Stereospecific Synthesis of 5-Substituted 2-Bisarylthiocyclopentane Carboxylic Acids as Specific Matrix Metalloproteinase Inhibitors

Thierry Le Diguarher, ${ }^{\dagger}$ Anne-Marie Chollet, ${ }^{\dagger}$ Marc Bertrand, ${ }^{\ddagger}$ Philippe Hennig, ${ }^{\dagger}$ Eric Raimbaud, ${ }^{\dagger}$ Massimo Sabatini, ${ }^{\dagger}$ Nicolas Guilbaud, ${ }^{\dagger}$ Alain Pierré, ${ }^{\dagger}$ Gordon C. Tucker, ${ }^{\dagger}$ and Patrick Casara*, \dagger
Institut de Recherches Servier, 125 chemin de Ronde, 78290 Croissy sur Seine, France, and Technol ogie Servier, 25-27 rue E. Vignat, 45007 Orléans, France

Received J anuary 10, 2003
The synthesis and structure-activity relationship (SAR) studies of a series of cyclopentane carboxylic acid matrix metalloproteinase (MMP) inhibitors are described. Potent and specific MMP-2, -3, -9, -13 inhibitors were obtained by regio- and stereoselective substitutions at positions 2 and 5 on the cyclopentane ring. Compounds $\mathbf{2 a}$ and $\mathbf{2 e}$ are active in the mouse B16-F10 metastasis model and display very good pharmacokinetic parameters.

Introduction

Matrix metalloproteinases (MMPs) are a class of zincdependent proteolytic enzymes involved in the turnover of extracellular matrix. ${ }^{1}$ Upregulation of MMPs has been associated with various pathologies including arthritis (MMP-1, -3, -13) ${ }^{2}$ and cancer (MMP-2, -9). ${ }^{3}$ Inhibition of these enzymes is recognized as a potentially valuable therapeutic approach. Among the compounds that are, or have been, in clinical development, are those active against a spectrum of MMPs (CGS $27023 A^{4}$ and trocade ${ }^{5}$ for arthritis; marimastat, ${ }^{6}$ prinomastat, ${ }^{7}$ and BMS-2752918 for cancer), and those selective for MMP-13 (RS-130830 ${ }^{9}$ for arthritis) or MMP-2 and -9 (ABT-518 ${ }^{10}$ for cancer). We recently described a series of bisarylthioethers as tetrahedral analogues of the substrate transition-state. For example, $\mathbf{1}^{11}$ is a very potent and specific inhibitor of MMP-2, $-3,-9$, and -13 . However, this compound has only modest bioavailability ($<30 \%$), a fact attributed to the presence of the hydroxamate function. Conformational analysis of $\mathbf{1}$ modeled in the three-dimensional structure of MMP-2 (Figure 1) suggested that the P1 and P1' groups adopt a trans/ trans orientation relative to the zinc binding group. This is in agreement with the previously reported X-ray crystal structure of a cydic sulfonamide inhibitor bound to stromelysin. ${ }^{12}$ Therefore, the synthesis of the corresponding (1,2-trans, 1,5-trans) 2,5-disubstituted cyclopentane carboxylic acid $\mathbf{2}$ was proposed with the expectation that, without the hydroxamate, the pharmacokine tic parameters would be improved (Scheme 1). Such an approach has been previously demonstrated in various sulfonamide series. ${ }^{13}$ To potentially improve potency, an extensive investigation of substitutions at P1/P2 and P1'P'1 in 2 was also proposed.

Chemical Methods

An attractive retrosynthetic approach for a rapid SAR study was to obtain $\mathbf{2}$ from the synthon $\mathbf{4}$. This would allow independent variation of $\mathrm{R}_{3}\left(\mathrm{P1}^{\prime}\right)$ and $\mathrm{X}(\mathrm{P} 1)$ starting from a common precursor (Scheme 2). Synthon

[^0]

Figure 1. All structures were modeled in SYBYL 6.8^{28} using standard bond lengths and angles. The whole protein, including the zinc, calcium, and water molecules, was kept fixed in aggregate. All the hydrogen atoms were added on the crystal structure of the enzyme and their geometries were optimized using the MMF F 94s Merck force field. ${ }^{29}$ Each compound $\mathbf{2}$ was then docked manually in this binding cavity and its conformation was fully optimized with M MF F94s to obtain the best zinc chelation and S1'-S2 protein interactions. The side chains of the amino acid residues of the active site in close contact with the ligands were allowed to change their conformations depending on the ligands docked.

4 could be obtained by sequential Michael additions starting from 5-hydroxy-2-cyclopentene carboxylate 6. The first addition introduces a functional carbon side chain by addition/elimination to give 5 . The second stereosel ectively forms a thioether bond by trans addition. It was considered that the trans relative stereochemistry of the 1,5-substitutions in 4 might be favored by thermodynamic control, a possibility allowed by retro-Michael elimination of any initially formed trans 2,5-addition product. The carboxycyclenol 6 was prepared by a double Wittig-Horner reaction between diethylphosphonoacetate tert-butylester and succinaldehyde, generated in situ from dimethoxyfuran ${ }^{14,15}$ (Scheme 3). Homologation at C5 was achieved by 1,4addition of 1,3-dithiane anion ${ }^{16}$ to the acetyl derivative 7 giving the addition $/ \beta$-elimination adduct 8 . Since the

Scheme 1

Scheme 2

Scheme 3^{a}

a i: (a) $\mathrm{HCl}, 1 \mathrm{~N}$; (b) $\mathrm{OP}(\mathrm{OEt})_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{tBu}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}$; (c) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, rt. ii: dithiane, LDA, THF, $-78^{\circ} \mathrm{C}$. iii: $\mathrm{HgO}^{\mathrm{Hg}} \mathrm{HgCl}$, acetone/ $\mathrm{H}_{2} \mathrm{O}$. iv: $\mathrm{LiAlH}\left(\mathrm{OCH}(\mathrm{Et})_{3}\right)_{3}, \mathrm{THF},-78^{\circ} \mathrm{C} . \mathrm{v}: 4-\mathrm{BrPhSH}$, piperidine, reflux, 5 h . vii: $\mathrm{PPh}_{3}, \mathrm{DIAD}, \mathrm{BTZH}, \mathrm{THF}, 0^{\circ} \mathrm{C}-\mathrm{rt}$. viii: p-CIPhSnBu 3, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{LiCl}$, toluene, reflux, 12 h . ix: TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 18 \mathrm{~h}$.
conditions for removal of the dithiane were incompatible with a thioether, it was necessary to cleave the dithiane prior to the second Michael addition. The aldehyde 9 so obtained ${ }^{17}$ was immediately reduced to provide the primary alcohol 5 , thus minimizing the potential for isomerization of the double bond. With 5 in hand, the key Michael reaction with 4-bromophenylthiol could be investigated. Under thermodynamic conditions (piperidine/reflux), the desired trans/trans adduct 4a was obtained as the major product. Surprisingly, the cis/ trans stereoisomer 4a' resulting from cis Michael addition was also isolated. The corresponding trans/cis stereoisomer, preferentially obtained by cuprate addition to 2 -silyloxy cyclopentene carboxylates, ${ }^{18}$ was undetectable. The diastereoisomers, 4a and 4a', were subsequently used in parallel for elaboration of the side
chains P1 and P1'. Previous work had shown that in $\mathbf{1}$, 4-oxobenzo[d]1,2,3-triazin-3-yl (BTZ) and p-chlorobiphenyl are well accepted at P1 and P1', respectively. These groups were therefore selected for inclusion in our first targets aimed at validating our conformational hypothesis. ${ }^{19}$ The p-chlorophenyl group was introduced by Stille coupling between 4 -chlorophenyl tri-n-butyltin and 4a or $4 \mathbf{a}^{\prime}$ to give compounds 11a and 11a', respectively. ${ }^{20}$ The BTZ moiety was then introduced under Mitsunobu conditions to give 12a and 12a', respectively. ${ }^{21}$ Acidic hydrolysis of the tert-butyl esters 12a and 12a' afforded the carboxylic acids $\mathbf{2 a}$ and $\mathbf{2 a} \mathbf{a}^{\prime}$, respectively (Table 1). The relative configurations at C1, C2, and C5 were confirmed by NOESY experiments. Separation of the enantiomers of 2a was carried out by preparative chiral HPLC to provide (1 R, 2S,5R)-2a and

Table 1. Structures and Biological Activities of Derivatives $\mathbf{2 a}$ to $\mathbf{2 m}^{\text {a }}$

				M MP IC $\mathrm{C}_{50} \mathrm{nM}$ except for 1				
no.	R_{3}	Y	X	1(IC $\left.\mathrm{C}_{50} \mu \mathrm{M}\right)$	2	3	9	13
Marimastat				$\begin{aligned} & 0.0015 \pm \\ & 0.0005(2) \end{aligned}$	1.8 ± 0.3 (3)	25 ± 10 (5)	1.6 ± 0.1 (4)	3.4 ± 2.4 (3)
CGS27023A				$\begin{gathered} 0.096 \pm \\ 0.015(14) \end{gathered}$	15 ± 2 (14)	14 ± 3 (14)	10 ± 1 (15)	12 ± 2 (7)
Trocade				$\left(\mathrm{K}_{\mathrm{i}}\right) 7$	154	527	58	3.4
Prinomastat				0.048 ± 0.023 (3)	0.5 ± 0.2 (4)	1.1 ± 0.4 (3)	0.2 ± 0.1 (3)	1.5 ± 0.6 (4)
1				>10 (2)	0.06 ± 0.03 (3)	10 ± 2 (3)	0.5 ± 0.4 (3)	1.2 ± 0.5 (4)
2a	BTZ ${ }^{\text {a }}$	bond	$4-\mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$	12 ± 5 (3)	63 ± 21 (2)	235 ± 12 (2)	93 ± 24 (3)	168 ± 104 (2)
(1R,2S,5R)-2a	BTZ	bond	$4-\mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$	3.1 ± 0.4 (3)	18 ± 7 (3)	98 ± 23 (2)	43 ± 16 (3)	28 ± 17 (3)
(1S,2R,5S)-2a	BTZ	bond	$4-\mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$	67 ± 29 (2)	743 ± 189 (3)	$5.2 \pm 1.8 \times 10^{3}(2)$	$3.0 \pm 1.2 \times 10^{3}(3)$	$1.9 \pm 1.2 \times 10^{3}(3)$
2a'	BTZ	bond	$4-\mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$	> 100 (2)	849 ± 222 (2)	$3.3 \pm 0.1 \times 10^{3}(2)$	$2.9 \pm 0.2 \times 10^{3}(2)$	$5.0 \pm 07 \times 10^{3}(2)$
2b	Phth.	bond	$\mathrm{C}_{6} \mathrm{H}_{5}$	0.093 (1)	24 ± 9 (2)	$278 \pm 44(4)$	$76 \pm 12(2)$	66 (1)
2c	Phth	CH_{2}	$\mathrm{C}_{6} \mathrm{H}_{5}$	>100 (2)	$\begin{aligned} & 2.8 \pm \\ & 0.4 \times 10^{3}(2) \end{aligned}$	$3.0 \pm 0.3 \times 10^{3}(2)$	$3.8 \pm 0.9 \times 10^{3}(2)$	$15 \pm 8 \times 10^{3}(2)$
2d	Phth	$\left(\mathrm{CH}_{2}\right)_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	45 ± 1 (2)	46 ± 16 (3)	26 ± 4 (3)	12 ± 6 (3)	162 ± 17 (3)
2e	Phth	$\left(\mathrm{CH}_{2}\right)_{2}$	$4-\mathrm{F}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$	6 (1)	62 ± 10 (3)	60 ± 17 (2)	26 ± 1 (2)	248 ± 28 (3)
$2 f$	Phth.	$\left(\mathrm{CH}_{2}\right)_{2}$	$4-\mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$	50 ± 34 (2)	73 ± 17 (5)	45 ± 13 (6)	13 ± 5 (5)	129 ± 20 (5)
2g	BTZ	$\left(\mathrm{CH}_{2}\right)_{2}$	4-Cl($\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$	>70 (2)	106 ± 5 (2)	62 ± 20 (2)	24 ± 6 (2)	391 ± 36 (2)
2h	BTZ	bond	$4-\mathrm{SMe}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$	>10 (2)	5 ± 2 (2)	21 (1)	4 ± 2 (2)	13 ± 2 (2)
2 i	BTZ	bond	$4-\mathrm{CN}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$	>10 (2)	13 ± 1 (2)	5 (1)	24 ± 1 (2)	11 ± 1 (2)
2j	BTZ	bond	4-pyridyl	> 36 (2)	176 ± 82 (2)	$1.2 \pm 1.0 \times 10^{3}(2)$	341 ± 4 (2)	275 ± 103 (2)
2k	BTZ	bond	2-thiazolyl	>100 (2)	$>8 \times 10^{3}(2)$	$>100 \times 10^{3}(2)$	$>6 \times 10^{3}(2)$	$>100 \times 10^{3}(2)$
21	BTZ	bond	$\begin{aligned} & \text { 2-benzo- } \\ & \text { thiazolyl } \end{aligned}$	>1 (2)	829 ± 36 (2)	$8 \times 10^{3}(1)$	661 (1)	417 (1)
2m	BTZ	bond	4-triazolyl	>100 (2)	$>100 \times 10^{3}(2)$	$>100 \times 10^{3}(2)$	$>100 \times 10^{3}(2)$	$>100 \times 10^{3}(2)$

${ }^{\mathrm{a}}$ (n) number of experiments.

Scheme 4: Preparation of Compounds $\mathbf{2 b}$ to $\mathbf{2 z}^{\text {a }}$

a i: 4-(Br or X)PhYSH, piperidine, reflux, 2 h . ii: PPh_{3}, DIAD, $\mathrm{R}_{3} \mathrm{H}, \mathrm{THF}, 0^{\circ} \mathrm{C}-\mathrm{rt}$ or (a) TsCl , pyridine; (b) $\mathrm{R}_{3} \mathrm{~K}$ or $\mathrm{R}_{3} \mathrm{Na}, \mathrm{DMF}, \Delta$. iii: $\mathrm{XSnBu}_{3}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{LiCl}$, toluene, $\Delta, 12 \mathrm{~h}$. iv: TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 18 \mathrm{~h}$. v: dimethyldioxirane, acetone, $0^{\circ} \mathrm{C}-\mathrm{rt}$.
(1S,2R,5S)-2a. The absol ute stereochemistry of (1R,2S, 5R)-2a (corresponding to structure 2a in Scheme 3) is inferred on the basis of its potent MMP activity and molecular modeling of the compound docked in the MMP-2 active site (see below).

As previously described, various cyclic imides such as a BTZ or phthalimido at P1 increase activity, ${ }^{11,19}$ while biaryl substitution at P1' improves selectivity versus MMP-1. ${ }^{22}$ We thus sought to elaborate 5 with a variety of such groups. Intermediate compounds $\mathbf{1 2}$ could be synthesized via different routes (Scheme 4). Introduction of the P1' residue could be achieved by Stille
coupling to $\mathbf{4}$ as described above, or by direct reaction of 5 with available biarylthiol ates. The P1 moieties were incorporated starting from $\mathbf{4}$ or $\mathbf{1 0}$ by Mitsunobu reaction or by tosylate displacement to obtain 11 or 12, respectively. Stille reaction of $\mathbf{1 1}$ also gave rise to compounds 12. Compounds $\mathbf{1 2 b}$ to 12v, obtained via these different routes, were then converted to the corresponding carboxylic acids $\mathbf{2 b}$ to $\mathbf{2 v}$ by acidic hydrolysis (Tables 1 and 2). Oxidation of selected thioethers to the corresponding sulfones ($\mathbf{2 w} \mathbf{w} \mathbf{z}$) was carried out by treatment of $\mathbf{2 d} \mathbf{- 2 g}$ with dimethyl dioxirane (Table 3).

Table 2. Structures and Biological Activities of Derivatives $\mathbf{2 n}$ to $\mathbf{2 v}^{\mathbf{a}}$

${ }^{a}(\mathrm{n})$ number of experiments.
Table 3. Structures and Biological Activities of Derivatives $\mathbf{2 w}$ to $\mathbf{2 z}^{\text {a }}$

no.	R_{3}	Y	X	MMP $\mathrm{IC}_{50} \mathrm{nM}$ except for 1				
				1(IC50 $\mu \mathrm{M})$	2	3	9	13
2w	BTZ	bond	$4-\mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$	>100 (2)	83 ± 4 (2)	694 ± 54 (2)	512 ± 82 (3)	$1.8 \pm 0.5 \times 10^{3}(2)$
2x	phthalyl.	$\left(\mathrm{CH}_{2}\right)_{2}$	$4-\mathrm{F}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$	5.9 ± 2.0 (2)	76 ± 34 (2)	316 (1)	47 ± 4 (2)	296 ± 39 (2)
2 y	phthalyl.	$\left(\mathrm{CH}_{2}\right)_{2}$	$4-\mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$	5.4 ± 1.2 (2)	76 ± 32 (2)	64 (1)	39 ± 1 (2)	808 ± 292 (2)
2 z	BTZ	$\left(\mathrm{CH}_{2}\right)_{2}$	$4-\mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$	>100 (2)	383 ± 90 (2)	253 ± 82 (3)	132 ± 8 (2)	$2.8 \pm 1.4 \times 10^{3}(2)$

${ }^{\mathrm{a}}(\mathrm{n})$ number of experiments.

