template Ti in the
target set, Si is the size of template Ti (number of
atoms), and Zi is the absolute value of the z-score for
the subset of compounds containing Ti compared to the
target set, according to eq 1. All values of Fi, Si, Zi are
standardized to the range [0.0-1.0], and in the case
where no response data is available for the compounds,
we set Zi ) 0. The weighting parameters are adjustable
and depend on the objective. For example, if the objec-
tive is to generate structural feature that discriminate

z ) (xj1 - xj0)x n1n0

s0
2(n0 - n1)

(1)
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for high or low values of a biological response, the Zi
term is most considered most important and given a
higher weight.

2. Prune list of template pairs. Each pair of building
block templates (where at least one member of the pair
was created in the previous iteration) on the prioritized
list is examined for possible elimination. The size of the
candidate template combination (that would be formed
by merging the building block templates) is estimated
assuming a one-atom overlap of the two building blocks
in the target compounds. If the two building blocks
templates share no common atom in the target com-
pounds, the pair is discarded. The frequency and z-score
of the candidate template combination is estimated from
the logical AND of the pair of structure bitsets. If the
minimum frequency criteria (a user-specified param-
eter) is not satisfied, the pair is discarded.

3. Repeat for each building block pair:
a. For each target compound containing both building

blocks, generate one or more merged templates by
mapping the building blocks onto the target structure.
For each mapping of the building block pair, all atoms
and bonds of the target not covered by the map are
eliminated. In this way, the target structures guide the
reassembly of building blocks to form merged templates.

b. Prune list of newly generated templates to elimi-
nate duplicates and templates not satisfying require-
ments for minimum frequency or maximum number of
rotatable bonds.

4. Remove duplicate and contained templates. Pro-
cessing the list of building block pairs in step 3 gener-
ates many duplicates. In addition if one template is a
substructure of another and they both match the same
set of compounds, the smaller template is discarded.

5. Add the list of newly generated templates to the
master list.

Postprocessing. 1. Prune final list of templates to
eliminate the initial building blocks from the base set
and templates not satisfying requirements for minimum
atom count, or minimum z-score.

2. Remove redundant templates. Duplicate templates
are identified and eliminated at several points in the
reassembly process. However, the list of templates from
the previous step typically contains many nonduplicate,
but highly redundant, clusters of similar templates. The
final step is to select a representative from each
template cluster, where members of a cluster are
structurally similar and correspond to nearly the same
compound subset.

a. Any template matching every compound in the
target set is retained.

b. For each pair of templates (Ti, Tj), calculate the
Pearson correlation coefficient P between the structure
bitsets. If P < 0.85, retain both templates.

c. Let Zi (Zj) be the z-score for the subset of compounds
containing Ti (respectively, Tj) compared to the target
set. If |Zi - Zj| > 0.3, retain both templates.

d. Let ZOR be the z-score of compound set containing
either Ti or Tj; let ZAND be the z-score of compound set
containing both Ti and Tj. Compare the absolute values
of the four z-scores Zi, Zj, ZOR, ZAND. If Zi (respectively,
Zj) has the largest absolute value of all four scores,
discard Tj (respectively, Ti). Otherwise, retain both Ti
and Tj.

This final pruning step typically eliminates 70-80%
of the candidate MSAs.

Results and Discussion

Protein tyrosine phosphatase 1B (PTP-1B) has been
proposed as an important negative regulator of the
insulin signaling pathway, thus PTP-1B inhibitors are
potential therapeutic agents for treatment of Type 2
diabetes and obesity.13 To illustrate the reassembly
algorithm described above, we selected structure-
activity data from a literature study of a series of
benzofuran/benzothiophene biphenyls as PTP-1B inhibi-
tors with anti-hyperglycemic activity. The dataset is
composed of 118 compounds with in vitro inhibition data
against recombinant human PTP-1B taken from Mala-
mas et al.13 For another 19 compounds, the in vitro
inhibition data was reported as percent inhibition at 2.5
µM or 1 µM. The latter compounds were excluded from
our analysis.

