Design and Synthesis of Pyrrolidine-5,5'trans-Lactams (5-Oxo-hexahydropyrrolo[3,2-b]pyrroles) as Novel Mechanism-Based Inhibitors of Human Cytomegalovirus Protease. 4. Antiviral Activity and Plasma Stability

Alan D. Borthwick,*,† Dave E. Davies, ${ }^{\dagger}$ Peter F. Ertl, \ddagger Anne M. Exall, ${ }^{\dagger}$ Terry M. Haley, ${ }^{\S}$ Graham J. Hart," Deborah L. J ackson, ${ }^{\dagger}$ Nigel R. Parry, ${ }^{\perp}$ Angela Patikis, ${ }^{\#}$ Naimisha Trivedi, ${ }^{\dagger}$ Gordon G. Weingarten, ${ }^{\dagger}$ and J ames M. Woolven§
Department of Medicinal Chemistry CVU UK, Department of M olecular Immunology, Department of Biomolecular Structure, Department of Enzyme Pharmacology, and Department of Virology, GlaxoSmithKline Research and Development, Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom

Received February 13, 2003
A series of chiral, (S)-proline- α-methylpyrrolidine-5,5-trans-lactam serine protease inhibitors has been developed as antivirals of human cytomegalovirus (HCMV). The SAR of the functionality on the proline nitrogen has shown that derivatives of para-substituted phenyl ureas > para-substituted phenyl sulfonamides > para-substituted phenyl carboxamide for activity against HCMV δ Ala protease, producing para-substituted phenyl ureas with single figure $n M$ potency $\left(K_{i}\right)$ against the viral enzyme. The SAR of the functionality on the lactam nitrogen has defined the steric and electronic requirements for high human plasma stability while retaining good activity against HCMV protease. The combination of high potency against HCMV δ Ala protease and high human plasma stability has produced compounds with significant in vitro antiviral activity against human cytomegal ovirus with the 6-hydroxymethyl benzothiazole derivative $\mathbf{7 2}$ being equivalent in potency to ganciclovir. The parent benzothiazole 56 had good pharmacokinetics in dogs with 29% bioavailability and good brain and ocular penetration in guinea pigs.

I ntroduction

Human herpes viruses cause a range of diseases: HSV-1 (cold sores), HSV-2 (genital herpes), VZV (chicken pox, shingles), and HCMV (retinitis, pneumonitis). The current treatment of these diseases uses nucleoside (acyclovir, ganciclovir) and phosphate (PFA) substrate analogues. Because of the toxicity associated with PFA and ganciclovir, together with the emergence of mutants resistant to acyclovir, there is a need for a new class of antiherpes compounds based on a novel mechanism.

Human herpes viruses encode a serine protease, which is essential for viral replication. ${ }^{1}$ Recent X-ray structures of the serine proteases of HCMV, HSV-1, HSV-2, and VZV revealed that these enzymes belong to a novel class of serine proteases where the active site is composed of the His, His, Ser triad. ${ }^{3-6}$ Substrate cleavage sites across all the herpes virus family are unique and highly conserved, and these enzymes have become attractive molecular targets for the design of novel antiviral drugs. ${ }^{1,2}$ We recently reported on the design and synthesis of a novel class of mechanism based inhibitors of human cytomegalovirus protease, ${ }^{7-9,14}$ based on the α-methylpyrrolidine-5,5'-trans-lactam template incorporating the natural substrate requirements of the consensus sequence of HCMV protease (Scheme 1). Mechanism of action studies using ESI-MS together

[^0]with enzymatic degradation of the acylated HCMV protease showed that these inhibitors acylate HCMV protease at the active site serine (Ser 132) in a timedependent and reversible manner. ${ }^{9}$ SAR in this series of α-methylpyrrolidine-5,5'-trans-Iactam has defined the size, the relative stereochemisty of the substituent adjacent to the Iactam carbonyl, and its chirality. Optimization of the acyl function on the lactam nitrogen has extended the substitution pattern on the Iactam nitrogen for activity against HCMV δ Ala protease to CO-cyclopropyl $>\mathrm{COMe}>\mathrm{CO} 2 \mathrm{Me}>\mathrm{SO} 2 \mathrm{Me}>\mathrm{CON}-$ HMe. Optimization of the functionality on the pyrrolidine nitrogen gave the highly potent dansyl-S-proline derivatives 1 and 2, with K_{i} 's in the low nanomolar range against HCMV δ Ala protease, which are highly selective over the mammalian enzymes elastase, thrombin and acetylchol ine esterase. ${ }^{9}$ H owever, they were not stable to human plasma. ${ }^{14}$ We now report on work to define further the requirements of the substituent on the pyrrolidine nitrogen that accesses the S4 pocket, and on work to exploit the functionality on the Iactam nitrogen of this template to give stability in human plasma and whol ecell antiviral activity. This has given plasma stable inhibitors with low nanomolar potency against the HCMV δ Ala protease and antiviral activity equivalent to gancidovir in whole cells.

Chemistry

We reported previously ${ }^{9}$ that a dansyl-S-proline group on the pyrrolidine nitrogen and a cyclopropyl- or methylcarbonyl function on the lactam nitrogen was optimal for maximum potency in the novel chiral pyrrolidine-5,5'-trans-Iactam inhibitors (1 and $\mathbf{2}$) of HCMV protease (Scheme 1). To investigate further the potency require-

Scheme 1

Scheme $\mathbf{2 a}^{\text {a }}$

${ }^{\text {a }}$ Reagents and conditions: TFA, $1 \mathrm{~h}, \mathrm{RT}$; (b) LHMDS (1.4eq)/THF, $-78{ }^{\circ} \mathrm{C}$ then cyclopropyICOCI; (c) $10 \% \mathrm{Pd} / \mathrm{C}$ (Degussa, $50 \% \mathrm{H}_{2} \mathrm{O}$), isoPrOH, 2 h, RT, then HCl (1.1eq) Et $\mathrm{E}_{2} \mathrm{O}$; (d) Cbz-(S)-proline, TBTU, HOBT, $\mathrm{Pr}_{2} \mathrm{EtN}, \mathrm{DMF}, \mathrm{RT}$; (e) Boc anhydride (1.3eq)/ $10 \% \mathrm{Pd} / \mathrm{C}$ (Degussa, $50 \% \mathrm{H}_{2} \mathrm{O}$), isoPrOH, $2 \mathrm{~h}, \mathrm{RT}$.
ments of substituents on the pyrrolidine nitrogen and the carbonyl function on the lactam nitrogen, the chiral intermediates 8 and 12 were prepared as outlined in Scheme 2.

Deprotection of $\mathbf{3}$ with TFA followed by acylation of 4 with cyclopropyl carbonyl chloride gave the chiral (cyclopropyl) trans-lactam 5 in 65\% overall yield. Hydrogenolysis of 5 with hydrogen in the presence of palladium gave the amine 6 in 74% yield, which was coupled with Cbz-(S)-proline using O-benzotriazol-1-yl$\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$,-tetramethyluronium tetrafluoroborate/1-hydroxybenzotriazole (TBTU/HOBT) in DMF at room temperature to give the protected prolyl trans-Iactam
7. This, on further hydrogenolysis, gave the amine $\mathbf{8}$ in 87% overall yield. Similarly hydrogenolysis of $\mathbf{3}$ with hydrogen in the presence of palladium gave 9 in 93\% yield, which was coupled with Cbz-(S)-proline using TBTU/HOBT at room temperature to give protected prolyl trans-lactam $\mathbf{1 0}$ in 88\% yield. Deprotection of $\mathbf{1 0}$ with trifluoroacetic acid gave the lactam 11 in 98% yield, which on hydrogenolysis in the presence of di-tert-butyl di carbonate gave the Boc-protected prolyl trans-Iactam 12 in 90\% yield.

Exploration of the substituents on the proline nitrogen has been done with a variety of linkers, namely, sulfonamide, amide, and urea (Scheme 3). The sulfona-

Scheme 3^{a}

24 RPh = 3-Me-5-Cl-Benzothien-2-yl
$25 \mathrm{R}=\mathrm{Ph}-$
$26 \mathrm{R}=\mathrm{Me}_{2} \mathrm{CH}-$
$27 \mathrm{R}=\mathrm{MeCH}_{2} \mathrm{CH}_{2} \mathrm{O}-$
28 RPh = Naphth-1-yl
$29 \mathrm{R}=\mathrm{Cl}$
$1 \mathrm{R}=5-\mathrm{NMe}_{2}$ Naphth-1-yl
$14 \mathrm{R}=6-\mathrm{NMe}_{2}$ Naphth $-1-\mathrm{yl}$
$15 \mathrm{R}=$ Naphth $-1-\mathrm{yl}$
$16 \mathrm{R}=$ Naphth-2-yl
$17 \mathrm{R}=\mathrm{PhCH}_{2}$
$18 \mathrm{R}=\mathrm{Ph}$
$19 \mathrm{R}=4-\mathrm{Cl}-\mathrm{Ph}$
$20 \mathrm{R}=4-\mathrm{Me}_{2} \mathrm{CH}-\mathrm{Ph}$
$21 \mathrm{R}=4-\mathrm{Me}_{2} \mathrm{CHO}-\mathrm{Ph}$
$22 \mathrm{R}=3-\mathrm{Me}_{2} \mathrm{CHO}-\mathrm{Ph}$
$23 \mathrm{R}=4-\mathrm{MeCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\mathrm{Ph}$

$30 \mathrm{R}=\mathrm{Me}_{2} \mathrm{CH}$
$31 \mathrm{R}=\mathrm{MeCH}_{2} \mathrm{CH}_{2} \mathrm{O}$

$13 \mathrm{R}=5-\mathrm{NMe}_{2}$ Naphth-1-y
$32 \mathrm{R}=\mathrm{CF}_{3}$
$33 \mathrm{R}=\mathrm{Me}_{2} \mathrm{CHO}$
$34 \mathrm{R}=\mathrm{Cl}$
$35 \mathrm{RPh}=$ Naphth $-1-\mathrm{yl}$
$36 \mathrm{R}=2-\mathrm{Me}_{2} \mathrm{CH}-$
$37 \mathrm{R}=3-\mathrm{CF}_{3}$
$38 \mathrm{R}=3-\mathrm{Cl}$
$39 \mathrm{R}=\mathrm{H}$
${ }^{\text {a }}$ Reagents and conditions: (a) $\mathrm{RSO}_{2} \mathrm{Cl}$, (1.1-1.5eq), $\mathrm{Et} \mathrm{t}_{3} \mathrm{~N}, \mathrm{MeCN}, \mathrm{RT}$; (b) $\mathrm{RCO} \mathrm{CO}_{2} \mathrm{H}, \mathrm{TBTU}, \mathrm{HOBT}$, $\mathrm{iPr}_{2} \mathrm{EtN}, \mathrm{DMF}, \mathrm{RT}$; (c) PhNMeCOCI , $E t_{3} N, M e C N, R T$; (d) $R N=C=O, E t_{3} N, M e C N, R T$.
mides 1 and 14-23 were prepared by reacting the proline 8 with the corresponding sulfonyl chloride at RT in the presence of triethylamine. Similarly 13 was prepared from the ethyl analogue of 8. ${ }^{13}$ Sulfonyl chlorides that were not commercially available were prepared by diazotisation of the corresponding aniline in the presence of SO_{2} and $\mathrm{CuCl},{ }^{10}$ or by reaction of the sulfonic acid with triphosgene. ${ }^{11}$ The reaction of proline 8 with the corresponding aromatic acids in the presence of TBTU/HOBT at room temperature gave the amides 24-29. The ureas 30-39 were prepared by reacting 8 with the corresponding isocyanides, while the N-methylated urea $\mathbf{4 0}$ was prepared in 79\% yield by reacting 8 with N-methyl-N-phenylcarbamoyl chloride in the presence of triethylamine.

The cyclopropyl derivatives (Scheme 4) were prepared by acylating the anions of the lactam 4 and lactam 12 with cydlopropyl carbonyl chloride or the corresponding mixed anhydride. Acylation of the anion of the chiral

Iactam 4 with (c-2, c-3-dimethyl cycl opropyl-r-1-carboxylic) anhydride gave the dimethylcyclopropanyl derivative $\mathbf{4 1}$ in 96% yield. Deprotection of $\mathbf{4 1}$ with hydrogen in the presence of 10% of palladium on carbon gave the amine 42 in 92% yield, which was then coupled with Cbz-(S)-proline to give the protected proline 43 in 70\% yield. Deprotection of $\mathbf{4 3}$ with hydrogen in the presence of 10% of palladium on carbon gave the amine 44 in 96% yield, which was reacted with 4-(isopropyl)phenyl isocyanate in the presence of triethylamine to give the urea 45 in 47\% yield. A similar sequence of reactions starting from 4 and (t-2, t-3-dimethylcyclopropyl-r-1carboxylic) anhydride gave the t-2, t-3-dimethylcyclo-propyl-r-1-carbonyl derivative urea $46 .{ }^{15}$ Similarly reaction of the Boc protected lactam 12 with tetramethylcyclopropanecarboxylic anhydride gave 47 in 68% yield, which was carried through to the urea 51 via the proline 49 in a manner similar to 45 (Scheme 4). Reaction of the Iactam 12 with 4-nitrobromobenzene under Cu

Scheme $4^{\text {a }}$

$49 \mathrm{R}=$

$50 \mathrm{R}=$

 isoPrOH, $2 \mathrm{~h}, \mathrm{RT}$, then HCl (1.1eq) $\mathrm{Et}_{2} \mathrm{O}$; (c) Cbz-(S)-proline, TBTU, HOBT , ' $\mathrm{Pr}_{2} \mathrm{EtN}$, DMF, RT ; (d) $4-\mathrm{Me} \mathrm{ClHC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{C}=\mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}$, RT; (e) LHMDS (1.4eq)/THF, $-78^{\circ} \mathrm{C}$ then (tetraM ecyclopropylCO)(Me3CO)O or CuCl, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{TDA}-1, \mathrm{pNO}_{2} \mathrm{PhBr}$, pXylene; (f) TFA, 1 h , RT;
catalysis using modified Goldberg conditions ${ }^{16}$ ($\mathrm{CuCl} /$ TDA- $1 / \mathrm{K}_{2} \mathrm{CO}_{3} / x y l e n e / \Delta$) gave the N -aryl lactam 48 in 65% yield. Similarly 53 and 54 were prepared (Scheme 5) in 37\% and 47\% yield, respectively, by reacting 12 with 2-bromothiazole and 2-bromobenzothiazole. Deprotection of 48 with trifluoroacetic acid gave the amine 50 in quantitative yield, which reacted with 4-(isopropyl)phenyl isocyanate to give the urea 52 in 49% yield.

Similarly deprotection of 53 and 54 with trifluoroacetic acid gave 55 and 56 in 87% and 85% yield, respectively.

The substituted benzothiazole derivatives 58-71 were prepared by reacting lactam 12 with the corresponding substituted bromobenzothiazole 57 under Cu catalysis using modified Goldberg conditions. ${ }^{16}$ Deprotection of 58-71 with trifluoroacetic acid and reaction of the resulting prolines with 4 -(isopropyl)phenyl isocyanate

Scheme 5^{a}

53
12
57

	$\mathrm{R}=$
56 H	
72	$6-\mathrm{CH}_{2} \mathrm{OH}$
73	$4-\mathrm{MeO}$
74	$5-\mathrm{Cl}$
75	$6-\mathrm{MeO}-7-\mathrm{aza}$
76	$4-\mathrm{MeO}-7-\mathrm{Me}$
77	$6-\mathrm{MeO}$
78	$4-\mathrm{Cl}$
79	$5-\mathrm{MeO}^{2}$
80	$5-\mathrm{SO}_{2} \mathrm{CHF}_{2}$
81	$6-\mathrm{NO}_{2}$
82	$6-\mathrm{OCF}_{3}$
83	$6-\mathrm{F}$
84	$6-\mathrm{CO}_{2} \mathrm{Et}$
85	$7-\mathrm{aza}^{2}$

	$\mathrm{R}=$
54	H
58	$6-\mathrm{CH}_{2} \mathrm{OTBDPS}$
59	$4-\mathrm{MeO}$
60	$5-\mathrm{Cl}$
61	$6-\mathrm{MeO}-7-\mathrm{aza}$
62	$4-\mathrm{MeO}-7-\mathrm{Me}$
63	$6-\mathrm{MeO}$
64	$4-\mathrm{Cl}$
65	$5-\mathrm{MeO}^{2}$
66	$5-\mathrm{SO}_{2} \mathrm{CHF}_{2}$
67	$6-\mathrm{NO}_{2}$
68	$6-\mathrm{OCF}_{3}$
69	$6-\mathrm{F}_{3}$
70	$6-\mathrm{CO}_{2} \mathrm{Et}$
71	$7-\mathrm{aza}^{2}$

a Reagents and conditions: (a) $\mathrm{CuCl}, 2$-bromoheterocycle, TDA-1, $\mathrm{K}_{2} \mathrm{CO}_{3}$, xylene, Δ; (b) TFA, then $4-\mathrm{Me} \mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NCO}, \mathrm{Et} 3 \mathrm{~N}, \mathrm{MeCN}$, RT.
in the presence of triethylamine gave the corresponding ureas 72-85 (Scheme 5).

Results and Discussions

Functionalization at the Pyrrolidine Nitrogen. Previously we had shown that the conformationally restricted, chiral, dansyl-S-proline α-methyl- 5 , 5^{\prime}-transIactam $\mathbf{1}\left(\mathrm{K}_{\mathrm{i}}=20 \mathrm{nM}\right)($ Table 1$)$ had high potency against human cytomegal ovirus (HCMV) protease. ${ }^{9}$ To reduce the overall molecular weight, the first part of our lead exploration focused on whether the bicydic ring and the dimethylamino functionality of the dansyl group are essential for activity. Removal of the $5-\mathrm{NMe}_{2}$ group to give the unsubstituted 1-naphthyl derivative $\mathbf{1 5}$ ($\mathrm{K}_{\mathrm{i}}=$ 60 nM) caused a loss in potency, and no improvement was obtained with the unsubstituted 2-naphthyl derivative $\mathbf{1 6}\left(K_{i}=40 n M\right)$. Moving the NMe_{2} group to the 6 -position $\mathbf{1 4}$ caused a larger loss in potency, indicating that this group is not tolerated an this position. Removal
of either ring from the unsubstituted 1-naphthyl derivative $\mathbf{1 5}\left(\mathrm{K}_{\mathrm{i}}=60 \mathrm{nM}\right)$ to give the phenyl derivative $\mathbf{1 8}$ or the benzyl anal ogue $\mathbf{1 7}$ caused a large loss of potency. However, modeling indicated that the space occupied by the $5-\mathrm{NMe}_{2}$ on the naphthalene ring could be occupied by 4 -substitution of a monocyclic phenyl ring. It was found that additional binding could be gained by having a medium-sized, hydrophobic group at this position, illustrated by the greater potency of the 4-isopropyl $\mathbf{2 0}$ over the unsubstituted phenyl derivative 18 (Table 1). Also the 4-isopropoxy 21 ($\mathrm{K}_{\mathrm{i}}=39 \mathrm{nM}$) was equivalent in terms of potency to the 2 -naphthalene derivative $16\left(K_{i}=40 n M\right)$. However, moving the isopropoxy group to the 3-position $\mathbf{2 2}$ caused a large loss in activity, while the 4 -propoxy 23 ($\mathrm{K}_{\mathrm{i}}=33 \mathrm{nM}$) ilIustrates that for high potency, it is not essential to have the fused bicyclic ring that is present in the lead dansylproline derivative $\mathbf{1}$. Hence, increasing the size of the 4-substitutent increased potency in the order H $<\mathrm{Me}_{2} \mathrm{CH}<\mathrm{Me}_{2} \mathrm{CHO} \equiv \mathrm{MeCH}_{2} \mathrm{CH}_{2} \mathrm{O}$.

Table 1. Pyrrolidine-5, 5'-trans-Lactam Sulfonamide Inhibitors of HCMV Protease

compd	R	HCMV protease ${ }^{\text {a }}$	
		$\mathrm{IC}_{50}(\mu \mathrm{M})^{17}$	$\mathrm{K}_{\mathrm{i}}(\mathrm{nM})^{17}$
1	5-NMe2-naphth-1-yl	0.34	20
14	6-NMe2-naphth-1-yl	1.1	
15	naphth-1-yl	0.37	60
16	naphth-2-yl	<0.19	40
17	$\mathrm{PhCH}_{2}-$	2.1	
18	$\mathrm{Ph}-$	1.8	
19	$4-\mathrm{Cl}-\mathrm{Ph}-$	0.84	
20	$4-\mathrm{Me} 2 \mathrm{CH}-\mathrm{Ph}-$	0.46	99
21	$4-\mathrm{Me} 2 \mathrm{CHO}-\mathrm{Ph}-$	0.40	39
22	$3-\mathrm{Me} 2 \mathrm{CHO}-\mathrm{Ph}-$	65	
23	$4-\mathrm{MeCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\mathrm{Ph}-$	0.23	33

${ }^{\text {a }} \mathrm{HCMV}$ pNA assay. ${ }^{9}$
Table 2. Pyrrolidine-5,5'-trans-Lactam Carboxamide Inhibitors of HCMV Protease

		$\mathrm{HCMV} \mathrm{protease}^{\mathrm{a}}$	
compd	R	$\mathrm{IC}_{50}(\mu \mathrm{M})^{17}$	$\mathrm{~K}_{\mathrm{i}}(\mathrm{nM})^{17}$
$\mathbf{2 4}$	5-Cl-3-Me-	0.19	2
	benzothien-2-yl	0.30	21
$\mathbf{2 5}$	4-Ph-Ph-	0.39	
$\mathbf{2 6}$	4-Me2CH-Ph-	0.54	79
$\mathbf{2 7}$	4-MeCH ${ }_{2} \mathrm{CH}_{2} \mathrm{O}-\mathrm{Ph}-$	0.89	
$\mathbf{2 8}$	naphth-1-yl	1.4	
$\mathbf{2 9}$	4-Cl-Ph-		

${ }^{\text {a }}$ HCMV pNA assay. ${ }^{9}$
Having achieved potency with monocyclic sulfonamides, we investigated changing the linker to carboxamide. In general the monocyclic carboxamide (Table 2) were less active than the monocyclic sulfonamides. This is possibly due to a shorter linker between the proline and aromatic rings preventing access of the latter into the hydrophobic binding pocket thought to be necessary for activity. This can be seen by comparing the 4-chlorophenyl, the naphth-1-yl, and 4-propoxyphenyl derivatives 29, 28, and 27 of the carboxamide (Table 2) with the corresponding derivatives in the sulfonamide series 19, 15, and 23 (Table 1), the exception being the isopropyl derivatives 20 and 26, which have similar potency. The lower activity of the carboxamide could be overcome by increasing the lipophilic bulk around the aromatic group, as illustrated to the larger 5-chloro-3-methyl-benzothienyl-2-carboxamide derivative 24.

We further investigated extending the length of the linker by changing from carboxamide and sulfonamide to urea in the monocyclic series in an effort to increase potency. In general the monocyclic ureas (Table 3) were more active than the carboxamide and sulfonamides, possibly due to the longer linker between the proline and aromatic rings allowing further access of the latter into the hydrophobic binding pocket.