Results and Discussion

The inhibitory activities of compounds $\mathbf{2}$ were examined against a panel of MMPs, and the results were compared to those for clinical reference compounds (Table 1). A main goal of this work was to study the influence of ring constraint on MMPs inhibition in comparison with the acyclic series. ${ }^{11}$ The stereoisomer 2a was found to be much more active against MMP-2, $-3,-9$, and -13 than the diastereoisomer $\mathbf{2 a} \mathbf{a}^{\prime}$, corroborating our conformational analysis, and justifying further exemplification. Also, as would be expected, one of the enantiomers of $\mathbf{2 a}$ was much more active than the other. On the basis of molecular modeling (see below), the
active enantiomer was assigned the ($1 \mathrm{R}, 2 \mathrm{~S}, 5 \mathrm{R}$) configuration. Almost all the other cyclic carboxylic acids anal ogues of $\mathbf{2 a}$ gave C_{50} values for MMP-2, $-3,-9$, and -13 in the sub- $1 \mu \mathrm{M}$ range, thereby showing significant improvements in activity compared to the corresponding compounds in the acyclic series ($\mathrm{IC}_{50}>1 \mu \mathrm{M}$).

In the cydic series, the length of the spacer Y is critical and must be either a bond or a two-carbon chain. A methylene Y spacer is deleterious to MMP inhibition as shown by a comparison of compounds $\mathbf{2 b}, \mathbf{2 c}$, and 2d. This result, which was also observed in the ether acyclic series, ${ }^{19}$ is in agreement with our conformational analysis showing that a bond or a two-carbon chain
confers the same spatial orientation to the biaryl P1' group. However, with an ethylene spacer, para substitution on the terminal phenyl ring significantly decreased M MP-13 activity due to steric hindrance at P1' (compare $\mathbf{2 b}$ with $\mathbf{2 e}$ and $\mathbf{2 f}$ or $\mathbf{2 a}$ with $\mathbf{2 g}$). Therefore, further variations at P1' were made only with Y as a bond, since there is more space available for further substitution.

All compounds showed very good selectivity against MMP-1, as was the case seen in the ether series. ${ }^{19}$ Replacement of the 4-chlorophenyl ring of $\mathbf{2 a}$ with the heteroaryl groups 4-pyridyl (2j), 2-thiazolyl (2k), 2-benzothiazolyl (21), and 4-triazolyl (2m) increased IC_{50} values across the board by 1 or 2 orders of magnitude. In contrast, substantial improvement in potency was obtained by replacing the 4'-chloro of $\mathbf{2 a}$ by either a 4^{\prime} methylthio ($\mathbf{2 h}$) or a 4'-cyano ($\mathbf{2 i}$) group. In these cases, IC C_{50} values for MMP-2, $-3,-9$, and -13 are shifted into the nanomolar range. These results illustrate once again the preference of MMPs for lipophilic interactions at P1. ${ }^{23}$

In the sulfone series ($\mathbf{2 w} \mathbf{w}$), activities were not significantly different from those of the corresponding thioethers, with the exception of an unexplained loss of MMP-13 activity for $\mathbf{2 w}$ and $\mathbf{2 z}$. Therefore, 4-chlorobiphenylthioether at P1' was maintained to enhance the interactions at P1.

Cyclic amide or imide functions at P1 are critical for activity in the acyclic series. ${ }^{11,19}$ We therefore examined the SAR at P1 by replacing the triazino ring of $\mathbf{2 a}$ with various heterocycles (compounds $\mathbf{2 n} \mathbf{- t}$, Table 2). Except for the hydantoin $\mathbf{2 n}$, modification of the triazino ring (compounds 20-q) either maintained or slightly improved MMPs affinity compared to $\mathbf{2 a}$. Whereas modifications of the benzo ring as in $\mathbf{2 r}$ and $\mathbf{2 t}$ were not tol erated, the potency of the thienyl analogue (2s) was not altered significantly. No improvement of potency was observed by replacing the para chloro substituent of $\mathbf{2 q}$ with methylthio or a cyano to give $\mathbf{2 u}$ and $\mathbf{2 v}$, respectively.

Using molecular model ing calculations, we attempted to explain the above results. Because there is a high degree of sequence homology between the catalytic domain of MMP-3 and those of MMP-2 and -9, one of the crystal structures of MMP-3, PDB code 1QIB, was used to generate a three-dimensional model of the MMP-2 active site. All structures were modeled in SYBYL 6.8. ${ }^{24}$ using standard bond lengths and angles. The whole protein, including the zinc, calcium, and water molecules, was kept fixed in aggregate. All the hydrogen atoms were added on the crystal structure of the enzyme, and their geometries were optimized using the MMF F 94s Merck force field. ${ }^{25}$ E ach compound $\mathbf{2}$ was then docked manually in this binding cavity, and its conformation was fully optimized with MMFF94s to obtain the best zinc chelation and S1'-S2 protein interactions. The side chains of the amino acid residues of the active site in close contact with the ligands (Figure 1) were allowed to change their conformations depending on the ligands docked.

One of the most active compounds (1R,2S,5R)-2a is shown in Figure 1 for visualization. Only the assigned configuration ($1 R, 2 S, 5 R$) fits into this model, thereby establishing the absolute sterochemistry. The cal culated distances of the sulfur atom and the carbonyl of the

Table 4. In Vitro PK Parameters and Inhibition of B16F 10 Melanoma in Mice

no.	MF \% R/H	A\%	no. of metastases (\% control)					
			mg/kg i.p.				mg/kg p.o.	
			25	50	100	200	100	200
2a	74/100	95	45	39	30	TOX	70	74.5
2 e	55/62	90			32.5	24.5	72	68
2 f	43/61	94			96	43	69	64.5
2 g	76/63	91			51	31	65	80
2y	58/91	92			78	109	NT	NT

triazine moiety are compatible with hydrogen bonding interaction with the amide proton of Ala192/Leu191 and Ala194 respectively (shown by yellow lines in Figure 1). The same interaction can be obtained for the sulfones $\mathbf{2 w}$ to $\mathbf{2 z}$ but with hydrogen bonding to the oxygen atoms of the sulfone. This model explains the preferred orientation of the side chain in S1' and the lack of activity of $\mathbf{2 c}$ against MMP-2 compared to $\mathbf{2 b}$ and $\mathbf{2 d}$ (which is due to the bend of the methylene of $\mathbf{2 c}$). Additionally, the sterically demanding azepine ring of 2t does not allow a fit in this model, in agreement with its complete lack of activity.

Pharmacological Evaluation. In vitro pharmacokinetic parameters were considered in selecting compounds for further pharmacological evaluation. Rat and human hepatic microsomes (R and H in Table 4) were used to estimate metabolic stability and first pass metabolism (MF \%), whereas Caco-2 cell permeability was used to measure in vitro absorption (A \%). More favorable results were achieved in this carboxylic acid series than in the previous hydroxamate series. ${ }^{19}$ Selected compounds with MF values over 60% and A values over 90% were considered as good candidates for further in vivo studies (Table 4). For preliminary evaluation of their antitumor activity, these compounds were tested in mice against the B16F 10 melanoma, an experimental metastasis model. ${ }^{26}$
In this model, $\mathbf{2 a}, \mathbf{2 e}$, and $\mathbf{2 g}$ administered intraperitoneally (i.p.) led to significant dose-dependent reductions in the number of metastases (>60\% at 200 mg ; Table 4) and marked reductions of their size (100\% inhibition of the occurrence of metastases with diameter over 1 mm ; data not shown).

Compound $\mathbf{2 a}$, found to be toxic at the highest dose, was active at 25 and $50 \mathrm{mg} / \mathrm{kg}$ i.p., reducing by 55 and 60% the number of metastases, respectively. Following oral administration, 2a was only marginally active, without a clear dose-dependent effect (Table 4). The excellent in vivo pharmacokinetic parameters of $\mathbf{2 a}$ and 2e confirmed their potential for further pharmacol ogical evaluation (Table 5).

A preliminary evaluation of the enantiomers of compound $\mathbf{2 a}$ showed that the biological activities are concentrated in the (1R,2S,5R)-enantiomer. The profile is comparable to those for the hydroxamates CGS 27023A and trocade but with better selectivity versus MMP-1 (Table 1). The establishment of an enantiospecific synthesis for the production of (1R,2S,5R)-2a starting from a single enantiomer of $\mathbf{6}$ is in progress.

Conclusion

In summary, we have described a stereoselective synthesis of a series of 2,5-disubstituted cyclopentane

Table 5. Pharmacokinetics in Mice ${ }^{a}$ of Compounds $\mathbf{2 a}$ and $\mathbf{2 e}$

route	2a				2e			
	dose mg/kg	$\mathrm{C}_{\text {max }} \mu \mathrm{g} / \mathrm{mL}$	$\mathrm{t}_{1 / 2}$ (h)	F (\%)	dose mg/kg	$\mathrm{C}_{\text {max }} \mu \mathrm{g} / \mathrm{mL}$	$\mathrm{t}_{1 / 2}(\mathrm{~h})$	F (\%)
i.v.	5	40	3.4		5	40	3.5	
i.p.	50	203	4	100	50	130	4	100
p.o.	50	93	3	69	50	107	4	93

${ }^{\text {a }}$ Compounds were administrated as a solution in Tween $80 / \mathrm{H}_{2} \mathrm{O}$ at 4% (i.p. and p.o.) or at 0.4% (i.v.).
carboxylic acids as potent MMP-2, $-3,-9,-13$ inhibitors having selectivity against MMP-1. In these rigidified molecules, 1,2- and 1,5-trans configurations are required for activity, in agreement with our initial conformational analysis. By conformational restriction and by establishing better interactions at S 1 and $\mathrm{S1}^{\prime}$, these carboxylic acid derivatives partially overcome their lower innate binding to zinc compared to the corresponding acyclic hydroxamate analogues. Furthermore, selected compounds from the series show significant improvements in pharmacokinetic parameters relative to the hydroxamates. On the basis of their in vivo activities in a mouse metastasis model and their good oral bioavailabilities, compounds ($1 \mathrm{R}, 2 \mathrm{~S}, 5 \mathrm{R}$)-2a and $\mathbf{2 e}$ were identified as suitable candidates for further development.

Experimental Section

Chemistry General Techniques. Unless otherwise noted, all reactions were carried out under a nitrogen or argon atmosphere using anhydrous conditions. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ NMR) homogeneous material unless otherwise stated.

All reagents were purchased in the highest available commercial quality and were used without further purification unless otherwise stated.

All reactions were monitored by thin-layer chromatography carried out on $0.2-\mathrm{mm}$ Merck silica gel plates. Ultraviolet light, phosphomolybdic acid, and p-anisaldehyde were used for visualization.

Preparative flash chromatography separations were carried out on Kiesegel $60(0.04-0.063 \mathrm{~mm})$ Merck silica gel.

Reverse phase HPLC analysis was performed on an Agilent 1100 instrument using a Xtera Waters column with detection at 210 nm using a $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}+0.1 \%$ TFA gradient over 15 min.

NMR spectra were recorded on a Bruker DPX 200 or 300 instrument as indi cated, calibrated using TMS as an internal reference. For compounds $\mathbf{2 a}$ and $\mathbf{2 a}^{\mathbf{\prime}}$, additional experiments were carried out on a Bruker Avance 400 MHz spectrometer equipped with a BBI 5 mm grad z probe.

The following abbreviations are used to indi cate multiplicities: s, singlet; d, doublet; t, triplet; q, quadruplet; m, multiplet; b, broad.

IR spectra were recorded on a Brucker Vector 22 spectrophometer.

