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We present a de novo design program called SYNOPSIS, that includes a synthesis route for
each generated molecule. SYNOPSIS designs novel molecules by starting from a database of
available molecules and simulating organic synthesis steps. This way of generating molecules
imposes synthetic accessibility on the molecules. In addition to a starting database, a fitness
function is needed that calculates the value of a desired property for an arbitrary molecule.
The values obtained from this function guide the design process in optimizing the molecules
toward an optimal value of the calculated property. Two applications are described. The first
uses an electric dipole moment calculation to generate molecules possessing a strong dipole
moment. The second makes use of the three-dimensional structure of a viral enzyme in order
to generate high affinity ligands. Twenty eight compounds designed with the program resulted
in 18 synthesized and tested compounds, 10 of which showed HIV inhibitory activity in vitro.

Introduction

In the chemical and pharmaceutical industry a con-
tinuous demand exists for novel molecules with specific
physical or biological properties. Traditionally these
molecules are found either by accidental observation of
an interesting characteristic or by testing many mol-
ecules, from natural sources or man-made, for the
desired properties. Computational methods provide a
complementary strategy in finding such molecules.
Progress in fundamental understanding of physical,
chemical, and biological systems along with ever-
increasing computer power have brought these methods
within everyday use.

A prerequisite for in vitro drug testing is to have a
test whose outcome correlates significantly with some
clinical effect (e.g., inhibition of the D,-receptor in vitro
and antipsychotic effect in man). Most extant ap-
proaches followed in the pharmaceutical industry try
to find drug candidates by subjecting a large number
of molecules to such tests. The expectation is that some
of them will show up as active. This approach, called
high throughput screening (HTS), generally yields only
very few active molecules. Considering the vast number
of all possible molecules, one should not be discouraged
by this apparently poor success-rate in a limited sample;
the ratio of active molecules to possible molecules is
substantial. But performing a high throughput screen
demands quite some resources and is possible only once
given a supply of compounds and a test. Thus there is
ample room for a directed search approach. Neverthe-
less, high throughput screening is a convenient starting
point if little is known about the target system and an
automated test for relevant properties is available.
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Over the past decade computational methods have
been developed and applied to design catalysts,2 poly-
mers,34 proteins,>~7 and drugs. Computational methods
are particularly abundant in the latter.8~12 Frequently,
they benefit from knowledge about the function and
three-dimensional structure of the molecular target(s)
involved and are often referred to as ‘structure-based
drug design’ methods. Structure-based drug design has
become an established tool to find new leads or to
optimize existing ones.3 It is frequently used to guide
the human designer who wants to modify an existing
molecule in order to improve its characteristics and also
has been implemented in automated methods for novel
drug design. The latter are commonly referred to as ‘de
novo’ design methods. The requirements—and restric-
tions—on the molecules that are designed depend on the
purpose the molecules are designed for. To be acceptable
as a drug, a molecule should normally not contain
chemically reactive groups (except bactericides and
antineoplastics) nor radioactive atoms (except radio-
therapeutic agents). To be apt for oral administration
its molar mass should be below 500 g/mol.'*

A common structure-based computational design
strategy is to construct a molecule directly in the
binding site of the target protein. The quality of the
designed molecules is evaluated with an interaction
energy calculation or a pharmacophore model. The
building process commences with an anchor fragment
which is incrementally refined.1>=21 Alternatively, frag-
ments are put independently at favorably interacting
spots in the binding site and subsequently linked to a
single molecule.?2724 Another strategy?>=28 is to fill the
binding site with generic atoms and to progress toward
a molecule by specification of elements and bonds. A
drawback of all these building strategies is that the
resulting conformation of a molecule will almost always
be so high in energy that it does not occur in that form
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under natural circumstances. Furthermore the building
procedure determines the orientation locally which does
not necessarily yield the optimal fit for the whole
molecule. To overcome these problems, we have devel-
oped a computer program called SYNOPSIS, that
separates building from evaluating. This has the added
benefit that our program can easily be adapted to all
kinds of evaluation functions.