Table 3. Pyrrolidine-5,5'-trans-Lactam Urea Inhibitors of HCMV Protease

compd	R	HCMV protease ${ }^{\text {a }}$	
		$\mathrm{IC}_{50}(\mu \mathrm{M})^{17}$	$\mathrm{K}_{\mathrm{i}}(\mathrm{nM})^{17}$
30	4-Me2CH-Ph-	0.20	2
31	4-MeCH2CH2O-Ph-	0.21	9
32	$4-\mathrm{CF}_{3}-\mathrm{Ph}-$	0.23	15
33	$4-\mathrm{Me} 2 \mathrm{CHO}-\mathrm{Ph}-$	0.18	18
34	4-Cl-Ph-	0.26	38
35	naphth-1-yl	0.65	
36	2-Me2CH-Ph-	0.47	
37	$3-\mathrm{CF}_{3}-\mathrm{Ph}-$	0.59	
38	$3-\mathrm{Cl}-\mathrm{Ph}-$	0.65	
39	Ph-	1.4	

a HCMV pNA assay. ${ }^{9}$
Removing the second ring in the 1-naphthyl derivative 35 to give the phenyl derivative 39 resulted in a loss in potency; however, compounds with increased potency relative to the 1-naphthyl derivative 35 could be obtained by increasing the size of the 4-substituent in the phenyl series as shown by moving from the chloro derivative $34\left(\mathrm{~K}_{\mathrm{i}}=38 \mathrm{nM}\right)$ to the trifluoromethyl derivative $32\left(\mathrm{~K}_{\mathrm{i}}=15 \mathrm{nM}\right)$ to the n-propoxy derivative $31\left(\mathrm{~K}_{\mathrm{i}}\right.$ $=9 n M)$ to the isopropyl derivative $30\left(K_{i}=2 n M\right)$. Moving the chloro substituent in 34 and trifluoromethyl substituent in 32 to the 3 positions in 38 and 37 , respectively, caused a loss of activity, as did moving the isopropyl substituent in $\mathbf{3 0}$ to the 2 position in 36.

Compared to the dansylproline series, the 4-substituted phenyl ureas have two advantages, reduced molecular weight and increased solubility. The SAR established for inhibition of HCMV protease have shown that in the substituted proline trans-lactams, the 4-substituted phenyl ureas > 4-substituted phenyl sulfonamides > 4-substituted phenyl carboxamides in terms of potency (Table 4).

Generally, the urea series looked the most promising, with $\mathbf{3 0}$ showing the highest potency against the enzyme $\left(\mathrm{IC}_{50}=0.2 \mu \mathrm{M}, \mathrm{K}_{\mathrm{i}}=2 \mathrm{nM}\right)$ (Table 3). It is noteworthy that when 30 was assayed with 0 min as well as the normal 15 min preincubation time the IC_{50} values in the pNA assay were closely similar $(0.24 \mu \mathrm{M}$ and $0.20 \mu \mathrm{M}$ respectively), indicating rapid binding and inhibition of the enzyme. This has been confirmed by ESI-MS studies showing that the compound rapidly acylates HCMV protease, giving 90\% of the acyl-enzyme complex after 5 min , and remaining 58\% acylated after 24 h (Figure 1). This stability of the acyl-enzyme complex is higher than that of other cyclopropylcarbonyl trans-Iactams. ${ }^{14}$ Interestingly, methyl substitution on the urea nitrogen in $39\left(\mathrm{IC}_{50}=1.4 \mu \mathrm{M}\right)$ to give derivative 40 (Scheme 3) leads to a complete loss of activity $\left(\mathrm{IC}_{50}=>20 \mu \mathrm{M}\right)$. This could be due to an altered conformation of the rigid urea linker, or the methyl group could make an unfavorable contact with the enzyme.

Plasma Stability. The most potent monocyclic urea is the 4-isopropyl-phenyl urea 30, however it is unstable in human plasma ($\mathrm{t}_{1 / 2}<1 \mathrm{~h}$). Recently we have achieved

Figure 1. MS characterization of the acylation of $\mathrm{HCMV} \delta \mathrm{Al}$ a protease by α-methyl-pyrrolidine- $5,5^{\prime}$-trans-lactams.

Table 4. Variation in Potency of Pyrrolidine-5,5'-trans-Lactam Inhibitors of HCMV Protease with Aryl to Proline Ring Linkage

R	HCMV Protease ${ }^{\text {a }}$	X		
		NHCO	SO_{2}	CO
	$\mathrm{IC}_{50}(\mu \mathrm{M})^{17}$	0.26	0.84	1.4
	$K_{\text {i }}(\mathrm{nM})^{17}$	9	33	79

a HCMV pNA assay. ${ }^{9}$
success ${ }^{14}$ in increasing stability to human plasma, while retaining potency against HCMV protease, in the dansylproline series of α-methyl pyrrolidine- $5,5^{\prime}$-translactams. This strategy has been applied to the 4 -subtituted phenyl urea series (Table 5). Two approaches were pursued, one was to sterically hinder the approach of the hydrolytic plasma enzymes to the lactam carbonyl,
and the other was to make the lactam carbonyl less reactive by making the lactam nitrogen substituent less electron withdrawing. Substitution of the cyclopropyl ring with methyl groups increased the plasma stability of these acyl derivatives in the order cyclopropyl carbonyl < t-2, t-3-dimethylcydopropyl-r-1-carbonyl < c-2, c-3-dimethylcycl opropyl-r-1-carbonyl < 2,2,3,3-tetramethylcyclopropyl carbonyl. However, although the t-2, t -3-dimethylcydopropyl-r-1-carbonyl derivative 46 is slightly more stable ($\mathrm{t}_{1 / 2}=1.5 \mathrm{~h}$) than $\mathbf{3 0}$, it is significantly less active, whereas the tetramethyl cyclopropyl derivative 51, which is >16 times more stable, is considerably less active (>100 fold). A better balance is achieved with the c-2, c-3-dimethylcyd opropyl-r-1-carbonyl derivative 45 that is >6 times more stable than the cyclopropyl derivative $\mathbf{3 0}$ while retaining good potency. Replacing the cyd opropyl carbonyl substituent with an electron withdrawing aryl or heterocyclic ring dramatically increased stability to human plasma ($\mathrm{t}_{1 / 2}$ $>24 \mathrm{~h}$) in this series (Table 5). However, even though the 2-thiazole 55 is more potent than the 4 -nitrophenyl derivative 52, both are significantly less active than 30. In contrast, the benzothiazole 56 had comparable potency to $\mathbf{3 0}$ with a $\mathrm{K}_{\mathrm{i}}=10 \mathrm{nM}$. Although the thiazole

Table 5. Human Plasma Stability, Inhibition of HCMV Protease and HCMV Antiviral Activity of Chiral Pyrrolidine-5, 5'-trans-Lactam Analogues
50
${ }^{\text {a }}$ Tested in fresh human plasma $100 \mu \mathrm{M}^{14}$. ${ }^{\mathrm{b}} \mathrm{HCMV}$ pNA assay. ${ }^{9} \mathrm{C}$ HCMV Elisa assay (see experimental). d Vero cell cytotoxicity assay. ${ }^{12}$

Table 6. Selectivity of Pyrrolidine-5,5'-trans-Lactam Inhibitors for HCMV Protease Compared to Mammalian Serine Proteases

thrombin		acetylcholine esterase	elastase	HCMV protease ${ }^{\text {a }}$	
	$\mathrm{IC}_{50} \mu \mathrm{M}$	$1 \mathrm{C}_{50} \mu \mathrm{M}$	$1 \mathrm{C}_{50}(\mu \mathrm{M})$	IC50 $(\mu \mathrm{M})^{17}$	$\mathrm{K}_{\mathrm{i}}(\mathrm{nM})^{17}$
56	>200	> 100	> 10	0.18	10
45	>200	>100	>10	0.30	16

${ }^{\text {a }}$ HCMV pNA assay. ${ }^{9}$
and the benzothiazole groups havesimilar electron withdrawing properties, the greater potency of benzothiazole 56 compared to thiazole 55 is probably due to the greater hydrophobic contact of the former making a better fit in the S1'pocket (see Modeling section).

Selectivity and Mechanism of Action. The 4-isopropyl phenylurea-(S)-proline-trans-lactams 56 and 45 show selectivity for the viral HCMV protease (Table 6) over acetylcholine esterase and the mammalian proteases elastase and thrombin by at least 2 orders of magnitude, showing no significant activity against these enzymes at the concentrations tested.

MS Analysis of the Acylation of HCMV protease. Comparison of the plasma stability's of the compounds (Table5) with the rates at which the compounds acylate the enzyme and the rates at which the acyl-enzyme complexes are deacylated (Figure 1) enables the fol lowing general conclusions to be drawn.

Compounds that have poor plasma stability (e.g., 30) produce an acyl-enzyme that shows significant turn-
over during a 24 h incubation period. By contrast, compounds with greater plasma stability (e.g., 45, 51, and 56) generate acyl-enzymes that show no turnover in 24h.
Most compounds studied acylated the enzyme rapidly under the conditions used; acylation of the enzyme was normally complete within 5 min . However, the tetramethylated cyclopropylcarbonyl 51 acylated the enzyme much more slowly. Less than 5% of the enzyme was acylated within 30 min , and even after $4 \mathrm{~h} 25 \%$ was still unacylated, although by 24 h the enzyme was fully acylated. The reason for the slow acylation of HCMV protease by 51 has not been investigated further, but it may well be due to the presence of the four methyl groups sterically hindering the approach of the compound to the active site serine residue.
Antiviral Activity. Because HCMV cellular assays require 7 days to complete, plasma unstable compounds did not initially show antiviral activity. Studies have since shown that a modified ELISA technique(see experimental), delaying the single addition of compounds to 48 h post infection (hpi), is suitable for the titration of both stable and unstable trans-lactams for activity against HCMV. Parallel comparisons with plaque reduction assays ${ }^{12}$ yield similar IC_{50} values for stable trans-lactams, but not for the plasma labile analogue $\mathbf{1}$. The technique has the additional advantage of providing an exposure time of the cells to the drug equal to the Vero cytotoxicity assay. ${ }^{12}$ Of the five plasma

Table 7. Human Plasma Stability, Inhibition of HCMV Protease and HCMV Antiviral Activity of Chiral Pyrrolidine-5,5'-trans-Lactam Benzothiazole Analogues

compd	R	human plasma stability, ${ }^{a} \mathrm{t}_{1 / 2}(\mathrm{hr})$	HCMV protease ${ }^{\text {b }}$		$\begin{gathered} \mathrm{HCMV}^{\mathrm{c}} \text { strain } \\ \text { AD169 IC }{ }_{50}(\mu \mathrm{M}) \end{gathered}$	cytotoxicity ${ }^{d}$ $\mathrm{CCID}_{50}(\mu \mathrm{M})$
			$\begin{aligned} & \hline \mathrm{IC}_{50} \\ & (\mu \mathrm{M})^{17} \end{aligned}$	$\begin{gathered} \mathrm{K}_{\mathrm{i}} \\ (\mathrm{nM})^{17} \end{gathered}$		
56	H	>24	0.18	10	5	> 500
76	4-MeO-7-Me	>24	1.1		17.4 pl	126
78	$4-\mathrm{Cl}$		0.29	41	17.1	> 500
73	4-MeO		0.24	38	5.2	89
74	$5-\mathrm{Cl}$		0.46	27	49	266
80	$5-\mathrm{SO}_{2} \mathrm{CHF}_{2}$		0.21	10	2.2 pl	> 500
79	5-MeO		0.23	22	2.4 pl	> 500
83	6-F	>24	0.36	17	12.3	298
81	$6-\mathrm{NO}_{2}$	24	0.39	25	8.7	128
84	$6-\mathrm{CO}_{2} \mathrm{Et}$	9	0.35	7.4	5.1	> 500
82	$6-\mathrm{OCF}_{3}$	11	0.46	20	5.3	> 500
77	6-MeO	>24	0.22	43	3.2	> 500
72	$6-\mathrm{CH}_{2} \mathrm{OH}$	>20	0.31	40	0.52	125
85	7-aza	8	0.29	21	3.6	<31
75	6- MeO-7-aza	9	0.87	117	31 pl	> 500
	ganciclovir	-	-		0.72 pl	> 500

[^1] reduction assay. ${ }^{12}$ d Vero cell cytotoxicity assay. ${ }^{12}$
stable compounds 45, 51, 52, 55, and 56, (Table 5) only 45 and 56 had antiviral activity, showing that low nM potency against HCMV protease and sufficient plasma stability are required to obtain low $\mu \mathrm{M}$ activity against the virus in whole cells (Table 7). A variety of substituted benzothiazoles was prepared in an attempt to increase potency against the protease and antiviral activity. In general, potency against the HCMV protease is greater with electron-withdrawing groups and less with electron-donating groups; however, most derivatives were less active than the unsubstituted parent 56. Also replacing the benzothiazole in 56 by 7-pyridothiazole to give 85 had no significant effect on protease activity. The best HCMV protease inhibitors were the $6-\mathrm{CO}_{2} \mathrm{Et}$ derivative $84\left(\mathrm{~K}_{\mathrm{i}}=7.4 \mathrm{nM}\right)$ and $5-\mathrm{SO}_{2} \mathrm{CHF}_{2}$ derivative $\mathbf{8 0}\left(\mathrm{K}_{\mathrm{i}}=10 \mathrm{nM}\right)$, which were similar to 56. M odeling suggests that this is because these benzothiazoles make no extra interactions in the "canyon" at S1" (see M odeling section). The disubstituted 4-OM e-7-Me benzothiazole 76 was 5 -fold less active than the $4-\mathrm{OMe}$ analogue 73, indicating that the 7-Me substitution prevents the efficient binding of the benzothiazole ring in the canyon at S1'. Also, the 6-OMe analogue 75 of the 7-aza derivative 85 was 5 -fold less active than the parent. In general potency against the protease does not translate to the in vitro HCMV antiviral assay, possibly because the extent of penetration of both the cellular and nuclear membranes to reach the target protease varies for each compound. Substitution on the benzothiazole ring at the $4,5,6$, or 7 positions with electrondonating or -withdrawing groups had only a small effect on anti-viral potency ($\left.\mathrm{IC}_{50}=2.2-19 \mu \mathrm{M}\right)$ compared to the unsubstituted parent. Only four analogues, 5-OMe 79, $5-\mathrm{SO}_{2} \mathrm{CHF}_{2} 80,6-\mathrm{OMe} 77$, and $6-\mathrm{CH}_{2} \mathrm{OH} 72$, were
more potent as antivirals than the parent 56. Also the analogues 4-OMe 73 and 7-pyridyl 85 were toxic to Vero cells. The $6-\mathrm{CH}_{2} \mathrm{OH}$ analogue 72 designed to interact with Asn 62 at S1' has no increase in potency against the protease but possess submicromolar activity (C_{50} $=0.5 \mu \mathrm{M})$ against the virus and is equivalent in potency to ganciclovir.
Modeling. The crystal structure of HCMV protease was obtained recently and used to model the conformationally restricted, chiral, dansyl-(S)-proline- α-methyl-5,5-trans-Iactam 1 into the active site groove of the enzyme. ${ }^{9}$ Similarly we have modeled our antiviral, plasma stable, 4-isopropylphenylurea-(S)-proline benzothiazole analogue 56 into the active site groove of HCMV protease, in what could be considered as an initial binding complex (Figure 2).

Both 1 and 56 can make a lot of similar interactions with HCMV protease when modeled into the active site. In both, the C-1 trans-lactam carbonyl is situated in the oxyanion pocket formed by the backbone amide NH of arginine 165 and arginine 166, and it is in position for attack by the hydroxyl of serine 132, which is part of the active-site catalytic triad formed by serine 132, histidine 63, and histidine 157. The lactam substituent extends into the prime sites of the enzyme. The model shows that α-Me in the (S)-configuration is easily accommodated in the S1 pocket, as expected from the substrate requirements of a conserved alanine at this position for this enzyme. However, different length, rigidity, hybridization, and directional aspects of substituents on the proline and lactam nitrogens of $\mathbf{1}$ and 56 account for the greater potency of the latter and are seen in their different interactions with HCMV protease. The urea carbonyl oxygen in 56 is capable of forming a

Figure 2. HCMV protease active site and inhibitor 56.
Table 8. Pharmacokinetics of 56 in Dog and Guinea Pig

56	$C_{\text {max }}$ $(\mathrm{ng} / \mathrm{mL})$	$\mathrm{T}_{\max }$ (h)	AUC0-t $\left(\mathrm{ng} \mathrm{mL} \mathrm{mL}^{-1}\right)$	$\mathrm{AUCO-inf}$ $\left(\mathrm{ng} \mathrm{mL}^{-1} \mathrm{~h}^{-1}\right)$	$\mathrm{t}_{1 / 2}$ $(\mathrm{~h})$	CL $\left(\mathrm{mL} \mathrm{min}^{-1} \mathrm{~kg}^{-1}\right)$	$\mathrm{m}_{\mathrm{dss}}$ $(\mathrm{L} / \mathrm{kg})$
dog	5480	0.08	9660	9750	1.5	8	0.8
guinea pig	32000	0.08	2210	2230	1	29	

hydrogen bond to the backbone NH of Ser135, which is performed by one of the sulfonamide oxygen's present in 1. The trans-Iactam of 56 fits better into the very shallow S2 pocket compared with the same region of the trans-Iactam moiety in $\mathbf{1}$. The (S)-proline carbonyl oxygen in 56 is almost within hydrogen bonding distance of Arg166 (2.95Angstrom), whereas the same carbonyl oxygen in $\mathbf{1}$ is almost $3.8 \AA$ away. The 4 -isopropyl phenyl ring of 56 fits further into the P 4 pocket than the 5-dimethylaminoaryl ring of the dansyl group in 1. Similarly the benzothiazole of 56 fits further into the P1' pocket than the cyclopropyl carbonyl of 1.
Inspection of our inhibitor 56 at S1 indicated that a group larger than methyl at this position may be tolerated. However preparation of the dansylproline trans-Iactam $13^{13}\left(\mathrm{IC}_{50} \geq 100 \mu \mathrm{M}\right)$ with ethyl at this position resulted in >300-fold loss of potency compared to the corresponding methyl anal ogue $\mathbf{1}\left(\mathrm{IC}_{50}=0.35\right.$ $\mu \mathrm{M})$. Longer preincubation times, up to 24 h , did not result in significant improvement on the inhibition of HCMV protease by $\mathbf{1 3}$ (3% at 30 min to 42% at 24 h at $100 \mu \mathrm{M}$ concentration). Substitution of the ureas NH in the phenylurea $39\left(\mathrm{IC}_{50}=1.4 \mu \mathrm{M}\right)$ with NMe $\mathbf{4 0}\left(\mathrm{IC}_{50}\right.$ $\geq 20 \mu \mathrm{M}$) leads to a complete loss of activity. This could be due to an altered conformation of the rigid urea linker, or the methyl group could make an unfavorable contact with the enzyme. Modeling suggests that although no untoward interaction is seen with the protein in noncovalent docking, as 40 approaches closer to the covalent mode the urea N -Me substituent would be likely to cause a severe steric clash in the region of Glu31.

The energy minimized semi-rigid trans-lactam proline urea 56 docked into the active site of the enzyme fits round the "nose" of the enzyme. This enables the proline ring, via its rigid urea linker, to position the parasubstituted aromatic ring into the S4 pocket, which is occupied by tyrosine at P4 in the natural substrate. Part of the proline ring occupies the $S 3$ pocket.

The benzothiazole function extends into the S^{\prime} prime sites of the enzyme. The benzothiazole makes a better hydrophobic interaction in the S1 pocket than the smaller thiazole, which accounts for its greater potency (Table 5). However, the disubstituted 4-OMe-7-Me benzothiazole 76 was 5 -fold less active than the 4 -OMe anal ogue 73. Modeling suggests that although no untoward interaction is seen between 76 and the protease in the noncovalent docking, as 76 approaches closer to the covalent mode the substitution at the 7-position would cause sterically undesirable clashes with the protease, since the molecule lies much deeper in the P1 ${ }^{\prime}$ pocket. A variety of substitutions on the benzothiazole ring at the $4,5,6$, or 7 positions had little positive effect on protease activity. Even the $6-\mathrm{CH}_{2} \mathrm{OH}$ analogue 72 designed to interact with Asn 62 at $\mathrm{S1}^{\prime}$ had no increase in potency against the protease. M odel ing suggests that this is because these benzothiazoles make no effective extra interactions in the active site at S1'.

Pharmacokinetics. The pharmacokinetics of the benzothiazole 56 was determined in the dog after intravenous administration. It had a low plasma clearance ($8 \mathrm{~mL} \mathrm{~min}{ }^{-1} \mathrm{~kg}^{-1}$), a moderate volume of distribution ($0.8 \mathrm{~L} / \mathrm{kg}$), a half-life of 1.5 h , and a reasonable bioavailability after oral dosing (29\%) (Table 8). The

Table 9. Plasmas Stability, HCMV Protease and Antiviral Activity of $\mathbf{5 6}$ and $\mathbf{7 2}$, and Pharmacokinetics of 56 in Dog

compd	human plasma stability, ${ }^{\text {a }} \mathrm{t}_{1 / 2}(\mathrm{hr})$	HCMV protease ${ }^{b}$ $\mathrm{K}_{\mathrm{i}}(\mathrm{nM})^{17}$	$\begin{gathered} \mathrm{HCMV}^{c} \text { strain } \\ \text { AD169 }^{1 \mathrm{C}_{50}(\mu \mathrm{M})} \end{gathered}$	$\begin{aligned} & \text { cytotoxicity } \\ & \text { CCID }_{50}(\mu \mathrm{M}) \end{aligned}$	dog			
					$\mathrm{t}_{1 / 2}$ (hrs)	$\begin{gathered} \mathrm{V}_{\mathrm{dss}} \\ (\mathrm{~L} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} C L \\ \left(\mathrm{~mL} \mathrm{~min}^{-1} \mathrm{~kg}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\%) \end{gathered}$
56	> 24	10	5	490	1.5	0.8	8	29
72	>24	16	0.5	125				

${ }^{\text {a }}$ Tested in fresh human plasma $100 \mu \mathrm{M}^{14}$. ${ }^{\mathrm{b}} \mathrm{HCMV}$ pNA assay. ${ }^{9}$ c HCMV Elisa assay (see experimental). ${ }^{\text {d Vero cell cytotoxicity assay. }{ }^{12}}$
pharmacokinetics was also determined in the guinea pig after intravenous administration (Table 8). Furthermore, since the compound is a potential treatment for infection of the CNS and the retinitis caused by HCMV, the ability of 56 to access the brain and the eye was also investigated in this study. Although 56 had a reasonable half-life in the guinea-pig (1 h) and a moderate volume of distribution ($1.6 \mathrm{~L} / \mathrm{kg}$), it had a high plasma clearance ($60 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$). Despite this high clearance, drug levels were measurable in both the brain and the vitreous humor. These declined in a biexponential manner with a half-life of approximately 0.5 h in both tissues. The plasma:brain ratio was 1:5, while the plasma:vitreous humor ratio was 1:2, indicating that the drug gains access to both tissues.

Conclusions

The chiral, dansyl-(S)-proline-(SRS)- α-methyl-5,5'-trans-lactam $\mathbf{1}$ was defined ${ }^{9}$ previously as the required template for nanomolar potency against HCMV $\delta \mathrm{Ala}$ protease. We have now developed the SAR for the substituent on the (S)-proline and have shown that a single 4-substituted phenyl ring is sufficient for good potency against HCMV δ Ala protease, and the potency increases in the order $\mathrm{CO}<\mathrm{SO}_{2}<\mathrm{NHCO}$ for the linker from this 4 -substituted phenyl ring to the (S)-proline. The optimal (S)-proline substituent was found to be the 4-isopropylphenylurea. Plasma stability has been optimized in the 4-isopropylphenylurea-(S)-proline series, while retaining low nanomolar potency against HCMV δ Ala protease, by modifying the substituents on the Iactam nitrogen to give the c-2, c-3-dimethylcyclopropyl-r-1-carbonyl derivative 45 and the benzothiazole derivative 56. ESI/MS studies have revealed that the plasma stable trans-Iactams 45 and 56 rapidly acylate HCMV protease and the enzyme remained fully acylated after 24 h . SAR studies have shown that plasma stability and low nM potency against HCMV δ Ala protease are required to give antiviral activity in whole cells. Both 45 and 56 have low nM potency against the viral protease and micromolar antiviral activity against HCMV. The crystal structure of HCMV protease was obtained and used to model the conformationally restricted, chiral, 4-isopropylphenylurea-(S)-proline-(SRS)-α-methyl-5,5'-trans-lactam benzothiazole 56 into the
active site groove of the enzyme enabling us to direct and rationalize the SAR in this series. Developing the SAR in the substituted benzothiazoles produced the 6-hydroxymethyl benzothiazole 72, which has an in vitro antiviral potency equivalent to ganciclovir. Both plasma stable, benzothiazole trans-lactams $\mathbf{5 6}$ and $\mathbf{7 2}$ are potent inhibitors of HCMV protease in the low nM range and have low micromolar potency against the HCMV virus and a good therapeutic index (≥ 100) (Table 9), and are (>100) selective for the viral protease (HCMV) over the mammalian proteases elastase and thrombin and also acetylcholine esterase. Also 56 has a good PK profile in the dog with an oral bioavailability of 29\% and good CNS and ocular penetration in the guinea pig.