Electrospray mass spectra were recorded in a positive mode on a Finnigan TSQ 7000 spectrophometer, by infusion at 15 $\mu \mathrm{L} / \mathrm{min}$ of a $0.1 \mathrm{mg} / \mathrm{mL}$ sample solution in a mixture of $\mathrm{CH}_{3}-$ $\mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(3 / 1: \mathrm{v} / \mathrm{v})$.
tert-Butyl 5-Hydroxycyclopent-2-enecarboxylate (6). A mixture 2,5-dimethoxydihydrofuran ($26.4 \mathrm{~mL}, 0.204 \mathrm{~mol}$) in 0.5 M aq. $\mathrm{HCl}(200 \mathrm{~mL})$ was heated to reflux until dissolution was complete. The reaction mixture was cooled to room temperature and neutralized with saturated aq. KHCO_{3}. To this mixture was added a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.41 \mathrm{~g}, 0.008 \mathrm{~mol})$ in water (10 mL) and then diethylphosphonoacetate tert-butyl ester ($40.5 \mathrm{~mL}, 0.204 \mathrm{~mol}$). The resulting mixture was stirred 24 h at room temperature and extracted with EtOAc. The organic phase was washed with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give the title compound as a yellow oil which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
$6.8(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 5.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 2.9-2.6\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ $\mathrm{CHOH}), 2.3-2.5\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2}\right), 1.5(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}) . I R: V_{\max }$ $3400 ; 1708 \mathrm{~cm}^{-1}$.
tert-Butyl 5-Acetylcyclopent-1-enecarboxylate (7). To a solution of compound $\mathbf{6}(37.6 \mathrm{~g}, 0.204 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ mL) at $0^{\circ} \mathrm{C}$ was added pyridine ($50 \mathrm{~mL}, 0.612 \mathrm{~mol}$) and then acetic anhydride ($38.5 \mathrm{~mL}, 0.408 \mathrm{~mol}$). The reaction mixture was stirred overnight at room temperature and then concentrated. The residue was taken up in EtOAc and washed with 1 M aq. HCl and saturated aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$. The solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Flash chromatography (gradient of EtOAc/heptane, 5:95) gave compound $7(46.15 \mathrm{~g}, 27.5 \%$ 2 steps). ${ }^{1 \mathrm{H}} \mathrm{NMR}$ ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.0(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH})$, 6.0 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHOAc}$), 2.85-2.2 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CHOAc}$), 1.95 (d, 1H, CHCH 2 CHOAc), 2.05 (s, 3H, OAc), 1.5 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{tBu}$). IR: $V_{\text {max }}$ 1737-1715 cm^{-1}.
tert-Butyl 5-(1,3-Dithianyl)cyclopent-1-enecarboxylate (8). To a sol ution of 1,3-dithiane ($6.85 \mathrm{~g}, 57 \mathrm{mmol}$) in THF (75 mL) at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of n-BuLi (35.7 $\mathrm{mL}, 1.6 \mathrm{M}, 57 \mathrm{mmol}$) in THF. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ over 1.5 h and added to a mixture of $7(12.75 \mathrm{~g}$, 47.5 mmol) and Cul ($9.05 \mathrm{~g}, 47.5 \mathrm{mmol}$) in THF (150 mL) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 h , quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and allowed to warm to room temperature. The reaction mixture was filtered through Celite and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (gradient of EtOAc in petroleum ether) gave compound 8 ($10.9 \mathrm{~g}, 80 \%$) as a cream powder. ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.8(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.8(\mathrm{~d}, 1 \mathrm{H}, \mathrm{SCHS}), 3.4$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{CHS}_{2}$), 3.1-2.9 (m, 2H, C=CHCH 2$), 2.8-2.6(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 2.6-2.4\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.1(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right) 0.1 .55(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. IR: $\mathrm{V}_{\text {max }} 1704 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}_{2}\right): \mathrm{C}, \mathrm{H}, \mathrm{S}$.
tert-Butyl 5-F ormylcyclopent-1-enecarboxylate (9). A solution of dithiane $8(7.8 \mathrm{~g}, 27.2 \mathrm{mmol})$ in acetone (50 mL) was added to a mixture of $\mathrm{HgCl}_{2}(17.74 \mathrm{~g}, 65.3 \mathrm{mmol})$ and HgO $(7.07 \mathrm{~g}, 32.6 \mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O}(85: 15,175 \mathrm{~mL})$, at room temperature. The reaction mixture was stirred at room temperature for 48 h , filtered through Celite, and washed with acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was concentrated and the residue was diluted petroleum ether. The resulting solution was filtered and evaporated to provide crude 9 ($5 \mathrm{~g}, 90 \%$) as a yellow oil which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.7(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHO})$, $6.8\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2}\right), 3.7(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCHO}), 2.5(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=$ $\mathrm{CHCH}_{2} \mathrm{CH}_{2}$), $2.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right.$), $1.45(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. IR: $V_{\text {max }}$ 1708-1673 cm^{-1}.
tert-Butyl 5-Hydroxymethylcyclopent-1-enecarboxylate (5). To a suspension of $\mathrm{LiAlH}_{4}(3.3 \mathrm{~g}, 86.6 \mathrm{mmol})$ in THF $(500 \mathrm{~mL})$ was added dropwise 3-ethyl-3-pentanol ($36.6 \mathrm{~mL}, 260$ mmol) maintaining the reaction mixture at $40^{\circ} \mathrm{C}$. After complete addition, the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 h , and at room temperature overnight. The mixture was then transferred to a solution of $9(17 \mathrm{~g}, 86.6 \mathrm{mmol})$ in THF $(500 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 2 h , carefully quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(500$ mL), and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (gradient of EtOAc in petroleum ether) gave 5 ($17.2 \mathrm{~g}, 93 \%$) as an oil. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.8$ (m, $1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 3.8(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 3.6\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.11(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CHCH}_{2}\right), 2.1\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ $\mathrm{CHCH}_{2} \mathrm{OH}$), $1.55(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. IR: $\mathrm{V}_{\max } 3400,1706-1686,1626$ cm^{-1}. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}\right): \mathrm{C}, \mathrm{H}$.
tert-Butyl 2-(4-Bromophenylthio)-5-hydroxymethylcyclopentanecarboxylate (4a, 4a'). To a stirred mixture of 5 ($6.6 \mathrm{~g}, 33 \mathrm{mmol}$) in piperidine (75 mL) was added 4 -bromothiophenol ($12.6 \mathrm{~g}, 66.5 \mathrm{mmol}$). The mixture was heated to reflux for 5 h and then concentrated in vacuo. The residue was diluted with cold water (500 mL), acidified with aq. 1 N HCl $(500 \mathrm{~mL})$, and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash chromatography (gradient of EtOAc in petroleum ether) gave 4a (5 g, 39\%) and 4a' ($0.65 \mathrm{~g}, 5 \%$). 4a: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$): $\delta 7.5-7.3$ ($2 \mathrm{~d}, 4 \mathrm{H}, \mathrm{Ph}$), 4.65 (t, 1H, OH), 3.77 (q , $1 \mathrm{H}, \mathrm{CHS}$), $3.42-3.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.33\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right)$, $2.2\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 2.15-1.8\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}\right)$, 1.8-1.6 (m, 2H, CH ${ }_{2} \mathrm{CHS}$), 1.55 (s, $9 \mathrm{H}, \mathrm{tBu}$). IR: $\mathrm{V}_{\max } 3395$, $1714 \mathrm{~cm}^{-1}$. 4a': ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO d6): $\delta 7.45-7.2$ ($2 \mathrm{~d}, 4 \mathrm{H}, \mathrm{Ph}$), 4.0-3.45 (m, 3H, CH $2 \mathrm{OH}, \mathrm{CHS}$), 2.95-2.35 (2 m , $1 \mathrm{H}, \mathrm{CHCO}_{2}$), 2.7-2.35 ($2 \mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}$), 2.25-1.3(m, 4H, $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{CHS}$), 1.9 (m, 1H, OH), 1.5 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{tBu}$). IR: $\mathrm{V}_{\max } 3425,1719,1686 \mathrm{~cm}^{-1}$. MH^{+}(386).
tert-Butyl 2-[2-(4-Bromophenyl)ethylthio]-5-hydroxy-methylcyclopentane-carboxylate (4b). Compound $\mathbf{4 b}$ (2.3 $\mathrm{g}, 55 \%$) was prepared from $\mathbf{5}(2 \mathrm{~g}, 10 \mathrm{mmol})$ and 4 -bromophenylethanethiol ($4.38 \mathrm{~g}, 20 \mathrm{mmol}$) according to the same procedure used for preparing 4a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{-} \mathrm{d}_{6}$): δ $7.4-7.05$ ($2 \mathrm{~d}, 4 \mathrm{H}, \mathrm{Ph}$), $6.15(\mathrm{t}, 1 \mathrm{H}, \mathrm{OH}), 3.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right)$, 3.45 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}$), 2.85-2.8 (m, 4H, CH2 $\mathrm{CH}_{2} \mathrm{~S}$), 2.4 (t, 1 H , $\left.\mathrm{CHCO}_{2}\right), 2.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 2.10-1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ $\mathrm{CHCH}_{2} \mathrm{OH}$), 1.9-1.6 (m, 2H, CH ${ }_{2} \mathrm{CHS}$), $1.55(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$.
tert-Butyl 2-(4'-Chlorobiphenylthio)-5-hydroxymeth-ylcyclopentane-carboxylate (10a and 10a'). Compound 10a ($3 \mathrm{~g}, 38 \%$) was prepared from $5(3.7 \mathrm{~g}, 18.5 \mathrm{mmol})$ and 4-chlorobi phenylthiol ($6.15 \mathrm{~g}, 28 \mathrm{mmol}$) according to the same procedure used for preparing 4a. ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSOd_{6}): $\delta 7.7-7.4(2 \mathrm{~d}, 8 \mathrm{H}, \mathrm{PhPh}), 4.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.8(\mathrm{q}, 1 \mathrm{H}$, CHS), 3.4 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), $2.35\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.2(\mathrm{q}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{OH}\right), 2.15-1.6\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.32(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. IR: $\mathrm{V}_{\text {max }} 3332,1719,1593 \mathrm{~cm}^{-1}$. Compound 10a' ($0.3 \mathrm{~g}, 4 \%$) was obtained in the experiment described above. ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 7.7-7.4(2 \mathrm{~d}, 8 \mathrm{H}, \mathrm{PhPh}), 4.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 3.9 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}$), $3.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.95\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right)$, 2.48 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}$), 2.15-1.6 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.32 (s, $9 \mathrm{H}, \mathrm{tBu})$. IR: $\mathrm{V}_{\max } 3318,1720,1593 \mathrm{~cm}^{-1}$.
tert-Butyl 2-Biphenylthio-5-hydroxymethylcyclopentanecarboxylate (10b). To a mixture of $\mathbf{4 a}(3 \mathrm{~g}, 7.8 \mathrm{mmol})$ in toluene (100 mL) at room temperature was added sequentially tetrakis(triphenylphosphine)palladium(0) ($0.27 \mathrm{~g}, 0.23$ $\mathrm{mmol})$, a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.8 \mathrm{~g}, 1.7 \mathrm{mmol})$ in water (10 mL), and a sol ution of phenyl boric acid ($1.04 \mathrm{~g}, 8.5 \mathrm{mmol}$) in a minimum volume of EtOH . The reaction mixture was heated to reflux for 12 h and then concentrated in vacuo. The residue was diluted with EtOAc, washed with brine, dried over $\mathrm{Na}_{2}-$ SO_{4}, and concentrated. Flash chromatography (gradient of EtOAc in petroleum ether) gave compound $\mathbf{1 0 b}(2.15 \mathrm{~g}, 72.5 \%)$. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.6-7.4$ (m, 9H, PhPh), 3.65 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), $3.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHS}), 2.5\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.35$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}$), 2.05-1.8 (m, 2H, CH $\mathrm{CHCH}_{2} \mathrm{OH}$), 1.9 (m , $1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}$), $1.8-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHS}\right), 1.45(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. IR: $V_{\text {max }} 3300,1720 \mathrm{~cm}^{-1}$.
tert-Butyl 2-Biphenylmethylthio-5-hydroxymethylcyclopentanecarboxylate (10c). Compound 10c ($2.4 \mathrm{~g}, 60 \%$) was prepared from $\mathbf{5}(2 \mathrm{~g}, 10 \mathrm{mmol})$ and biphenylmethanethiol $(4.04 \mathrm{~g}, 21 \mathrm{mmol})$ according to the same procedure used for preparing 4a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.6-7.4(2 \mathrm{~m}, 9 \mathrm{H}$, PhPh), 3.8 (s, $2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{~S}$), $3.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.4(\mathrm{~s}, 2 \mathrm{H}$, CHS), 2.5-2.25 ($2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCO}_{2} ; \mathrm{CHCH}_{2} \mathrm{OH}$), 2.2-1.6 (2 m , $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.9(\mathrm{t}, 1 \mathrm{H}, \mathrm{OH}), 1.8-1.6\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHS}\right), 1.4$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{tBu}$). IR: $\mathrm{V}_{\max } 3533,1714 \mathrm{~cm}^{-1}$.
tert-Butyl 2[2-(4'-Chlorobiphenyl)-ethylthio)]-5-hydroxymethyl cyclo-pentanecarboxylate (10d). Compound 10d ($2.3 \mathrm{~g}, 50 \%$) was prepared from $5(2.07 \mathrm{~g}, 10.4 \mathrm{mmol})$ and 2-[2-(4'-chlorobiphenyl)ethanethiol ($5.2 \mathrm{~g}, 21 \mathrm{mmol}$) according to the same procedure used for preparing 4a. ${ }^{1} \mathrm{H}$ NMR (200 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.5-7.25(\mathrm{~m}, \mathrm{~d}, 8 \mathrm{H}, \mathrm{PhPh}), 3.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ $\mathrm{OH}), 3.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHS}), 2.9\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.45-1.6(\mathrm{~m}$,
$6 \mathrm{H}, \mathrm{CHCO}_{2}, \mathrm{CHCH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.9 (t, 1H, OH), $1.45(\mathrm{~s}, 9 \mathrm{H}$, tBu). IR: $V_{\max } 3335,1719 \mathrm{~cm}^{-1}$.
tert-Butyl 2-(4'-Methylthiobiphenylthio)-5-hydroxymethyl cyclopentane Carboxylate (10e). Compound 10e ($3.1 \mathrm{~g}, 30 \%$) was prepared from $4 \mathrm{a}(1 \mathrm{~g}, 2.4 \mathrm{mmol}$) and 4-methylthiophenyl boric acid ($0.44 \mathrm{~g}, 2.6 \mathrm{mmol}$) according to the same procedure used for preparing 10b. ${ }^{1} \mathrm{H}$ NMR (200 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.5-7.35$ (m, d, 8H, PhPh), 3.95 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}$), 3.65 (m, 2H, CH 2 OH), $2.5\left(\mathrm{~s}, \mathrm{t}, 4 \mathrm{H}, \mathrm{CHCO}_{2}, \mathrm{CH}_{3} \mathrm{~S}\right), 2.35(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 2.3-1.5\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 1.4 (s, 9H , tBu). IR: $\mathrm{V}_{\max } 3226,1719 \mathrm{~cm}^{-1}$. Anal. ($\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~S}_{2}$): C, H, S.
tert-Butyl 2-(4'-Cyanobiphenylthio)-5-hydroxymethylcyclopentane Carboxylate (10f). Compound 10 (0.9 g , 28%) was prepared from 5 ($1.5 \mathrm{~g}, 7.56 \mathrm{mmol}$) and ($4^{\prime}-$ cyanobiphenyl)thiol ($3.2 \mathrm{~g}, 15 \mathrm{mmol}$) according to the same procedure used for preparing 4a. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.8-7.6-7.45$ (m, d, 8H, PhPh), 4.0 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}$), 3.65 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.5\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.4\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right)$, $2.25-1.5\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.45(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. IR: $V_{\text {max }} 3483,2227,1721,1607 \mathrm{~cm}^{-1}$.
tert-Butyl 2-(4-Pyridin-4-ylphenylthio)-5-hydroxymethyl Cyclopentane Carboxylate (10g). Compound $\mathbf{1 0 g}$ (0.98 $\mathrm{g}, 97 \%$) was prepared from $4 \mathrm{a}(1 \mathrm{~g}, 2.6 \mathrm{mmol})$ and 4-pyridinyl boric acid ($0.42 \mathrm{~g}, 3.4 \mathrm{mmol}$) according to the same procedure used for preparing 10b. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.7$ (d, $2 \mathrm{H}, \mathrm{o}-\mathrm{Py}$), $7.6-7.4$ (m, 6H, m-Py Ph), 4.0 (q, 1H, CHS $), 3.65$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 2.55 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}$), 2.4 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCH}_{2-}$ $\mathrm{OH}), 2.3-1.5\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.45(\mathrm{~s}, 9 \mathrm{H}$, tBu). IR: $V_{\max } 3278,1721 \mathrm{~cm}^{-1}$.
tert-Butyl 2-(4-Thiazol-2-ylphenylthio)-5-hydroxymethylcyclopentane Carboxylate (10h). Compound 10h (0.425 $\mathrm{g}, 14.5 \%$) was prepared from $5(1.5 \mathrm{~g}, 7.56 \mathrm{mmol})$ and 4-(thiazol-2-yl)phenylthiol ($2.95 \mathrm{~g}, 15 \mathrm{mmol}$) according to the same procedure used for preparing 4a. ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, CDCl_{3}): $\delta 7.9-7.45-7.35(\mathrm{~m}, 2 \mathrm{~d}, 6 \mathrm{H}$, Phthiazol), $4.0(\mathrm{q}, 1 \mathrm{H}$, CHS), 3.15 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 2.5 (t, $1 \mathrm{H}, \mathrm{CHCO}_{2}$), 2.4 ($\mathrm{q}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{OH}\right), 2.25-1.5\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{OH}\right), 1.45(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. IR: $\mathrm{V}_{\max } 3285,1707 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}_{2}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}$.
tert-Butyl 2-(4-benzothiazol-2-ylphenylthio)-5-hydroxymethyl cyclopentane Carboxylate (10i). Compound 10i ($0.24 \mathrm{~g}, 11 \%$) was prepared from 5 ($1 \mathrm{~g}, 5.04 \mathrm{mmol}$) and 4-(benzothiazol-2-yl)phenylthiol ($1.84 \mathrm{~g}, 7.56 \mathrm{mmol}$) according to the same procedure used for preparing 4a. ${ }^{1} \mathrm{H}$ NMR (200 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15-7.5(\mathrm{~m}, 8 \mathrm{~d}, 6 \mathrm{H}, \mathrm{PhPh}), 4.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 3.9 (q, 1H, CHS), 3.4 (m, 2H, CH 2 OH), 2.35 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHCO}$), 2.3 (q, 1H, CHCH CHH_{2}), 2.25-1.56 (m, 4H, CH2CH2), 1.3 (s, $9 \mathrm{H}, \mathrm{tBu})$. IR: $\mathrm{V}_{\max } 3303,1717 \mathrm{~cm}^{-1}$.
tert-Butyl 2-(4-[1,2,4]Triazol-4-ylphenylthio)-5-hydroxymethyl cyclopentanecarboxylate (10j). Compound 10j ($0.38 \mathrm{~g}, 16 \%$) was prepared from $5(1.2 \mathrm{~g}, 6 \mathrm{mmol})$ and 4-[1,2,4]triazol-4-ylphenylthiol ($1.6 \mathrm{~g}, 9 \mathrm{mmol}$) according to the same procedure used for preparing 4a. ${ }^{1} \mathrm{H}$ NMR (200 MHz , CDCl_{3}): $\delta 9.1$ ($\mathrm{s}, 2 \mathrm{H}$, triazine), $7.65-7.3$ ($2 \mathrm{~d}, 4 \mathrm{H}, \mathrm{Ph}$), 4.7 (s , $1 \mathrm{H}, \mathrm{OH}$), 3.85 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}$), $3.4\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.4(\mathrm{t}, 1 \mathrm{H}$, $\left.\mathrm{CHCO}_{2}\right), 2.2\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 1.85-1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 1.4 (s, $9 \mathrm{H}, \mathrm{tBu}$). IR: $\mathrm{V}_{\max } 3345,1719 \mathrm{~cm}^{-1}$.
tert-Butyl 2-(4-Bromophenylthio)-5-[2-(4-oxo-4H-benzo-[d][1,2,3]triazin-3-ylmethyl)]-cyclopentanecarboxylate (11a). To a mixture of triphenylphosphine ($13.4 \mathrm{~g}, 25.8 \mathrm{mmol}$) and diisopropyl azodicarboxylate ($5.22 \mathrm{~g}, 25.8 \mathrm{mmol}$) in anhydrous THF (100 mL) at $0^{\circ} \mathrm{C}$ was added a solution of compound $4 \mathbf{a}(5 \mathrm{~g}, 12.9 \mathrm{mmol})$ and benzotriazine ($3.9 \mathrm{~g}, 25.8$ mmol) in anhydrous THF (50 mL). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature for 18 h . After concentrating in vacuo, the residue was diluted with diisopropyl ether. The precipitate was removed by filtration and the filtrate was concentrated. Compound 11a ($5.7 \mathrm{~g}, 85.6 \%$) was obtained by flash chromatography (gradient of EtOAc in petroleum ether). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.3-8.15$ (2d, 2 H , o-Phtriazine), 8.0-7.7 (2m, 2H, m-Phtriazine), 7.4-7.25 (d, m, 4H, Ph), 4.55 (t, 2H, NCH 2), 3.85 (m, 1H, CHS), 2.9 (m, $1 \mathrm{H}, \mathrm{CHCO}_{2}$), $2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.25-1.7(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.25(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}) . \operatorname{IR}: \mathrm{V}_{\max } 1714,1683 \mathrm{~cm}^{-1}$.
tert-Butyl 2-(4-Bromophenylthio)-5-[2-(4-oxo-4H-benzo[d][1,2,3]triazi -3-ylmethyl)]-cyclopentanecarboxylate (11a'). Compound 11a' ($0.65 \mathrm{~g}, 75.4 \%$) was prepared from 4a' $(0.65 \mathrm{~g}, 1.67 \mathrm{mmol})$ and benzotriazine ($0.5 \mathrm{~g}, 3.35 \mathrm{mmol}$) according to the same procedure used for preparing 11a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.4-8.15$ (2d, 2 H , o-Phtriazine), 8.0-7.75 (2m, 2H, m-Phtriazine), 7.4-7.25 (2d, 4H, Ph), 4.7$4.4\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHS}), 3.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right)$, 3.15 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}$), 2.25-1.7 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.25 ($\mathrm{s}, 9 \mathrm{H}$, $\mathrm{tBu})$. IR: $\mathrm{V}_{\max } 1727,1683 \mathrm{~cm}^{-1}$.
tert-Butyl 2-[2-(4-Bromophenyl)ethylthio]-5-(phthal-imidomethyl)-cyclopentanecarboxylate (11b). Step 1: tertButyl 2-(4-bromophenylethylthio)-5-tosyloxymethylcyd opentane carboxylate. To a solution of compound $\mathbf{4 b}$ ($2.3 \mathrm{~g}, 5.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at room temperature was added sequentially pyridine ($1.8 \mathrm{~mL}, 23 \mathrm{mmol}$), and tosyl chloride (1.26 g , 6.64 mmol). The reaction mixture was stirred 5 days and then concentrated. The residue was diluted with EtOAc and washed with diluteaq. $1 \mathrm{~N} \mathrm{HCl}, 1 \mathrm{~N}$ saturated aq. NaHCO_{3}, and brine. The organic layer was concentrated and the residue (1.73 g , 55%) was used in the next step without further purification. Step 2: Preparation of 11b. A mixture of tert-butyl 2-(4-bromophenylethylthio)-5-tosyloxymethyl cyclopentane-carboxylate ($1.73 \mathrm{~g}, 3 \mathrm{mmol}$), 18-C-6 ($2.4 \mathrm{~g}, 9 \mathrm{mmol}$), and potassium phthalimide ($1.7 \mathrm{~g}, 9.1 \mathrm{mmol}$) in DMF (75 mL) was heated for 12 h at $40^{\circ} \mathrm{C}$. The reaction mixture was diluted with water and extracted several times with EtOAc. The combined organic layers were concentrated and the residue was purified by flash chromatography (heptane/EtOAc; 9:1) to give the title compound ($1.3 \mathrm{~g}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.9-7.75$ (m, 4H, Pht), 7.4 (d, 2H, o-Ph), 7.1 (d, 2H, m-Ph), 4.0-3.7 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $3.4(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHS}), 2.9-2.6\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.2-1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 1.3 (s, 9H, tBu). IR: $\mathrm{V}_{\max } 1775,1708 \mathrm{~cm}^{-1}$.
tert-Butyl 2-[2-(4'-Chlorobiphenylthio)]-5-[2-(4-oxo-4H-benzo[d][1,2,3]triazin-3-ylmethyl)]-cyclopentane Carboxylate (12a). To a solution of compound 11a ($5.7 \mathrm{~g}, 0.011$ mol) in toluene (150 mL) at room temperature was added sequentially 4-chlorophenyl tri-n-butyltin ($8.86 \mathrm{~g}, 22 \mathrm{mmol}$), tetrakis (triphenyl phosphine) palladium(0) ($0.6 \mathrm{~g}, 0.5 \mathrm{mmol}$), and lithium chloride ($1.5 \mathrm{~g}, 35 \mathrm{mmol}$). The reaction mixture was heated to reflux for 18 h and then concentrated. The residue was taken up in heptane and extracted several times with acetonitrile. The combined organic layers were concentrated and the residue was purified by flash chromatography (heptane/EtOAc; 9:1) to give 12a ($4.5 \mathrm{~g}, 74.3 \%$). ${ }^{1} \mathrm{H}$ NMR (200 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.4-8.2$ (2d, 2H, o-Phtriazine), 7.9-7.8 (2m, $2 \mathrm{H}, \mathrm{m}$-Phtriazine), $7.5-7.25$ (d, m, $8 \mathrm{H}, \mathrm{Ph}$), $4.6\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, 3.85 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHS}$), $2.9\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.7\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right)$, 2.2-1.7 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.3 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{tBu}$). IR: $\mathrm{V}_{\max } 1724,1683$ cm^{-1}. $\mathrm{HRMS}[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{m} / \mathrm{z},\left(\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{35} \mathrm{Cl}\right)$: calcd.: 570.1594; found: 570.1592.
tert-Butyl 2[2-(4'-Chlorobiphenylthio)]-5-[2-(4-0xo-4H-benzo[d][1,2,3]triazin-3-ylmethyl)]-cyclopentane Carboxylate (12a'). Compound 12a' ($0.3 \mathrm{~g}, 43.5 \%$) was prepared from 11a' ($0.65 \mathrm{~g}, 1.25 \mathrm{mmol}$) and 4-chlorophenyl tri-n-butyltin ($1 \mathrm{~g}, 2.5 \mathrm{mmol}$) according to the same procedure used for preparing 12a. ${ }^{1 \mathrm{H}}$ NMR ($200 \mathrm{MHz} \mathrm{CDCl}_{3}$): $\delta 8.4-8.15$ (2 d , 2 H , o-Phtriazine), $8.0-7.75$ ($2 \mathrm{~m}, 2 \mathrm{H}$, m-Phtriazine), 7.45 (m, 8H, Ph), 4.7-4.4 (dd, 2H, NCH2), 3.9 (m, 1H, CHS), 3.4-3.1 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CHCO}_{2}, \mathrm{CHCH}_{2} \mathrm{~N}$), 2.35-1.9-1.6 ($3 \mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.25(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. HRMS $[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{m} / \mathrm{z},\left(\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{35} \mathrm{Cl}\right)$: cal cd.: 570.1594; found: 570.1600.
tert-Butyl 2-Biphenylthio-5-(phthalimidomethyl)-cyclopentane Carboxylate (12b). Step 1: tert-Butyl 2-biphen-ylthio-5-tosyl oxymethylcycl opentanecarboxylate. The title compound ($2.62 \mathrm{~g}, 87 \%$) was prepared according to the procedure of 11b, Step 1 using $\mathbf{1 0 b}(2.15 \mathrm{~g}, 5.6 \mathrm{mmol})$, pyridine (1.8 mL , 22.4 mmol) and tosyl chloride ($3.2 \mathrm{~g}, 16.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$. The crude product was used in the next step without further purification. Step 2: 12b. Compound 12b ($2.52 \mathrm{~g}, 80 \%$) was prepared according to the procedure of 11b, Step 2, using tert-butyl 2-biphenylthio-5-tosyl oxymethyl cyclopentanecarboxylate ($2.65 \mathrm{~g}, 4.9 \mathrm{mmol}$), 18-C-6 ($3.9 \mathrm{~g}, 15 \mathrm{mmol}$), and
potassium phthalimide ($2.7 \mathrm{~g}, 14.7 \mathrm{mmol}$) in DMF (50 mL). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85-7.7$ (m, 4H, Pht), 7.6-7.3 (m, 9H, PhPh), 3.65 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 3.9 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHS}$), $3.9-$ 3.7 ($\mathrm{AB}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $2.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.55(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHCO}_{2}\right), 2.2-1.6\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.25(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. IR: $\mathrm{V}_{\max }$ 1774, 1722, $1703 \mathrm{~cm}^{-1}$. HRMS $[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{m} / \mathrm{z},\left(\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}\right)$: calcd.: 536.1872; found: 536.1871.
tert-Butyl 2-Biphenylmethylthio-5-(phthalimidome-thyl)-cyclopentane Carboxylate (12c). Step 1: tert-Butyl 2-bi phenylmethylthio-5-tosyl oxymethyl cycl opentanecarboxylate. The title compound ($1.7 \mathrm{~g}, 50 \%$) was prepared according to the procedure of 12b, Step 1, using 10c ($2.4 \mathrm{~g}, 6$ mmol) and tosyl chloride ($3.2 \mathrm{~g}, 16.8 \mathrm{mmol}$). It was used in the next step without further purification. Step 2: 12c. Compound 12c ($1.2 \mathrm{~g}, 74 \%$) was prepared according to the procedure of 12b, Step 2 using tert-butyl 2-biphenylmethylthio-5-tosyl oxymethyl cycl opentane carboxyl ate ($1.7 \mathrm{~g}, 0.003 \mathrm{~mol}$) and potassium phthalimide ($1.7 \mathrm{~g}, 0.0092 \mathrm{~mol}$). ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.9$ (m, 4H, Pht), $7.65-7.4$ (m, 9H, PhPh), $3.85\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{~S}\right), 3.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.2(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHS})$, $2.6\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.4\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.15-1.5(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.25(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. IR: $\mathrm{V}_{\max } 1774,1721,1704 \mathrm{~cm}^{-1}$. HRMS [M+Na] ${ }^{+}, \mathrm{m} / \mathrm{z},\left(\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}\right)$: calcd.: 550.2028; found: 550.2046.
tert-Butyl 2-[2-(Biphenyl)ethylthio]-5-(phthalimido-methyl)-cyclopentane Carboxylate (12d). Compound 12d ($0.7 \mathrm{~g}, 56 \%$), a white crystalline solid ($\mathrm{mp} 87^{\circ} \mathrm{C}$), was prepared according to the same procedure used for preparing 12a using $\mathbf{1 1 b}$ ($1.3 \mathrm{~g}, 2.3 \mathrm{mmol}$), phenyl tri-n-butyltin ($1.5 \mathrm{~mL}, 4.6 \mathrm{mmol}$), tetrakis (triphenylphosphine) palladium(0) ($0.115 \mathrm{~g}, 0.1 \mathrm{mmol}$), and $\mathrm{LiCl}(0.29 \mathrm{~g}, 6.9 \mathrm{mmol}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.85-7.7 (m, 4H, Pht), 7.6-7.3 (m, 9H, PhPh), 3.77 (m, 2H, $\mathrm{CH}_{2} \mathrm{~N}$), $3.5(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHS}), 2.9\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.65(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.5\left(\mathrm{~m}, \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.2-1.6\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 1.3 (s, $9 \mathrm{H}, \mathrm{tBu}$). IR: $\mathrm{V}_{\max } 1775,1709 \mathrm{~cm}^{-1}$. HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$, $\mathrm{m} / \mathrm{z},\left(\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{~S}\right)$: calcd.: 564.2185; found: 564.2192.
tert-Butyl 2-[2-(4'-F luorobiphenyl)ethylthio]-5-(phthal-imidomethyl)-cyclopentane Carboxylate (12e). Compound $12 \mathrm{e}(2.13 \mathrm{~g}, 62 \%)$ was prepared from 11b $(3.36 \mathrm{~g}, 6.2$ mmol) and 4-fluorophenyl tri-n-butyltin ($4.76 \mathrm{~g}, 12.4 \mathrm{mmol}$) according to the same procedure used for preparing 12a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.9-7.7$ (m, 4H, Pht), 7.5-7.25 (m, 8H, PhPh), 3.9-3.7 (dd, 2H, CH2N), 3.45 (m, 1H, CHS), 2.9 $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.5(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHCO}_{2}\right), 2.2-1.6\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.3(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. IR: $\mathrm{V}_{\max }$ $1775,1709 \mathrm{~cm}^{-1}$. HRMS $[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{m} / \mathrm{z},\left(\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{SF}\right)$: calcd.: 582.2097; found: 582.2090.
tert-Butyl 2-[2-(4-Chlorobiphenyl)ethylthio]-5-(phthal-imidomethyl)-cyclopentane Carboxylate (12f). Compound 12f ($1.93 \mathrm{~g}, 59 \%$) was prepared from 11b ($3.36 \mathrm{~g}, 6.2 \mathrm{mmol}$) and 4-chlorophenyl tri-n-butyltin ($4.96 \mathrm{~g}, 12.4 \mathrm{mmol}$) according to the same procedure used for preparing 12a. ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.9-7.7$ (m, 4H, Pht), 7.5-7.25 (m, 8H, PhPh), $3.9-3.7$ (2dd, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.45 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHS}$), 2.9 ($\mathrm{m}, 4 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.5\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right)$, 2.2-1.6 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.3 (s, 9 H , tBu). IR: $\mathrm{V}_{\max } 1775,1709$ cm^{-1}. $\mathrm{HRMS}[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{m} / \mathrm{z},\left(\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{35} \mathrm{Cl}\right)$: calcd.: 598.1795; found: 598.1795.
tert-Butyl 2-[2-(4'-Chlorobiphenyl)ethylthio]-5-[2-(4-oxo-4H-benzo[d][1,2,3] triazin-3-ylmethyl)]-cyclopentane Carboxylate (12g). Compound $\mathbf{1 2 g}(0.37 \mathrm{~g}, 57.5 \%)$ was prepared from 10d ($0.5 \mathrm{~g}, 1.12 \mathrm{mmol}$) and benzotriazi ne (0.33 $\mathrm{g}, 2.23 \mathrm{mmol}$) according to the same procedure used for preparing 11a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.3-8.15(2 \mathrm{~d}$, 2H, o-Phtriazine), 8.2-7.9 (2m, 2H, m-Phtriazine), 7.75-7.45 ($\mathrm{m}, \mathrm{d}, 8 \mathrm{H}, \mathrm{PhPh}$), 4.45 (d, 2H, NCH 2), 3.3 (m, 1H, CHS), 2.85 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{CHCO}_{2}, \mathrm{SCH}_{2} \mathrm{CH}_{2}$), $2.5\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right.$), 2.2-1.5 ($3 \mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.25(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. IR: $\mathrm{V}_{\max } 1720,1684 \mathrm{~cm}^{-1}$. HRMS [M+Na] ${ }^{+}, \mathrm{m} / \mathrm{z},\left(\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{35} \mathrm{Cl}\right)$: calcd.: 598.1907; found: 598.1909.
tert-Butyl 2-(4'-Methylthiobiphenylthio)- 5-[2-(4-oxo-4H-benzo[d][1,2,3] triazin-3-ylmethyl)]-cyclopentane Carboxylate (12h). Compound $\mathbf{1 2 h}(0.235 \mathrm{~g}, 58.5 \%)$ was prepared from 10e ($0.3 \mathrm{~g}, 0.71 \mathrm{mmol}$) and benzotriazine ($0.21 \mathrm{~g}, 1.43$
mmol) according to the same procedure used for preparing 11a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.35-8.15$ (2d, 2 H , o-Phtriazine), 8-7.7 (2m, 2H, m-Phtriazine), 7.5-7.3 (m, d, 8H, PhPh), $4.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.95(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}), 2.9\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right)$, $2.7\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.2-1.7(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.25(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. IR: $\mathrm{V}_{\max } 1720,1682 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
tert-Butyl 2-(4'-Cyanobiphenylthio)-5-[2-(4-oxo-4H-ben-zo[d][1,2,3]triazin-3-ylmethyl)]-cyclopentane Carboxylate (12i). Compound $\mathbf{1 2 i}$ ($0.425 \mathrm{~g}, 60 \%$) was prepared from 1Of ($0.545 \mathrm{~g}, 1.33 \mathrm{mmol}$) and benzotriazine ($0.4 \mathrm{~g}, 2.7 \mathrm{mmol}$) according to the same procedure used for preparing 11a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.4-8.2$ (2d, 2 H , o-Phtriazine), 8.15-7.95 (2m, 2H, m-Phtriazine), 7.9-7.75-7.5 (3d, 8H, PhPh), 4.5 (m, 2H, NCH $)^{2}$, 3.9 ($q, 1 \mathrm{H}, \mathrm{CHS}$), 2.85 ($\mathrm{q}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{~N}$), $2.6\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.3-1.6\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.25$ (s, 9H, tBu). IR: $V_{\max } 2233,1721,1686 \mathrm{~cm}^{-1}$. Anal. ($\left(\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\right)$: $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
tert-Butyl 2-(4-Pyridin-4-ylphenylthio)-5-[2-(4-oxo-4H-benzo[d][1,2,3]triazin-3-ylmethyl)]-cyclopentane Carboxylate (12j). Compound 12j ($0.74 \mathrm{~g}, 56.6 \%$) was prepared from $\mathbf{1 0 g}$ ($1 \mathrm{~g}, 2.54 \mathrm{mmol}$) and benzotriazine ($0.75 \mathrm{~g}, 5.1 \mathrm{mmol}$) according to the same procedure used for preparing 11a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.65$ (d, 2H, o-Py), 8.35-8.15 (2d, 2H, o-Phtriazine), 7.95-7.8 (2t, 2H, m-Phtriazine), 7.8-7.5 (m, $6 \mathrm{H}, \mathrm{m}-\mathrm{PyPh}), 4.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.0(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}), 3.0(\mathrm{q}$, $\left.1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.7\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.2-1.7\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 1.25 (s, $9 \mathrm{H}, \mathrm{tBu})$. HRMS [M+H] ${ }^{+}$, m/z, $\left(\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\right)$: calcd.: 515.2117; found: 515.2103.
tert-Butyl 2-(4-Thiazol-2-ylphenylthio)-5-[2-(4-oxo-4H-benzo[d][1,2,3]triazin-3-ylmethyl)]-cyclopentane Carboxylate (12k). Compound 12k ($0.41 \mathrm{~g}, 72.5 \%$) was prepared from 10h ($0.425 \mathrm{~g}, 1.1 \mathrm{mmol}$) and benzotriazine ($0.32 \mathrm{~g}, 2.2$ mmol) according to the same procedure used for preparing 11a. ${ }_{1} H$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.35-8.2$ (2d, 2H, o-Phtriazine), 8.1-7.95 (2t, 2H, m-Phtriazine), 7.8-7.45-7.35 (3d, 6H, Phthiazol), 4.55 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), $4.0(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}), 3.0(\mathrm{q}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{~N}$), 2.7 (t, $1 \mathrm{H}, \mathrm{CHCO}_{2}$), 2.3-1.8 (m, 4H, CH CH_{2}), 1.25 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{tBu}$). IR: $\mathrm{V}_{\max } 1720,1678 \mathrm{~cm}^{-1}$. HRMS $[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{m} / \mathrm{z}$, ($\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{2}$): calcd.: 543.1501; found: 543.1495.
tert-Butyl 2-(4-benzothiazol-2-ylphenylthio)-5-[2-(4-oxo-4H-benzo[d][1,2,3] triazin-3-ylmethyl)]-cyclopentane Carboxylate (12l). Compound 12l ($0.26 \mathrm{~g}, 50 \%$) was prepared from 10i ($0.4 \mathrm{~g}, 0.9 \mathrm{mmol}$) and benzotriazine ($0.27 \mathrm{~g}, 1.8 \mathrm{mmol}$) according to the same procedure used for preparing 11a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.4-7.3$ (md, 12H, PhPh, Phtriazine), 4.7-4.4 (m, 2H, NCH 2), 4.05 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}$), 2.9 ($\mathrm{q}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{~N}$), $2.7\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.3-1.7\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.25$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{tBu}$). IR: $\mathrm{V}_{\text {max }} 1715,1693,1677 \mathrm{~cm}^{-1}$.
tert-Butyl 2-(4-[1,2,4]Triazol-4-ylphenylthio)-5-[2-(4-oxo-4H-benzo[d][1,2,3] triazin-3-ylmethyl)]-cyclopentane Carboxylate (12m). Compound $\mathbf{1 2 m}(0.33 \mathrm{~g}, 65 \%$) was prepared from 10j ($0.38 \mathrm{~g}, 1 \mathrm{mmol}$) and benzotriazine (0.3 g , 2 mmol) according to the same procedure used for preparing 11a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.5$ (s, 2 H , triazine), $8.4-$ 8.2 (2d, 2H, o-Phtriazine), 8.0-7.8 (2t, 2H, m-Phtriazine), 7.55-7.3 (2d, 4H, Ph), $4.6\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.0(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS})$, 2.95 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}$), 2.7 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}$), 2.3-1.7 ($\mathrm{m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.25 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{tBu}$). IR: $\mathrm{V}_{\max } 1720,1680 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
tert-Butyl 2-(4'-Chlorobiphenylthio)-5-(3,4,4-trimethyl-2,5-dioxoimidazolidin-1-ylmethyl]-cyclopentane Carboxylate (12n). Compound $\mathbf{1 2 n}(0.52 \mathrm{~g}, 80 \%$) was prepared from 10a ($0.5 \mathrm{~g}, 1.2 \mathrm{mmol}$) and 1,5,5-trimethylhydantoin (0.25 g , 1.8 mmol) according to the same procedure used for preparing 11a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 7.65-7.5$ ($2 \mathrm{dd}, 8 \mathrm{H}$, PhPh), 3.85 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}$), $3.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.8(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{O}, \mathrm{CHCO}_{2}\right), 2.15-1.4(2 \mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.35. (s, 9H, tBu), 1.3 (s, 6H, 2CH CH_{3}. IR: $\mathrm{V}_{\text {max }}$ 1769, $1714 \mathrm{~cm}^{-1}$. HRMS $[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{m} / \mathrm{z},\left(\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{35} \mathrm{Cl}\right)$: calcd: 565.1904; found: 565.1908.
tert-Butyl 2-(4'-Chlorobiphenylthio)-5-(saccharin-2-ylmethyl)cyclopentane Carboxylate (120). Step 1: tert-Butyl 2-(4'-chlorobiphenylthio)-5-mesyl oxymethyl cycl opentane car-
boxylate. The title compound ($1.05 \mathrm{~g}, 88 \%$) was obtained according to the procedure of 12b, step 1, using 10a ($1 \mathrm{~g}, 2.4$ mmol) and mesyl chloride ($0.275 \mathrm{~g}, 2.4 \mathrm{mmol}$). It was purified by flash chromatography (heptane/EtOAc; 9:1). ${ }^{1}$ H NMR (200 MHz, DMSO-d d_{6} : $\delta 7.7-7.55$ ($2 \mathrm{~d}, 8 \mathrm{H}, \mathrm{PhPh}$), 4.25 ($\mathrm{d}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), 3.85 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}$), $3.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CHSO}_{2}\right.$), $2.50(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{O}, \mathrm{CHCO}_{2}$), 2.20-1.60 ($2 \mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.35(\mathrm{~s}, 9 \mathrm{H}$, tBu). IR: $V_{\max } 1717 \mathrm{~cm}^{-1}$. Anal. ($\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{ClO}_{5} \mathrm{~S}$): C, H, S, CI. Step 2: Preparation of $\mathbf{1 2 0}$. Compound $\mathbf{1 2 0}(0.22 \mathrm{~g}, 35 \%)$ was prepared according to the procedure of 12b, step 2 using the compound from step $1(0.52 \mathrm{~g}, 1.06 \mathrm{mmol})$, and saccharin sodium salt ($0.65 \mathrm{~g}, 3.2 \mathrm{mmol}$). ${ }^{1 \mathrm{H}}$ NMR (200 MHz , DMSO d6): $\delta 8.1-7.9$ (m, 4H, PhSO_{2}), 7.8-7.4 ($2 \mathrm{~m}, 12 \mathrm{H}, \mathrm{PhPh}$), 385 (q, 1H, CHS), $3.8\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$), $2.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.6$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}$), 2.2-1.75 (m, 4H, CH2 CH_{2}), 1.3 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{tBu}$). IR: $V_{\max } 1730,1593,1340,1181 \mathrm{~cm}^{-1} . \mathrm{MNH}_{4}{ }^{+}(601)$.
tert-Butyl 2-(4'-Chlorobiphenylthio)-5-(3-oxo-[1,2,4]-triazolo[4,3-a]pyridin-2-ylmethyl)]-cyclopentane Carboxylate (12p). To a solution oftert-butyl 2-(4'-chl orobiphen-ylthio)-5-mesyloxymethyl-cyclopentanecarboxylate (1.6 g, 3.20 mmol) (obtained in step 1 of the synthesis of 120) in DMF (25 mL) was added $15 \mathrm{C}-5$ ($0.7 \mathrm{~g}, 3.17 \mathrm{mmol}$), 3-oxo-[1,2,4]triazol o-[4,3-a]pyridine ($0.43 \mathrm{~g}, 3.17 \mathrm{mmol}$) and $\mathrm{NaH}(60 \%, 0.127 \mathrm{~g}$, 3.17 mmol). The reaction mixture was heated for 12 h at 40 ${ }^{\circ} \mathrm{C}$. It was then diluted with water and extracted several times with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2^{-}}$ SO_{4}, and concentrated. The residue was purified by flash chromatography (heptane:EtOAc; 3:2) to give the title compound ($0.29 \mathrm{~g}, 46 \%$). ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSO-d d_{6}): $\delta 7.85$ (d, 1H, o-Py), 7.75-7.4 (2m, 8H, PhPh), 7.2-6.65 (2m, 3H, m-pPy), 4.0 (m, 2H, NCH 2), 3.85 (m, 1H, CHS), 2.8-2.55 (2 m , $\left.2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}, \mathrm{CHCO}_{2}\right), 2.3-1.5\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.2(\mathrm{~s}, 9 \mathrm{H}$, tBu). IR: $\mathrm{V}_{\max } 1718,1639,1596 \mathrm{~cm}^{-1}$.
tert-Butyl 2-(4'-Chlorobiphenylthio)-5-(2,4-dioxo-2H-pyrido[1,2-a][1,3,5] triazin-3-ylmethyl)]-cyclopentane Carboxylate (12q). Compound 12q ($0.38 \mathrm{~g}, 67 \%$) was prepared from 10a ($0.42 \mathrm{~g}, 1 \mathrm{mmol}$) and 2,4-di oxo-2H-pyrido[1,2-a][1,3,5]triazine ($0.33 \mathrm{~g}, 2 \mathrm{mmol}$) according to the same procedure used for preparing 11a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$): $\delta 8.5-$ 7.85-7.1-6.95 (2d, m, t, 4H, Py), 7.65-7.5 (2d, 8H, PhPh), 4.2-3.85 (2dd, 2H, NCH 2), 3.8 ($q, 1 \mathrm{H}, \mathrm{CHS}$), 2.65 ($\mathrm{q}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{~N}$), $2.5\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.2-1.6\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.2$ (s, 9H, tBu). IR: $\mathrm{V}_{\max } 1727,1667,1651 \mathrm{~cm}^{-1}$. Anal. ($\mathrm{C}_{30} \mathrm{H}_{30^{-}}$ $\left.\mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}, \mathrm{Cl}$.
tert-Butyl 2-(4'-Chlorobiphenylthio)-5-(4-oxo-4,7-dihy-dro-(N-tritylimidazo) [4,5-d][1,2,3]triazin-3-ylmethyl)]cyclopentane Carboxylate (12r). Compound 12r (0.53 g , 85%) was prepared from 10a ($0.335 \mathrm{~g}, 0.8 \mathrm{mmol}$) and 4-oxo-4,7-dihydro-(N-tritylimidazo)[4,5-d][1,2,3]triazine ($0.6 \mathrm{~g}, 1.6$ mmol) according to the same procedure used for preparing 11a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.5-7.3-7.2(\mathrm{~m}, 24 \mathrm{H}$, trityl, PhPh NCHN), 4.6-4.4 (2d, 2H, NCH 2), 3.9 ($q, 1 \mathrm{H}, \mathrm{CHS}$), 2.85 ($q, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}$), $2.55\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.1-1.75(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.35 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{tBu}$). IR: $\mathrm{V}_{\max }$ 1718. [M1+Na] 560 (Mtrityl), $\left[\mathrm{M} 2+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+} 243$ (trityl ${ }^{+}$).
tert-Butyl 2-(4-Chlorobiphenylthio)-5-(4-oxo-4-H-thieno-[3,2-d][1,2,3]triazin-3-ylmethyl)]-cyclopentane Carboxylate (12s). Compound $\mathbf{1 2 s}(0.95 \mathrm{~g}, 86 \%)$ was prepared from 10a ($0.84 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-oxo-4-H-thieno[3,2-d][1,2,3]triazine ($0.61 \mathrm{~g}, 4 \mathrm{mmol}$) according to the same procedure used for preparing 11a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.9-7.65$ (2d, $2 \mathrm{H}, \mathrm{CH}=\mathrm{CHS}), 7.6-7.3$ (d, s, 8H, PhPh NCHN) 4.8-4.5 (2d, $2 \mathrm{H}, \mathrm{NCH}_{2}$), $3.95(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}), 2.9\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.7$ (t, $1 \mathrm{H}, \mathrm{CHCO}_{2}$), 2.2-1.7 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.25(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. IR: $\mathrm{V}_{\max } 1721$, 1672. HRMS $[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{m} / \mathrm{z},\left(\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{35} \mathrm{CI}\right)$: calcd: 576.1158; found: 576.1188.
tert-Butyl 2-(4'-Chlorobiphenylthio)-5-(3-oxo-6,7,8,9-tetrahydro-5H-[1,2,4] triazolo[4,3-a]azepin-2-ylmethyl)]cyclopentane Carboxylate (12t). Compound 12 t ($0.2 \mathrm{~g}, \mathbf{2 6 \%}$) was prepared from 10a and 3-oxo-6,7,8,9-tetrahydro-5H-[1,2,4]triazol o[4,3-a]azepine ($0.66 \mathrm{~g}, 4.3 \mathrm{mmol}$) according to the same procedure used for preparing 12p. ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSOd_{6}): $\delta 7.65-7.45(2 \mathrm{~d}, 8 \mathrm{H}, \mathrm{PhPh}), 4.55(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}), 3.70(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{NCH}_{2}$), $3.15\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCO}\right), 2.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.65$
($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}$), $2.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.00-1.6$ ($\mathrm{m}, 10 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.25 (s, 9H, tBu). IR: $\mathrm{V}_{\max } 1728,1705 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}, \mathrm{Cl}$.
tert-Butyl 2-(4'-Methylthiobiphenylthio)-5-(2,4-dioxo-2H-pyrido[1,2-a][1,3,5] triazin-3-ylmethyl)]-cyclopentane Carboxylate (12u). Compound 12u ($0.78 \mathrm{~g}, 97 \%$) was prepared from $10 e(0.6 \mathrm{~g}, 1.4 \mathrm{mmol})$ and 2,4-dioxo- 2 H -pyrido[1,2a][1,3,5]triazine ($0.45 \mathrm{~g}, 2.8 \mathrm{mmol}$) according to the same procedure used for preparing 11a. ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, DMSO d6): $\delta 8.45-7.85-7.1-6.75$ (2d, m, t 4H, Py), 7.65-7.3 (2d, 8H, PhPh), 4.4-4.1 (m, 2H, NCH $)$), 3.9 (q, 1H, CHS), 2.85 (q, $1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}$), 2.65 (t, $1 \mathrm{H}, \mathrm{CHCO}_{2}$), $2.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.3-$ $1.7\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.35(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$. HRMS $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{m} / \mathrm{z}$, $\left(\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}\right)$: calcd: 576.1991; found: 576.1991.
tert-Butyl 2-(4'-Cyanobiphenylthio)-5-(2,4-dioxo-2H-pyrido[1,2-a][1,3,5] triazin-3-ylmethyl)]-cyclopentane Carboxylate (12v). Compound 12v ($0.5 \mathrm{~g}, 40 \%$) was prepared from $10 f(0.88 \mathrm{~g}, 2.25 \mathrm{mmol})$ and 2,4-dioxo-2H -pyrido[1,2-a][1,3,5]triazine ($0.7 \mathrm{~g}, 4.3 \mathrm{mmol}$) according to the same procedure used for preparing 11a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 8.45-7.15-6.75$ ($4 \mathrm{~m}, 3 \mathrm{H}, \mathrm{Py}$), 7.8-7.35 (2d, 9H, PyPhPh), $4.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.9(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHS}), 2.8\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right)$, $2.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.3-1.5\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.3(\mathrm{~s}, 9 \mathrm{H}$, tBu). IR: $\mathrm{V}_{\text {max }} 2225,1719,1680,1645 \mathrm{~cm}^{-1} . \mathrm{MH}^{+}(555)$.