The properties of the designs are rarely experimen-
tally verified. Generally, the quality of the designed
molecules is estimated from the filling of the binding
site, from presence of pharmacophore elements or by
comparison with—or superimposition on—known com-
pounds.1517.27.28 Qccasionally verification proceeds by
enriching the design space with known active patterns
and analyzing their retrieval.2* Synthesizing a molecule
is the first step toward experimental determination of
its properties. We will define the ease of synthesis with
‘synthesizability’, used in the sense that the more
synthesizable a molecule is, the less effort will be
required for the actual synthesis in terms of availability
and cost of starting materials, number and yields of
synthesis steps, time and apparatus required, etc..
When experimental verification of the designed mol-
ecules is a requirement, synthesizability of the gener-
ated molecules is an important issue. Incorporating
synthesizability at an early stage in the method is
however not an absolute necessity. One can consider
synthesizability of the designs afterward, utilizing
heuristic rules?® or a retrosynthetic program. An ex-
ample of a case where no specific measures were taken
to ensure synthetic viability of the ligands, but where
the designs were made and tested anyway, is given in
Holloway.3° Nevertheless, ease of synthesis is a desir-
able property: it is convenient for method validation,
speed of screening, and ultimately for commercial
reasons. A recent method3! aims at generating synthe-
sizable designs by employing a fragmentation and
combining scheme based on cleavage and formation of
bonds according to chemical reactions. SYNOPSIS
enforces synthesizability from the onset by starting from
available compounds and exclusively employing chemi-
cal reactions to create new molecules.

Method

SYNOPSIS requires three components: a database
of existing molecules, a set of chemical reactions, and a
fitness function. For each entry in the starting database
the constituent atoms and bonds are specified. In the
applications described, a subset of the ACD32 was used
as initial database. The subset was obtained to meet
the restrictions for common medicinal chemicals by
excluding any molecule which met one or more of the
following criteria:

» contains any element other than carbon, nitrogen,
oxygen, sulfur, fluorine, chlorine, bromine, and iodine

e contains nonnatural occurring isotopes

e is a radical

Compounds with more than an arbitrarily chosen
number of 13 non-hydrogen atoms were also excluded,
to prevent SYNOPSIS from putting much effort in
synthesis with already large molecules. The final subset
used consists of 32 287 molecules.

The implementation of the organic synthesis steps is
based on a functional group approach. SYNOPSIS will
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determine the functional groups present in a molecule
to decide which reactions are possible for that molecule.
Currently 70 different reaction types have been imple-
mented (available from the author upon request). Given
the initial database and the reaction set, we have
determined the number of molecules that can be syn-
thesized in one step from the starting materials by
exhaustively trying each reaction on each of the mol-
ecules from the initial database. This resulted in the
generation of 373 174 909 new molecules.

The decision to allow a particular reaction is based
on just a part of the molecule. If this approach is applied
without any regard to the reactivity of the groups
involved many erroneous synthesis steps will result. To
prevent this an estimate of reactivity is implemented
by means of additional rules for acceptance of a reaction.
Depending on the type of potential error the following
cases are distinguished:

1. More local structure than that contained in a
functional group description is necessary for a particular
reaction to take place. For example, an NH; moiety can
be oxidized to an NO, moiety, but not when it is part of
an N—NH; moiety. By defining a functional group that
includes more atoms, in this example by requiring a
C—NH; group, the feasibility of the reaction is pre-
served.

2. Other functional groups hinder the intended reac-
tion to take place. Therefore some reactions are only
performed in the absence of specific functional groups.
For instance, an H—N—C=0 moiety can be reduced to
an H—N-C moiety only if there is no C=S moiety
present elsewhere in the molecule.

3. A functional group is present more than once. If it
is possible to determine a difference in reactivity, the
most reactive instance of the functional group will be
used. For example, in a coupling reaction between an
NH; moiety and a halogen atom, an aliphatic halogen
atom is preferred to an aromatic one. Otherwise, the
reacting group is randomly chosen.

4. A functional group’s chemical reactivity may be too
low. For instance, whether an aromatic halogen atom
is reactive enough to be used in a nucleophilic coupling
reaction depends on the other substituents of the
aromatic system. There is no problem in performing the
reaction if the aromatic system contains electron-
withdrawing substituents in the appropriate places, e.g.,
an 0-NO, moiety. On the other hand, when electron
donating groups are present, e.g., an o-NH;, moiety, the
reaction will be difficult to impossible, depending on the
strength of the attacking nucleophile. It is impractical
to implement all electron-withdrawing and -donating
effects of both position and nature of functional groups.
Currently, SYNOPSIS only considers aromatic halogen
atoms without examining the other substituents of the
system.