General Procedures

Melting points were obtained using an Electrothermal digital melting point apparatus and are uncorrected. All purifications by flash chromatography were performed using Kieselgel 60, Merck 9385 silica gel. Preparative plate chromatography was performed using Whatman PK6F silica gel 60A plates eluting with ethyl acetate-cyclohexane mixtures. Monitoring of reactions by TLC used Merck 60 F 254 silica gel glass backed plates ($5 \times 10 \mathrm{~cm}$), eluted with mixtures of ethyl acetate and cyclohexane, and visualized by UV light, followed by heating with aqueous phosphomolybdic acid. Analytical HPLC were run on a Hewlett-Packard 1090 HPLC instrument, equipped with an Intersil M column ODS2. Standard conditions were eluent system A ($\mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{H}_{3} \mathrm{PO}_{4}$), B ($95 \% \mathrm{MeCN} /$ $\mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{H}_{3} \mathrm{PO}_{4}$): gradient 0\% B $2 \mathrm{~min}, 0-100 \%$ B 40 min , 100% B 10 min ; flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=215 \mathrm{~nm})$. Retention times (t_{r}) are given in minutes. LCMS were run on a H ewlettPackard 1050 coupled with a Micromass Platform II equipped with a Supelco ABZplus column. Standard conditions were eluent system $A\left(\mathrm{H}_{2} \mathrm{O}, 0.1 \%\right.$ formic acid, 10 mmol ammonium acetate) B (MeCN, 0.05\% formic acid): gradient $\mathbf{1} 100 \%$ A 0.7 $\min , 100 \%$ A-100\% B $3.5 \mathrm{~min}, 100 \%$ B $3.5 \mathrm{~min}, 100 \%$ to 0\% B 0.3 min ; flow rate $=1 \mathrm{~mL} / \mathrm{min}$). Gradient 2100% A 0.7 min , 100% A-100\% B $4.2 \mathrm{~min}, 100 \%$ B $1.1 \mathrm{~min}, 100 \%$ to 0% B 0.2 min ; flow rate $=1 \mathrm{~mL} / \mathrm{min}$). Gradient 3100% A $3 \mathrm{~min}, 100 \%$ A-100\% B $20 \mathrm{~min}, 100 \%$ B $5 \mathrm{~min}, 100 \%$ to 0% B 2 min ; flow rate $=1 \mathrm{~mL} / \mathrm{min}$). All NMR spectra were run on a Bruker 250 MHz instrument generally as solutions in CDCl_{3} unless otherwise stated. IR spectra were recorded on a Bio-rad FTS7 spectrometer from thin films on NaCl plates, a KBr mix or solutions in the solvent specified. Mass spectra were run by an electrospray Hewlett-Packard 5989B instrument. CD spectra were recorded in acetonitrile on aJ ascoJ -720A spectropolarimeter. Final organic solutions were dried over MgSO_{4}
before filtration and evaporation using a Buchi Rotavapor. Ambient temperature was $20^{\circ} \mathrm{C}$. All solvents used were Fisons analytical reagents except for pentane (Aldrich Chemical Co.) and anhydrous THF (Fluka sureseal). All other reagents were usually obtained from Aldrich, Fluka or Lancaster. Elemental microanalyses were determined by the Microanalytical Laboratory, GlaxoSmithKline Stevenage.

Benzyl (3aS,6S,6aR)-4-(Cyclopropylcarbonyl)-6-meth-yl-5-oxohexahydropyrrolo[3,2-b]pyrrole-1(2H)-carboxylate (5). To a solution of $4^{9}(922 \mathrm{mg}, 1$ equiv, 2.75 mmol) in dry tetrahydrofuran (7 mL) at $-78^{\circ} \mathrm{C}$ under nitrogen was added 1M LHMDS solution in tetrahydrofuran ($3.3 \mathrm{~mL}, 1.2$ equiv, 3.3 mmol), keeping the temperature bel ow $-70^{\circ} \mathrm{C}$. The solution was kept at $-78^{\circ} \mathrm{C}$ for 10 min , then at $0^{\circ} \mathrm{C}$ for 10 \min, and recooled to $-78{ }^{\circ} \mathrm{C}$; cyclopropanecarbonyl chloride ($0.75 \mathrm{~mL}, 3$ equiv, 8.25 mmol) was added, and the reaction mixture was then stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with saturated aqueous ammonium chloride (25 mL) and then allowed to warm to room temperature. Water was added (20 mL), and then the aqueous phase was extracted with ethyl acetate (100 mL), and the combined organic phase was washed with water (30 mL) and brine (30 mL), dried, and evaporated to give a yellow oil. This oil was purified by flash column chromatography eluting with cyclo-hexanes-ethyl acetate ($4: 1$) to yield $\mathbf{5}$ ($334 \mathrm{mg}, 35 \%$) as a pale yellow gum: IR (KBr) $v_{\text {max }}$ 1747, 1713, 1704, 1693, 1681 cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.36\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.13(\mathrm{ABq}, \mathrm{J}=12.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.93-3.60\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}\right)$, 3.55-3.44 (m, 1H, NCHCHMe), 3.30-2.80 (m, 2H, CHMe, $\left.\mathrm{COCH}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.75-2.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.05-1.85(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 1.30-0.85\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{COCH}\left(\mathrm{CH}_{2}\right)_{2}\right)$, and CHMe); MS (thermospray) m/z $343(\mathrm{MH})^{+}$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ C, H, N
(3S,3aR,6aS)-1-(Cyclopropylcarbonyl)-3-methylhexahy-dropyrrolo[3,2-b]pyrrol-2(1H)-one hydrochloride (6). A solution of 5 ($330 \mathrm{mg}, 0.96 \mathrm{mmol}$) in 2-propanol (30 mL) was added to the palladium catalyst ($119 \mathrm{mg}, 10 \%$ Pd/C, Degussa type, E101, NE/W,50\% $\mathrm{H}_{2} \mathrm{O}$) under nitrogen and the resulting mixture stirred vigorously under an atmosphere of hydrogen for 2.75 h . The catalyst was filtered off under an atmosphere of nitrogen, and a 1 M solution of hydrogen chloride in diethyl ether (1 mL , 1 equiv, 1 mmol) was added to the filtrate. Evaporation of the sol vent gave $\mathbf{6}(175 \mathrm{mg}, 74 \%)$ as a colorless gum: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.10-3.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHHCH}_{2}+\right.$ NCHCH_{2}), 3.37 (dd, J $=11.6 \mathrm{~Hz}, 6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}$), 3.22-3.05 (m, 1H, NCHCHMe), 2.95-2.75 (m, 2H, CHMe, $\left.\mathrm{COCH}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.07-1.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCHH}), 1.67-1.56$ (m, 1H, NCHCHH), 1.27-0.88 (m, 7H, CHMe, $\left.\mathrm{COCH}\left(\mathrm{CH}_{2}\right)_{2}\right)$; MS (thermospray) m/z $209\left(\mathrm{MH}^{+}\right)$, $417\left(2 \mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

The following compounds were similarly prepared.
tert-Butyl (3S,3aR,6aS)-3-Methyl-2-oxohexahydropyr-rolo[3,2-b]pyrrole-1(2H)-carboxylate hydrochloride (9). Compound 3^{9} was deprotected with hydrogen in the presence of Pd /C as described for 6 to yield $9(93 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR (d$\left.{ }^{6}-\mathrm{DMSO}\right) ~ \delta 9.44$ (br s, 1H, NH), 3.93-3.29 (m, 4H, $\mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}, \mathrm{NCHCHMe}$), 2.91-2.75 (m, 1H, CHMe), 2.46-2.30 (m, 1H, NCH 2 CHH$), 2.12-1.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right)$, $1.46(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}), 1.20(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz})$ and $1.04(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz})$ (3H, CHCH_{3}); LCMS m/z $241\left(\mathrm{MH}^{+}\right)$single component 100%, gradient 1 ($\mathrm{t}_{\mathrm{R}} 1.66 \mathrm{~min}$); MS (Thermospray) $\mathrm{m} / \mathrm{z} 481\left(2 \mathrm{MH}^{+}\right.$), $241\left(\mathrm{MH}^{+}\right)$, $141\left(\mathrm{M}-\mathrm{Boc}^{+}\right) . \mathrm{HPLC}: 95 \%\left(\mathrm{t}_{\mathrm{R}} 8.5 \mathrm{~min}\right)$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot 0.25 \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
((3S,3aR,6aS)-1-(Cyclopropylcarbonyl)-3-methyl-4-[(2S)-pyrrolidin-2-ylcarbonyl]hexahydropyrrolo[3,2-b]pyrrol-2(1H)-one hydrochloride (8). Compound 7 was deprotected with hydrogen in the presence of Pd / C as described for $\mathbf{6}$ to give 8 (94\%) as a white foam, identical to that prepared previously. ${ }^{9}$
(3S,3aR,6aS)-1-[(cis-2,3-Dimethylcyclopropyl)-cis-car-bonyl]-3-methylhexahydropyrrolo[3,2-b]pyrrol-2(1H)one hydrochloride (42). Compound $\mathbf{4 1}$ was deprotected with hydrogen in the presence of Pd /C as described for $\mathbf{6}$ to give 42 (98\%) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.28-9.80$
(broad s, $2 \mathrm{H}, \mathrm{NH}_{2}{ }^{+}$), 4.08-3.80 (m, 3H, NCH $\mathrm{CH}_{2}, \mathrm{NCHCH}_{2}$), 3.38-3.29 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCHMe}$), 3.14-3.04 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHMe}$), 2.88-2.77 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{COCHCHM} \mathrm{CCHMe)}, \mathrm{2.01-1.88}$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}$), 1.73-1.56 (m, 2H, COCHCHMeCHMe), 1.46 (d, J $=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}), 1.23-1.13$ (m, 6H, COCHCHMeCHMe). HPLC: 99.7\% ($t_{R} 11.78 \mathrm{~min}$); LCMS m/z 237 $\left(\mathrm{MH}^{+}\right)$single component 100%, gradient 2 ($t_{R} 1.93 \mathrm{~min}$) gradient 3 ($\mathrm{t}_{\mathrm{R}} 8.44 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$ 237.1603, found 237.1609.
((3S,3aR,6aS)-1-[(cis-2,3-Dimethylcyclopropyl)-cis-car-bonyl]-3-methyl-4-[(2S)-pyrrolidin-2-ylcarbonyl]hexahy-dropyrrolo[3,2-b]pyrrol-2(1H)-one hydrochloride (44). Compound 43 was deprotected with hydrogen in the presence of Pd / C as described for $\mathbf{6}$ to give $44(96 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.20$ and $8.00\left(2\right.$ broad s, $2 \mathrm{H}, \mathrm{NH}_{2}{ }^{+}$), 4.804.68 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCO}$), 4.21 ($\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}$ CH_{2}), 3.85-3.40 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}$, $\mathrm{NCHCHMe}), 3.28-3.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe})$, 2.88-2.69 (m, 2 H , $\mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{COCHCHMeCHMe}$), 2.25-1.53 (m,7H, $\mathrm{NCH}_{2}-$ $\mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{COCHCHMeCHMe}$); 1.25-1.09 (m, 9H, CHMe, COCHCHMeCHMe); MS (thermospray) m/z $334\left(\mathrm{MH}^{+}\right)$. Anal. ($\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{HCl}$) C, H, N.
tert-Butyl (3S,3aR,6aS)-4-(\{ (2S)-1-[(Benzyloxy)carbo-nyl]pyrrolidin-2-yl\} carbonyl)-3-methyl-2-oxohexahydro-pyrrolo[3,2-b]pyrrole-1(2H)-carboxylate (10). To a stirred suspension of Cbz-(S)-proline ($8 \mathrm{~g}, 32.1 \mathrm{mmol}$), TBTU (10.3 g , $32.1 \mathrm{mmol})$, and HOBT• $\mathrm{H}_{2} \mathrm{O}(4.5 \mathrm{~g}, 32.1 \mathrm{mmol})$ in anhydrous acetonitrile (65 mL) was added diisopropylethylamine (10.6 $\mathrm{mL}, 61 \mathrm{mmol}$), and the resulting sol ution was stirred for 20 min . The hydrochloride salt $9(7.45 \mathrm{~g}, 27 \mathrm{mmol})$ was added, followed by acetonitrile (35 mL) and anhydrous dimethylformamide (30 mL) to give a clear solution which was stirred at $20^{\circ} \mathrm{C}$ for 24 h . The solution was poured into ethyl acetate (500 mL), and the solution was washed with water (500 mL). The aqueous phase was back-extracted with ethyl acetate (300 mL), and the combined organic phases were washed sequentially with $2 \mathrm{M} \mathrm{HCl}(3 \times 200 \mathrm{~mL})$, water $(2 \times 200 \mathrm{~mL})$, and saturated brine (200 mL), then dried and evaporated to give gum (18.5 g). This gum was purified by flash column chromatography eluting with cycl ohexanes-ethyl acetate ($2: 1$ to $3: 1$) to yield 10 ($11.26 \mathrm{~g}, 88.5 \%$) as a white foam: ${ }^{1} \mathrm{H}$ NMR (CDCI3 shows rotameric forms) $\delta 7.40-7.28\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.22-4.93(\mathrm{~m}, 2 \mathrm{H}$, PhCH_{2}), 4.49-4.20 and 3.83-3.45 and 3.32-2.97 and 2.64$2.51\left(4 \mathrm{~m}, 9 \mathrm{H}, \mathrm{NCHCO}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$, NCHCHMe, $\left.\mathrm{NCHCH}_{2}, \mathrm{NCHCHH}, \mathrm{CHMe}\right), 2.32-1.76$ (m, 5H, NCHCHH $+\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.54\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}\right), 1.13$ and 1.06 and $1.86(\mathrm{~d}$, $3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CHMe}$); HPLC 100\% ($\mathrm{t}_{\mathrm{R}} 26.4 \mathrm{~min}$); LCMS m/z $472\left(\mathrm{MH}^{+}\right)$gradient 1 ($\mathrm{t}_{\mathrm{R}} 3.01 \mathrm{~min}$); TLC R 0.31 (cyclohex-anes-ethyl acetate, 4:1); HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6}\left(\mathrm{MH}^{+}\right)$ 472.2448, found 472.2446.

The following compounds were similarly prepared.
Benzyl (2S)-2-\{[(3aS,6S,6aR)-4-(Cyclopropylcarbonyl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\} pyrrolidine-1-carboxylate. (7). Compound 6 was reacted with Cbz-(S)-proline as described for $\mathbf{1 0}$ to give $\mathbf{7}$ (87\%) as a white amorphous solid, identical to that prepared previously. ${ }^{9}$

Benzyl (2S)-2-\{[(3aR,6R,6aS)-4-\{ [cis-2,3-Dimethylcyclo-propyl]-cis- carbonyl\}-6-methyl-5-oxohexahydropyrrolo-[3,2-b]pyrrol-1(2H)-yl]carbonyl\} pyrrolidine-1-carboxylate (43). Compound 42 was reacted with Cbz- (S)-proline as described for $\mathbf{1 0}$ to give 43 (77%) as a white foam: ${ }^{1} \mathrm{H}$ NMR (DMSO heated at 120° to get the rotomers to coalesce) $\delta 7.40-7.23\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.08(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 1 \mathrm{H})$ and 5.02 $\left(\mathrm{d}, \mathrm{J}=13 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.95-3.30\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}$ and NCHCH_{2}), $3.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}-$ $\mathrm{CO}), 3.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}), 2.70(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COCHCHMe})$, $2.28-2.15$ and $2.00-1.75\left(2 \mathrm{~m}, 1 \mathrm{H}\right.$ and $5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.58-1.47 ($\left.\mathrm{m}, 2 \mathrm{H}, \mathrm{CHCHMeCHMe}\right), 1.15$ and $1.12(2 \mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \times 3 \mathrm{H}, \mathrm{CHCHMeCHMe}), 1.06$ (br m, $3 \mathrm{H}, \mathrm{Me})$; MS (thermospray) m/z 468 (MH^{+}); Circular dichroism $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max } 199.8 \mathrm{~nm}, \mathrm{dE} 3.89, \mathrm{E} 22341, \lambda_{\max } 221.6 \mathrm{~nm}, \mathrm{dE}$ -17.90 , E 11748, $\lambda_{\max } 242.6 \mathrm{~nm}$, dE 16.00, E 1661; LCMS m/z $468\left(\mathrm{MH}^{+}\right)$single component 95%, gradient $2\left(\mathrm{t}_{\mathrm{R}} 3.30 \mathrm{~min}\right)$
gradient 3 ($\mathrm{t}_{\mathrm{R}} 15.08 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right)$ 468.2498, found 468.2489.

Benzyl (2S)-2-\{[(3aS,6S,6aR)-6-Methyl-5-oxohexahy-dropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}pyrrolidine-1-carboxylate (11). To a solution of 10 ($11.2 \mathrm{~g}, 23.8 \mathrm{mmol}$) in dichloromethane (60 mL) was added trifluoroacetic acid (20 mL). The solution was stirred in a cold water bath for 45 min and then concentrated in vacuo. Toluene (100 mL) was added and evaporated off and the resulting gum dissol ved in ethyl acetate $(250 \mathrm{~mL})$. The sol ution was washed sequentially with saturated aqueous sodium bicarbonate solution ($2 \times 100 \mathrm{~mL}$), water ($2 \times 100 \mathrm{~mL}$), and saturated brine (100 mL), then dried and evaporated to a foam. The aqueous washes were combined and extracted with ethyl acetate ($3 \times 300 \mathrm{~mL}$), and the organic extracts were combined, washed with saturated brine (50 mL), then dried and evaporated to give a crisp foam. The batches of foam were combined, dissol ved in ethyl acetate (50 mL), and evaporated to give $\mathbf{1 1}(8.68 \mathrm{~g}, 98 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR (CDCl3 shows rotameric forms) $\delta 7.39-7.28\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 6.14-5.92 (2m, 1H, NH), 5.22-4.92 (m, 2H, PhCH 2), 4.483.98 ($2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCO}, \mathrm{NCHHCH}_{2}$), $3.82-2.84\left(2 \mathrm{~m}, 6 \mathrm{H}, \mathrm{NCH}_{2-}\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCHHCH}_{2}, \mathrm{NCHCHMe}, \mathrm{NCHCH}_{2}, \mathrm{CHMe}$), 2.341.77 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}$), $1.48-0.78(4 \mathrm{~m}, 3 \mathrm{H}$, CHMe); HPLC 100% ($\mathrm{t}_{\mathrm{R}} 18.2 \mathrm{~min}$); TLC R $_{\mathrm{f}} 0.12$ (ethyl acetate toluene- acetic acid, 25:5:1); LCMS m/z $372\left(\mathrm{MH}^{+}\right)$single component 99\%, gradient 2 ($\mathrm{t}_{\mathrm{R}} 2.46 \mathrm{~min}$), gradient 3 (t_{R} 10.92min); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right) 372.1923$, found 372.1928.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-6-Methyl-5-oxohexahy-dropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}pyrrolidine-1-carboxylate (12). A solution of $\mathbf{1 1}(8.0 \mathrm{~g}, 21.5 \mathrm{mmol})$ and di-tert-butyl dicarbonate ($6.0 \mathrm{~g}, 27.5 \mathrm{~g}$) in 2-propanol (350 mL) was hydrogenated in the presence of the palladium catalyst ($2 \mathrm{~g}, 10 \% \mathrm{Pd} / \mathrm{C}$, Degussa type, E 101, NE/W, $50 \% \mathrm{H}_{2} \mathrm{O}$) for 5 h . The catalyst was filtered off and the filtrate evaporated to a white foam (6.5 g). Crystallization from toluene (35 mL) and cyclohexane (40 mL) gave $\mathbf{1 2}\left(5.6 \mathrm{~g}, 77 \%\right.$) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.09-5.90(2 \mathrm{~m}, 1 \mathrm{H}, \mathrm{CONH}), 4.45-3.97(2 \mathrm{~m}$, $2 \mathrm{H}, \mathrm{NCHCO}, \mathrm{NCHHCH} 2), 3.81-3.36\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, $\mathrm{NCHHCH}_{2}, \mathrm{NCHCHMe}^{2} \mathrm{NCHCH}_{2}$), 3.20-2.78 ($2 \mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}$), 2.37-1.75 (m, 6H, NCH2 CH $\mathrm{CH}_{2}, \mathrm{NCHCH}_{2}$), 1.50-1.05 (3m, $\left.12 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}, \mathrm{CHMe}\right)$; LCMS $\mathrm{m} / \mathrm{z} 338\left(\mathrm{MH}^{+}\right)$single component 99.8\%, gradient 1 ($\mathrm{t}_{\mathrm{R}} 2.25 \mathrm{~min}$); HPLC 100% ($\mathrm{t}_{\mathrm{R}} 16.77 \mathrm{~min}$); TLC $R_{f} 0.12$ (ethyl acetate-toluene- acetic acid, 25:5:1). Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(3S,3aR,6aS)-1-(Cyclopropylcarbonyl)-3-methyl-4-\{[(2S)-1-(1-naphthylsulfonyl)pyrrolidin-2-yl]carbonyl\}-hexahydropyrrolo[3,2-b]pyrrol-2(1H)-one (15). To a soIution of 8 ($30.7 \mathrm{mg}, 89.8 \mu \mathrm{~mol}, 1$ equiv) in dry MeCN (2 mL) was added triethyl amine ($29 \mu \mathrm{~L}, 207 \mu \mathrm{~mol}, 2.3$ equiv). To this solution was added a solution of 1-naphthylsulfonyl chloride ($28.2 \mathrm{mg}, 105 \mu \mathrm{~mol}, 1.2$ equiv) in dry MeCN (1 mL). The reaction mixture was stirred at room temperature for 3 h before 2-propanol ($10 \mu \mathrm{~L}$) was added to quench unreacted sulfonyl chloride. The mixture was evaporated to dryness, redissolved in dichloromethane (15 mL), and washed with water (15 mL), sat. NaHCO_{3} sol ution (15 mL) and water (15 mL) and then dried, and the solvent was evaporated to give a white solid. This solid was purified by flash column chromatography eluting with cyclohexanes-ethyl acetate to give 15 $(29 \mathrm{mg}, 65 \%)$ as a white solid: IR (KBr) $v_{\max } 1747.8,1682.4$, $1668.2 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.77(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, arylH $)$, $8.30(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}$, arylH), 8.05 (d, J $=7 \mathrm{~Hz}, 1 \mathrm{H}$, arylH), 7.92 (d, J $=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arylH}$), $7.72-7.50$ (m, 3H, arylH), 4.74 (dd, J = $7.9 \mathrm{~Hz}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}$), $4.254(\mathrm{t}, \mathrm{J}=10.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}\right), 3.88-3.36\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right.$, $\mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}, \mathrm{NCHCH}_{2}$), 3.34-3.22 (quintet, J $=7.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHMe}$), $3.00-2.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCHCH} \mathrm{CH}_{2}\right), 2.83-2.69$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}$) , 2.30-1.83 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2$, NCH 2 CH 2 CH 2 and $\mathrm{NCH}_{2} \mathrm{CHH}$), 1.30-0.92 (m, 7H, CHMe, $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); MS (thermospray) m/z $496\left(\mathrm{MH}^{+}\right)$; HPLC $100 \%\left(t_{R} 27.79 \mathrm{~min}\right)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.