2[2-(4'-Chlorobiphenylthio)]-5-[2-(4-oxo-4H-benzo[d]-[1,2,3]triazin-3-yl methyl)]-cyclopentane Carboxylic Acid (2a). To a solution of 12a ($4.5 \mathrm{~g}, 8.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200$ mL) at room temperature was added dropwise trifluoroacetic acid (TFA; 12.5 mL). The reaction mixture was stirred 24 h and then concentrated in vacuo. The residue was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} / \mathrm{AcOH}$; 97:2: 1) to give, after lyophilisation from acetonitrile/water, 2a (3.5 $\mathrm{g}, 87.5 \%)$ as a beige powder. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR (400 MHz , DMSOd_{6}): $\delta 12.5-12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 8.25 / 125.5$ ($\mathrm{d}, 1 \mathrm{H}$, o-Phtriazine), 8.18/128.8 (d, 1H, ó-Phtriazine), 8.08/136.5 (td, 1H, p-Phtriazine), 7.92/133.8 (td, 1H, m-Phtriazine), 7.68/129.2, 7.62/128.0, 7.62/128.0 (3d, 8H, PhPh), 4.5/53.5 (d, 2H, NCH 2), 3.90/49.5 (m, 1H CHS), 2.85/44.0 (m, 1H, CHCH ${ }_{2} \mathrm{~N}$), 2.60/55.0 (t, 1H, CHCO_{2}), 2.18/1.70//34.0 (m, 2H, C3H 2), 1.90/1.70//29.5 (m, 2H, $\mathrm{C} 4 \mathrm{H}_{2}$). In a NOESY experiment on $\mathbf{2 a}$, positive Overhauser effects were observed between $\mathrm{H}-1(\delta=2.6)$ and $\mathrm{H}-3(\delta=2.18-$ 17), between $\mathrm{H}-1$ and $\mathrm{H}-4(\delta=1.9-17)$, between $\mathrm{H}-2(\delta=2.85)$ and $\mathrm{H}-4$, between $\mathrm{H}-2$ and $\mathrm{H}-5(\delta=3.9)$ and between $\mathrm{H}-3$ and H-5 in agreement with a trans/trans relative conformation. IR: $\mathrm{V}_{\max } 3400-2400,1723,1680 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{3}{ }^{-}\right.$ S): C, H, N, S, Cl.