We attempted to account for substituent effects on an
aromatic halogen’s reactivity with a quantum chemical
approach, based on the assumption that a more positive
charge on the carbon bound to the halogen implies
higher reactivity in nucleophilic coupling reactions. We
tested this hypothesis by comparing partial charges
from a distributed multipole analysis3? to observed rate
constants. Hartree—Fock wave functions for the dis-
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Figure 1. Log rate constant (taken from Miller53) versus partial charge on C* for some nucleophilic aromatic substitution reactions.

tributed multipole analysis were computed with the
GAMESS—UK package?®* using a 6-31G basis set.

Figure 1 confirms that the computed partial charges
on the carbon atom do indeed follow the reactivity. The
partial charge on the carbon is only one of the factors
determining the reactivity, ignoring different reaction
conditions, steric effects of the substituents, and the
strength of the attacking nucleophile. However, it may
be used to estimate a threshold value for reactivity. If
the computed partial charge exceeds this threshold the
aromatic halogen is deemed to be reactive enough.
Alternatively, if more aromatic halogens are present,
the partial charge could be used to choose the more
reactive one. For practical purposes the quantum me-
chanical calculations proved to be too time-consuming,
i.e., calculation time is increased beyond the point where
it is more economical to accept a certain percentage of
suggestions that are not feasible. Without quantum
mechanical calculations, SYNOPSIS is able to propose
synthesis routes of which 64% was carried out with
success in the laboratory.

In addition to a starting database and a reaction set,
a fitness function is needed that calculates a property
of interest for an arbitrary molecule. Exploiting this
function SYNOPSIS will optimize novel molecules for
the property. SYNOPSIS scores the generated molecules
according to the fitness function provided. During the
run, SYNOPSIS is increasingly driven to choose mol-
ecules with high computed values as reactants. The
algorithm that drives the generation of the molecules
toward increasingly better ones contains elements from
simulated annealing optimization3>3¢ and from genetic
algorithm optimization.37:38 A Metropolis® type of func-
tion selects the molecule that is used to generate a new

1. Selecta

7N

4. Add to 2. Perform
database reaction
3. Calculate

product's fitness

Figure 2. Steps constituting one iteration.

one. The algorithm resembles a genetic algorithm in
that new offspring is produced from a set of molecules
depending on the fitness of the molecules.

The algorithm is iterative: it performs the same series
of steps over and over again exploiting the results from
previous steps to get successively closer to a desired
result. The steps forming one iteration are depicted in
Figure 2.

Step 1: Select a Molecule. A molecule from the
database is selected to reproduce by applying a weighted
probabilistic function:

e*(Qb —Qjlc
Pi= n —(Q— Qe (1)
> e

where P; is the probability that the ith molecule is
selected, Qp denotes the fitness of the current best
molecule, Q; denotes the fitness of the ith molecule, c is
a cooling parameter regulating the extent of greediness
in the selection, and n is the current population size.
This simulated annealing step constitutes the selection
pressure. Equation 1 shows that the probability of
selecting a molecule depends on the difference between
its fitness and the fitness of the current best molecule
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and also on the current value of the cooling parameter.
Equation 1 is used to assign a probability to each
molecule whereafter one is selected accordingly. The
scores of the molecules present in the initial database
are set to a minimum value instead of subjecting the
molecules to the fitness function in order to save time.
Initially all molecules are equally eligible to become
selected because they all have a score equal to Qp: in
the early stages selection is essentially random. As the
procedure continues Qp, increases: the chance for a less
fit molecule to be selected will decrease. The cooling
parameter is initialized and decreased in such a way
that increasingly more fit molecules are selected. Since
Qp increases and ¢ decreases, it gets exceedingly difficult
for a less fit molecule to become selected: only molecules
with fitness close or equal to Q, will still be selected in
the final stages.