Preparation of 1, 14, and 16-23. Using essentially the same procedure as for the preparation of $\mathbf{1 5}$, the following compounds listed in Scheme 3 were prepared from 8.
(3S,3aR ,6aS)-1-(Cyclopropylcarbonyl)-4-[((2S)-1-\{[6-(dimethylamino)-1-naphthyl]sulfonyl\}pyrrolidin-2-yl)-carbonyl]-3-methylhexahydropyrrolo[3,2-b]pyrrol-2(1H)one (14). Compound 8 was reacted with [6-(dimethylamino)-naphth-1-yl]sulfonyl chloride as described for $\mathbf{1 5}$ to give 14 (64\%) as a green/yellow solid: IR (KBr) $v_{\text {max }}$ 1747.6, 1684.9, $1665.5,1618.9 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{arylH}), 7.94(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{arylH}), 7.85(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{arylH}), 7.44-7.27(\mathrm{~m}, 2 \mathrm{H}$, arylH), 6.96-6.89(m, 1H, arylH), 4.67 (dd, J $=4.8 \mathrm{~Hz}$, J $=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}$), 4.31-4.10 ($\mathrm{m}, 1 \mathrm{H}, \quad \mathrm{NCHHCH} \mathrm{CH}_{2}$), 3.88-3.25 ($\mathrm{m}, 6 \mathrm{H}$, $\left.\mathrm{NCHHCH} 2 \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}, \mathrm{NCHCH}_{2}, \mathrm{CHMe}\right)$, $3.14-3.06\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{NME}_{2}\right), 3.02-2.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}\right)$, 2.83-2.68 (m, 1H, $\mathrm{NCH}_{2} \mathrm{CHH}$), 2.22-1.77 (m, 5H, $\mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2$ and $\mathrm{NCH}_{2} \mathrm{CHH}$), 1.31-0.94 ($\mathrm{m}, 7 \mathrm{H}, \mathrm{CHMe}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); MS (thermospray) $\mathrm{m} / \mathrm{z} 539$ (MH^{+}); HPLC 99% ($\mathrm{t}_{\mathrm{R}} 27.20 \mathrm{~min}$). Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}\right)$ C, H, N.
(3S,3aR,6aS)-1-(Cyclopropylcarbonyl)-4-[((2S)-1-\{[5-(dimethylamino)-1-naphthyl]sulfonyl\}pyrrolidin-2-yl)-carbonyl]-3-methylhexahydropyrrolo[3,2-b]pyrrol-2(1H)one (1). Compound 8 was reacted with 5 -(dimethylamino)-naphth-1-yl]sulfonyl chloride as described for $\mathbf{1 5}$ to give $\mathbf{1}$ as a green/yellow foam (80%), identical with that prepared previously. ${ }^{9}$
(3S,3aR,6aS)-1-(Cyclopropylcarbonyl)-3-methyl-4-\{[(2S)-1-(2-naphthylsulfonyl)pyrrolidin-2-yl]carbonyl\}-hexahydropyrrolo[3,2-b]pyrrol-2(1H)-one (16). Compound 8 was reacted with 2-naphthylsulfonyl chloride as described for 15 to give 16 (59\%) as a white solid: IR (KBr) $v_{\max } 1753.8,1673.9,1658.1 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~s}$, 1 H , arylH), 8.01-7.87 (m, 4H, arylH), 7.69-7.59 (m, 2H, arylH), $4.65-4.60$ (dd, J $=4.9 \mathrm{~Hz}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}$), $4.32\left(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right), 3.94-3.38(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{NCHHCH} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH} M e$ and NCHCH 2), 3.30 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHMe}$), $2.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}\right), 2.81(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CHH}$), $2.20-1.72(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2$ and NCH 2 CHH), 1.28-0.95 (m, 7H, CHMeand $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); MS (thermospray) m/z $496\left(\mathrm{MH}^{+}\right)$. HPLC: $98 \%\left(\mathrm{t}_{\mathrm{R}} 27.18 \mathrm{~min}\right)$. Anal. ($\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$) C, H, N, S.
(3S,3aR,6aS)-4-\{[(2S)-1-(Benzylsulfonyl)pyrrolidin-2-yl]carbonyl\}-1-(cyclopropylcarbonyl)-3-methylhexahy-dropyrrolo[3,2-b]pyrrol-2(1H)-one (17). Compound 8 was reacted with benzylsulfonyl chloride as described for 15 to give 17 (58\%) as a white solid: IR (KBr) $\nu_{\text {max }} 1747.46$ (m), $1667.65(\mathrm{~m}), 1650.87(\mathrm{~s}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.68-7.49$ and 7.44-7.32 (2m,5H, arylH), 4.51-4.25 (m, 3H, NCHCO, PhCH ${ }_{2} \mathrm{SO}_{2}$), $4.12-4.01$ ($\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}$), 3.77-3.28 (m,5H, NCHHCH $\mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}$ and $\left.\mathrm{NCHCH}_{2}\right), 3.15-3.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}), 3.00-2.88(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{COCHCH} \mathrm{CH}_{2}$), 2.80-2.67 (m, 1H, NCH 2 CHH), 2.29-1.80 (m, $\left.5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 1.20-0.95(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}$ Meand $\left.\mathrm{COCHCH} \mathrm{CH}_{2}\right) ; \mathrm{MS}$ (thermospray) m/z $460\left(\mathrm{MH}^{+}\right)$. HPLC: 96% ($t_{R} 25.05 \mathrm{~min}$). Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
(3S,3aR,6aS)-1-(Cyclopropylcarbonyl)-3-methyl-4-\{[(2S)1-(phenylsulfonyl)pyrrolidin-2-yl]carbonyl\}-hexahydropyrrolo[3,2-b]pyrrol-2(1H)-one (18). Compound 8 was reacted with phenylsulfonyl chloride as described for 15 to give $18(80 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.93-$ 7.85 (m, 2H, arylH), 7.60-7.49 (m, 3H, arylH), 4.57-4.52 (dd, $\mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.28(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCHHCH}_{2} \mathrm{CH}_{2}$), 3.90-3.64, 3.57-3.38 (m, 5H, NCHHCH CH_{2}, $\mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}$ and NCHCH_{2}), 3.32 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHMe}$), $2.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}\right), 2.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.20-$ 1.75 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2$ and NCH 2 CHH), 1.25-0.95 (m, 7H, CHMeand $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); LCMS m/z 446 $\left(\mathrm{MH}^{+}\right)$single component 99%, gradient 1 ($\mathrm{t}_{\mathrm{R}} 4.12 \mathrm{~min}$). HPLC: 100% ($\mathrm{t}_{\mathrm{R}} 24.31 \mathrm{~min}$). Anal. ($\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$) C, H, N, S.
(35,3aR,6aS)-4-(\{(2S)-1-[(4-Chlorophenyl)sulfonyl]pyr-rolidin-2-yl\}carbonyl)-1-(cyclopropylcarbonyl)-3-meth-ylhexahydropyrrolo[3,2-b]pyrrol-2(1H)-one (19). Com-
pound $\mathbf{8}$ was reacted with 4-chlorophenylsulfonyl chloride as described for $\mathbf{1 5}$ to give 19 (49\%) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.94-7.81(\mathrm{~m}, 2 \mathrm{H}$, arylH $), 7.54-7.45(\mathrm{~m}, 2 \mathrm{H}$, arylH $)$, $4.61-4.56$ (dd, J $=4.7 \mathrm{~Hz}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.26(\mathrm{t}$, $\mathrm{J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}$), 3.91-3.64 and $3.64-3.26$ ($2 \mathrm{~m}, 6 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}, \mathrm{NCHCH}_{2}$ and CHMe), $2.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}\right), 2.79(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CHH}$), 2.26-1.80 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2$ and NCH 2 CHH), 1.28-0.95 ($\mathrm{m}, 7 \mathrm{H}, \mathrm{CH}$ Meand $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); LCMS m/z $480\left(\mathrm{MH}^{+}\right)$single component 99% gradient $3\left(\mathrm{t}_{\mathrm{R}}\right.$ 14.44 min). HPLC: 100% ($\mathrm{t}_{\mathrm{R}} 28.26 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{ClN}_{3} \mathrm{O}_{5} \mathrm{~S}\left(\mathrm{MH}^{+}\right) 480.1360$, found 480.1353.
(3S,3aR,6aS)-1-(Cyclopropylcarbonyl)-4-(\{(2S)-1-[(4-isopropylphenyl)sulfonyl]pyrrolidin-2-yl\}carbonyl)-3-methylhexahydropyrrolo[3,2-b]pyrrol-2(1H)-one (20). Compound 8 was reacted with 4- isopropyphenylsulfonyl chloride as described for $\mathbf{1 5}$ to give $\mathbf{2 0}$ (44\%) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.84-7.77(\mathrm{~m}, 2 \mathrm{H}$, arylH), 7.40-7.32 (m, 2 H , arylH), $4.56-4.51$ (dd, J $=4.9 \mathrm{~Hz}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCHCO}), 4.28\left(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}\right), 3.91-3.64$ and 3.57-3.26 (2m, 6H, NCHHCH $\mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}-$ $\mathrm{CHMe}, \mathrm{NCHCH}_{2}$ and CHMe), 3.05-2.88 (m, 2H, COCHCH 2^{-} CH_{2} and arylCHMe2), $2.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.17-1.72(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2$ and NCH 2 CHH), 1.27 (d, $\mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}$, arylCHMe2), 1.20-0.94 (m,7H, CHMe and $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); LCMS m/z $488\left(\mathrm{MH}^{+}\right.$) single component 99.3% gradient 1 ($\mathrm{t}_{\mathrm{R}} 4.57 \mathrm{~min}$), gradient $3\left(\mathrm{t}_{\mathrm{R}} 15.22 \mathrm{~min}\right)$. HPLC: 100% ($\mathrm{t}_{\mathrm{R}} 29.52 \mathrm{~min}$). HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$ 488.2219, found 488.2202.
(3S,3aR ,6aS)-1-(Cyclopropylcarbonyl)-4-(\{(2S)-1-[(4isopropoxyphenyl) sulfonyl]pyrrolidin-2-yl\}carbonyl)-3-methylhexahydropyrrolo[3,2-b]pyrrol-2(1H)-one (21). Compound 8 was reacted with 4 - isopropoxyphenylsulfonyl chloride as described for $\mathbf{1 5}$ to give $\mathbf{2 1}(43 \%)$ as a beige solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.83-7.77(\mathrm{~m}, 2 \mathrm{H}$, arylH), 6.97-6.91 (m, 2H, arylH), 4.67-4.58 (m, 1H, arylOCHMez), 4.55-4.48 (dd, $\mathrm{J}=4.9 \mathrm{~Hz}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.28(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCHHCH}_{2} \mathrm{CH}_{2}$), 3.91-3.65, 3.59-3.27 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}, \mathrm{NCHCH}_{2}$ and CHMe), 2.99-2.89 (m, $\mathrm{H}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}$), $2.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.20-1.74$ (m , $5 \mathrm{H}, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2$ and NCH 2 CHH), 1.37 (d, $\mathrm{J}=6.1 \mathrm{~Hz}, 6 \mathrm{H}$, arylOCHMe2), 1.20-0.94 (m, 7H, CHMe and $\left.\mathrm{COCHCH}_{2} \mathrm{CH}_{2}\right)$; MS (thermospray) m/z $504\left(\mathrm{MH}^{+}\right) . \mathrm{HPLC}$: $94 \%\left(t_{R} 28.36 \mathrm{~min}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
(3S,3aR,6aS)-1-(Cyclopropylcarbonyl)-4-(\{(2S)-1-[(3isopropoxyphenyl) sulfonyl]pyrrolidin-2-yl\}carbonyl)-3-methylhexahydropyrrolo[3,2-b]pyrrol-2(1H)- (22). Compound 8 was reacted with 3-i sopropoxyphenylsulfonyl chloride as described for $\mathbf{1 5}$ to give $\mathbf{2 2}$ (43\%) as a white solid: IR (KBr) $v_{\text {max }} 1753.9(\mathrm{~m}), 1673.9(\mathrm{~m}), 1660.9(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.44-7.36$ and $7.11-7.03(2 \mathrm{~m}, 4 \mathrm{H}$, arylH) , 4.67-4.50 ($\mathrm{m}, 2 \mathrm{H}$, arylOCHMe 2 , NCHCO), $4.34-4.23(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCHHCH} \mathrm{CH}_{2}\right), 3.91-3.23\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$, NCHCHMe, $\left.\mathrm{NCHCH}_{2}, \mathrm{CHMe}\right), 3.00-2.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCHCH}_{2}-\right.$ $\left.\mathrm{CH}_{2}\right), 2.84-2.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.20-1.73(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 1.86$ and $1.85(2 \mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 6 \mathrm{H}$, aryIOCHMe 2), 1.20-0.95 (m, 7H, CHMe and $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); MS (thermospray) m/z $504\left(\mathrm{MH}^{+}\right), 436$ (MH-COcyclopropyl ${ }^{+}$). HPLC: 100% ($\mathrm{t}_{\mathrm{R}} 28.32 \mathrm{~min}$). Anal. ($\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$) C, H, N, S.
(3S,3aR ,6aS)-1-(Cyclopropylcarbonyl)-3-methyl-4-(\{(2S)-1-[(4-propoxyphenyl)sulfonyl]pyrrolidin-2-yl\}-carbonyl)hexahydropyrrolo[3,2-b]pyrrol-2(1H)-one (23). Compound 8 was reacted with 4-propoxyphenylsulfonyl chloride as described for $\mathbf{1 5}$ to give $\mathbf{2 3}$ (85%) as a beige solid: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.85-7.78(\mathrm{~m}, 2 \mathrm{H}, \operatorname{arylH}), 7.02-6.94(\mathrm{~m}, 2 \mathrm{H}$, arylH), $4.56-4.44$ (dd, J $=4.9 \mathrm{~Hz}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}$), $4.56-4.44(\mathrm{dd}, \mathrm{J}=4.9 \mathrm{~Hz}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.28(\mathrm{t}$, $\left.J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH} 2 \mathrm{CH}_{2}\right), 3.97\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{MeCH}_{2} \mathrm{CH}_{2}-\right.$ OPh), 3.92-3.62, 3.62-3.4, 3.47-3.26 (3m, 6H, NCHHCH 2^{-} $\mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}, \mathrm{NCHCH}_{2}$ and CHMe), 2.94 (m, $\mathrm{H}, \mathrm{COCHCH} \mathrm{CH}_{2}$), $2.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.21-1.68(\mathrm{~m}$, $7 \mathrm{H}, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2, \mathrm{NCH} 2 \mathrm{CHH}$ and $4-\mathrm{MeCH}_{2}-$ $\mathrm{CH}_{2} \mathrm{OPh}$), $1.30-0.93\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CHMe}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}\right.$ and

4-MeCH $\mathrm{CH}_{2} \mathrm{OPh}$); MS (thermospray) m/z 504 (MH^{+}). HPLC: 100% ($\mathrm{t}_{\mathrm{R}} 28.86 \mathrm{~min}$). Anal. ($\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$) C, H, N, S.
(3S,3aR,6aS)-1-(Cyclopropylcarbonyl)-4-[((2S)-1-\{[5-(dimethylamino)-1-naphthyl]sulfonyl\} pyrrolidin-2-yl)-carbonyl]-3-ethylhexahydropyrrolo[3,2-b]pyrrol-2(1H)one (13). Compound $\mathbf{1 3}$ was prepared from ethyl analogue of $\mathbf{3}$ as described for the methyl isomer $\mathbf{1}$ (Schemes 2 and 3) ${ }^{13}$ as a white solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-2H), 8.42 (d, J $=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl- 4 H), 8.28 (dd, J = $7.3 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-8H), 7.60-7.48 (m, 2H, dansyl-3H, dansyl-7H), 7.18 (d, J $=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-6H), 4.75 (dd, J = $7.9 \mathrm{~Hz}, 4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.27(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}$, NCHHCH NH_{2}), 3.84-3.36 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$, NCHCHEt, NCHCH_{2}), 3.10-2.85 (m, 8H, CHEt, NMe2, $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$), 2.78-2.67 (m, 1H, NCH 2 CHH), 2.29-1.82 (m, $\left.5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 1.31-1.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}-\right.$ $\mathrm{Me}), 1.28-0.87\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{Me}, \mathrm{COCHCH} 2 \mathrm{CH}_{2}\right)$; MS (thermospray) $\mathrm{m} / \mathrm{z} 553\left(\mathrm{MH}^{+}\right)$; LCMS m/z $553\left(\mathrm{MH}^{+}\right)$single component 99% gradient $1\left(t_{R} 4.72 \mathrm{~min}\right)$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}\right) \mathrm{C}$, H, N, S.
(3S,3aR ,6aS)-1-(Cyclopropylcarbonyl)-3-methyl-4-\{[(2S)-1-(1-naphthoyl)pyrrolidin-2-yl]carbonyl\}-hexahydropyrrolo[3,2-b]pyrrol-2(1H)-one (28). To a stirred solution of 1-naphthoic acid ($22 \mathrm{mg}, 0.125 \mathrm{mmol}$) in dry dimethylformamide (2 mL) at room temperature were added solutions of HOBT ($16 \mathrm{mg}, 0.115 \mathrm{mmol}$) in DMF $(0.5 \mathrm{~mL})$ and TBTU ($39 \mathrm{mg}, 0.122 \mathrm{mmol}$) in acetonitrile (0.5 mL). After stirring at room temperature for 20 min , a solution of $\mathbf{8}(0.036$ $\mathrm{mg}, 0.105 \mathrm{mmol}$) in dry DMF (0.5 mL) was added followed by diisopropylethylamine ($0.037 \mathrm{~mL}, 0.21 \mathrm{mmol}$). After stirring at room temperature for 18 h , the mixture was diluted with dichloromethane (15 mL) and water (15 mL), the organic and aqueous layers were separated, and the latter was extracted with dichloromethane $(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with $2 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$, water (15 mL), saturated NaHCO_{3} solution (15 mL), and again with water (15 mL), dried over MgSO_{4}, filtered, and evaporated to leave an orange oil, which was purified by preparative plate chromatography eluting with ethyl acetate-cyclohexane(1:1) to give 28 ($25 \mathrm{mg}, 51 \%$) as an off-white, glassy solid: IR (KBr) $\nu_{\text {max }}$ $1746.5,1687.8,1660.1,1650.5,1631.2 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.11-8.04(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, arylH), 7.92-7.83 (m, 2H, $\operatorname{arylH}), 7.63-7.45(\mathrm{~m}, 4 \mathrm{H}, \operatorname{arylH}), 4.87-4.78$ (dd, J $=5.5 \mathrm{~Hz}$, $\mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.67\left(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2-}\right.$ CH_{2}), 3.94-3.66, 3.52-3.36 and 3.27-3.17 (3m, 6H, NCHHCH 2^{-} $\mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}, \mathrm{NCHCH} 2$ and CHMe), 2.96 (m, $1 \mathrm{H}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}$), $2.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right.$), 2.39-1.78 (m, $5 \mathrm{H}, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2$ and NCH 2 CHH$), 1.28-$ 0.93 ($\mathrm{m}, 7 \mathrm{H}, \mathrm{CHMe}$ and $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); MS (thermospray) $\mathrm{m} / \mathrm{z} 460\left(\mathrm{MH}^{+}\right) ; 478\left(\mathrm{MNH}_{4}{ }^{+}\right)$; HPLC $98 \%\left(\mathrm{t}_{\mathrm{R}} 25.45 \mathrm{~min}\right)$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The following compounds were similarly prepared.
(3S,3aR ,6aS)-4-(\{(2S)-1-[(5-Chloro-3-methyl-1-ben-zothien-2-yl)carbonyl]pyrrolidin-2-yl\}carbonyl)-1-(cyclo-propylcarbonyl)-3-methylhexahydropyrrolo[3,2-b]pyrrol-2(1H)-one (24). Compound 8 was reacted with (5 -chloro-3-methyl-1-benzothien-2-yl) carbonyl chloride as described for $\mathbf{2 8}$ to give $\mathbf{2 4}$ (78\%) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.76-$ 7.70 and 7.39-7.34 ($2 \mathrm{~m}, 3 \mathrm{H}$, aryl), 4.78-4.70 (m, 1H, NCHCO), 4.56 ($\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}$), $3.90-3.30$ ($m, 6 \mathrm{H}, \mathrm{NCHHCH} 2 \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}, \mathrm{NCHCH}_{2}$, CHMe), $3.00-2.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCHCH} \mathrm{CH}_{2}\right) ; 2.85-2.73$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}$), 2.49 ($\mathrm{s}, 3 \mathrm{H}$, arylMe), 2.41-1.86 (m, 5H, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}$), 1.22-0.93 (m, 7H, CHMe, $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); MS (thermospray) m/z $514\left(\mathrm{MH}^{+}\right)$; HPLC $98.51 \%\left(t_{R}=29.54 \mathrm{~min}\right)$. LCMS m/z $514\left(\mathrm{MH}^{+}\right)$single component 99.5% gradient 3 ($\mathrm{t}_{\mathrm{R}} 15.40 \mathrm{~min}$). Anal. ($\mathrm{C}_{26} \mathrm{H}_{28}-$ $\left.\mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(3S,3aR,6aS)-4-\{[(2S)-1-(1,1'-Biphenyl-4-ylcarbonyl)-pyrrolidin-2-yl]carbonyl\}-1-(cyclopropylcarbonyl)-3-me-thylhexahydropyrrolo[3,2-b]pyrrol-2(1H)-one (25). Compound 8 was reacted with 4 -phenylbenzoyl chloride as described for $\mathbf{2 8}$ to give $\mathbf{2 5}(54 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$
$7.69-7.58$ and $7.50-7.33(2 \mathrm{~m}, 9 \mathrm{H}$, arylH $), 4.78-4.70(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCHCO}), 4.61\left(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}\right), 3.91-3.58$ (m, 5H, NCHHCH $\mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}, \mathrm{NCHCH}_{2}$), $3.41-3.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}), 3.00-2.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}\right)$, 2.84-2.71 (m, 1H, NCH 2 CHH$), 2.35-1.81(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \quad \mathrm{NCH}_{2} \mathrm{CHH}\right), 1.22-0.93$ ($\mathrm{m}, 7 \mathrm{H}, \mathrm{CHMe}$ $\mathrm{COCHCH} \mathrm{CH}_{2}$); MS (thermospray) m/z $486\left(\mathrm{MH}^{+}\right)$; LCMS m/z $508\left(\mathrm{M} \mathrm{Na}^{+}\right)$single component 99.8% gradient $2\left(\mathrm{t}_{\mathrm{R}} 3.10 \mathrm{~min}\right)$, gradient 3 ($\mathrm{t}_{\mathrm{R}} 14.52 \mathrm{~min}$); HRMS cal cd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right)$ 486.2393, found 486.2397.
(3S,3aR,6aS)-1-(Cyclopropylcarbonyl)-4-\{[(2S)-1-(4-iso-propylbenzoyl)pyrrolidin-2-yl]carbonyl)-3-methylhexahy-dropyrrolo[3,2-b]pyrrol-2(1H)- (26). Compound 8 was reacted with 4-isopropylbenzoyl chloride as described for $\mathbf{2 8}$ to give 26 (18\%) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.53-7.48$ and 7.26-7.21 ($2 \mathrm{~m}, 4 \mathrm{H}$, arylH), 4.75-4.68 (m, $1 \mathrm{H}, \mathrm{NCHCO}$), $4.60\left(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right), 3.88-3.55(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{NCHHCH} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$, NCHCHMe , NCHCH_{2}), $3.40-3.27$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHMe}$), 3.02-2.70 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}$, arylCHMe $)$, $2.35-1.81$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}$), 1.28-0.95 ($\mathrm{m}, 13 \mathrm{H}$, arylCHMe Cl_{2}, CHMe, $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); MS (thermospray) m/z $452\left(\mathrm{MH}^{+}\right)$; LCMS m/z $474\left(\mathrm{MNa}^{+}\right)$single component 99.4% gradient $3\left(t_{R} 14.18 \mathrm{~min}\right)$; HPLC $100 \%\left(\mathrm{t}_{\mathrm{R}}=\right.$ $26.50 \mathrm{~min})$. HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right) 452.2549$, found 452.2548.
(3S,3aR,6aS)-1-(Cyclopropylcarbonyl)-3-methyl-4-\{[(2S)-1-(4-propoxybenzoyl)pyrrolidin-2-yl]carbonyl\}-hexahydropyrrolo[3,2-b]pyrrol-2(1H)-one (27). Compound 8 was reacted with 4-propoxybenzoyl chloride as described for 28 to give $\mathbf{2 7}(59 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.58-$ 7.53 and $6.91-6.86(2 \mathrm{~m}, 4 \mathrm{H}$, arylH $), 4.71(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, NCHCO), 4.60 ($\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}$), 3.94 $\left(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, arylOCH $\left.\mathrm{CH}_{2} \mathrm{Me}\right)$, $3.89-3.55(\mathrm{~m}, 5 \mathrm{H}$, NCHHCH $\mathrm{NH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}, \mathrm{NCHCH}_{2}$), 3.39-3.26 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHMe}$), $3.00-2.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCHCH} 2 \mathrm{CH}_{2}\right), 2.82-2.71$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}$), 2.35-1.74 (m, 7H, arylOCH $\mathrm{CH}_{2} \mathrm{Me}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}$), 1.26-0.95 (m, 10H, arylOCH 2^{-} $\mathrm{CH}_{2} \mathrm{Me}, \mathrm{CHMe}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); MS (thermospray) $\mathrm{m} / \mathrm{z} 468$ $\left(\mathrm{MH}^{+}\right) ;$HPLC $100 \%\left(\mathrm{t}_{\mathrm{R}}=26.02 \mathrm{~min}\right) ;$ LCMS m/z $468\left(\mathrm{MH}^{+}\right)$ single component 99.6% gradient 3 ($\mathrm{t}_{\mathrm{R}} 13.92 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) 468.2498$, found 468.2482 .
(3S,3aR,6aS)-4-\{[(2S)-1-(4-Chlorobenzoyl)pyrrolidin-2-yl]carbonyl\}-1-(cyclopropylcarbonyl)-3-methylhexahy-dropyrrolo[3,2-b]pyrrol-2(1H)-one (29). Compound 8 was reacted with 4-chlorobenzoyl chloride as described for $\mathbf{2 8}$ to give 29 (87%) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.56-7.50$ (m, 2H, arylH), 7.41-7.30 (m, 2H, arylH), $4.70(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCHCO}), 4.55\left(\mathrm{t}, \mathrm{J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right), 3.90-$ 3.46, 3.39-3.27 (2m, 6H, NCHHCH $\mathrm{NH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}-$ $\mathrm{CHMe}, \mathrm{NCHCH}_{2}$ and CHMe), $2.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}\right)$, $2.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.37-1.78\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ and $\mathrm{NCH}_{2} \mathrm{CHH}$), 1.31-0.95 (m, 7H, CHMe and $\mathrm{COCHCH} \mathrm{CH}_{2}$); MS (thermospray) $\mathrm{m} / \mathrm{z} 444\left(\mathrm{MH}^{+}\right) ;$LCMS m/z $444\left(\mathrm{MH}^{+}\right)$single component 99.7% gradient $3\left(\mathrm{t}_{\mathrm{R}} 13.23 \mathrm{~min}\right)$; HPLC $100 \%\left(t_{R}=24.01 \mathrm{~min}\right) ;$ HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ClN}_{3} \mathrm{O}_{4}$ $\left(\mathrm{MH}^{+}\right)$444.1690, found 444.1689.
(2S)-2-\{[(3aS,6S,6aR)-4-(Cyclopropylcarbonyl)-6-meth-yl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbo-nyl\}-N-methyl-N-phenylpyrrolidine-1-carboxamide (40). To a solution of $\mathbf{8}(20 \mathrm{mg}, 0.06 \mathrm{mmol})$ in acetonitrile (2 mL) was added triethylamine ($0.02 \mathrm{~mL}, 0.15 \mathrm{mmol}, 2.5$ equiv) followed by N -methyl-N-phenyl carbamoyl chloride ($15 \mathrm{mg}, 0.15$ $\mathrm{mmol}, 1.5$ equiv). The resulting solution was left at room temperature for 16 h , quenched with 2-propanol $(0.1 \mathrm{~mL})$ and then evaporated to dryness. The resulting residue was purified by preparative TLC eluting with ethyl acetate/cycl ohexane (2: 1) to give $\mathbf{4 0}(22 \mathrm{mg}, 79 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.41-7.08(\mathrm{~m}, 5 \mathrm{H}$, arylH $), 4.60-4.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCO}$, $\left.\mathrm{NCHHCH} 2 \mathrm{CH}_{2}\right), 3.84-3.60\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCHHCH} 2 \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$, NCHCHMe, NCHCH_{2}), 3.42-3.30 (m, 1H, CHMe), $3.24(\mathrm{~s}, 3 \mathrm{H}$, arylNMeCO), 3.00-2.66 ($2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}$), 2.17-1.55 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}$), 1.30-0.95 (m, 7H, CHMe, COCHCH CH_{2}); MS (thermospray) m/z $439\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S)-2-\{[(3aS,6S,6aR)-4-(Cyclopropylcarbonyl)-6-meth-yl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbo-nyl\}-N-(4-isopropylphenyl)pyrrolidine-1-carboxamide (30). To a solution of proline $8(0.03 \mathrm{~g}, 0.09 \mathrm{mmol})$ in dry acetonitrile (2 mL) was added dry triethylamine $(0.03 \mathrm{~mL}, 0.22$ mmol) followed by 4-(isopropyl)phenyl isocyanate (0.022 g , $0.135 \mathrm{mmol})$. The reaction mixture was left standing at roomtemperature overnight, then quenched with 2-propanol (0.1 mL). It was then evaporated to dryness and purified using preparative plate chromatography eluting with ethyl acetatecyclohexane (2:1) to give 30 (77%) as an amorphous solid: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.26-7.21$ and $7.16-7.11(2 \mathrm{~m}, 4 \mathrm{H}$, arylH $), 6.19$ (s, 1H, CONH), 4.65 (dd, J $=7.6 \mathrm{~Hz}, 3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}$), $4.47\left(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right.$), 3.88-3.44 (m, 5H, $\mathrm{NCHHCH} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}, \mathrm{NCHCH} 2$), 3.37-3.24 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHMe}$), 2.99-2.66 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}$, arylCHMe2), 2.45-1.85 (m,5H, NCH $\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}$), 1.28-0.95 (m, 13H , arylCHMe $\left., \mathrm{CHMe}, \mathrm{COCHCH} 2 \mathrm{CH}_{2}\right)$; MS (thermospray) m/z $467\left(\mathrm{MH}^{+}\right) ;$HPLC 100% ($\mathrm{t}_{\mathrm{R}} 27.843 \mathrm{~min}$); LCMS m/z $467\left(\mathrm{MH}^{+}\right)$single component 99.6% gradient $1\left(\mathrm{t}_{\mathrm{R}}\right.$ $4.28 \mathrm{~min})$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right)$467.265831, found 467.264975 .