2[2-(4'-Chlorobiphenylthio)]-5-[2-(4-oxo-4H-benzo[d]-[1,2,3]triazin-3-yl methyl)]-cyclopentanecarboxylic Acid (2a'). Compound 2a' ($0.195 \mathrm{~g}, 76 \%$) was prepared from 12a' ($0.285 \mathrm{~g}, 0.52 \mathrm{mmol}$) and TFA (1 mL) according to the same procedure used for preparing $\mathbf{2 a} .{ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR (400 MHz , DMSO-d $)_{6}$: $\delta 12.2$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}$), 8.28/125.3 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{o}$ Phtriazine), 8.18/129.0 (d, 1H, ó'-Phtriazine), 8.08/136.5 (td, 1H, p-Phtriazine), 7.92/133.5 (td, 1H, m-Phtriazine), 7.68/129.0, 7.60/128.0, 7.42/130.5 (3d, 8H, PhPh), 4.55/4.40//53.5 (2dd, 2H, NCH_{2}), 4.10/50.5 (m, 1H CHS), 3.05/41.5 (m, 1H, CHCH 2 N), $3.15 / 53.5\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.22 / 1.78 / / 33.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{2}\right), 2.05 /$ 1.55//27.5 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{C} 4 \mathrm{H}_{2}$). In a NOESY experiment on 2a', positive Overhauser effects were observed between H-1 ($\delta=$ 3.15) and $\mathrm{H}-3(\delta=2.22-178)$, between $\mathrm{H}-1$ and $\mathrm{H}-4(\delta=2.05)$, between $\mathrm{H}-2(\delta=4.1)$ and $\mathrm{H}-4$ and between $\mathrm{H}-3$ and $\mathrm{H}-5(\delta=$ 3.9) in agreement with a cis/trans relative conformation. IR: $V_{\max } 3100-2500,1723,1696 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{CIN}_{3} \mathrm{O}_{3^{-}}\right.$ S): C, H, N, S, Cl.