Step 2: Perform Reaction. A new molecule is
created from the selected one by performing a reaction
with it. The reaction according to which the molecule
will be transformed is randomly chosen from those that
are possible for that particular molecule. If no reaction
is possible, another molecule is selected. If the chosen
reaction requires two reactants, a suitable partner is
randomly picked from the database. If the reaction
product about to be generated is already in the data-
base, the procedure will revert to Step 1. Because in
genetic terms the decoding of the genotype to phenotype
occurs at the reaction level (in an abstract sense the
gene of a molecule consists of starting materials and
reaction steps), the change in the molecule brought
about can be considerable. This is fine in early stages
of the run where a broad sampling of the chemical space
is wanted. In later stages the algorithm’s behavior to
optimize molecules is enhanced by a backtracking
operator that generates analogues of the fittest mol-
ecules. The operator is applied at regular intervals after
a certain number of iterations have been reached. It
picks a molecule out of the 25 highest scoring molecules
that were created from two reactants. The operator
changes one of the reactants to a functionally similar
one and performs the same reaction to generate a
molecule as input for the next step. At this moment,
only synthesis properties are used in the selection of
another reactant. A more restrictive selection, e.g., by
requiring a certain level of similarity, is currently under
consideration.

Step 3: Calculate Product’s Fitness. The reaction
product’'s score is obtained by subjecting it to the
function that calculates the property of interest. In
genetic terms this constitutes the fitness function. The
fitness function must produce higher values for better
molecules. Two examples of fitness functions can be
found in the application section.

Step 4: Add to Database. The molecule and the
information concerning its reactant(s) and its calculated
fitness value are added to the database.

For every generated molecule, the following informa-
tion is available: its structure, its fitness, and a
synthesis route. The synthesis route is by nature of the
program composed of a series of steps starting from
existing molecules. In building the synthesis route, it
is possible to have SYNOPSIS check the presence of the
intermediates encountered against a second database
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of existing materials. Intermediates involved in a syn-
thesis route may already exist, so this check limits the
number of steps in the final synthesis route to those
that are actually needed.

SYNOPSIS is written in ANSI C and has been
successfully compiled and run on SGI IRIX 6.5 and
Redhat Linux 7.3. Without backtracking, it takes less
than 100 milliseconds to generate a new molecule. In a
typical application the rate-limiting step is the evalu-
ation time for the fitness function. Because the inter-
process communication consists of only one number, the
fitness, the speedup of a run is linear up to hundreds of
processors.

Results and Discussion

As a first application SYNOPSIS is used in conjunc-
tion with an electric dipole moment computation as
fitness function. The computation subjects the molecule,
whose dipole moment is to be computed, to a conforma-
tional analysis using an in-house developed force field.3°
This force field uses the conjugate gradient mini-
mizer*®4! as implemented in the TINKER package*? and
a truncated Newton minimizer*® from the netlib reposi-
tory.** The functional form and parameter set are
derived from MMFF94s.4> The parameter set is ex-
tended with respect to the potential types as well as the
force constants, to allow for calculation of a broader
range of molecules and to maintain compatibility with
CVFF4 parametrized molecules. The AM1 Hamilto-
nian*” of MOPAC*® is used to calculate the dipole
moments of the low-energy conformers. The final dipole
moment of the molecule is calculated as the sum of the
dipole moments of the conformers times a pseudo-
Boltzmann weight. The weights are distributed accord-
ing to the computed energy of the conformers by
applying the following function:

w; =25 "F 2)

where w; is the weight of the ith conformer, Eq4 denotes
the energy of the lowest energy conformer and E;
denotes the energy of the ith conformer. The weights
are normalized after calculation.

These pseudo-Boltzmann weights were used to make
the computation more robust with regard to errors in
the force field derived energies of the conformers. Since
the calculation time increases exponentially with the
number of rotatable bonds present in the molecule, the
dipole moment computation was set to reject any
molecule with more than six torsions. This imposes an
effective limit on the size of the generated molecules,
because the creation of larger molecules from the initial
database will generally be accompanied with an increase
in the number of torsions for the created molecule. This
has the effect of limiting the achievable dipole moments.