The following compounds were similarly prepared.
(2S)-2-\{[(3aS,6S,6aR)-4-(Cyclopropylcarbonyl)-6-meth-yl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbo-nyl\}-N-(4-propoxyphenyl)pyrrolidine-1-carboxamide (31). Compound 8 was reacted with 4-propoxyphenyl isocyanate as described for 30 to give 31 (53\%) as a white solid: ${ }^{1}$ H NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.24-7.18$ and $6.85-6.79(2 \mathrm{~m}, 4 \mathrm{H}$, arylH), 6.11 (s, $1 \mathrm{H}, \mathrm{CONH}$), 4.63 (dd, J $=8.0 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}$), 4.45 $\left(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}\right), 3.91-3.45(\mathrm{~m}, 7 \mathrm{H}$, arylOCH $\mathrm{CH}_{2} \mathrm{Me}, \mathrm{NCHHCH} 2 \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}$, $\left.\mathrm{NCHCH}_{2}\right), 3.36-3.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}), 2.98-2.88(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$), 2.78-2.66 (m, 1H, NCH 2 CHH), 2.40-1.70 (m, 7H, arylOCH $\mathrm{CH}_{2} \mathrm{Me}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH} \mathrm{H}$), 1.19-0.95 (m, 10 H , arylOCH $\mathrm{CH}_{2} \mathrm{Me}$ CHMe, $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); MS (thermospray) m/z $483\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S)-2-\{[(3aS,6S,6aR)-4-(Cyclopropylcarbonyl)-6-meth-yl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl \}-N-[4-(trifluoromethyl)phenyl]pyrrolidine-1-carboxamide(32). Compound8wasreacted with 4-(trifluoromethyl) phenyl isocyanate as described for 30 to give 32 (90\%) as a white powder: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 7.55-7.43(\mathrm{~m}, 4 \mathrm{H}, \operatorname{arylH}), 6.42$ (s, 1H, CONH), 4.65 (dd, J $=8.0 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}$), $4.41\left(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right)$, $3.86-3.47(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{NCHHCH} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}, \mathrm{NCHCH} 2$), $3.36-3.23$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHMe}$), 2.99-2.89 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{COCHCH}_{2} \mathrm{CH}_{2}$), 2.82-2.70 (m, 1H, $\left.\mathrm{NCH}_{2} \mathrm{CHH}\right), 2.42-1.86\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2}-\right.$ CHH), 1.19-0.95 (m, 7H, CHMe, $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); MS (thermospray) m/z 493 (MH^{+}); LCMS m/z $493\left(\mathrm{MH}^{+}\right.$) single component 99.7% gradient 1 ($t_{R} 4.65 \mathrm{~min}$), gradient 3 ($t_{R} 14.39 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right) 493.2063$, found 493.2047.
(2S)-2-\{[(3aS,6S,6aR)-4-(Cyclopropylcarbonyl)-6-meth-yl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]car-bonyl\}-N-(4-isopropoxyphenyl)pyrrolidine-1-carboxamide (33). Compound 8 was reacted with 4 -(isopropoxy)phenyl isocyanate as described for 30 to give 33 (12\%) as a white powder: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.24-7.17$ and $6.85-6.78$ ($2 \mathrm{~m}, 4 \mathrm{H}, \operatorname{arylH}$), 6.11 (s, $1 \mathrm{H}, \mathrm{CONH}$), 4.63 (dd, J $=7.3 \mathrm{~Hz}, 4.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHCO}$), 4.51-4.40 (m, 2H, arylOCHMe2, $\mathrm{NCHHCH}_{2}-$ CH_{2}), 3.84-3.44 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}-$ $\mathrm{CHMe}, \mathrm{NCHCH}_{2}$), 3.36-3.23 (m, 1H, CHMe), 2.98-2.88 (m, $1 \mathrm{H}, \mathrm{COCHCH} \mathrm{CH}_{2}$), 2.77-2.66 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}$), 2.40-1.87 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}$), 1.19-0.95 (m, 13H, aryIOCHMe2, CHMe, $\mathrm{COCHCH} \mathrm{CH}_{2}$); MS (thermospray) m/z $483\left(\mathrm{MH}^{+}\right)$; HPLC 100%, ($\mathrm{t}_{\mathrm{R}} 25.36 \mathrm{~min}$). Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{5}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S)-2-\{[(3aS,6S,6aR)-4-(Cyclopropylcarbonyl)-6-meth-yl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbo-nyl\}-N-(4-chlorophenyl)pyrrolidine-1-carboxamide (34). Compound 8 was reacted with 4-chlorophenyl isocyanate as described for $\mathbf{3 0}$ to give 34 (66%) as a white powder: ${ }^{1}$ H NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.32-7.20(\mathrm{~m}, 4 \mathrm{H}, \operatorname{arylH}), 6.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}), 4.63$ (dd, J $=8.0 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}$), $4.41(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}$,
$\left.\mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right), 3.85-3.43\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ $\mathrm{NCHCHMe}, \mathrm{NCHCH}_{2}$), 3.36-3.23 (m, 1H, CHMe), 2.99-2.89 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{COCHCH} \mathrm{CH}_{2}$), 2.80-2.69 (m, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}$), 2.40$1.88\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 1.19-0.95(\mathrm{~m}, 7 \mathrm{H}$, $\left.\mathrm{CHMe}, \mathrm{COCHCH} \mathrm{CH}_{2}\right)$; MS (thermospray) m/z $459\left(\mathrm{MH}^{+}\right)$; LCMS m/z $459\left(\mathrm{MH}^{+}\right)$single component 99.7% gradient $3\left(t_{R}\right.$ 13.64 min); HPLC 99.65\% (t_{R} 24.99min). HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{CIN}_{4} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right) 459.1799$, found 459.1787
(2S)-2-\{[(3aS,6S,6aR)-4-(Cyclopropylcarbonyl)-6-meth-yl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbo-nyl\}-N-(1-naphthyl)pyrrolidine-1-carboxamide (35). Compound 8 was reacted with 1-naphthyl isocyanate as described for 30 to give 35 (74\%) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 7.91-7.41 (m, 7H, arylH), 6.57 (s, 1H, CONH), 4.70 (dd, J = $8.0 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.42(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right), 3.89-3.50\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCHHCH} 2 \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$, $\mathrm{NCHCHMe}, \mathrm{NCHCH}_{2}$), 3.36-3.25 (m, 1H, CHMe), 2.98-2.87 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{COCHCH} \mathrm{CH}_{2}$), 2.76-2.65 (m, 1H, NCH NHH_{2}), 2.48$1.94\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 1.29-0.95(\mathrm{~m}, 7 \mathrm{H}$, $\left.\mathrm{CHMe}, \mathrm{COCHCH} 2 \mathrm{CH}_{2}\right)$; MS (thermospray) m/z $475\left(\mathrm{MH}^{+}\right)$; LCMS m/z $475\left(\mathrm{MH}^{+}\right.$) single component 99.5% gradient $3\left(t_{R}\right.$ 13.31 min); HPLC 99\% ($\mathrm{t}_{\mathrm{R}} 24.7 \mathrm{~min}$). HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right) 475.2345$, found 475.2331.
(2S)-2-\{[(3aS,6S,6aR)-4-(Cyclopropylcarbonyl)-6-meth-yl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbo-nyl\}-N-(2-isopropylphenyl)pyrrolidine-1-carboxamide (36). Compound 8 was reacted with 2-(isopropyl)phenyl isocyanate as described for 30 to give 36 (73\%) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.61$ (dd, J $=7.9 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}$, aryl6 H), 7.25-7.06 (m, 3H , aryl-3,4,5H), 6.13 (s, 1H, CONH), 4.65 (dd, J $=7.9 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.46(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right), 3.84-3.48\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$, $\left.\mathrm{NCHCHMe}, \mathrm{NCHCH}_{2}\right), 3.37-3.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}), 3.11-2.86$ ($\mathrm{m}, 2 \mathrm{H}$, arylCHMe2, $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$), 2.75-2.64 (m, 1 H , $\left.\mathrm{NCH}_{2} \mathrm{CHH}\right), 2.45-1.89\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}\right)$, 1.28-0.95 (m, 13H, arylCHMe2, CHMe, $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); MS (thermospray) m/z $467\left(\mathrm{MH}^{+}\right)$; HPLC 97.69\% (t_{R} 26.13min). Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S)-2-\{[(3aS,6S,6aR)-4-(Cyclopropylcarbonyl)-6-meth-yl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbo-nyl\}-N-[3-(trifluoromethyl)phenyl]pyrrolidine-1-carboxamide (37). Compound 8 was reacted with 3-(trifluoro)phenyl isocyanate as described for 30 to give 37 as a white solid (95\%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.72-7.21(\mathrm{~m}, 4 \mathrm{H}$, arylH $), 6.41(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CONH}$), 4.64 (dd, J $=7.9 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.41$ $\left(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right), 3.85-3.49(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{NCHHCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}, \mathrm{NCHCH}_{2}\right), 3.36-3.24$ (m, 1H, CHMe), 2.99-2.87 (m, 1H, COCHCH CH_{2}), 2.82-2.70 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}$), 2.40-1.90 (m,5H, NCH2CH2 $\mathrm{NH}_{2}, \mathrm{NCH}_{2^{-}}$ $\mathrm{CHH}), 1.27-0.95\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CHMe}, \mathrm{COCHCH} \mathrm{CH}_{2}\right)$; MS (thermospray) $\mathrm{m} / \mathrm{z} 493\left(\mathrm{MH}^{+}\right)$; HPLC 83.35\% (t_{R} 27.19min). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$
(2S)-2-\{ [(3aS,6S,6aR)-4-(Cyclopropylcarbonyl)-6-meth-yl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbo-nyl\}-N-(3-chlorophenyl)pyrrolidine-1-carboxamide (38). Compound 8 was reacted with 3-chlorophenyl isocyanate as described for 30 to give 38 (62\%) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.51-7.49(\mathrm{~m}, 1 \mathrm{H}$, aryl-2H$), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}$, aryl4H, -6 H), 7.02-6.97 (m, 1H, aryl-5H), 6.27 (s, 1H, CONH), 4.63 (dd, J $=7.9 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}$), $4.41(\mathrm{t}, \mathrm{J}=9.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right), 3.85-3.43\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right.$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}, \mathrm{NCHCH}_{2}\right), 3.36-3.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe})$, 2.99-2.86 (m, 1H, COCHCH2 CH_{2}), 2.81-2.70 (m, 1H, $\left.\mathrm{NCH}_{2} \mathrm{CHH}\right), 2.40-1.90\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}\right)$, 1.24-0.95 (m, 7H, CHMe, COCHCH2CH2); MS (thermospray) $\mathrm{m} / \mathrm{z} 459\left(\mathrm{MH}^{+}\right)$; HPLC 98.97\% (t_{R} 25.52min). Anal. ($\mathrm{C}_{23} \mathrm{H}_{27^{-}}$ $\left.\mathrm{ClN} \mathrm{CO}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S)-2-\{[(3aS,6S,6aR)-4-(Cyclopropylcarbonyl)-6-meth-yl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbo-nyl\}-N-phenylpyrrolidine-1-carboxamide (39). Compound 8 was reacted with phenyl isocyanate as described for 30 to give 39 (80%) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 7.37-$ $6.99(\mathrm{~m}, 5 \mathrm{H}$, arylH), 6.24 (s, 1H, CONH), 4.65 (dd, J $=7.9 \mathrm{~Hz}$,
$4.3 \mathrm{~Hz}, \mathrm{IH}, \mathrm{NCHCO}), 4.45\left(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right)$, 3.85-3.45 (m,5H, NCHHCH2CH2, $\mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}$, $\left.\mathrm{NCHCH}_{2}\right), 3.36-3.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}), 2.99-2.87(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{COCHCH}_{2} \mathrm{CH}_{2}\right), 2.79-2.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.40-1.90(\mathrm{~m}$, $\left.5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 1.27-0.95(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CHMe}$, $\mathrm{COCHCH}_{2} \mathrm{CH}_{2}$); MS (thermospray) m/z $425\left(\mathrm{MH}^{+}\right)$; HPLC 98.62% ($\mathrm{t}_{\mathrm{R}} 22.08 \mathrm{~min}$). Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S)-2-\{[(3aS,6S,6aR)-4-\{ [-cis-2,3-Dimethylcyclopropyl] -cis-carbonyl\}-6-methyl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}-N-(4-i sopropylphenyl)pyr-rolidine-1-carboxamide (45). Compound 44 was reacted with 4-(isopropyl)phenyl isocyanate as described for $\mathbf{3 0}$ to give 45 (47\%) as a white solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.29-7.19$ and 7.18-7.08 (pseudo-ABq, J $=8.5 \mathrm{~Hz}, 4 \mathrm{H}$, arylH), $6.20(\mathrm{bs}, 1 \mathrm{H}$, $\mathrm{NH}), 4.68-4.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.55-4.38(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right), 3.84-3.34\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCHHCH} 2 \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$, $\left.\mathrm{NCHCH}_{2}, \mathrm{NCHCHMe}\right), 3.32-3.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}), 2.94-2.69$ (m, 3H, NCH 2 CHH , arylCHMe2, NCOCHCHMeCHMe), 2.40$1.87\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 1.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCO}-$ CHCHMeCHMe), 1.20 (m, 15H, $5 \times \mathrm{CH}_{3}$); MS (thermospray) $\mathrm{m} / \mathrm{z} 495\left(\mathrm{MH}^{+}\right), 334$ (M -4-(isopropyl)phenyl isocyanate group ${ }^{+}$); LCMS m/z $495\left(\mathrm{MH}^{+}\right.$) single component 99.5% gradient 1 ($t_{R} 4.50 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right)$ 495.297131, found 495.297733; HPLC 100\% ($\mathrm{t}_{\mathrm{R}} 28.71 \mathrm{~min}$).
(2S)-2-\{ [(3aS,6S,6aR)-6-Methyl-5-oxo-4-[(2,2,3,3-tetra-methylcyclopropyl)carbonyl]hexahydropyrrolo[3,2-b]pyr-rol-1(2H)-yl]carbonyl\}-N-(4-isopropylphenyl)pyrrolidine-1carboxamide (51). Compound 49 was reacted with 4 -(isopropyl)phenyl isocyanate as described for $\mathbf{3 0}$ to give 51 (37\%) as a whitesolid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.26-7.21$ and 7.15-7.10($2 \mathrm{~m}, 4 \mathrm{H}$, arylH), 6.19 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$), 4.97-4.61 (m, 1H, $\mathrm{NCHCO}), 4.44\left(\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}\right), 3.83-3.45$ (m, 5H, NCHHCH $\mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}, \mathrm{NCHCHMe}$), 3.29-3.16 (m, 1H, CHMe), 2.91-2.67 (m, 2H, NCH $\mathrm{NHH}^{2} \mathrm{CH}$, arylCHMe 2), $2.40-1.87\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{COCHCMe} \mathrm{CMe}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, $\left.\mathrm{NCH}_{2} \mathrm{CHH}\right), \quad 1.30-1.10(\mathrm{~m}, 21 \mathrm{H}$, arylCHMe2, CHMe, $\left.\mathrm{COCHCMe} \mathrm{CMe}_{2}\right) ; ~ L C M S ~ m / z ~ 523\left(\mathrm{MH}^{+}\right)$single component 98\% gradient 1 ($\mathrm{t}_{\mathrm{R}} 5.48 \mathrm{~min}$). Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S)-2-\{[(3aS,6S,6aR)-6-Methyl-4-(4-nitrophenyl)-5-oxo-hexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}-N-(4-isopropylphenyl)pyrrolidine-1-carboxamide (52). Compound $\mathbf{5 0}$ was reacted with 4-(isopropyl)phenyl isocyanate as described for $\mathbf{3 0}$ to give 52 (49\%) as a pale yellow foam: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.30-8.23$ and $7.62-7.55\left(2 \mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{O}_{2} \mathrm{~N}-\right.$ arylH), 7.26-7.21 and 7.16-7.11 ($2 \mathrm{~m}, 4 \mathrm{H}, 4^{-1} \mathrm{Pr}$-arylH), 4.714.60 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCHCO}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}$), 4.07-3.29 (m, 6H, $\mathrm{NCHHCH} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}, \mathrm{NCHCHMe}, \mathrm{CHMe}$), 2.91-2.77 (m, 1H, NCH 2 CHH$), 2.67-2.54(\mathrm{~m}, 1 \mathrm{H}$, arylCHMe 2), 2.45-1.90 (m, 5H, NCH $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 1.24-1.13$ (m , 9 H , arylCHMe2, CHMe); MS (thermospray) m/z $520\left(\mathrm{MH}^{+}\right)$; HPLC 100\% ($t_{R} 29.4 \mathrm{~min}$). Anal. ($\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{5}$) C, H, N.