Separation of the Enantiomers of 2[2-(4'-chlorobi-phen-ylthio)]-5-[2-(4-oxo-4H-benzo[d] [1,2,3]triazin-3-yl-methyl)]-cyclopentane Carboxylic Acid ((1R,2S,5R) and ($\mathbf{1 S}, \mathbf{2 R}, \mathbf{5 S}$)-2a). The enantiomeric mixture $\mathbf{2 a}(0.4 \mathrm{~g})$ was separated by preparative HPLC using a Chiralpack column (eluant EtOH/TFA; 1000/1) and an UV detector at 210 nM to give: Peak 1: ($1 \mathrm{R}, 2 \mathrm{~S}, 5 \mathrm{R}$)-2a (0.16 g , elution time 27.30 min), optical purity > 98\% e.e. $[\alpha]_{D}=+57.5^{\circ}\left(\mathrm{c}=9.99\right.$; DMSO). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 12.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 8.3-7.95$ (3m, 4H, o,m-Phtriazine), 7.65-7.45 (2m, 8H, PhPh), 4.5 (d,
$2 \mathrm{H}, \mathrm{NCH}_{2}$), 3.95 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}$), $2.85\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right.$), $2.6(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHCO}_{2}$), 2.25-1.6 (m, 4H, CH CH_{2}). Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{22}-\right.$ $\mathrm{CIN}_{3} \mathrm{O}_{3} \mathrm{~S}$): C, H, N, S, CI. IR: $\mathrm{V}_{\max } 3100-2600,1724,1652$ cm^{-1}. Peak: ($1 \mathrm{~S}, 2 \mathrm{R}, 5 \mathrm{~S}$)-2a (0.06 g , elution time 31.93 min), optical purity 89% e.e. ${ }^{1}$ H NMR: comparable to (1R,2S,5R)2a. IR: $V_{\max } 2800-1900,1700,1656 \mathrm{~cm}^{-1} . \mathrm{MH}^{+}(492) ; \mathrm{MNH}_{4}{ }^{+}-$ (509).

2-Biphenylthio-5-(phthalimidomethyl)-cyclopentane Carboxylic Acid (2b). Compound 2b (1.12 g, 90\%) was prepared from 12b ($1.4 \mathrm{~g}, 5.15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and TFA (3.5 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSO-d d_{6}): $\delta 7.85(\mathrm{~m}, 4 \mathrm{H}$, Pht), 7.7-7.3 (m, 9H, PhPh), 3.8 (m, 1H, CHS), 3.65 (m, 2H, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.15-$ 1.9 (m, 2H, CH ${ }_{2} \mathrm{CHS}$), $1.9-1.55$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHS}$). IR: $V_{\max } 3400-2400,1725-1705,1711 \mathrm{~cm}^{-1}$. Anal. ($\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$): $\mathrm{C}, \mathrm{H}, \mathrm{N} . \mathrm{MH}^{+}(458) ; \mathrm{MNH}_{4}{ }^{+}$(475).

2-Biphenylmethylthio-5-phthalimidomethylcyclopentane Carboxylic Acid (2c). Compound 2c (1.1 g, 97\%) was prepared from 12c ($1.2 \mathrm{~g}, 2.3 \mathrm{mmol}$) and TFA (3.5 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSO d6): $\delta 7.9$ (m, 4H, Pht), 7.65-7.4 (m, $9 \mathrm{H}, \mathrm{PhPh}), 3.85$ (s, 2H, $\mathrm{PhCH}_{2} \mathrm{~S}$), 3.7 (dd, 2H, CH N)), 3.3 (m, $1 \mathrm{H}, \mathrm{CHS}), 2.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.4\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.1-$ $1.5\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. IR: $\mathrm{V}_{\max } 3200-2400,1774,1707 \mathrm{~cm}^{-1}$. Anal. ($\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$): C, H, N, S.

2-Biphenylethylthio-5-(phthalimidomethyl)-cyclopentane Carboxylic Acid (2d). Compound 2d (0.51 g , 88\%) was prepared from 12d ($0.65 \mathrm{~g}, 1.2 \mathrm{mmol}$) and TFA (1.85 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 12.2\left(\mathrm{~m}, \mathrm{1H}, \mathrm{CO}_{2} \mathrm{H}\right), 7.85(\mathrm{~m}$, 4H, Pht), 7.6-7.25 (m, 9H, PhPh), $3.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$), 3.4 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHS}$), $2.8\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right)$, $2.4\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.2-1.5\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. IR: $\mathrm{V}_{\max } 3200-$ $2300,1773,1707 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}\right)$: $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.

2-[2-(4'-Fluorobiphenyl)ethylthio]-5-(phthalimidome-thyl)-cyclopentane Carboxylic Acid (2e). Compound $2 \mathbf{2 e}$ ($1.62 \mathrm{~g}, 86 \%$) was prepared from 12e ($2.13 \mathrm{~g}, 3.8 \mathrm{mmol}$) and TFA (5.9 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO- d_{6}): $\delta 7.9-7.65$ (m, $4 \mathrm{H}, \mathrm{Pht}$), $7.5-7.1$ ($\mathrm{m}, 8 \mathrm{H}, \mathrm{PhPh}$), $4.0-3.7\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$), 3.55 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHS}$), 3.0-2.5 (m, 6H, $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{~S}, \mathrm{CHCH}_{2} \mathrm{~N}, \mathrm{CHCO}_{2}$), 2.3-1.6 (m, 4H, CH2 CH_{2}). IR: $\mathrm{V}_{\text {max }} 3500-3000,1771,1706$, $1682 \mathrm{~cm}^{-1}$. Anal. ($\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{FNO}_{4} \mathrm{~S}$): C, H, N. MH ${ }^{+}$(503).
2-[2-(4'-Chlorobiphenyl)ethylthio]-5-(phthalimidome-thyl)-cyclopentane Carboxylic Acid (2f). Compound $2 f$ ($1.67 \mathrm{~g}, 96 \%$) was prepared from $12 \mathrm{f}(1.93 \mathrm{~g}, 3.35 \mathrm{mmol})$ and TFA (5.2 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): \delta 12.3-11.3$ (m, $1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}$), 7.85 (m, 4H, Pht), 7.7-7.35 (m, 8H, PhPh), 3.7 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $3.4(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHS}), 2.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $2.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.4\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.2-1.5(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$). IR: $\mathrm{V}_{\max } 3400-2400,1773,1723-1695 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{ClNO}_{4} \mathrm{~S}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}, \mathrm{Cl}$.

2-[2-(4'-Chlorobiphenyl)ethylthio]-5-[2-(4-oxo-4H-benzo-[d][1,2,3]triazin-3-yl methyl)]-cyclopentane Carboxylic Acid ($\mathbf{2 g}$). Compound $\mathbf{2 g}(0.27 \mathrm{~g}, 86 \%)$ was prepared from $\mathbf{1 2 g}$ ($0.35 \mathrm{~g}, 0.6 \mathrm{mmol}$) and TFA (1 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, DMSOd_{6}): $\delta 12.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 8.25$ (2d, 2 H , o-Phtriazine), 8.17.95 (2t, 2H, m-Phtriazine), 7.55-7.7-7.3 (AB, 3d, 8H, PhPh), $4.5\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.4(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}), 2.85\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2}\right.$, $\left.\mathrm{CHCO}_{2}\right), 2.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.2-1.5\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. IR: $V_{\text {max }}$ 2800-2300, 1720, $1683 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{CIN}_{3} \mathrm{O}_{3} \mathrm{~S}\right)$: C, H, N, S, Cl.
2-(4'-Methylthiobiphenylthio)-5-[2-(4-oxo-4H-benzo[d]-[1,2,3]triazin-3-yl methyl)]-cyclopentane Carboxylic Acid (2h). Compound $\mathbf{2 h}(0.175 \mathrm{~g}, 83 \%)$ was prepared from 12h $(0.235 \mathrm{~g}, 0.42 \mathrm{mmol})$ and TFA $(0.65 \mathrm{~mL})$ according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, DMSOd_{6}): $\delta 12.3$ (m, 1H, CO2 ${ }_{2}$), 8.25 (2d, 2H, o-Phtriazine), 8.157.95 (2t, 2H , m-Phtriazine), 7.65-7.5-7.3 (2m, 8H, PhPh), 4.5 (d, 2H, NCH 2), 3.3 ($q, 1 \mathrm{H}, \mathrm{CHS}$) $2.85\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right.$), 2.65 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}$), $2.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.3-1.7\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

IR: $V_{\max } 3300-2300,1718,1658 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}\right)$: C, H, N, S. MH ${ }^{+}(504)$.

2-(4-Cyanobiphenylthio)-5-[2-(4-oxo-4H-benzo[d][1,2,3]-triazin-3-yl methyl)]-cyclopentane Carboxylic Acid (2i). Compound $\mathbf{2 i}(0.24 \mathrm{~g}, 63 \%)$ was prepared from $\mathbf{1 2 i}(0.425 \mathrm{~g}$, $0.8 \mathrm{mmol})$ and TFA (1.2 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSO- d_{6}): $\delta 12.35$ (m, 1H, CO 2 H), 8.25 (2d, 2 H , o-Phtriazine), $8.05-7.85$ (2t, 2 H , m-Phtriazine), 7.85-7.65-7.5 (m, 8H, PhPh), 4.5 (d, 2H, NCH_{2}), $4.0(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}) 2.85\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.65(\mathrm{t}, 1 \mathrm{H}$, CHCO_{2}), 2.3-1.6 (m, 4H, CH CH_{2}). IR: $\mathrm{V}_{\max } 3200-2400,2224$, 1709, $1678 \mathrm{~cm}^{-1}$. Anal. ($\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$): C, H, N, S. $\mathrm{MH}^{+}(483)$.

2-(4-Pyridin-4-ylphenylthio)-5-[2-(4-oxo-4H-benzo[d]-[1,2,3]triazin-3-ylmethyl)]-cyclopentane Carboxylic Acid (2j). Compound $\mathbf{2 j}$ ($0.26 \mathrm{~g}, 40 \%$) was prepared from 12j (0.74 $\mathrm{g}, 1.4 \mathrm{mmol}$) and TFA (1.2 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSOd_{6}): $\delta 12.4\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 8.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{o}-\mathrm{Py}), 8.25-8.2$ (2d, 2H, o-Phtriazine), 8.07-7.9 (2t, 2H, m-Phtriazine), 7.75-7.45 (m, 6H, o-PyPh), 4.5 (d, 2H, NCH 2), 4.0 (q, 1H, CHS) 2.85 (m, $1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}$), $2.6\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.2-1.7\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. IR: $V_{\max } 2800-2300,2224,1681,1606 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\right)$: C, H, N, S. MH ${ }^{+}(459)$.

2-(4-Thiazol-2-ylphenylthio)-5-[2-(4-oxo-4H-benzo[d]-[1,2,3]triazin-3-yl methyl)]-cyclopentane Carboxylic Acid (2k). Compound $\mathbf{2 k}(0.21 \mathrm{~g}, 57 \%)$ was prepared from $\mathbf{1 2 k}$ (0.74 $\mathrm{g}, 1.4 \mathrm{mmol}$) and TFA (1.2 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, DMSOd_{6}): $\delta 12.1$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}$), 8.5-8.4 (2d, 2H, o-Phtriazine), 8.38.05 (t, m, 5H, m-Phtriazine, m-Ph, thiazol), 7.9 (d, 1H, thiazol), 7.65 (d, 2H, o-Ph), 4.7 (d, 2H, NCH 2), 4.2 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}$), 3.1 (m, 1H, CHCH 2 N), 2.85 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}$), 2.4-1.9 ($\mathrm{m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$). IR: $V_{\max } 2800-2300,2224,1682 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{2}\right.$): C, H, N, S. $\mathrm{MH}^{+}(465)$.

2-(4-Benzothiazol-2-ylphenylthio)-5-[2-(4-oxo-4H-benzo-[d][1,2,3]triazin-3-yl methyl)]-cyclopentane Carboxylic Acid (2l). Compound 21 ($0.1 \mathrm{~g}, 92 \%$) was prepared from 12l ($0.12 \mathrm{~g}, 0.2 \mathrm{mmol}$) and TFA (0.5 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta 12.4\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 8.3-7.4(\mathrm{~m}, 12 \mathrm{H}$, PhPh Phtriazine), $4.55\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.05(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}), 2.9\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right)$, 2.7 (t, 1H, CHCO ${ }_{2}$), 2.4-1.6 (m, 4H, CH CH_{2}). IR: $\mathrm{V}_{\max } 2800-$ 1800, 1714, $1681 \mathrm{~cm}^{-1}$. Anal. ($\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{2}, 0.2 \mathrm{H}_{2} \mathrm{O}$): C, H, $\mathrm{N}, \mathrm{S} . \mathrm{MH}^{+}(515)$.

2-(4-[1,2,4]Triazol-4-ylphenylthio)-5-[2-(4-oxo-4H-benzo-[d][1,2,3]triazin-3-ylmethyl)]-cyclopentane Carboxylic Acid (2m). Compound $\mathbf{2 m}$ ($0.2 \mathrm{~g}, 68 \%$) was prepared from $12 \mathrm{~m}(0.33 \mathrm{~g}, 0.65 \mathrm{mmol})$ and TFA (1 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta 12.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 9.1(\mathrm{~s}, 2 \mathrm{H}$, triazine), $8.25(\mathrm{~m}, 2 \mathrm{H}$, o-Phtriazine), 8.1-7.95 (2t, 2H, m-Phtriazine), 7.65-7.55 (m, $4 \mathrm{H}, \mathrm{Ph}), 4.5$ (d, 2H, NCH2), 4.0 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}$), 2.65 ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{~N}$), $2.6\left(\mathrm{t}, \mathrm{1H}, \mathrm{CHCO}_{2}\right), 2.3-1.6\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) . \mathrm{IR}$: $\mathrm{V}_{\text {max }}$ 2800-1800, $1692 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}\right)$: C, H, S, N :calcd, 18.74; found, 18.11. $\mathrm{MH}^{+}(449)$.

2-(4'-Chlorobiphenylthio)-5-(3,4,4-trimethyl-2,5-diox-oimidazolidin-1-ylmethyl]-cyclo pentane Carboxylic Acid ($\mathbf{2 n}$). Compound $\mathbf{2 n}(0.27 \mathrm{~g}, 58 \%)$ was prepared from $\mathbf{1 2 n}(0.52$ $\mathrm{g}, 0.96 \mathrm{mmol}$) and TFA (1.4 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSOd_{6}): $\delta 7.65-7.45(2 \mathrm{~m}, 8 \mathrm{H}, \mathrm{PhPh}), 3.7-3.2\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHS} \mathrm{CH}_{2} \mathrm{~N}\right)$, 2.75 (s, 3H, NCH 3), 3.0-2.3 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}, \mathrm{CHCO}_{2}$), 2.2$1.1\left(2 \mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.3\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$. HPLC (gradient and isocratic systems) purity > 98.5\%. HR/ESIMS Calcd for $\mathrm{C}_{25} \mathrm{H}_{27}$ $\mathrm{CIN}_{2} \mathrm{O}_{4} \mathrm{~S} \mathrm{Mr} 487.1458\left(\mathrm{MH}^{+}\right)$, found 487.1473 .