To assess the efficiency of the bias procedure over
randomly searching, we ran SYNOPSIS with the same
random seed and the selection step (eq 1) set to pure
random. A plot of the averaged dipole moment of the
top 25 and the highest dipole moment in time is given
for both runs in Figure 3. From this figure it is clear
that random searching is less efficient. The largest
dipole moment molecule found in the simulated anneal-
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Figure 3. Averaged and best dipole moment of the top 25 in
time for random selection and simulated annealing selection.

ing run together with its synthesis route is depicted in
Figure 4. The molecule has a computed dipole moment
of 31.8 D.

In a second application a computation of the affinity
of a putative ligand to a protein binding site is used as
the fitness function. The protein binding site used in
this application is the nonnucleoside binding pocket of
the protein reverse transcriptase from the human
immunodeficiency Virus 1 (HIV-RT). The inhibitory
strength of a ligand is expressed as an 1Cs value, which
is defined as that concentration of the ligand that gives
a 50% protection against HIV-induced cytopathogenic-
ity. The CCs value is the 50% cytotoxic concentration,
which is that concentration of the ligand that causes
half the cells to die. These values are measured spec-
trophotometrically based upon the reduction of yellow-
colored 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide by mitochondrial dehydrogenases of
metabolically active cells to a blue formazan in HIV-
and mock-infected MT-4 cell cultures.*®

The fitness function is an activity computation based
on a benchmark set of 34 highly active ligands. The
fitness function yields the plCsp value for an arbitrary
molecule from its computed binding energy to HIV-RT.
The computation involves the docking of all conformers
up to 4 kcal/mol from a genetic algorithm based con-
formation analysis. The docking is done with an in-
house written algorithm, that uses a combined Monte
Carlo and simulated annealing search on a grid. It
computes the docking energy as the sum of the van der
Waals, Coulomb and hydrogen bond interactions be-
tween the ligand and the protein. The protein is kept
rigid during the docking of the set of low energy
conformers, while the smoothness of the potential
energy function is decreased from a 4—8 to a 6—12
potential. The energetically most favorable complex is,
after minimization, used to compute the plCsy value.
This value is computed from the sum of nonbonded
interaction energies between the molecule and a set of
relevant residues. The set of relevant residues was
obtained by determining the best correlating set in a
linear fit to the experimentally observed plCsy values
of the 34 highly active compounds, which had an r? of
0.96 (data not shown). This computation takes on
average 60 min per molecule per processor. While this
computation was used as fitness function to drive the
generation of molecules in SYNOPSIS, an alternative
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model for calculating an arbitrary molecule’s plCso value
against HIV was developed. This involved a much larger
set of ligands with a much larger spread in experimen-
tally determined ICs values. The steps of the computa-
tion remain essentially the same, except that not just
the energetically most favorable complex is taken into
account, but a range of complexes. The extent to which
the different complexes contribute to the activity is
given by the Boltzmann weights derived from the total
interaction energy between the molecule and the target
protein. Using multiple complexes roughly quadruples
the calculation time. From a benchmark of 2021 mol-
ecules with known experimental 1Csg values, 1521 were
used to determine the set of relevant residues and 500
to validate the method. From this validation set 67% is
correctly predicted, where correctly means to within
plus or minus one log unit of the experimentally
observed plCso value. The 165 molecules from the
validation set that are not correctly predicted can be
subdivided in a set of 46 false negatives, i.e., predicted
plCso value more than one log unit lower than the
experimental value, and a set of 119 false positives, i.e.,
predicted plCsp value more than 1 log unit higher than
the experimental value. The more elaborate computa-
tion was not used in the generation of the designed
molecules, it was used a posteriori to compare the
predicted values for the final designed molecules; these
results will also be given. This computation will be
referred to as ‘Model 2’ and the former as ‘Model 1'.

SYNOPSIS was run a number of times with different
random seeds. From these runs molecules out of the top
25 were selected to be synthesized. The candidates were
selected based on the following considerations: candi-
dates must be chemically diverse and different from
known nonnucleoside reverse transcriptase inhibitors,
suggested synthesis route involves only a few steps
(preferably just one step), and the suggested synthesis
steps are deemed feasible by an organic chemist. This
application resulted in the selection of 28 different
designs and the effective synthesis of 18 molecules. The
ICs0 and CCsp values of the 18 molecules whose syn-
thesis succeeded were experimentally determined. Table
1 gives an overview of the results; the structures of the
molecules are shown in Figure 5.