Benzyl (3aS,6S,6aR)-4-\{[-cis-2,3-Dimethylcyclopropyl] -cis-carbonyl \}-6-methyl-5-oxohexahydropyrrolo[3,2-b]-pyrrole-1(2H)-carboxylate (41). To a solution of (c-2, c-3-dimethylcyclopropyl-r-1-carboxylic) acid ($678 \mathrm{mg}, 5.95 \mathrm{mmol}$) in anhydrous tetrahydrofuran (20 mL), stirred under nitrogen at $-13^{\circ} \mathrm{C}$, was added methanesulfonyl chloride ($250 \mu \mathrm{~L}, 3.23$ mmol) followed by a solution of triethylamine ($1.5 \mathrm{~mL}, 10.8$ mmol) in anhydrous tetrahydrofuran (10 mL) dropwise over 15 min at -12 to $-14^{\circ} \mathrm{C}$. Theresulting suspension was stirred below $-11^{\circ} \mathrm{C}$ for 1 h and then allowed to warm to $20^{\circ} \mathrm{C}$ over 2.5 h . Solid was filtered off and washed with ether, and the combined filtrates were evaporated. The residue was partitioned between ether ($2 \times 50 \mathrm{~mL}$) and ice-cold saturated aqueous sodium bicarbonate solution (25 mL). The combined organic phases were washed with water (20 mL) and saturated brine (20 mL), dried, and evaporated to give ($\mathrm{c}-2, \mathrm{c}-3$-dimeth-ylcyclopropyl-r-1-carboxylic) anhydride ($543 \mathrm{mg}, 87 \%$) as an oil which crystallized: IR (KBr) $v_{\max } 1788,1732,1024 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta 1.68(\mathrm{dd}, \mathrm{J}=9.0 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 2 \mathrm{H}$, COCHCHMeCHMex 2), 1.61-1.54 (m, 4H, COCHCHMeCHMe x 2), 1.24-1.21 (m, 12H, COCHCHMeCHMex 2); MS (thermospray) $\mathrm{m} / \mathrm{z} 228$ (MNH^{+}). To a solution of the trans-Iactam $4(600 \mathrm{mg}, 2.19 \mathrm{mmol})$ in anhydrous tetrahydrofuran (8 mL)
stirred under nitrogen at $-78{ }^{\circ} \mathrm{C}$ was slowly added 1 M LHMDS solution in tetrahydrofuran ($2.4 \mathrm{~mL}, 2.4 \mathrm{mmol}$). The yellow solution was stirred for a further 20 min at $-78{ }^{\circ} \mathrm{C}$, and then a solution of (c-2, c-3-dimethyl cyclopropyl-r-1-carboxylic) anhydride ($510 \mathrm{mg}, 2.42 \mathrm{mmol}$) in anhydrous tetrahydrofuran (7 mL) was slowly added. The resulting sol ution was stirred for 1 h under nitrogen at $-78^{\circ} \mathrm{C}$ and then poured into saturated aqueous ammonium chloride solution (50 mL). The solution was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$, and the combined organic phases were washed sequentially with saturated aqueous sodium bicarbonate solution (20 mL), water $(20 \mathrm{~mL})$ and saturated brine (20 mL), dried, and evaporated to give an oil which crystallized (1.09 g). The crude product was purified by column chromatography eluting with cyclo-hexane-dichloromethane to give 41 ($785 \mathrm{mg}, 96 \%$) as a white foam: IR (KBr) $v_{\max } 1746,1713,1682 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR $\left(\mathrm{CHCl}_{3}\right)$ $\delta 7.40-7.31$ (m, 5H, arylH), 5.16 and 5.09 (Abq, J $=12.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 3.92-3.63\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}\right), 3.46$ (dd, J $=11.0 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHMe}$), 3.25-3.11 and 3.04-2.90 (2 broad s, 1H, CHMe), 2.87-2.78 (m, 1H, COCHCHMeCHMe), 2.75-2.67 (m, 1H, NCH 2 CHH), 1.98-1.85 (m, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}$), $1.69-1.53$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{COCHCHMeCHMe}$), 1.30-1.06 (m, 9H, CHMe, COCHCHMeCHMe); LCMS m/z 371 $\left(\mathrm{MH}^{+}\right)$single component 100% gradient $2\left(t_{R} 3.53 \mathrm{~min}\right)$ gradient 3 ($\mathrm{t}_{\mathrm{R}} 16.38$); HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right)$ 371.1971, found 371.1962.
(2S)-2-\{[(3aS,6S,6aR)-4-\{ [-cis-2,3-Dimethylcyclopropyl] -trans-carbonyl\}-6-methyl-5-oxohexahydropyrrolo-[3,2-b]pyrrol-1(2H)-yl]carbonyl\}-N-(4-isopropylphenyl)-pyrrolidine-1-carboxamide (46). Compound 4 was reacted with the anhydride prepared from (t -2, t -3-dimethylcyclopro-pyl-r-1-carboxylic) adid15 and the intermediate converted through as described for the cis, cis-dimethyl isomer 45 to give 46 (67\%) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.24$ and 7.11 (pseudoAbq, J $=8.5 \mathrm{~Hz}, 4 \mathrm{H}$, arylH), 6.21 (s, 1H, CONH), 4.64 (dd, J $=8.0 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.45(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCHHCH} 2 \mathrm{CH}_{2}\right), 3.83-3.45\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$, NCHCH_{2}, NCHCHMe), $3.32-3.20$ (m, 1H, CHMe), 2.92-2.65 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}$, arylCHMe $)$), 2.42-1.89 (m, 6H, COCHCHMeCHMe, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}$), $1.74-1.53(\mathrm{~m}, 2 \mathrm{H}$, COCHCHMeCHMe), $1.25-1.10$ (m, 15H, arylCHMe2, CHMe, COCHCHMeCHMe). Anal. ($\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4}$) C, H, N.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-6-methyl-5-oxo-4-[(2,2,3,3-tetramethylcyclopropyl)carbonyl]hexahydro-pyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}pyrrolidine-1-carboxylate (47). Derived from 12 and the mixed anhydride prepared from 2,2,3,3-tetramethyl cycl opropanecarboxylic acid and trimethylacetyl chloride as described for 41 to give 47 (68\%) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ shows complex overlapping signals due to rotameric forms: $\delta 4.47-3.20$ ($\mathrm{m}, 8 \mathrm{H}, \mathrm{NCHCO}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}, \mathrm{NCHCHMe}, \mathrm{CHMe}\right)$, $3.08-2.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.38-1.75\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{COCHCMe} \mathrm{e}^{-}\right.$ $\mathrm{CMe}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.49-1.09 (m, 24H, But, $\mathrm{CHMe} \mathrm{COCHCMe} \mathrm{CMe}_{2}$); MS (thermospray) m/z $462\left(\mathrm{MH}^{+}\right)$, 362 (M-Boc ${ }^{+}$); TLC Rf 0.36 (cyclohexane-ethyl acetate, 1:1); LCMS m/z $462\left(\mathrm{MH}^{+}\right)$single component 99% gradient 1 (t_{R} 4.88 min), gradient $2\left(\mathrm{t}_{\mathrm{R}} 3.46 \mathrm{~min}\right.$), gradient $3\left(\mathrm{t}_{\mathrm{R}} 16.17 \mathrm{~min}\right.$); HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) 462.2968$, found 462.2974.
(3S,3aR,6aS)-3-Methyl-4-[(2S)-pyrrolidin-2-ylcarbonyl]-1-[(2,2,3,3-tetramethylcyclopropyl)carbonyl]hexa-hydropyrrolo[3,2-b]pyrrol-2(1H)-one trifluoroacetate (49). To a solution of $\mathbf{4 7}$ ($75 \mathrm{mgs}, 0.16 \mathrm{mmol}$) in dichloromethane (3 mL) was added trifluoroacetic acid (1 mL), and the mixture was left at $21^{\circ} \mathrm{C}$ for 1.5 h . The mixture was evaporated to dryness, toluene ($2 \times 5 \mathrm{~mL}$) was added, and the mixture evaporated and then left under high vacuum for 24 h at room temperature to give 49 ($76 \mathrm{mg}, 99 \%$) as a pale yellow foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \quad 6.20-5.70$ (broad $\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}{ }^{+}$), 4.60-4.40 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCHCO}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}$), 4.35-3.20 (m, $6 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \quad \mathrm{NCHCH}_{2}, \quad \mathrm{NCHCHMe}$, CHMe), 2.50-2.00 ($\mathrm{m}, 7 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$, COCHCMe2CMe2), 1.30-1.05 (m, 15H, CHMe $\left.\mathrm{COCHCMe} \mathrm{CMe}_{2}\right) ; ~ M S ~(t h e r m o s p r a y) ~ m / z ~ 362\left(\mathrm{MH}^{+}\right), 380$ $\left(\mathrm{MNH}_{4}{ }^{+}\right)$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(3S,3aR,6aS)-3-Methyl-1-(4-nitrophenyl)-4-[(2S)-pyrro-lidin-2-ylcarbonyl]hexahydropyrrolo[3,2-b]pyrrol-2(1H)one trifluoroacetate (50). Compound 48 was deprotected with trifluoroacetic acid as described for 49 to give 50 (99\%) as a yellow glass: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.40-12.05$ (broad s, exch., $0.5 \mathrm{H}, \mathrm{NH}), 8.33-8.24$ and $7.62-7.53(2 \mathrm{~m}, 4 \mathrm{H}$, arylH), 4.94-4.84 (m, 1H, NCHCO), 4.28-3.30 (m, 7H, NCH $\mathrm{NH}_{2} \mathrm{CH}_{2}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}, \mathrm{NCHCHMe}, \mathrm{CHMe}\right), 2.80-2.60(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CHH}$), 2.37-1.90 (m, 5H, NCH $\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}$), 1.34-1.13 (m, 3H, CHMe); MS (thermospray) m/z $359\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-4-(1,3-Benzothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}pyrrolidine-1-carboxylate (54). A mixture of Boc-proline translactam 12 ($40.4 \mathrm{mg}, 0.12 \mathrm{mmol}, 1$ equiv), copper (1) chloride ($12 \mathrm{mg}, 0.12 \mathrm{mmol}, 1$ equiv), potassium carbonate ($27.5 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.66$ equiv), TDA-1 ($11.1 \mu \mathrm{~L}, 0.03$ mmol, 0.29 equiv), and 2-bromobenzothiazole ($45 \mathrm{mg}, 0.21$ mmol, 1.75 equiv) in p-xylene (25 mL) was stirred and refluxed under nitrogen. After 4.5 h the mixture was left to stand at room temperature overnight before it was reheated and stirred at reflux for a further 5.25 h and then allowed to cool to room temperature overnight. Then the mixture was filtered and the residue washed with ethyl acetate (10 mL). The filtrate and washings were combined and washed with 1 M hydrochloric acid (10 mL), water (7.5 mL), and brine (7.5 mL), dried, and evaporated to leave a yellow solid. The crude material was purified by preparative plate chromatography eluting with ethyl acetate-cyclohexane (1:1) to give 54 ($26.2 \mathrm{mg}, 46 \%$) as a white solid: $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}$, ben-zothiazolyl-4H and -7 H) 7.44 and 7.31 ($2 \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, benzothiazolyl-5H and -6H), 4.44 (m, 1H, NCHCO), 4.15, 3.85 and $3.53\left(3 \mathrm{~m}, 6 \mathrm{H}, \mathrm{NCHCHMe}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{NCHCH}_{2}\right), 3.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}), 3.17$ and $2.37(2 \mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.16$ and $1.91\left(2 \mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.44\left(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}\right.$, (rotamers) $9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}$), $1.20(\mathrm{~m}$, 3H, CHMe); MS (thermospray) m/z 471 (MH^{+}), 371 ($\mathrm{M}-\mathrm{Boc}^{+}$); HPLC 100% ($\mathrm{t}_{\mathrm{R}} 31.44 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ $\left(\mathrm{MH}^{+}\right)$471.206603, found 471.206283.
The following compounds were similarly prepared.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-6-Methyl-4-(4-nitro-phenyl)-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\} pyrrolidine-1-carboxylate (48). Compound 12 was reacted with 4-nitrobromobenzene as described for 54 to give 48 (65\%) as a yellow foam: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.30-8.22$ and $7.64-7.56(2 \mathrm{~m}, 4 \mathrm{H}$, arylH), 4.53-3.10 (m, 8H, NCHCO, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}, \mathrm{NCHCHMe}, \mathrm{CHMe}\right)$, 2.75-2.55 (m, 1H, NCH 2 CHH), 2.30-1.81 (m, 5H, NCH 2 CHH , $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.49-1.40 (m, 9H, But), 1.20-1.13 (m, 3H, CHMe); MS (thermospray) m/z $459\left(\mathrm{MH}^{+}\right), 359$ (M-Boc ${ }^{+}$); LCMS m/z $459\left(\mathrm{MH}^{+}\right)$single component 100% gradient 2 (t_{R} 3.12 min) gradient 3 ($\mathrm{t}_{\mathrm{R}} 14.04 \mathrm{~min}$); HPLC 100% ($\mathrm{t}_{\mathrm{R}} 26.7 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{6}\left(\mathrm{MNa}^{+}\right) 481.2063$, found 481.2071.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-6-Methyl-5-oxo-4-(1,3-thiazol-2-yl)hexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl $\}$ pyrrolidine-1-carboxylate (53). Compound 12 was reacted with 2-bromothiazole as described for 54 to give 53 (37\%) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.44$ ($\mathrm{d}, \mathrm{J}=3.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{SCHCHN}), 7.02$ (m, 1H, SCH), 4.42 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCO}$), 4.22-3.38 (m, 7H, NCHCHMe, CHMe, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2}-$ CH_{2} and NCHCH_{2}), $3.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right.$), 2.43-1.82 (m, $5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}$), 1.46 (d, J = $6.7 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}$), 1.17 (dd, J $=7.3 \mathrm{~Hz}, 3.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}$); MS (thermospray) m/z $421\left(\mathrm{MH}^{+}\right) ;$LCMS m/z $421\left(\mathrm{MH}^{+}\right)$single component 98\% gradient $2\left(\mathrm{t}_{\mathrm{R}} 2.91 \mathrm{~min}\right)$, gradient $3\left(\mathrm{t}_{\mathrm{R}} 13.13\right.$ \min); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$421.1910, found 421.1905; HPLC 100\% ($\mathrm{t}_{\mathrm{R}} 24.06 \mathrm{~min}$).
tert-Butyl (2S)-2-\{[(3aS,65,6aR)-4-[6-(\{[tert-Butyl(diphenyl)silyl]oxy\} methyl)-1,3-benzothiazol-2-yl]-6-methyl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}-pyrrolidine-1-carboxylate (58). Prepared in a manner similar to 54 by reacting 12 with 2-bromo-6-(tert-butyl-diphenylsilanyloxymethyl)-benzothiazole e^{12} to give 58 (57\% yield) as a pale yellow foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.81-7.63$ (m,

4 H, arylH), $7.49-7.31(\mathrm{~m}, 9 \mathrm{H}, \operatorname{arylH}), 4.85\left(\mathrm{~s}, 2 \mathrm{H}, \operatorname{arylCH}_{2}\right)$, 4.52-4.04 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{NCHCO}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCHMe}$), 3.98-3.07 (m, 6H, NCHHCH2CH2, $\mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}, \mathrm{CHMe}$, $\mathrm{NCH}_{2} \mathrm{CHH}$), 2.49-1.80 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.44\left(2 \mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{BuO}_{2} \mathrm{C}\right), 1.29-1.16(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Me}), 1.10(\mathrm{~s}, 9 \mathrm{H}$, t-BuSiO); MS (thermospray) m/z $739\left(\mathrm{MH}^{+}\right), 639$ ((MH-Boc ${ }^{+}$); LCMS m/z $739\left(\mathrm{MH}^{+}\right)$single component 99.5% gradient $1\left(\mathrm{t}_{\mathrm{R}}\right.$ 4.51 min); HPLC 100% ($\mathrm{t}_{\mathrm{R}} 43.6 \mathrm{~min}$). Anal. $\left(\mathrm{C}_{41} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{SSi}\right) \mathrm{C}$, H, N, S.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-4-(4-Methoxy-1,3-ben-zothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]-pyrrol-1(2H)-yl]carbonyl\}pyrrolidine-1-carboxylate (59). Prepared in a manner similar to 54 by reacting 12 with 2-bromo-4-methoxy-benzothiazole ${ }^{12}$ to give 59 (61% yield) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-7H), $7.27(\mathrm{~m}, 1 \mathrm{H}$, benzothiazolyl-6H), 6.90 (d, $\mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-5H), $4.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCO})$, $4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.29-4.07,3.95-3.69$ and $3.68-3.36$ ($3 \mathrm{~m}, 7 \mathrm{H}, \mathrm{NCHCHMe}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHMe}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{NCHCH} 2), 3.19$ and $2.39\left(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.20$ and 1.90 ($2 \mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.45 (d, J $=7.3 \mathrm{~Hz}$, (rotamers) $9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}$), $1.18(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHMe})$; MS (thermospray) $\mathrm{m} / \mathrm{z} 501\left(\mathrm{MH}^{+}\right), 401\left(\mathrm{MH}-\mathrm{Boc}^{+}\right)$; HPLC $98.5 \%\left(\mathrm{t}_{\mathrm{R}} 29.5 \mathrm{~min}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S} \cdot 0.15 \mathrm{CHCl}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-4-(5-Chloro-1,3-ben-zothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]-pyrrol-1(2H)-yl]carbonyl\}pyrrolidine-1-carboxylate (60). Prepared in a manner similar to 54 by reacting 12 with 2-bromo-5-chloro-benzothiazole ${ }^{12}$ to give $\mathbf{6 0}$ (16% yield) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-4H), 7.72 (d, J $=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl$7 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}$, benzothiazolyl-6H), $4.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCO}$, NCHHCH_{2}), $4.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH} 2), 3.99-3.70$ and $3.68-3.36$ ($2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{NCHCHMe}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHMe}, \mathrm{NCHHCH}$) 3.12 and $2.37\left(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.30-2.00$ and $2.00-1.81(2 \mathrm{~m}$, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.45 (d, J $=5.5 \mathrm{~Hz}$, (rotamers) $9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}$), $1.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHMe})$; MS (thermospray) m/z $505\left(\mathrm{MH}^{+}\right), 405$ ($\mathrm{MH}-\mathrm{Boc}^{+}$). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-4-(5-Methoxy[1,3]-thiazolo[5,4-b]pyridin-2-yl)-6-methyl-5-oxohexahydropy-rrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}pyrrolidine-1-carboxylate (61). Prepared in a manner similar to 54 by reacting 12 with 2-bromo-6- methoxy-7aza-benzothiazole ${ }^{12}$ to give 61 (80% yield) as a glassy solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ (rotamers) $\delta 7.78$ ($\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, azabenzothiazolyl-4H); $6.80(\mathrm{~d}, \mathrm{~J}=8.5$ Hz, 1H, azabenzothiazolyl-5H); 4.50-4.33 (m, 2H, NCHCO, NCHHCH_{2}); 4.20-4.01 (m, 1H, NCHCH 2); 4.00 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArOMe}$); 3.97-3.02 (m, 6H, NCHHCH $2, \mathrm{NCHCHMe}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$, $\left.\mathrm{CHMe}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.42-1.81\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 1.47-1.41 and $1.24-1.16\left(2 \mathrm{~m}, 12 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}, \mathrm{CHMe}\right)$. MS (thermospray) m/z $502\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
tert-Butyl (2S)-2-\{ [(3aS,6S,6aR)-4-(4-Methoxy-7-meth-yl-1,3-benzothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo-[3,2-b]pyrrol-1(2H)-yl]carbonyl\}pyrrolidine-1-carboxylate (62). Prepared in a manner similar to 54 by reacting 12 with 2-bromo-4-methoxy-7-methyl-benzothiazol e ${ }^{12}$ to give 62 (53% yield) as a yellow solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.05$ ($\mathrm{d}, \mathrm{J}=$ $7 \mathrm{~Hz}, 1 \mathrm{H}$) and $6.83(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}$ benzothiazolyl-5 H and -6 H), 4.47 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCO}$), 4.39 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHHCH} 2$), 4.18 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.94-3.71$ and $3.67-$ $3.36\left(2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{NCHCHMe}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHMe}, \mathrm{NCHHCH} 2\right)$, $3.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.48\left(\mathrm{~s}, 3 \mathrm{H}\right.$, arylCH ${ }_{3}$), 2.50-2.02 and 1.97-1.80 ($2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH} 2 \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.45 (d, J $=7.3 \mathrm{~Hz}$, (rotamers) 9H, But), 1.19 (m, 3H, CHMe); MS (thermospray) m/z $515\left(\mathrm{MH}^{+}\right)$, 415 (MH- Boc^{+}); LCMS m/z $515\left(\mathrm{MH}^{+}\right)$single component 100% gradient $2\left(\mathrm{t}_{\mathrm{R}} 3.42 \mathrm{~min}\right)$, gradient 3 ($t_{R} 15.83 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$ 515.2328, found 515.2345.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-4-(6-Methoxy-1,3-ben-zothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]-pyrrol-1(2H)-yl]carbonyl\}pyrrolidine-1-carboxylate (63). Prepared in a manner similar to 54 by reacting 12 with 2-bromo-6-methoxy-benzothiazole ${ }^{12}$ to give 63 (58% yield) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}$,
benzothiazolyl-4H), 7.28 (d, J $=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl7 H), 7.03 (dd, J $=8.7 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-5H), 4.44 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCO}$), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.24-4.01,3.98-3.69$ and 3.67-3.36 (3m, 7H, NCHCHMe, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHMe}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$ and NCHCH_{2}), 3.13 and $2.35\left(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, 2.27-2.00 and $2.00-1.80\left(2 \mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.44(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz} \text {, (rotamers) } 9 \mathrm{H}, \mathrm{Bu})^{\mathrm{t}}$), $1.19(\mathrm{~m}$, 3H, CHMe); MS (thermospray) m/z $501\left(\mathrm{MH}^{+}\right), 401$ (MHBoc^{+}); LCMS m/z $501\left(\mathrm{MH}^{+}\right.$) single component 100% gradient 2 ($\mathrm{t}_{\mathrm{R}} 3.38 \mathrm{~min}$), gradient 3 ($\mathrm{t}_{\mathrm{R}} 15.44 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$501.2172, found 501.2165.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-4-(4-Chloro-1,3-ben-zothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]-pyrrol-1(2H)-yl]carbonyl\}pyrrolidine-1-carboxylate (64). Prepared in a manner similar to 54 by reacting 12 with 2-bromo-4-chloro-benzothiazol e ${ }^{12}$ to give 64 (55\% yield) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.71$ and $7.46(2 \mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 2 H , benzothiazolyl-5H and -7 H), 7.23 ($\mathrm{m}, 1 \mathrm{H}$, benzothiazolyl6 H), $4.54-4.07\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCHCO}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 4.01-3.70$ and 3.69-3.36 ($2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{NCHCHMe}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHMe}$, $\left.\mathrm{NCHCH})_{2}\right), 3.21$ and $2.40\left(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.32-2.01$ and 1.98-1.78 ($2 \mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.46 (d, J $=6.1 \mathrm{~Hz}$, (rotamers) $9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}$), $1.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHMe})$; MS (thermospray) m/z $505\left(\mathrm{MH}^{+}\right), 405\left(\mathrm{MH}-\mathrm{Boc}^{+}\right)$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{29-}\right.$ $\left.\mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-4-(5-Methoxy-1,3-ben-zothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]-pyrrol-1(2H)-yl]carbonyl\}pyrrolidine-1-carboxylate (65). Prepared in a manner similar to 54 by reacting 12 with 2-bromo-5- methoxy-benzothiazole ${ }^{12}$ to give 65 (37% yield) as an off-white foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-7H), $7.30(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-4H), 6.95 (dd, J $=8.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-6H), 4.48 (m, $1 \mathrm{H}, \mathrm{NCHCO}), 4.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}\right), 4.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right)$, $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.96-3.69$ and $3.65-3.36(2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}-$ $\mathrm{CHMe}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHMe}$ and NCHHCH 2), 3.14 and 2.38 $\left(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.30-2.01$ and $1.98-1.80(2 \mathrm{~m}, 4 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.45 (d, J $=6 \mathrm{~Hz}$, (rotamers) 9H, But), 1.20 (m, 3H, CHMe); MS (thermospray) m/z 501 $\left(\mathrm{MH}^{+}\right), 401\left(\mathrm{MH}-\mathrm{Boc}^{+}\right) ;$LCMS m/z $501\left(\mathrm{MH}^{+}\right)$single component 98% gradient $2\left(t_{R} 3.39 \mathrm{~min}\right)$ gradient $3\left(\mathrm{t}_{\mathrm{R}} 15.44 \mathrm{~min}\right)$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}\left(\mathrm{MH}^{+}\right) 501.2172$, found 501.2162.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-4-\{5-[(Difluoromethyl)-sulfonyl]-1,3-benzothiazol-2-yl\}-6-methyl-5-oxohexahy-dropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}pyrrolidine-1-carboxylate (66). Prepared in a manner similar to 54 by reacting $\mathbf{1 2}$ with 2-bromo-5-(difluoromethyl)sulfonyl-benzothiazole ${ }^{12}$ to give 66 (27.5% yield) as a cream solid: ${ }^{1}$ H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-4H), $8.07(\mathrm{~d}$, $\mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-7H), $7.87(\mathrm{~m}, 1 \mathrm{H}$, benzothiazolyl$6 \mathrm{H}), 6.24\left(\mathrm{t}, \mathrm{J}=54 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CF}_{2} \mathrm{H}\right), 4.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCO}$ and $\left.\mathrm{NCHHCH}_{2}\right), 4.31-4.05,4.01-3.73$ and $3.67-3.34(3 \mathrm{~m}, 6 \mathrm{H}$, $\mathrm{NCHCHMe}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHMe}, \mathrm{NCHHCH} 2$ and NCHCH 2$)$, $3.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.51-2.02$ and $1.97-1.78(2 \mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.45(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}$, (rotamers) $9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}$), 1.20 (m, 3H, CHMe); MS (thermospray) $\mathrm{m} / \mathrm{z} 585\left(\mathrm{MH}^{+}\right), 485\left(\mathrm{MH}-\mathrm{Boc}^{+}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}\right) \mathrm{C}$, H, N.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-6-Methyl-4-(6-nitro-1,3-benzothiazol-2-yl)-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\} pyrrolidine-1-carboxylate (67). Prepared in a manner similar to 54 by reacting 12 with 2-bromo6 -nitro-benzothiazole ${ }^{12}$ to give 67 (13% yield) as a yellow solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.72$ (d, J $=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothia-zolyl-7H), 8.30 (dd, J $=9 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-5H), $7.82(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-4H), 4.53-4.37 and 4.29-4.06 ($2 \mathrm{~m}, 3 \mathrm{H}, \mathrm{NCHCO}, \mathrm{NCHHCH}_{2}$ and NCHCH_{2}), 4.043.73 and $3.69-3.36\left(2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{NCHCHMe}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, CHMe, NCHHCH 2), 3.14 and $2.42\left(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.32-$ 2.02 and 1.99-1.83 ($2 \mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.45 (d, J $=5 \mathrm{~Hz}$, (rotamers) $\left.9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}\right), 1.24(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHMe})$; MS (thermospray) m/z $516\left(\mathrm{MH}^{+}\right), 416\left(\mathrm{MH}-\mathrm{Boc}^{+}\right)$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-6-Methyl-5-oxo-4-[6-(trifluoromethoxy)-1,3-benzothiazol-2-yl]hexahydropyrrrolo [3,2-b] pyrrol-1 (2H)-yl]carbonyl\}pyrrolidine-1-carboxylate (68). Prepared in a manner similar to 54 by reacting $\mathbf{1 2}$ with 2-bromo-6-trifluoromethoxy-benzothiazol e ${ }^{12}$ to give 68 (53\% yield) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.77$ ($\mathrm{d}, \mathrm{J}=8.5$ $\mathrm{Hz}, 1 \mathrm{H}$, benzothiazolyl-4H), 7.67 ($\mathrm{m}, 1 \mathrm{H}$ benzothiazolyl-7H), $7.30(\mathrm{~m}, 1 \mathrm{H}$, benzothiazolyl-5H), 4.54-4.01 (m,3H, NCHCO, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), 3.98-3.70 and 3.69-3.35 ($2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{NCHCHMe}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHMe}$, and NCHCH 2$), 3.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right)$, 2.48-1.79 (m,5H, NCH $\mathrm{NHH}, \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{CH} 2, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.46 (d, J = 6.1 Hz , (rotamers) 9H, But), 1.20 (m, 3H, CHMe); MS (thermospray) m/z $555\left(\mathrm{MH}^{+}\right)$, 455 ($\mathrm{MH}-\mathrm{Boc}^{+}$); LCMS m/z $555\left(\mathrm{MH}^{+}\right)$single component 100% gradient $2\left(t_{R} 3.70 \mathrm{~min}\right)$, gradient 3 ($\mathrm{t}_{\mathrm{R}} 17.11 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ $\left(\mathrm{MH}^{+}\right) 555.1889$, found 555.1902.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-4-(6-F luoro-1,3-ben-zothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]-pyrrol-1(2H)-yl ccarbonyl\}pyrrolidine-1-carboxylate (69). Prepared in a manner similar to 54 by reacting 12 with 2-bromo-6-fluoro-benzothiazol e ${ }^{12}$ to give 69 (45% yield) as an off-white foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.71$ (dd, J $=8.5 \mathrm{~Hz}, 4.5$ $\mathrm{Hz}, 1 \mathrm{H}$, benzothiazolyl-4H), 7.46 (dd, J $=8 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-7H), 7.16 ($\mathrm{m}, 1 \mathrm{H}$, benzothiazolyl-5H), 4.52-4.36 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCHCO}, \mathrm{NCHHCH}_{2}$), $4.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right.$), $3.97-$ 3.70, 3.66-3.36 (2m,5H, NCHCHMe, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHMe}$, NCHHCH 2), 3.12 and $2.38\left(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.34-2.04$ and 1.98-1.80 (2m, 4H, NCH2 $\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.45 (d, J $=6 \mathrm{~Hz}$, (rotamers) $9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}$), $1.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHMe}) ; \mathrm{MS}$ (thermospray) m/z $489\left(\mathrm{MH}^{+}\right)$, $389\left(\mathrm{MH}-\mathrm{Boc}^{+}\right)$. Anal. ($\mathrm{C}_{24} \mathrm{H}_{29}{ }^{-}$ $\left.\mathrm{FN}_{4} \mathrm{O}_{4} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.