2-(4'-Chlorobiphenylthio)-5-(saccharin-2-ylmethyl)-cyclopentane Carboxylic Acid (20). Compound 20 (0.15 g , 83%) was prepared from $\mathbf{1 2 0}(0.2 \mathrm{~g}, 0.35 \mathrm{mmol})$ and TFA (1 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{DMSO} \mathrm{d}$): $\delta, 8.05-7.85$ ($2 \mathrm{~m}, 4 \mathrm{H}, \mathrm{PhSO}_{2}$), 7.5-7.3 (m, 8H, PhPh), 4-3.8 (m, 3H, NCH $2, \mathrm{CHS}$), 2.9 (m, $1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}$), $2.75\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.4-1.7\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. IR: $V_{\max } 2800-2300,1732,1702,1383,1336 \mathrm{~cm}^{-1}$. Anal.
$\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClNO}_{5} \mathrm{~S}, 0.15 \text { (ipr) }\right)_{2} \mathrm{O}$): $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}:$ calcd, 11.78; found, 11.13. $\mathrm{MH}^{+}(526)$.

2-(4'-Chlorobiphenylthio)-5-(3-oxo-[1,2,4]triazolo[4,3-a]pyridin-2-ylmethyl)]-cyclopentane Carboxylic Acid (2p). Compound $\mathbf{2 p}(0.15 \mathrm{~g}$, 49\%) was prepared from 12p (0.28 g , 0.47 mmol) and TFA (1 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSO-d d_{6}): $\delta 12.3$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}$) , 7.85 (d, 1H, o-Py), 7.75-7.55-7.35 (2d, m, 8H, PhPh), 7.15-6.55 (2m, 3H, m-pPy), 3.95 (m, 2H, NCH2), 3.9 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHS}$), 2.75-2.55 ($2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}, \mathrm{CHCO}_{2}$), 2.251.5 (m, 4H, CH ${ }_{2} \mathrm{CH}_{2}$). IR: $\mathrm{V}_{\max } 2700-2400,1723,1667,1643$, $1594 \mathrm{~cm}^{-1}$. Anal. ($\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}$): $\mathrm{H}, \mathrm{N}, \mathrm{C}$: calcd, 62.56; found, 61.86, S: calcd, 6.68; found, 6.20. $\mathrm{MH}^{+}(480)$.

2-(4'-Chlorobiphenylthio)-5-(2,4-dioxo-2H-pyrido[1,2-a][1,3,5]triazin-3-yl methyl)]-cyclopentane Carboxylic Acid (2q). Compound $\mathbf{2 q}(0.265 \mathrm{~g}, 78 \%)$ was prepared from 12q ($0.38 \mathrm{~g}, 0.674 \mathrm{mmol}$) and TFA (1 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSO-d d_{6} : $\delta 12.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 8.45-7.85-7.05-6.95$ (2 d , $\mathrm{m}, \mathrm{t}, 4 \mathrm{H}, \mathrm{Py}), 7.65-7.45$ (2d, 8H, PhPh), 4.2-4.0 (m, 2H, NCH_{2}), 3.9 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHS}$), 2.7 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}$), $2.5(\mathrm{t}, 1 \mathrm{H}$, CHCO_{2}), 2.3-1.5 (m, 4H, CH CH_{2}). IR: $\mathrm{V}_{\max } 2800-2400,1747$, 1712, 1684, $1636 \mathrm{~cm}^{-1}$. Anal. ($\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{CIN}_{3} \mathrm{O}_{4} \mathrm{~S}$): $\mathrm{H}, \mathrm{N}, \mathrm{S}, \mathrm{Cl}$, C: calcd, 61.47; found, 60.98. $\mathrm{MH}^{+}(508)$.
2-(4'-Chlorobiphenylthio)-5-(4-oxo-4,7-dihydro-imidazo-[4,5-d][1,2,3]triazin-3-ylmethyl)]-cyclopentane Carboxylic Acid ($2 \mathbf{r}$). Compound $\mathbf{2 r}(0.12 \mathrm{~g}, 40 \%$) was prepared from $12 \mathrm{r}(0.51 \mathrm{~g}, 0.653 \mathrm{mmol})$ and TFA (1 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, DMSO$\left.\mathrm{d}_{6}\right): \delta 14.5-12.5\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}, \mathrm{CO}_{2} \mathrm{H}\right), 8.7(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 7.85-$ 7.6 (2dd, $8 \mathrm{H}, \mathrm{PhPh}), 4.75$ (d, 2H, NCH 2), 4.15 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}$), 3.1 ($q, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}$), $2.85\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.5-1.9(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$). IR: $\mathrm{V}_{\max } 3196,2800-2400,1721,1692 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{~S}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}, \mathrm{Cl} . \mathrm{M}^{+} \mathrm{Na}^{+}(504)$.

2-(4'-Chlorobiphenylthio)-5-(4-oxo-4-H-thieno[3,2-d]-[1,2,3]triazin-3-yl methyl)]-cyclopentane Carboxylic Acid (2s). Compound $\mathbf{2 s}$ ($0.65 \mathrm{~g}, 77 \%$) was prepared from 12s (0.925 $\mathrm{g}, 1.7 \mathrm{mmol}$) and TFA (1.5 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 12.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 8.45-7.9(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CHS}), 7.65-$ 7.5 (2d, 8H, PhPh), 4.5 (d, 2H, NCH 2), 3.9 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}$), 2.85 $\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.6\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.3-1.6(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$). IR: $\mathrm{V}_{\max }$ 2800-2300, 1703, $1680 \mathrm{~cm}^{-1}$. Anal. ($\mathrm{C}_{24} \mathrm{H}_{20^{-}}$ $\mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}$: $\mathrm{H}, \mathrm{N}, \mathrm{S}, \mathrm{Cl}, \mathrm{C}$: calcd, 57.88 ; found, 57.29 . $\mathrm{MH}^{+}-$ (498).

2-(4'-Chlorobiphenylthio)-5-(3-oxo-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a] azepin-2-ylmethyl)]-cyclopentane Carboxylic Acid (2t). Compound $\mathbf{2 t}$ ($0.13 \mathrm{~g}, 73 \%$) was prepared from 12t ($0.2 \mathrm{~g}, 0.36 \mathrm{mmol}$) and TFA (1 mL) according to the same procedure used for preparing $\mathbf{2 a}$. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 12.5\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 7.65-7.55$ (2d, 8H, PhPh), 4.65 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHS}$), 3.65 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), 3.43.15 (dd, 2H, CH ${ }_{2} \mathrm{NCO}$), 2.9 (t, 1H, CHCO_{2}), 2.7 ($\mathrm{m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right), 2.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.15-1.6\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. IR: $V_{\max } 3400,2600,1728,1666 \mathrm{~cm}^{-1}$. Anal. ($\left.\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}\right)$: H, N, S, CI, C: calcd, 62.70; found, 62.10. $\mathrm{MH}^{+}(498)$.

2-(4'-Methylthiobiphenylthio)-5-(2,4-dioxo-2H-pyrido-[1,2-a][1,3,5]triazin-3-ylmethyl)]-cyclopentane Carboxylic Acid (2u). Compound $\mathbf{2 u}(0.2 \mathrm{~g}, \mathbf{2 8 . 5 \%}$) was prepared from $\mathbf{1 2 u}(0.78 \mathrm{~g}, 1.35 \mathrm{mmol})$ and TFA (2 mL) according to the same procedure used for preparing $\mathbf{2 a}$. The compound was crystallized as the hemisodium salt. ${ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO-d ${ }_{6}$): $\delta 12.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 8.45-7.85-7.05-6.95$ (2d, m, t, 4H, Py), 7.5-7.3 (2d, 8H, PhPh), 4.2-3.8 (m, 3H, NCH $2, \mathrm{CHS}$), 2.7 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}$), $2.5\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CHCO}_{2}, \mathrm{SCH}_{3}\right), 2.3-1.5(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$). IR: $\mathrm{V}_{\text {max }}$ 2900-1900, 1746, 1711, $1683 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}, 0.5 \mathrm{Na}\right.$): C, H, N, S, Na. $\mathrm{MH}^{+}(520) \mathrm{M}^{+} \mathrm{Na}^{+}(542)$.

2-(4'-Cyanobi phenylthio)-5-(2,4-dioxo-2H-pyrido[1,2-a]-[1,3,5]triazin-3-yl methyl)]-cyclo pentanecarboxylic acid (2v). Compound $2 \mathbf{2 v}(0.195 \mathrm{~g}, 43.5 \%)$ was from $\mathbf{1 2 v}(0.5 \mathrm{~g}, 0.9$ $\mathrm{mmol})$ and TFA (1.4 mL) according to the same procedure used for preparing 2a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 12.4$ (m, 1H, $\mathrm{CO}_{2} \mathrm{H}$), 8.45-7.85-7.05-7.0 (2d, m, t, 4H, Py), 7.7-7.5 (2d, 8H, PhPh), 4.2-3.9 (m, 3H, NCH $2, \mathrm{CHS}$), 2.7 (q, 1H,
$\mathrm{CHCH}_{2} \mathrm{~N}$), $2.5\left(\mathrm{t}, \mathrm{1H}, \mathrm{CHCO}_{2}\right), 2.3-1.5\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) . \mathrm{IR}$: $V_{\text {max }}$ 2800-1800, 2226, 1735, 1704, 1678, $1636 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}, 0.15 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S} . \mathrm{MH}^{+}(499)$.

2-(4'-Chlorobiphenylsulfonyl)-5-[2-(4-oxo-4H-benzo[d]-[1,2,3]triazin-3-yl methyl)]-cyclopentane Carboxylic Acid (2w). To a solution of $\mathbf{2 a}(0.2 \mathrm{~g}, 0.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ ($4: 1,12.5 \mathrm{~mL}$) at $0{ }^{\circ} \mathrm{C}$, was added in three portions a solution of dimethyldioxirane (6.5 mL) in acetone $(20 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 12 h and then concentrated. The residue was taken up in water, acidified to pH 2 with 1 N aq. HCl , and extracted several times with EtOAc. The organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give 2w ($0.185 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSO- d_{6}): $\delta 12.5$ (m, 1H, $\mathrm{CO}_{2} \mathrm{H}$), 8.25 (m, $2 \mathrm{H}, \mathrm{o}$-Phtriazine), 8.2-7.9 (2m, 2H, m-Phtriazine), 7.95-7.8-7.65 (2m, 8H, PhPh), 4.55 ($\mathrm{d}, 2 \mathrm{H}, \mathrm{NCH}_{2}$) 4.1 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHS}$), 3.1 (t, 1 H , $\left.\mathrm{CHCO}_{2}\right), 2.8\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.2-1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. IR: $V_{\max } 3500-2400,1721,1687,1637,1310,1143 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{5} \mathrm{~S}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}, \mathrm{Cl}$.

2-[2-(4'-Fluorobiphenyl)ethylsulfonyl]-5-(phthalimi-domethyl)- cyclopentane Carboxylic Acid (2x). Compound $\mathbf{2 x}(0.53 \mathrm{~g}, 80 \%)$ was prepared using $\mathbf{2 e}(0.625 \mathrm{~g}, 1.24 \mathrm{mmol})$, dimethyl di oxirane (25 mL), and acetone (50 mL) according to the same procedure used for preparing 2w. ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, DMSO-d d_{6}): $\delta 12.8\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 7.9-7.65$ (m, 4H, Pht), 7.5-7.35-7.25 (m, 8H, PhPh), 3.95 (m, 1H, CHS), 3.7 (t, 2H, CH 2 N), 3.5-3.05 (m, 4H, PhCH ${ }_{2} \mathrm{CH}_{2} \mathrm{~S}$), $3.0\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.65(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.3-1.5\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. IR: $\mathrm{V}_{\max } 3400-2500$, 1769, 1733, 1686, 1604, 1360, $1150 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{26}\right.$ FNO ${ }_{6}$ S): $\mathrm{C}, \mathrm{H}, \mathrm{N} . \mathrm{MH}^{+}(534)$.

2-[2-(4'-Chlorobiphenyl)ethylsulfonyl]-5-(phthalimi-domethyl)- cyclopentane Carboxylic Acid (2y). Compound $\mathbf{2 y}(0.53 \mathrm{~g}, 98 \%)$ was prepared using $2 f(0.5 \mathrm{~g}, 0.96 \mathrm{mmol})$ and dimethyldi oxirane (20 mL) according to the same procedure used for preparing 2w. ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSO d6): $\delta 12.7$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}$), 7.9-7.8 (m, 4H, Pht), 7.7-7.4 (m, 8H, PhPh), $4.0(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHS}), 3.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.5-3.05(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.0\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.6\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}_{2}\right), 2.2-$ $1.5\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. IR: $\mathrm{V}_{\max } 3300-2800,1770,1694,1304$, $1152 \mathrm{~cm}^{-1}$. Anal. ($\left.\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{CINO}{ }_{6} \mathrm{~S}\right): \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}, \mathrm{Cl} . \mathrm{MNH}_{4}{ }^{+}(569)$.

2-[2-(4'-Chlorobiphenyl)ethylsulfonyl)]-5-[2-(4-oxo-4Hbenzo[d][1,2,3]triazin -3-ylmethyl)]-cyclopentane Carboxylic Acid (2z). Compound $\mathbf{2 z}$ was prepared using $\mathbf{2 g}$ (0.15 $\mathrm{g}, 0.29 \mathrm{mmol}$), dimethyldioxirane (12 mL) and acetone (20 mL) according to the same procedure used for preparing $\mathbf{2 w}$. The residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right.$; 98:2) to give $\mathbf{2 z}(0.07 \mathrm{~g}, 43.7 \%)$. ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSOd_{6}): $\delta 12.5\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 8.25-8.2(\mathrm{~m}, 2 \mathrm{H}, \mathrm{o}$-Phtriazine), 8.27.9 (2d, 2H, m-Phtriazine), 7.6-7.45 (2dd, 8H, PhPh), 4.5 (d, $\left.2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.0(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHS}), 3.4\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 3.1-2.9(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{PhCH}_{2}, \mathrm{CHCO}_{2}\right), 2.8\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{~N}\right), 2.3-1.5(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$). IR: $V_{\max } 3600-2400,1721,1682,1377,1124 \mathrm{~cm}^{-1}$. HPLC (gradient and isocratic systems) purity $>98.5 \%$. HR/ ESIMS Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{5} \mathrm{~S}$ Mr $552.1360\left(\mathrm{MH}^{+}\right)$, found 552.1415.

Enzyme Assays. Human pro-MMPs were dissolved in Novex developing buffer (Cat. No LC2671) at the following concentrations: MMP-1 (Calbiotech) at $1.25 \mu \mathrm{~g} / \mathrm{mL}$; MMP-2 and MMP-9 (Boehringer) at 300 and $200 \mathrm{mU} / \mathrm{mL}$, respectively; MMP-3 (AbCys) at $1 \mu \mathrm{~g} / \mathrm{mL}$ and MMP-13 (Pr G. Murphy, University East Anglia) at $2 \mu \mathrm{~g} / \mathrm{mL}$. Pro-enzymes were activated by 2 mM p-aminophenilmercuric acetate (APMA, Sigma) at $37{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~min}(M M P-1,-2,-9)$ or $1 \mathrm{~h}(\mathrm{MMP}-3,-13)$. Activation was stopped by transferring the samples to ice. Inhibitors were dissol ved in dimethyl sulfoxide (DMSO) at 10^{-2} M, then serially diluted ($1 / 10$) in devel oping buffer at concentrations from 10^{-4} to $10^{-13} \mathrm{M}$. Fluorogenic substrates were purchased from Bachem. Substrate for MMP-3 was (7-meth-oxycoumarine-4-yl)-Arg-Pro-Lys-Pro-Tyr-Ala-Nva-Trp-Met-Lys(Dnp)-NH2. ${ }^{27}$ Substrate for MMP-1, -2, -9, -13 was Dnp-Pro-Cha-Gly-Cys(ME)-His-Ala-Lys(Nma)-NH2. ${ }^{28}$ They were dissolved in DMSO at 10^{-2} and $2 \times 10^{-3} \mathrm{M}$, respectively, then diluted to $2 \times 10^{-4} \mathrm{M}$ in water. Assays were performed in $96-$ well plates by adding to each well $70 \mu \mathrm{~L}$ of developing buffer,
$10 \mu \mathrm{~L}$ of inhibitor (or buffer for the control) and $10 \mu \mathrm{~L}$ of enzyme (or buffer for the blank). Each point was run in duplicate and each inhibitor was assayed at least twice. After a 30 min preincubation at $37^{\circ} \mathrm{C}, 10 \mu \mathrm{~L}$ of substrate was added and the plates were incubated for 6 h at $37^{\circ} \mathrm{C}$. Reading was then performed by a Spectrofluor Plus fluorimeter (Tecan), set at excitation and emission wavelengths of 340 and 440 nm , respectively. Substrate degradation in the presence of inhibitor at a given concentration was calculated as \% fluorescence of control wells. IC ${ }_{50}$ of each product on each enzyme was calculated by EXCEL software using 3 points in the central linear range of fluorescence inhibition.