Structure-activity data for the PTP-1B inhibitors,
following the original author’s presentation,13 are sum-
marized in Figure 1. In this diagram, classes are labeled
a-g, and for each class we give the frequency (n), mean
(m) pIC50 value, and z-score (z) calculated according to
eq 1. The overall mean pIC50 and standard deviation
for the 118 compounds is xj0 ) 0.73, and s0 ) 0.56. The
initial series is shown in Figure 1 (a), where the original
lead compound was X ) O, R1 ) n-Bu, and R2 ) H. The
most potent members of this series were substituted
acetic acids (R2 ) CH(CH2Ph)CO2H) with benzothiophene
substituents (X ) S) and R1 ) CH2-aryl. Stereoisomers
at the R-carbon of R2 were approximately equipotent.
Ten of the 19 compounds excluded from our study were

Figure 1. Summary of structure-activity relationships of
PTP-1B inhibitors following the original authors’ presenta-
tion.13 Classes are labeled a-g, and for each class we give the
frequency (n), mean (m) pIC50 value, and z-score (z) calculated
according to eq 1. The overall mean pIC50 and standard
deviation for the 118 compounds is xj0 ) 0.73, and s0 ) 0.56.
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members of this series because the activity data was
reported as percent inhibition.

The second series (Figure 1, b) investigated hydro-
phobic substituents at the ortho positions of the phenolic
ring. Typical substituents at R1 and R2 are Br and
4-MeO-Ph. Overall, this series showed a 4-fold increase
in potency over the initial series (Figure 1, a) with n )
42, m ) 1.05, and z ) 4.62. In this series, unsubstituted
acetic acid substituents (R3 ) CH2CO2H) had higher
potency than series 1 with IC50 values in the range
0.025-0.1 µM.

Other aryl groups in place of benzothiophene or
benzofuran such as oxazole (Figure 1 (d), n ) 7, m )
0.61, and z ) -0.51) or adding a one-carbon spacer
(Figure 1 (c), n ) 6, m ) 0.15, and z ) -2.59) decreased
potency. Replacing the 4,4′-biphenyl scaffold with a 2,6-
naphthalenyl scaffold also resulted in a loss of potency
(Figure 1 (e), n ) 11, m ) 0.17, and z ) -3.48).
However, replacing the acetic acid substituent by a
sulfonylbenzoic acid resulted in a nearly 10-fold increase
in potency over the initial series (Figure 1 (g), n ) 10,
m ) 1.42, and z ) 4.09). Within this series, unlike the
acetic acid series, hydrophobic substituents at the ortho
positions of the phenolic ring had little affect on potency.

Starting with this 118 compound subset, macrostruc-
ture assembly constructs larger substructures by reas-
sembling the commonly occurring building blocks as
illustrated in Figure 2. Substructures a-d in Figure 2
are several features from the Leadscope feature hier-
archy that occur in many compounds in the target set.
MSA merges pairs of overlapping features (i.e., two
features that share a common atom in the target set)
to form larger features. Referring to Figure 2, a + b )
e, b + c ) f, a + c ) g, and c + d ) h. The newly
constructed features are added to the list of building
blocks, and the process is repeated producing the
substructures i and j in Figure 2. Of the substructures

shown in Figure 2, only j was selected for inclusion in
the final list (MSA 2 in Table 1). This macrostructure
occurs in a 15-compound subset with mean PTP-1B
activity (pIC50) ) 1.33, z-score ) 4.4.

Results of MSA generation for the set of 118 PTP-1B
inhibitors are shown in Table 1; the algorithm objective
was to construct structural features that discriminate
for activity. Each entry gives the ID, structure diagram,
the number of compounds matching the MSA, the
percent of the full dataset (118 compounds), and the
mean pIC50 value and z-score for the matching subset.
The table is sorted in decreasing order by z-score.

MSAs 8 and 14 are complementary and cover the full
set. Thus, the subset of 106 compounds containing the
4-phenylphenoxy substructure has a mean pIC50 value
of 0.79 compared to 0.73 for the full set, giving a z-score
of 3.8 for this subset. In contrast, the subset of 12
compounds containing the 6-carbo-naphthalen-2-oxy
substructure has a mean pIC50 value of 0.15 and a
z-score of -3.8.

The majority of MSAs in Table 1 are specializations
of MSA 8. Of the 106 compounds in this series, 20
compounds are phenols, 69 compound have an R-acetic
acid substituent on the oxygen (class: 4′-phenylphe-
noxyacetic acid), and 15 compounds contain the phe-
nylsulfonyl substituent (MSA 10). Of the series of 69
compounds containing the 4′-phenylphenoxyacetic acid
substructure, 31 have a 4′′-benzothiophenyl substituent
with mean pIC50 ) 1.05, 30 have a 4′′-benzofuranyl with
mean pIC50 ) 0.74, and the remaining eight compounds
have other aryl groups. Thus, the 4′′-benzothiophenyl
substituent is an important discriminant for enhanced
activity while the 4′′-benzofuranyl analogues are neu-
tral. This is reflected in MSAs 3, 6, 7, and 9. The
benzofuranyl group appearing as a negative discrimi-