Ethyl 2-[(3S,3aR,6aS)-4-\{[(2S)-1-(tert-Butoxycarbonyl)-pyrrolidin-2-yl]carbonyl\}-3-methyl-2-oxohexahydropyr-rolo[3,2-b]pyrrol-1(2H)-yl]-1,3-benzothiazole-6-carboxylate (70). Prepared in a manner similar to 54 by reacting $\mathbf{1 2}$ with 2-bromo-6-ethoxycarbonyl benzothiazol e ${ }^{12}$ to give 70 (38% yield) as a white solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-7H); 8.12 (dd, J $=8.6 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}$, ben-zothiazolyl-5H); 7.80 (d, J $=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-4H); 4.50-4.36 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{NCHCO}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$); 4.30-3.07 ($\mathrm{m}, 8 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}$, NCHCHMe, CHMe, $\mathrm{NCH}_{2} \mathrm{CHH}$); 2.49-1.84 (m, 5H, NCH $\mathrm{NHH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $1.50-1.38$ and $1.27-1.17\left(2 \mathrm{~m}, 15 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}, \mathrm{CHMe}\right)$; MS (thermospray) m/z $543\left(\mathrm{MH}^{+}\right)$; LCMS m/z $543\left(\mathrm{MH}^{+}\right)$single component 100% gradient 1 ($\mathrm{t}_{\mathrm{R}} 4.78 \mathrm{~min}$), gradient $2\left(\mathrm{t}_{\mathrm{R}} 3.58\right.$ min), gradient 3 ($\mathrm{t}_{\mathrm{R}} 14.63 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ $\left(\mathrm{MH}^{+}\right)$543.2277, found 543.2283.
tert-Butyl (2S)-2-\{[(3aS,6S,6aR)-6-Methyl-5-oxo-4-[1,3]-thiazolo[5,4-b]pyridin-2-ylhexahydropyrrolo[3,2-b]pyr-rol-1(2H)-yl]carbonyl\} pyrrolidine-1-carboxylate (71). Prepared in a manner similar to 54 by reacting $\mathbf{1 2}$ with 2 -bromo-7-aza-benzothiazole ${ }^{12}$ to give $\mathbf{7 1}$ (28% yield) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ shows rotameric forms: $\delta 8.50-8.45(\mathrm{~m}, 1 \mathrm{H}$, pyridyl-2H), 7.98 (dd, J $=8.3 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridyl-4H), 7.36 (dd, J = $8.3 \mathrm{~Hz}, 4.9 \mathrm{~Hz}, 1 \mathrm{H}$, pyridyl-3H), 4.49-4.00 (2m, 3 H , NCHCO, $\mathrm{NCHHCH}_{2}, \mathrm{NCHCH}_{2}$), 4.99-3.70 (m, 2H, NCH$\mathrm{HCH}_{2}, \mathrm{NCHCHMe}$), $3.61-3.05\left(2 \mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHMe}\right.$, $\left.\mathrm{NCH}_{2} \mathrm{CHH}\right), 2.47-1.80\left(3 \mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 1.48-1.40 (m, 9H, But) 1.26-1.16 (m, 3H, CHMe); MS (thermospray) m/z $472\left(\mathrm{MH}^{+}\right)$, 372 ($\mathrm{MH}-\mathrm{Boc}^{+}$). Anal. ($\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}$) C, H, N, S.
(2S)-2-\{ [(3aS,6S,6aR)-4-(1,3-Benzothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbon-yl\}-N-(4-isopropylphenyl)pyrrolidine-1-carboxamide (56). To 54 ($64 \mathrm{mg}, 136 \mu \mathrm{~mol}$) was added trifluoroacetic acid (315 $\mu \mathrm{L}, 4.09 \mathrm{mmol}$) at room temperature. After 10 min the solution was azeotroped with toluene ($1 \mathrm{~mL} \times 2$) to leave a yellow gum (78 mg), which was dissolved in acetonitrile (2 mL) and 4-(isopropyl)phenyl isocyanate ($30 \mu \mathrm{~L}, 188 \mu \mathrm{~mol}, 1.37$ equiv) added followed by triethylamine ($47.5 \mu \mathrm{~L}, 341 \mu \mathrm{~mol}, 2.5$ equiv). The mixture was left to stand at room temperature for 4 h before it was directly purified using preparative plate chromatography el uting with ethyl acetate to give 56 ($62 \mathrm{mg}, 85 \%$) as an off-white solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{dd}, \mathrm{J}=8 \mathrm{~Hz}$,
$4 \mathrm{~Hz}, 2 \mathrm{H}$, benzothiazolyl-4H and -7 H); 7.44 (m, 1 H , ben-zothiazolyl-5H); 7.36-7.22 (m, 3H, benzothiazolyl-6H, aryl); 7.14 (d, J $=8 \mathrm{~Hz}, 2 \mathrm{H}$, aryl); 6.23 (s, 1H, NH); 4.70 (dd, J $=8$ $\mathrm{Hz}, 4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}) ; 4.62\left(\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}\right)$; $4.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right) ; 3.99-3.64(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCHCHMe}$, $\mathrm{NCHHCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHHCH}_{2}$); $3.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right)$; $3.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}) ; 3.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right) ; 2.86(\mathrm{~m}, 1 \mathrm{H}$, CHMe $)$; 2.48-1.92 (m,5H, $\mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.21 (d, J $=7 \mathrm{~Hz}, 9 \mathrm{H}, 3 \times \mathrm{Me}$); MS (thermospray) m/z $532\left(\mathrm{MH}^{+}\right.$), 371 (M-[4-(isopropyl)phenyl isocyanate group] ${ }^{+}$); Circular dichroism $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max } 198.0 \mathrm{~nm}, \mathrm{dE}-11.0, \mathrm{E} 42843, \lambda_{\max } 212.4 \mathrm{~nm}$, dE 8.47, E34234, $\lambda_{\text {max }} 228.0 \mathrm{~nm}, \mathrm{dE}-4.01$, E25880, $\lambda_{\max } 239.0$ $\mathrm{nm}, \mathrm{dE} 2.94, \mathrm{E} 25077, \lambda_{\max } 248.2 \mathrm{~nm}, \mathrm{dE} 0.47$, E23038, $\lambda_{\text {max }}{ }^{-}$ 257.2 nm , dE 4.78, E11031; LCMS m/z $532\left(\mathrm{MH}^{+}\right)$single component 99\% gradient $2\left(t_{R} 3.61 \mathrm{~min}\right)$, gradient $3\left(t_{R} 16.55\right.$ min); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{MH}^{+}\right) 532.2382$, found 532.2393.

The following compounds were similarly prepared.
(2S)-2-\{ [(3aS,6S,6aR)-6-Methyl-5-oxo-4-(1,3-thiazol-2yl) hexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}-N-(4-isopropylphenyl) pyrrolidine-1-carboxamide (55). Prepared in a manner similar to 56 from 53 to give 55 (96% yield) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}$, thiazolyl-4H), 7.25-7.22 (m, 2H, aryl $-2 \mathrm{H},-6 \mathrm{H}), 7.17-7.12(\mathrm{~m}$, 2 H , aryl $-3 \mathrm{H},-5 \mathrm{H}$), 7.01 (d, J $=3.5 \mathrm{~Hz}, 1 \mathrm{H}$, thiazolyl-5H), 6.19 (s, exch., 1H, CONH), 4.67 (dd, J $=8.0 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 1 \mathrm{H}$, NCHCO), $4.58(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH} 2), 4.09-4.00(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{NCHCH}_{2}$), 3.93-3.85 (m, 1H, NCHHCH 2), $3.78-3.73(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{NCHHCH} 2 \mathrm{CH}_{2}\right), 3.72-3.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}\right), 3.52$ (dd, J $=14.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHMe}$), 3.40 (quintet, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}), 3.02-2.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.84$ (septet, J $=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, arylCHMe2), 2.41-2.17 (m, 3H, $\mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CHHCH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}$), 2.13-2.03 (m, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHHCH}_{2}$), 2.03-1.94 (m, 1H, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}$), 1.20 ($\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}$, arylCHMe2), $1.17(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, CHMe); MS (thermospray) m/z $482\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}\right)$ C, H, N.
(2S)-2-\{ [(3aS,6S,6aR)-4-(4-Methoxy-1,3-benzothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}-N-(4-isopropylphenyl)pyrrolidine-1-carboxamide (73). Prepared in a manner similar to 56 from 59 to give 73 (90% yield) as a white solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.40$ ($\mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-7H); 7.25 (m, 3H, benzothia-zolyl-6H, aryl); 7.13 (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, aryl); $6.89(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}, 1 \mathrm{H}$, benzothiazolyl-5H); $6.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; 4.68(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCHCO}) ; 4.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}\right) ; 4.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right) ;$ 4.02 (s, 3H, OMe), 3.98-3.62 (m, 3H, NCHCHMe, $\mathrm{NCHHCH}_{2}-$ $\left.\mathrm{CH}_{2}, \mathrm{NCHHCH} 2\right) ; 3.58-3.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}, \mathrm{CHMe}\right)$; $3.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right) ; 2.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe})$; 2.53-1.91(m, $5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.20\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CHMe}_{2}, \mathrm{Me}\right)$; MS (thermospray) m/z $562\left(\mathrm{MH}^{+}\right), 401$ (M-[4-(isopropyl)phenyl isocyanate group] ${ }^{+}$). Anal. ($\left.\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S} \cdot 0.05 \mathrm{EtOAC}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(2S)-2-\{ [(3aS,6S,6aR)-4-(5-Chloro-1,3-benzothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}-N-(4-isopropylphenyl)pyrrolidine-1-carboxamide (74). Prepared in a manner similar to 56 from 60 to give $\mathbf{7 4}$ (74% yield) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.78$ ($\mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazoyl-4H), $7.71(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, 1H, benzothiazolyl-7H), 7.27 (m, 3H, benzothiazolyl-6H, aryl), 7.12 (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{aryl}), 6.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.67(\mathrm{dd}, \mathrm{J}=$ $8 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.59\left(\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}\right)$, $4.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 3.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}\right), 3.74(\mathrm{dd}, \mathrm{J}$ $=11 \mathrm{~Hz}, 8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHMe}), 3.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right)$, 3.58-3.36(m, 2H, CHMe, NCHHCH CH_{2}), $3.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}-\right.$ CHH), $2.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}_{2}\right), 2.44-1.70\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right.$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.19 ($\mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CHMe}, \mathrm{Me}$): MS (thermospray) m/z $566\left(\mathrm{MH}^{+}\right), 405$ (M-[4-(isopropyl)phenyl isocyanate group] ${ }^{+}$); LCMS m/z $566\left(\mathrm{MH}^{+}\right)$single component 98.0\% gradient 1 ($t_{R} 4.92 \mathrm{~min}$); HPLC 100% ($\mathrm{t}_{\mathrm{R}} 35.58 \mathrm{~min}$). Anal. ($\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{~S} \cdot 0.15 \mathrm{CHCl}_{3}$) C, H, N.
(2S)-2-\{[(3aS,6S,6aR)-4-(5-Methoxy[1,3]thiazolo[5,4-b]-pyridin-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]pyr-rol-1(2H)-yl]carbonyl\}-N-(4-isopropylphenyl)pyrrolidine-1-carboxamide (75). Prepared in a manner similar to 56 from