In Vivo Antitumor Activity. B16-F 10 is a variant of the murine melanoma B16 selected for its enhanced ability to form experimental lung metastases. ${ }^{29}$ B16-F 10 cells were purchased from the National Cancer Institute and were maintained by successive passages in vitro. For animal experiments, tumor cells were collected and inoculated into the tail vein of $\mathrm{B}_{6} \mathrm{D}_{2} \mathrm{~F}_{1}$ mice in a volume of $200 \mu \mathrm{~L}$ PBS containing 0.5% foetal calf serum (2×10^{5} cells/mouse, 7 mice per experimental group). Anti-metastatic compounds were administered i.p. or p.o. to animals 1 h before the i.v. inoculation of tumor cells, and then every day for 3 days (four administrations). F or metastasis evaluation, mice were killed on day 11 by cervical dislocation, and lungs were removed, rinsed extensively in PBS, and fixed in Bouin's fluid. The black pigmented metastases of up to 2 mm in diameter were easily detected by the naked eye. Following dissection of each lung into five lobes, both the total number of metastases and the number of metastases of diameter $\geq 1 \mathrm{~mm}$ were scored by two investigators in a doubleblind manner. Results are expressed as \% of the mean numbers of metastases (total and $\geq 1 \mathrm{~mm}$ diameter) per lung of treated animals versus control.

Acknowledgment. The authors wish to thank Christine Fouache, Sandra Haumont, Isabelle Brézulier, Pierre Lavie, Marie Thomas, Christophe Lesur, Delphine Peyroulan-Thorel, Virginie Malivet, and F rédéric Mauppin for their skillful technical assistance and Solange Huet for the preparation of the manuscript. We would like also to acknowledge the analytical department at the IdRS for performing all the spectral analysis.

References

(1) (a) Nagase, H.; Woessner, J . F., J r. M atrix Mettal oproteinases. J. Biol. Chem. 1999, 274, 21491-21494. (b) Birkedal-Hansen, H.; Moore, W. G. I.; Bodden, M. K.; Windsor, L. J .; BirkedalHansen, B.; DeCarlo, A.; Engler, J. A. Matrix Mettaloproteinases: A Review. Crit. Rev. Oral Biol. Med. 1993, 4, 197-250.
(2) (a) Billinghurst, R. C.; Dahlberg, L.; I onescu, M.; Reiner, A.; Bourne, R.; Rorabeck, C.; Mitchell, P.; Hambor, J .; Diekmann, O.; Tschesche, H.; Chen, J .; Van Wart, H.; Poole, A. R. Enhanced Cleavage of Type II Collagen by Collagenases in Osteoarthritic Articular Cartilage. J. Clin. I nvest. 1997, 7, 1534-1545. (b) Pap, G.; Eberhardt, R.; Stürmer, I.; Machner, A.; Schwarzberg, H.; Roessner, A.; Neumann, W. Development of Osteoarthritis in the Knee J oints of Wistar Rats After Strenuous Running Exercise in a Running Wheel by Intracranial Self-Stimulation. Pathol. Res. Practice 1998, 194, 41-47. (c) Borden, P.; Solymar, D.; Sucharczuk, A.; Lindman, B.; Cannon, P.; Heller, R. A. Cytokine Control of Interstitial Collagenase and Collagenase-3 Gene Expression in Human Chondrocytes. J. Biol. Chem. 1996, 271, 23577-23581.
(3) (a) E geblad, M.; Werb, Z. New Functions for the Matrix MetalIoproteases in Cancer Progression. Nat. Rev. 2002, 2, 161-174. (b) Marshall, J. L.; Baidas, S.; Bhargava, P.; Rizvi, N. Matrix Metallproteinase Inhibitors in Cancer: An Update. I Drugs 2000, 3, 5, 518-524. (c) Aoudjit, F.; Potworowski, E. F.; St-Pierre, Y. Bi -Directional Induction of Matrix Metall proteinase-9 and Tissue Inhibitor of Matrix Metallproteinase-1 During T Lymphoma/ Endothetial Cell Contact: Implication of ICAM-1. J. Immunol. 1998, 160, 2967-2973. (d) Gohji, K.; Nomi, M.; Hara, I.; Arakawa, S.; Kamidono, S. Influence of Cytokines and Growth factors on matrix metalloproteinase-2 production and invasion of human renal cancer. Urol. Res. 1998, 1, 33-37. (e) Himelstein, B. P.; Canete-Soler, R.; Bernhard, E. J .; Dilks, D. W.; Muschel, R. J. Metalloproteinases in Tumor Progression: The Contribution of MMP-9. Invasion Metastasis 1994-95, 1-6, 246-258.
(4) MacPherson, L. J.; Bayburt, E. K.; Capparelli, M. P.; Carroll, B. J.; Goldstein, R.; J ustice, M. R.; Zhu, L.; Hu, S. I.; Melton, R. A.; Fryer, L.; Goldberg, R. L.; Doughty, J. R.; Spirito, S.; Blancuzzi, V.; Wilson, D.; O'Byrne, E. M.; Ganu, V.; Parker, D. T. Discovery of CGS 27023A, a Non-Peptidic, Potent, and Orally Active Stromelysin Inhibitor That Blocks Cartilage Degradation in Rabbits. J. Med. Chem. 1997, 40, 2525-2532.
(5) (a) Broadhurst, M. J.; Brown, P. A.; Ballantyne, N.; Borkakoti, N.; Bottomley, K. M. K.; Cooper, M. I.; Eartherton, A. J.; Kilford, I. R.; Malsher, P. J .; Nixon, J. S.; Lewis, E. J.; Sutton, B. M.; J ohnson, W. H. Design and Synthesis of the Cartilage Protective Agent (CPA, Ro32-3555). Bioorg. Med. Chem. Lett. 1997, 7, 17, 2299-2302. (b) Lewis, E. J.; Bishop, J.; Bottomley, K. M. K, Bradshaw, D.; Brewster, M.; Broadhurst, M. J.; Brown, P. A.; Budd, J. M.; Elliott, L.; Greenham, A. K.; J ohnson, W. H.; N ixon, J. S.; Rose, F.; Sutton, B.; Wilson, K. Ro 32-3555, an orally active collagenase inhibitor, prevents cartillage breakdown in vitro and in vivo. Br. J. Pharmacol. 1997, 121, 540-546. (c) Shaw, T.; Nixon, J. S.; Bottomley, K. M. Metalloproteinase inhibitors: new opportunities for the treatment of rheumatoid arthritis and osteoarthritis. Exp. Opin. Invest. Drugs 2000, 9, 7, 1469-1478.
(6) Rasmussen, H. S.; McCann, P. P. Matrix Metalloproteinase Inhibition as a Novel Anticancer Strategy: A Review with Special F ocus on Batimastat and Marimastat. Pharmacol. Ther. 1997, 75, 1, 69-75.
(7) (a) Santos, O.; Mcdermott, C. D.; Daniels, R. G.; Appelt, K. Rodent pharmacokinetic and antitumor efficacy studies with a series of synthetic inhibitors of matrix metalloproteinases. Clin. Exp. Metastasis 1997, 15, 499-508. (b) Shalinsky, D. R.; Brekken, J.; Zou, H.; Kolis, S.; Wood, A.; Webber, S.; Appelt, K. Antitumor efficacy of AG3340 associated with maintenance of minimum effective plasma concentrations and not total daily dose, exposure or peak plasma concentrations. Invest. New Drug 1999, 16, 303-313.
(8) (a) Naglich, J. G.; J ure-Kunkel, M.; Gupta, E,; Fargnoli, J.; Henderson, A. J.; Lewin, A.; Tal bott, R.; Baxter, A.; Bird, J.; Savopoulos, R.; Willis, R.; Kramer, R. A.; Trail, P. A. Inhibition of Angiogenesis and Metastasis in Two Murine Models by the Matrix Metalloproteinase I nhibitor, BMS-275291. Cancer Res. 2001, 61, 8480-8485. (b) Naglich, J. G.; J ure-K unkel, M.; Gao, J.; Smith, D.; Talbott, R.; Henderson, A.; Kukral, D.; Lewin, A.; J eyaseel an, R.; Cardenas, V.; Gupta, E.; Huang,' M.; Bannister, R.; Trail, P. A. Activities of a synthetic matrix metall oproteinase inhibitor (MMPI), BMS-275291, in models of angiogenesis and tumor metastasis. Proc. Am. Assoc. Cancer Res. 2000, 41, 489: Abstr 3122.
(9) Atley, L.; DeLustro, B.; Eugui, E.; Martin, R.; Eyre, D.; Caulfield, J.P.RS-130830, a selective inhibitor of collagenase-3 blocks the release of hydroxyproline and a metalloproteinase specific neoepitope, COLL II CTx, from bovine cartilage exposed to IL1α. Arthritis Rheum. 1997, 40, (9, Suppl.): Abst 584.
(10) Albert, D. H.; Morgan, D. W.; Magoc, T.; Tapang, P.; Kerzai, A.; Marcotte, P.; Elmore, I.; Glaser, K.; Pease, L.; Li, J .; Leal, J.; Michaelides, M.; Curtin, M.; Holms, J.; Wada, C.; Dai, Y.; Davidson, S. K. Preclinical pharmacology of ABT-518, a novel and potent inhibitor of gelatinase A and B with antitumor activity. Clin. Cancer Res. 2000, (6, Suppl.): Abstr 301.
(11) Chollet, A. M.; Le Diguarher, T.; Kucharczyk, N.; Loynel, A.; Bertrand, M.; Tucker, G.; Guilbaud, N.; Burbridge, M.; Pastoureau, P.; Fradin, A.; Sabatini, M.; Fauchère, J. L.; Casara, P. Solid-phase Synthesis of α-substituted 3-Bisarylthio NHydroxy Propionamides as Specific MMP Inhibitors. Bioorg. Med. Chem. 2002, 10, 531-544.
(12) Pikul, S.; McDow Dunham, K. L.; Almstead, N. G.; De, B.; Natchus, M.; Anastasio, M. V.; McPhail, S. J.; Snider, C. E.; Taiwo, Y. O.; Rydel, T.; Dunaway, C. M.; Gu, F.; Mieling, G. E. Discovery of Potent, Achiral Matrix Metalloproteinase Inhibitors. J. Med. Chem. 1998, 41, 3568-3571.
(13) (a) Tamura, Y.; Watanabe, F.; Nakatani, T.; Yasui, K.; Fuji, M.; Komurasaki, T.; Tsuzuki, H.; Maekawa, R.; Yoshioka, T.; K awada, K.; Sujita, K.; Ohtani, M. Highly Selective and Orally Active Inhibitors of Type IV Collagenase (MMP-9 and MMP-2): N-Sulfonylamino Acid Derivatives. J. Med. Chem. 1998, 41, 640-649. (b) Tullis, J. S.; Laufersweiler, M. J.; VanRens, J. C.;

Natchus, M. G.; Bookland, R. G.; Almstead, N. G.; Pikul, S.; De, B.; Hsieh, L. C.; J anusz, M. J .; Branch, T. M.; Peng, S. X.; J in, Y. Y.; Hudlicky, T.; Oppong, K. The Development of New Carboxylic Acid-Based MMP Inhibitors Derived from a Cyclohexylglycine Scaffold. Bioorg. Med. Chem. Lett. 2001, 11, 19751979. (c) Mattter, H.; Schudok, M.; Schwab, W.; Thorwart, W.; Barbier, D.; Billen, G.; Haase, B.; Neises, B.; Weithmann, K. U.; Wollmann, T. Tetrahydroisoquinoline-3-carboxylate Based Matrix-Metalloproteinase Inhibitors: Design, Synthesis and Structure-Activity Relationship. Bioorg. Med. Chem. 2002, 10, 3529-3544.
(14) Fakstorp, J.; Raleigh, D.; Schniepp, L. E. Preparation and Reactions of Dialkoxytetrahydrofurans. J. Am. Chem. Soc. 1950, 72, 869-874.
(15) (a) Graff, M.; Al Dilaimi, A.; Seguineau, P.; Rambaud, M.; Villiéras, J . La réaction de Wittig-Horner en milieu hétérogèné $I X$. Bis aldolisation des phosphanates à partir des dialdéhydes aliphatiques en milieu aqueux peu basique. Synthèse de cyclenols fonctionnels. Tetrahedron Lett. 1986, 27, 14, 1577-1578. (b) Villiéras, J.; Rambaud, M.; Graff, M. The Wittig-Horner reaction in heterogeneous media VIII. Cyclisation during the aldolisation step from aqueous glutaral dehyde. Synth. Commun. 1986, 16, 2, 149-156.
(16) El-Bouz, M.; Wartski, L. 1,4-addition of lithiated derivatives from 1,3-dithianes to α-unsaturated aldehydes: a way to δ-carbonyl aldehydes. Tetrahedron Lett. 1980, 21, 2897-2900.
(17) Maehr, H.; Perrotta, A.; Smallheer, J . Synthetic (S)-5-(Benzoyl-oxy)-6-oxohexanoic Acid Ethyl Ester and [S,S-(E)]-3-(Hydroxymethyl) oxiranebutanoic Acid Methyl Ester, Important Synthons for Leukotrienes B_{4} and A_{4}, from D-Arabinose. J. Org. Chem. 1988, 53, 832-836.
(18) Dambrin, V.; Villiéras, M.; Moreau, C.; Amri, H.; Loupet, L.; Villiéras, J. Copper(I) mediated Highly Diastereoselective Conjugate Addition of Grignard Reagents to 2-Silyloxy cyclopentenecarboxylates. Tetrahedron Lett. 1996, 37, 35, 6323-6326.
(19) Chollet, A. M.; Le Diguarher, T.; Murray, L.; Bertrand, M.; Tucker, G. C.; Sabatini, M.; Pierré, A.; Atassi, G.; Bonnet, J .; Casara, P. General Synthesis of α-Substituted 3-Bisaryloxy Propionic Acid Derivatives as Specific MMP Inhibitors. Bioorg. Med. Chem. Lett. 2001, 3, 11, 295-299.
(20) Farina, V.; K rishnamurthy, V.; Scott, W. J. The Stille Reaction. Org. React. 1997, 50.
(21) Mitsunobu, O. The Mistunobu Reaction. Synthesis 1981, 1-28.
(22) Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J. H. Design and therapeutic appplication of matrix metalloproteinase inhibitors. Chem. Rev. 1999, 99, 2735-2776 and references cited herein.
(23) Massova, I.; Fridman, R.; M obashery, S. Structural Insights into the Catalytic Domains o Human Matrix Metalloprotease-2 and Human Matrix Metalloprotease-9 Implications for Substrate Specificities. J. Mol. Model. 1997, 1, 3, 17-30 and references cited herein.
(24) SYBYL 6.8, Tripos Inc., 1699 South Hanley Road, Saint-Louis, MO 63144, USA, running on an Octane R12000 Silicon Graphics workstation.
(25) Halgren, T. A. MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem. 1999, 20(7), 720.
(26) Khokha, R. Suppression of the Tumorigenic and Metastatic Abilities of Murine B16-F10 Melanoma Cells In Vivo by the Overextression of theTissue Inhibitor of the Metalloproteinases1. J. Natl. Cancer Inst. 1994, 86, 4, 299-304.
(27) Nagase, H.; Fields, C. G.; Fields, G. B. Design and Characterization of a Fluorogenic Substrate Selectively Hydrolyzed by Stromelysin 1 (Matrix M etalloproteinase-3). J. Biol. Chem. 1994, 269, 33, 20952 -20957.
(28) Bickett, D. M.; Green, M. G.; Berman, J .; Dezube, M.; Howe, A. S.; Brown, P. J.; Roth, J. T.; M cGeehan, G. M. A high Throughput Fluorogenic Substrate for Interstitial Collagenase (MMP-1) and Gelatinase (MMP-9). Anal. Biochem. 1993, 212, 58-64.
(29) Fidler, I. J. and Nicolson, G. L. Brief Communication: Organ Selectivity for Implantation Survival and Growth of B16 Melanoma Variant Tumor Lines. J. Natl. Cancer Inst. 1976, 57, 5, 1199-1202.

J M 0307638

[^0]: * Corresponding author. Institut de Recherches Servier. Chemin de Ronde, Croissy sur Seine, France. Fax: 33.1.55.72.24.7078290. Tel: 33.1.55.72.23.61125. E-mail: patrick.casara@f.netgrs.com.
 \dagger Institut de Recherches Servier.
 ${ }^{\ddagger}$ Technologie Servier