Figure 2. The macrostructure assembly process. Substructures a-d are several features from the Leadscope feature hierarchy
that occur in many compounds in the set of 118 PTP-1B Inhibitors. MSA merges pairs of overlapping features to form larger
features; for example, a + b ) e, b + c ) f, a + c ) g, and c + d ) h. These features are added to the building blocks, and the
process is repeated producing the substructures i and j among others.
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nant in MSAs 13, 15, and 16 is primarily due to its
association with the naphthalen-2-oxy group as seen in
MSA 13.

Murthy and Kulkarni14 performed a comparative
molecular field analysis (CoMFA) with the same set of
PTP-1B inhibitors, using a training set of 92 of the
compounds. This provided electrostatic and steric 3D
contour maps, which are valuable aids in understanding
the quantitative structure-activity relationships and
designing new compounds for testing. However, the
CoMFA analysis is quite complex. It requires selection
of a template structure for molecular alignment, con-
formational analysis of the data set, molecular align-
ment with the template structure, determination of the
number of factors used in the statistical model building,
and statistical validation of the predictivity of the model.
In this study the authors also evaluated multiple
alignment procedures and inclusion of additional elec-

tronic, spatial, and thermodynamic descriptors. Many
of these steps require expert assistance to obtain reliable
results.

Table 1 illustrates results of the algorithm where the
objective is to build features that discriminate for
activity in a local neighborhood. These MSAs are useful
descriptors for building prediction models based on
statistical techniques such as multiple regression, k-
nearest neighbors, or recursive partitioning. Because
MSAs are assemblies of familiar medicinal chemistry
building blocks, the models are easy to interpret and
present 2D structure-activity relationships that can be
used to design follow-up experiments. MSAs also pro-
vide the basis for R-group analysis to further refine the
SAR within the corresponding compound set. For ex-
ample, MSA 3 from Table 1 can be used as an R-group
scaffold to study the effects of positional and substituent

Table 1. MSAs Generated from PTP-1B Inhibitorsa

a Each entry gives the I.D., structure diagram, the number of compounds matching the MSA, the percent of the full dataset (118
compounds), and the mean pIC50 value and z-score for the matching subset. The table is sorted in decreasing order by z-score.
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variations on potency of PTP-1B inhibition within the
set of 27 compounds.

Another complementary objective for building MSAs
is to provide a structural or, for visualization purposes,
a graphical representation to characterize a local struc-
tural neighborhood. This has a natural application to
structure-based clustering. For each cluster we generate
a substructural signature; that is, a MSA that discrimi-
nates for membership in the cluster. Signatures are
related to the maximal common substructure, but do
not necessarily include the MCS. The MCS tends to be
very sensitive to outliers. Since it must be contained in
every compound, an outlier that does not contain a large
substructure common to most compounds in the set
limits the MCS to a potentially much smaller common
substructure. A large signature that is contained in
mostsbut not necessarily everyscompound often pro-
vides a better representation of the cluster. Cluster
signatures also have application in comparing two
compound sets. The cluster signatures generated from
clustering one compound set can be used as seed
compounds to analyze or select compounds from an
external set.

Conclusion
We have presented a new method for constructing

discriminating substructures by reassembling common
medicinal chemistry building blocks. The algorithm can
be parametrized to meet differing objectives: (1) to build
features that discriminate for activity in a local neigh-
borhood, (2) to build scaffolds for R-group analysis, (3)
to construct cluster signatures that discriminate for
membership in the cluster and provide a graphical
representation for its members, and (4) to identify
substructures that characterize major classes in a
heterogeneous compound set. We illustrated the results
of MSA generation on a literature dataset is of 118
compounds with in vitro inhibition data against recom-
binant human PTP-1B.

Three-dimensional techniques such as pharmacoph-
ore mapping and CoMFA-like analysis provide geomet-
ric models that are valuable aids in understanding and
using the quantitative structure-activity relationships.
However, the processes involved in building the models
are complex and require expert assistance to obtain
reliable results. In contrast the MSA analysis described
here is simple to perform, provides results that are easy
to interpret, and reveals the essential 2D structure-
activity relationships in the experimental data. Thus,

MSA can provide useful information that complements
that from the well-established 3D geometrical tech-
niques.
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