When the second column in Table 1 states app, the
synthesis route followed is approximately the same as
the route followed by SYNOPSIS. If the suggestion from
SYNOPSIS was substituting a chlorine atom and in
practice this was done on a fluorine atom, that would
count as approximately the same. Also when the sug-
gested route involved the coupling of a functional group
A on reactant 1 and a functional group B on reactant 2
and the actual synthesis route followed proceeded by
coupling functional group A on reactant 2 and functional
group B on reactant 1, app is stated. In some cases a
different synthesis route was followed altogether. This
might be because a starting material or an analogue
thereof was not available, or—more often—that the
suggested synthesis route was deemed not to be the best
in terms of simplicity, price, or chance of success by the
synthesis laboratory. When the third column in Table
1 indicates chem or comp, the synthesis did succeed, but
the actual synthesized molecule is not exactly the same
as the designed one, but a closely related analogue. The
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Table 1. Experimental Results of the Designed Inhibitors in Chronological Order?

molecule no.  route followed synthesis succeeded model 1 pICsp model 2 pICsp  observed plCso  observed pCCso class
1 yes yes 5.6 5.0 4.9 <4.0 active
2 app chem 6.4 7.3 <4.4 4.4 toxic
3 yes no 8.4 4.5
4 yes yes 8.2 5.3 4.1 <4.0 active
5 yes yes 8.4 7.5 <4.3 4.3 toxic
6 app yes 8.2 6.2 4.6 <4.0 active
7 yes yes 8.3 5.5 4.8 <4.3 active
8 yes yes 8.0 7.5 <4.0 <4.0 inactive
9 yes chem 8.0 3.4 <4.0 <4.0 inactive
10 no yes 8.1 5.7 4.5 <4.0 active
11 yes yes 9.6 5.3 <4.0 <4.0 inactive
12 app no 8.2 6.9
13 yes yes 8.1 9.3 <5.1 5.1 toxic
14 yes yes 8.4 8.0 <4.3 4.3 toxic
15 app no 8.2 4.2
16 app yes 8.1 6.1 4.4 <4.0 active
17 app no 8.0 7.4
18 no no 8.7 5.6
19 yes chem 9.8 5.9 <4.0 <4.0 inactive
20 yes no 8.1 8.3
21 app no 8.0 7.2
22 app no 8.2 6.6
23 app comp 8.8 7.0 7.0 <4.0 active
24 app no 8.2 6.8
25 yes comp 8.5 5.9 5.8 4.3 active
26 yes no 8.0 4.9
27 no chem 8.7 8.0 5.2 <4.0 active
28 no comp 9.3 7.8 5.6 <4.0 active

a8 The corresponding molecular structures are depicted in Figure 5. In the second column, app means the actual synthesis route was
slightly modified. In the third column, chem means designed molecule was slightly modified for reasons of synthesis and comp means
designed molecule was slightly modified after additional computations. The next two columns show the outcome of the pICso computation.
Model 1 was used in the design process and Model 2 serves for comparison. The observed plCsy and pCCsg values were determined in a
cellular HIV inhibition assay.*® The final column indicates active if the pICsp is higher than 4 and higher than the pCCso, toxic if the
pCCsp is higher than 4 and higher than the plCsp, and inactive if both the pCCsy and the pICsp are less than 4.

label chem signifies that the decision to synthesize an
analogue instead of the original molecule resulted from
synthetic chemical considerations (e.g., enabling cheap
or readily available starting materials instead of ex-
pensive or rare ones). The label comp means that the
decision to synthesize an analogue sprung from reasons
of computational origin (traditional optimization with

computational chemistry leading to improved variants).
The column headed ‘Model 1' gives the results of the
plCso computation that was used as fitness function.
The result in cases where an analogue was made
because of synthetic chemical considerations applies to
the original designed molecule. The column headed
‘Model 2’ gives the results of the extended computation
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Figure 5. Structures of the molecules from Table 1. The structure of compound 23 is not disclosed.

as described earlier. The next two columns give the
experimentally determined values for the plCso and
pCCso. The final column classifies a molecule as active
if the experimental plCsg is higher than 4 and higher
than the pCCsy, toxic if the pCCs is higher than 4 and
higher than the pICsp, and inactive if both the plCsy and
pCCsq are less than 4.

From Table 1 and Figure 6 it can be seen that 28
designed molecules resulted in 18 synthesized mol-
ecules. The set of 10 molecules that could not be
synthesized in a reasonable timespan despite the ex-
pectations of an organic chemist otherwise amounts to
36%. From the set of 18 synthesized and experimentally
tested molecules, 10 showed inhibitory activity, four
were cytotoxic, and four molecules were inactive.

So 56% of the synthesized molecules proved to be
active in vitro below the 100 uM level, which compares
favorably to results from a typical HTS experiment>
and also to results from a biased HTS experiment.>! The

activity of the four molecules which caused the cells to
die can be classified as unknown. If one had a compu-
tational model predicting cellular toxicity, one could
include this in the fitness function to prevent creation
of such compounds.

The fact that 22% of the molecules were inactive,
illustrates that the plCsy computation is not perfect.
Furthermore all tested compounds had high computed
plCso values and showed only weak to moderate activity
in the experiment. The extended computation (‘Model
2') performs better in calculating the experimental plCsg
value, although even this computation is not as reliable
as one would wish. A more rigorous test of this model
would be to repeat the design process with this compu-
tation as fitness function. A number of reasons can be
thought of to explain the discrepancies between the
computed and experimental values. First of all, the
plCso computation is set up using only measurably
active molecules. The molecules in the benchmark may
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Figure 6. An overview of the experimental results. The numbers in the left pie indicate the number of steps involved in the

synthesis.

have some features necessary to account for their
activity in common. If that is the case, there is no need
for the model to incorporate these features to reproduce
the activities. An indication of the presence of this effect
can be found in the better performance of the extended
computation, where not only highly active but also
weakly active molecules were included in the bench-
mark. One could consider including completely inactive
molecules in setting up the plCso computation; however,
this might obscure matters since the cause of the
inactivity is unkown. Experimentally, the 1Cso value is
a whole cell measurement. Some molecules possess
inhibitory activity which does not show up in the assay
because the molecule never reaches the interior of the
cell. Since cell penetration is not part of the model as
is, these molecules will turn out as a false positive in
the computation. For a few of the false positives from
the benchmark this phenomenon has been confirmed
by comparison of whole cell and enzyme activities. The
cell penetration uncertainty can be avoided by direct
optimization of binding constants instead of 1Csp values,
at the cost of having to resolve any problems with cell
penetration later on. The plCsy computation assumes
that the inhibitory activity of a molecule results from
binding to the nonnucleoside binding pocket of HIV-RT.
Consequently, the activity of a molecule that binds to a
different site of the HIV-RT protein or a different
protein altogether cannot be expected to be accurately
computed. If the molecule binds to a protein without
inhibiting HIV, its activity most likely would be over-
estimated. Conversely, if the alternative binding of the
molecule does inhibit HIV, its activity will be underes-
timated. Examination of the false negatives from the
benchmark molecules showed at least two ligands that
are known nucleoside inhibitors of HIV, highly active
but deriving their activity from a different mechanism.
An incorrect activity computation would also result if a
molecule is broken down by any of the components in
the assay, whether reagents or cell enzymes. A last
source of error in the computation of a molecule’s pICsg
relates to chiral compounds. When confronted with a
chiral compound, the computation will assess the best
binding stereocisomer automatically and use that one to
calculate the activity. The designed molecules that are
chiral, seven in total, were synthesized as racemic
mixtures. Depending on the activity of the other stere-
oisomer, the error in the computed activity will be
between 0 and 0.3.

Despite the noted limitations, a range of simple
molecules is generated with an extremely high propor-
tion of active lead®? compounds compared to other
methods of lead finding or generating. This demon-
strates the merits of SYNOPSIS in drug discovery.

Conclusions

We have developed a computer program SYNOPSIS.
This program, provided with a method to calculate a
property of interest, generates synthetically feasible
molecules with as much of the desired property as
possible while remaining within synthetic constraints.
We have used SYNOPSIS in conjunction with a com-
putation of plICsg values for putative ligands binding to
HIV reverse transcriptase. This has proven its value in
computational drug design: 18 of the 28 designed
molecules could readily be synthesized, and 10 of the
synthesized molecules showed HIV inhibitory activity
in vitro.
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