61 to give 75 (95% yield) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.89 (d, J $=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridothiazolyl-4H), 7.28-7.21 and $7.17-7.10(2 \mathrm{~m}, 4 \mathrm{H}$, arylH), $6.80(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridot-hiazolyl-5H), 6.19 (s, 1H, CONH), 4.72-4.51 (m, 2H, NCHCO, $\left.\mathrm{NCHHCH} 2 \mathrm{CH}_{2}\right), 4.15-3.35\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{NCHHCH} 2 \mathrm{CH}_{2}\right.$, heteroaryIOMe, $\mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}, \mathrm{NCHCHMe}$, arylCHMe2), 3.143.00 (m, 1H, CHMe), 2.91-2.78 (m, 1H, NCH 2 CHH), 2.451.90 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.25-1.15 ($\mathrm{m}, 9 \mathrm{H}$, aryICHMe2, CHMe); MS (thermospray) m/z $563\left(\mathrm{MH}^{+}\right.$); LCMS $\mathrm{m} / \mathrm{z} 563\left(\mathrm{MH}^{+}\right)$single component 100% gradient $2\left(\mathrm{t}_{\mathrm{R}} 3.49 \mathrm{~min}\right)$, gradient 3 ($\mathrm{t}_{\mathrm{R}} 16.30 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$ 563.2441, found 563.2425.
(2S)-2-\{ [(3aS,6S,6aR)-4-(4-Methoxy-7-methyl-1,3-ben-zothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]-pyrrol-1(2H)-yl]carbonyl\}-N-(4-isopropylphenyl)pyrro-lidine-1-carboxamide (76). Prepared in a manner similar to 56 from 62 to give $\mathbf{7 6}$ (91% yield) as a cream solid: ${ }^{1}$ H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}$, aryl), $7.13(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, aryl), 7.04 (d, J $=8 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-5H), 6.82 (d, J $=$ $8 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-6H), $6.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.68(\mathrm{dd}, \mathrm{J}=$ $7 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.58\left(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}\right)$, 4.19 (m, 1H, NCHCH 2), $4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89(\mathrm{~m}, 1 \mathrm{H}$, NCHHCH_{2}), 3.78 (dd, J $=11 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHMe}$), 3.68 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHHCH} \mathrm{CH}_{2}$), $3.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right), 3.44$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHMe}$) , $3.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.84(\mathrm{~m}, 1 \mathrm{H}$, CHMe_{2}), 2.47 ($\mathrm{s}, 3 \mathrm{H}$, arylCH Cl_{3}), 2.46-1.91 (m, $5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.20 (m, 9H, CHMe2, Me); MS (thermospray) $\mathrm{m} / \mathrm{z} 576\left(\mathrm{MH}^{+}\right), 415$ (M-[4-(isopropyl)phenyl isocyanate group] ${ }^{+}$); LCMS m/z $576\left(\mathrm{MH}^{+}\right)$single component 99.7% gradient $2\left(t_{R} 3.55 \mathrm{~min}\right)$, gradient $3\left(\mathrm{t}_{\mathrm{R}} 16.59 \mathrm{~min}\right)$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{MH}^{+}\right) 576.2645$, found 576.2626.
(2S)-2-\{[(3aS,6S,6aR)-4-(6-Methoxy-1,3-benzothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}-N-(4-isopropylphenyl)pyrrolidine-1-carboxamide (77). Prepared in a manner similar to 56 from 63 to give 77 (85% yield) as a white solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.67$ (d, J $=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-4H); 7.25 (m, 3H, benzothia-zole-7H, aryl); 7.13 (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, aryl); 7.02 (dd, J $=9$ $\mathrm{Hz}, 3 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-5H); 6.21 (s, 1H,NH); 4.68 (m, $1 \mathrm{H}, \mathrm{NCHCO}) ; 4.59(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH} 2) ; 4.10(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{NCHCH}_{2}$); 3.87 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.88-3.64 (m, 3H, $\mathrm{NCHCHMe}, \mathrm{NCHHCH} \mathrm{CH}_{2}, \mathrm{NCHHCH}_{2}$); $3.58-3.36(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCHHCH}_{2} \mathrm{CH}_{2}, \mathrm{CHMe}\right) ; 3.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right) ; 2.84(\mathrm{~m}, 1 \mathrm{H}$, CHMe2); 2.45-1.83 (m,5H, NCH2CHH, NCH $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.20 ($\mathrm{m}, 9 \mathrm{H}, \mathrm{CHMe}_{2}, \mathrm{Me}$); MS (thermospray) m/z $562\left(\mathrm{MH}^{+}\right), 401$ (M-[4-(isopropyl)phenyl isocyanate group] ${ }^{+}$); LCMS m/z 562 $\left(\mathrm{MH}^{+}\right)$single component 99.5% gradient 2 ($\mathrm{t}_{\mathrm{R}} 3.52 \mathrm{~min}$), gradient 3 ($\mathrm{t}_{\mathrm{R}} 16.52 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$ 562.2488, found 562.2477.
(2S)-2-\{ [(3aS,6S,6aR)-4-(4-Chloro-1,3-benzothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl)-N-(4-isopropylphenyl)pyrrolidine-1-carboxamide (78). Prepared in a manner similar to 56 from 64 to give 78 (93% yield) as a pale yellow solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.70 and 7.45 (2dd, J $=1.2 \mathrm{~Hz}, 8 \mathrm{~Hz}, 2 \mathrm{H}$, benzothiazolyl-5H and -7 H), 7.25 (m, 3H, benzothiazolyl-6H, aryl), 7.13 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$, aryl), 6.21 (s, $1 \mathrm{H}, \mathrm{NH}$), 4.69 (dd, J $=7 \mathrm{~Hz}, 4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCHCO}$), $4.59\left(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}\right), 4.16(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{NCHCH}_{2}$), $3.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}\right), 3.80(\mathrm{dd}, \mathrm{J}=11 \mathrm{~Hz}$, $7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHMe}), 3.69$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHHCH} 2 \mathrm{CH}_{2}$), 3.59$3.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHMe}, \mathrm{NCHHCH} \mathrm{CH}_{2}\right), 3.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right)$, $2.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}_{2}\right), 2.51-1.86\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 1.22 (m, 9H, CHMe2, Me); MS (thermospray) m/z $566\left(\mathrm{MH}^{+}\right)$, 405 (M-[4-(isopropyl)phenyl isocyanate group]+); LCMS m/z $566\left(\mathrm{MH}^{+}\right)$single component 99.8% gradient $2\left(\mathrm{t}_{\mathrm{R}} 3.69 \mathrm{~min}\right.$), gradient 3 ($t_{R} 17.36 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{~S}$ $\left(\mathrm{MH}^{+}\right)$566.1993, found 566.1979.
(2S)-2-\{[(3aS,6S,6aR)-4-(5-Methoxy-1,3-benzothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}-N-(4-isopropylphenyl)pyrrolidine-1-carboxamide (79). Prepared in a manner similar to 56 from 65 to give 79 (65% yield) as a cream solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.66$ (d, J $=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-7H), $7.31(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}$, 1H, benzothiazolyl-4H), 7.25 (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, aryl), 7.13 (d,
$\mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, aryl), 6.95 (dd, J $=9 \mathrm{~Hz}, 2.5 \mathrm{~Hz}$, benzothia-zolyl-6H), 6.27 (s, 1H, NH), 4.68 (dd, J $=7.5 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCHCO}), 4.60(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH})_{2}\right), 4.09(\mathrm{~m}, 1 \mathrm{H}$, NCHCH_{2}), $3.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76$ (dd, J $=11 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHMe}), 3.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}-\right.$ CH_{2}), $3.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right), 3.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}), 3.11$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}$), $2.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}_{2}\right), 2.46-1.92(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.20 (m, $9 \mathrm{H}, \mathrm{CHMe}_{2}, \mathrm{Me}$); MS (thermospray) m/z $562\left(\mathrm{MH}^{+}\right), 401$ (M-[4-(isopropyl)phenyl isocyanate group] ${ }^{+}$); LCMS m/z $562\left(\mathrm{MH}^{+}\right)$single component 99.7% gradient 2 ($t_{R} 3.52 \mathrm{~min}$), gradient 3 ($\mathrm{t}_{\mathrm{R}} 16.47 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{MH}^{+}\right) 562.2488$, found 562.2162.
(2S)-2-\{[(3aS,6S,6aR)-4-\{5-[(Difluoromethyl)sulfonyl]-1,3-benzothiazol-2-yl \}-6-methyl-5-oxohexahydropyrrolo-[3,2-b]pyrrol-1(2H)-yl]carbonyl\}-N-(4-isopropylphenyl)-pyrrolidine-1-carboxamide (80). Prepared in a manner similar to 56 from 66 to give $\mathbf{8 0}$ (55% yield) as a cream solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-4H), 8.06 (d, J $=8 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-7H), 7.86 (dd, J $=8 \mathrm{~Hz}$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazoyl-6H), 7.24 (d, J $=9 \mathrm{~Hz}, 2 \mathrm{H}$, aryl), 7.13 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{aryl}), 6.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.23(\mathrm{t}, \mathrm{J}=53$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}$), 4.66 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCHCO}, \mathrm{NCHHCH}_{2}$), 4.12 (m, $1 \mathrm{H}, \mathrm{NCHCH}_{2}$), $3.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}\right), 3.80(\mathrm{dd}, \mathrm{J}=11 \mathrm{~Hz}$, $7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHMe}$), 3.68 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}$), 3.50 (m , $2 \mathrm{H}, \mathrm{NCHHCH} 2 \mathrm{CH}_{2}, \mathrm{CHMe}$), $3.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right.$), 2.84 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHMe}_{2}$), 2.49-1.92 (m, 5H, $\mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.20 ($\mathrm{m}, 9 \mathrm{H}, \mathrm{CHM} \mathrm{e}_{2}, \mathrm{Me}$); MS (thermospray) m/z $646\left(\mathrm{MH}^{+}\right)$, 485 (M-[4-(isopropyl)phenyl isocyanate group] +); LCMS m/z $646\left(\mathrm{MH}^{+}\right)$single component 99.5% gradient $2\left(\mathrm{t}_{\mathrm{R}} 3.53 \mathrm{~min}\right)$, gradient 3 ($\mathrm{t}_{\mathrm{R}} 16.32 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2}$ (MH^{+}) 646.1969, found 646.1976.
(2S)-2-\{ [(3aS,6S,6aR)-6-Methyl-4-(6-nitro-1,3-benzothi-azol-2-yl)-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]-carbonyl\}-N-(4-isopropylphenyl)pyrrolidine-1-carboxamide (81). Prepared in a manner similar to 56 from 67 to give 81 (76% yield) as a yellow solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.74$ (d, J $=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-7H), 8.31 (dd, J $=9 \mathrm{~Hz}, 2$ $\mathrm{Hz}, 1 \mathrm{H}$, benzothiazolyl-5H), 7.83 (d, J $=9 \mathrm{~Hz}, 1 \mathrm{H}$, benzothia-zolyl-4H), 7.24 (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, aryl), $7.13(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, 2 H , aryl), $6.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCO}, \mathrm{NCHHCH}_{2}\right)$, 4.13 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}$), $3.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}\right), 3.79$ (dd, J $=11 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHMe}), 3.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH} 2 \mathrm{CH}_{2}\right)$, 3.59-3.41 (m, 2H, CHMe, NCHHCH ${ }_{2} \mathrm{CH}_{2}$), $3.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}-\right.$ CHH), $2.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}_{2}\right), 2.49-1.92\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right.$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.20 (m, 9H, CHMe2, Me); MS (thermospray) $\mathrm{m} / \mathrm{z} 577\left(\mathrm{MH}^{+}\right), 416$ (M-[4-(isopropyl)phenyl isocyanate group] ${ }^{+}$); LCMS m/z $577\left(\mathrm{MH}^{+}\right)$single component 99.8\% gradient 2 ($\mathrm{t}_{\mathrm{R}} 3.60 \mathrm{~min}$), gradient 3 ($\mathrm{t}_{\mathrm{R}} 16.74 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~S}\left(\mathrm{MH}^{+}\right) 577.2233$, found 577.2222.
(2S)-2-\{[(3aS,6S,6aR)-6-Methyl-5-oxo-4-[6-(trifluo-romethoxy)-1,3-benzothiazol-2-yl]hexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl\}-N-(4-i sopropylphenyl)pyr-rolidine-1-carboxamide (82). Prepared in a manner similar to 56 from 68 to give 82 (81% yield) as a white solid: ${ }^{1}$ H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-4H), 7.67 (br, 1H, benzothiazolyl-7H), 7.27 (m, 3H, benzothiazolyl-5H, aryl), 7.13 (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, aryl), $6.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$), $4.74-$ $4.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCO}, \mathrm{NCHHCH}_{2}\right), 4.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}\right)$, 3.93, 3.78 and $3.69\left(3 \mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCHCH}_{2}\right), 3.53$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCHMe}$), 3.45 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHMe}$), $3.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}-\right.$ CHH), $2.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe} \mathrm{e}_{2}\right.$, $2.47-1.91\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right.$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.22 (m,9H, CHMe2, Me); MS (thermospray) $\mathrm{m} / \mathrm{z} 616\left(\mathrm{MH}^{+}\right), 455$ (M-[4-(isopropyl)phenyl isocyanate group] ${ }^{+}$); LCMS m/z $616\left(\mathrm{MH}^{+}\right)$single component 99.7% gradient $2\left(\mathrm{t}_{\mathrm{R}} 3.74 \mathrm{~min}\right)$, gradient $3\left(\mathrm{t}_{\mathrm{R}} 17.74 \mathrm{~min}\right)$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}_{2}\left(\mathrm{MH}^{+}\right) 616.2205$, found 616.2194 .
(2S)-2-\{[(3aS,6S,6aR)-4-(6-F luoro-1,3-benzothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]pyrrol-1(2H)-yl]carbonyl)-N-(4-isopropylphenyl)pyrrolidine-1-carboxamide (83). Prepared in a manner similar to 56 from 69 to give 83 (89% yield) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.72$ (dd, J $=9 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-4H), 7.49 (dd, J = $8.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-7H), $7.24(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}$, 2H, aryl), 7.15 (m, 3H, aryl, benzothiazolyl-5H), 6.23 (s, 1H,

NH), 4.68 (dd, J $=8 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.61(\mathrm{t}, \mathrm{J}=10$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}$), 4.10 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}$), 3.91 ($\mathrm{m}, 1 \mathrm{H}$, NCHHCH_{2}), 3.77(dd, J $\left.=11 \mathrm{~Hz}, 7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCHMe}\right), 3.69$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}$), 3.52 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}$), 3.43 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHMe}$), $3.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}\right), 2.84(\mathrm{~m}, 1 \mathrm{H}$, CHMe_{2}), 2.47-1.92 (m,5 $\mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.20 (m, 9H, CHMe2, Me); MS (thermospray) m/z $550\left(\mathrm{MH}^{+}\right), 389$ (M-[4-(isopropyl)phenyl isocyanate group] +); LCMS m/z 550 $\left(\mathrm{MH}^{+}\right)$single component 99.4% gradient 2 ($\mathrm{t}_{\mathrm{R}} 3.54 \mathrm{~min}$), gradient 3 ($\mathrm{t}_{\mathrm{R}} 16.71 \mathrm{~min}$); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{FN}_{5} \mathrm{O}_{3} \mathrm{~S}$ $\left(\mathrm{MH}^{+}\right) 550.2288$, found 550.2278 .
(2S)-2-\{ [(3aS,6S,6aR)-4-(6-E thyl carboxylate-1,3-ben-zothiazol-2-yl)-6-methyl-5-oxohexahydropyrrolo[3,2-b]-pyrrol-1(2H)-yl]carbonyl\}-N-(4-isopropylphenyl)pyrro-lidine-1-carboxamide (84). Prepared in a manner similar to $\mathbf{5 6}$ from $\mathbf{7 0}$ to give $\mathbf{8 4}$ (62% yield) as a cream solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-7H); 8.12 (dd, J = $1.8 \mathrm{~Hz}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-5H); 7.81 (d, $\mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-4H); 7.24-7.13 (ABq, J $=8.5$ $\mathrm{Hz}, 4 \mathrm{H}, \operatorname{arylH}) ; 6.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}) ; 4.72-4.57(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NCHCO}, \mathrm{NCHCH}_{2}$); $4.41\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$); 4.20-4.05 (m, 1H, NCHCH2); 4.00-3.39 (m,5H, NCHHCH 2^{-} $\mathrm{CH}_{2}, \mathrm{NCHHCH}_{2}, \mathrm{NCHCHMe}$ and CHMe); 3.19-3.06 (m, 1H, $\mathrm{NCH}_{2} \mathrm{CHH}$); 2.91-2.78 (m, 1H, CHMe2); 2.45-1.94 (m, 5H, $\mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $1.43\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2}^{-}\right.$ $\mathrm{CH}_{2} \mathrm{Me}$); 1.21-1.17 (m,9H, CHMe, CHMe2); LCMS m/z 604.5 $\left(\mathrm{MH}^{+}\right)$single component $98 . \%$ gradient 1 ($\mathrm{t}_{\mathrm{R}} 4.96 \mathrm{~min}$). Anal. ($\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}$) C, H, N, S.
(2S)-2-\{ [(3aS,6S,6aR)-6-Methyl-5-oxo-4-[1,3]thiazolo-[5,4-b]pyridin-2-ylhexahydropyrrolo[3,2-b]pyrrol-1(2H)yl]carbonyl $\}$ - N -(4-isopropylphenyl)pyrrolidine-1-carboxamide (85). Prepared in a manner similar to 56 from 71 to give 85 (75% yield) as a white solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.47(\mathrm{dd}, \mathrm{J}=4.8 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridyl-2H), 8.01 (dd, J $=8.3 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridyl- 4 H), 7.37 (dd, J $=8.3 \mathrm{~Hz}$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$, pyridyl-3H), 7.26-7.22 (m, 2H, aryl-2H, 6 H), 7.167.12 (m, 2H , aryl-3H, 5H), 6.19 (s, exch., 1H, CONH), 4.67 (dd, $\mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.63(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCHHCH}_{2}\right), 4.15-4.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 3.97-3.89(\mathrm{~m}, 1 \mathrm{H}$, NCHHCH 2), 3.83-3.77 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCHMe}$), 3.72-3.66 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}$), $3.56-3.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2} \mathrm{CH}_{2}\right)$, 3.46 (quintet, J $=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}$), $3.14-3.07(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CHH}$), 2.85 (septet, J $=7 \mathrm{~Hz}, 1 \mathrm{H}$, arylCHMe2), 2.45$2.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{CHHCH}_{2}\right), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 2.15-2.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CHHCH}_{2}\right), 2.03-$ $1.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}\right), 1.21(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe})$, 1.20 (d, J $=7 \mathrm{~Hz}, 6 \mathrm{H}$, arylCHMe2); LCMS m/z $533\left(\mathrm{MH}^{+}\right)$ single component 99.7% gradient $2\left(t_{R} 3.23 \mathrm{~min}\right.$), gradient 3 ($\mathrm{t}_{\mathrm{R}} 15.03 \mathrm{~min}$); HRMS cal cd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{MH}^{+}\right.$) 533.2335, found 533.2325.
(2S)-2-\{ [(3aS,6S,6aR)-4-[6-(H ydroxymethyl)-1,3-ben-zothiazol-2-yl]-6-methyl-5-oxohexahydropyrrolo[3,2-b]-pyrrol-1(2H)-yl]carbonyl\}-N-(4-isopropylphenyl)pyrro-lidine-1-carboxamide (72). To a solution of $58(0.125 \mathrm{~g}, 0.169$ mmol) in dry 1,4 -dioxane (1 mL) was added a 4.0 M solution of HCl in 1,4-dioxane (0.5 mL). The reaction mixture was allowed to stir at room temperature under an atmosphere of nitrogen for 68 h . The reaction mixture was then evaporated to dryness and azeotroped with toluene ($\times 3$) to give a cream residue, which was used in the next step without further purification. The crude mixture was treated in a manner similar to that used to prepare 56 to give $\mathbf{7 2}$ (25% yield) as an off-white solid: IR (KBr) $\nu_{\max }$ 1729.8, 1684.8, 1669.6, 1654.3, $1518.3 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-7H);); 7.6 (d, J $=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl4 H); 7.43 (dd, J $=1.8 \mathrm{~Hz}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, benzothiazolyl-5H); $7.26-7.14(\mathrm{ABq}, \mathrm{J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{arylH}) ; 6.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.79$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 4.68 (dd, J $=3.8 \mathrm{~Hz}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCO}$); $4.59\left(\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHHCH}_{2}\right) ; 4.12-4.00(\mathrm{~m}, 1 \mathrm{H}$, NCHCH_{2}); 3.96-3.82 (m, 1H, NCHHCH 2); 3.75-3.63 (m, 1H, NCHCHMe); 3.59-3.30 (m, 3H, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHMe}$); 3.133.01 (m, 1H, NCH 2 CHH); 2.91-2.78 (m, 1H, CHMe2); 2.43$1.90\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHH}\right) ; 1.20(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}$, $6 \mathrm{H}, \mathrm{CHMe}$); 1.16 (d, J $=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHMe}$); LCMS m/z 562
$\left(\mathrm{MH}^{+}\right)$single component 98.8% gradient 1 ($\mathrm{t}_{\mathrm{R}} 3.16 \mathrm{~min}$); HPLC 94\% ($\mathrm{t}_{\mathrm{R}} 27.4 \mathrm{~min}$). Anal. ($\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}$) C, H, N, S.

Antiviral Assay. (E nzyme Linked ImmunoSorbant Assay (ELISA) for HCMV protease inhibitors). Trypsin stripped MRC5 cells were suspended to a concentration of 10^{5} cells per ml in assay medium (Gibco DMEM supplemented with 5\% fetal calf serum and antibiotics). This cell suspension was dispensed into 96 -well microplates at $100 \mu \mathrm{~L}$ per well. Three columns of wells were allocated for each compound to be tested. Two of these columns received $50 \mu \mathrm{~L}$ per well of human cytomegalovirus (HCMV strain AD169), diluted to give an infectivity ratio of 0.01 plaque-forming unit per cell, and the third column received $50 \mu \mathrm{~L}$ of medium. Then the plates were incubated at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$ atmosphere for 48 h . Test compounds were formulated to a concentration of 40 mM in DMSO to provide a stock solution. Twofold dilution series in medium were prepared from this stock at 4 times the required final concentrations. The compound dilutions were added to the assay plates at $50 \mu \mathrm{~L}$ per well using three wells (two infected and one uninfected) per dilution. Virus and cell controls received $50 \mu \mathrm{~L}$ of medium. The plates were then re incubated for a further 5 days.

Growth medium was tipped from the plates and the cell sheets were washed once by gentle immersion in phosphate buffered saline (PBS). The wash was removed and the cells fixed by the addition of $100 \mu \mathrm{~L}$ per well of $1: 1 \mathrm{mix}$ of acetone and methanol for 3 min . Following a further wash in PBS, the plates were blocked with $100 \mu \mathrm{~L}$ per well ELISA diluent (PBS $+0.05 \% \mathrm{v} / \mathrm{v}$ Tween $20+2 \% \mathrm{w} / \mathrm{v}$ skimmed milk powder) at $37{ }^{\circ} \mathrm{C}$ for 30 min . The plates were then washed once with PBS $+0.05 \%$ Tween 20 , and $50 \mu \mathrm{~L}$ of murine monoclonal antibody (HCMV MAb 34 binding to the viral gB protein, Biogenesis Ltd.), diluted 1:760, was added to each well. After incubation at $37^{\circ} \mathrm{C}$ for 2 h , the plates were washed three times in PBS/Tween, blotted dry and $50 \mu \mathrm{~L}$ of rabbit, anti-mouse IgG antibody conjugated to horseradish peroxidase (DAKO), preadsorbed with uninfected MRC5 cells and diluted 1:1500, was added to each well. The plates were incubated for another hour and then washed thoroughly five times and dried. Substrate solution, orthophenylene diamine (OPD)/peroxide in urea buffer (Sigmafast kit), was added at $50 \mu \mathrm{~L}$ per well, and col or allowed to devel op at room temperature. The reaction was stopped by the addition of $25 \mu \mathrm{~L}$ of 12.5% sulfuric acid to each well, and the plates were read spectrophotometrically at a wavelength of 490 nm .

The mean color development of duplicate infected wells at each compound concentration was calculated as a percentage of the mean adsorption of untreated, infected controls after both values had been adjusted for nonspecific background. These percentage inhibition values were plotted against compound concentration and the 50\% inhibitory concentration $\left(\mathrm{IC}_{50}\right)$ derived by regression analysis.

On completion of the ELISA stage, plates were washed with water and stained with $20 \% \mathrm{v} / \mathrm{v}$ carbol fuchsin for 30 min , then washed again and dried. The uninfected columns of cells for each compound were examined microscopically. In-assay cytotoxicity was recorded as the lowest concentration of compound that produced any visible effect on the cell monolayers.

References

(1) Gibson, W.; Welch, A. R.; Hall, M. R. T. Assemblin, a herpesvirus serine maturational proteinase and a new molecular target for antivirals. Perspect. Drug Discovery Des. 1994, 2, 413-426.
(2) (a) Holwerda, B. C. Herpesvirus proteases: targets for novel antiviral drugs. Antiviral Res. 1997, 35, 1-21. (b) Qiu, X. Y.; Abdelmeguid, S. S. Human Herpes Proteases. In Proteases of Infectious Agents; Dunn, B. M., Ed.; Academic Press.; San Diego, 1999; Chapter 3, pp 93-115. (c) Waxman, L.; Darke, P. L. The herpes proteases as targets for antiviral chemotherapy. Antiviral Chem. Chemother. 2000, 11, 1-22.
(3) Chen, P.; Tsuge, H.; Almassy, R. J. .; Gribskov, C. L.; Katoh, S.; Vanderpool, D. L.; Marbosiak, S. A.; Pinko, C.; Matthews, D. A.; Kan, C. C. Structure of the Human Cytomegal ovirus Protease Catalytic Domain Reveals a Novel Serine Protease Fold and Catalytic Triad. Cell 1996, 86, 835-843.
(4) Tong, L.; Qian, C. G.; Massariol, M. J.; Bonneau, P. R.; Cordingley, M. G.; LaGace, L. A. A New Serine-Protease Fold Revealed by the Crystal Structure of Human Cytomegal ovirus Protease. Nature 1996, 383(N6597), 272-275.
(5) Qiu, X. Y.; Culp, J. S.; Dilella, A. G.;; Hellmig, B.; Hoog, S. S.; J anson, C. A.; Smith, W. W.; Abdelmeguid, S. S. Unique Fold and Active Site in Cytomegalovirus Protease. Nature 1996, 383(N6597), 275-279.
(6) Shieh, H. S.; Kurumbail, R. G.; Stevens, A. M.; Stegeman, R. A.; Sturman, E. J.; Pak, J. Y.; Wittwer, A. J .; Palmier, M. O.; Wiegand, R. C.; Holwerda, B. C.; Stallings, W. C. ThreeDimensional Structure of Human Cytomegalovirus Protease. Nature 1996, 383(N6597), 279-282.
(7) Borthwick, A. D.; Angier, S. J.; Crame, A. J.; Exall, A. M.; Haley, T. M.; Hart, G. J.; Mason, A. M.; Pennell, A. M. K.; Weingarten, G. W.' Design and Synthesis of Pyrrolidine-5,5-trans-lactams (5 -Oxo-hexahydro-pyrrolo[3,2-b]pyrroles) as Novel MechanismBased Inhibitors of Human Cytomegal ovirus Protease. 1. The α-Methyl-trans-lactam Template. J. Med. Chem. 2000, 43, 44524464.
(8) Borthwick, A. D.; Crame, A. J.; Davies, D. E.; Exall, A. M.; J ackson, D. L.; M ason, A. M.; Pennell, A. M. K.; Weingarten, G. W. Stereoselective Synthesis of α-Methyl and β-Methyl-5,5-Pyrrolidine-trans-lactams (5-Oxo-hexahydro-pyrrolo[3,2-b]pyrroles) and Stereoselective Al kylation of the Strained Pyrrol idine 5,5-trans-lactam Ring System Synth. Lett. 2000, 504-508.
(9) Borthwick, A. D.; Crame, A. J.; Ertl, P. F.; Exall, A. M.; Haley, T. M.; Hart, G. J.; M ason, A. M.; Pennell, A. M. K.; Singh, O. M. P.; Weingarten, G. W.; Woolven, J. M. Design and Synthesis of Pyrrolidine 5,5-trans-Iactams (5-Oxo-hexahydro-pyrrolo [3,2-b]pyrroles) as Novel Mechanism-Based inhibitors of Human Cytomegalovirus Protease. 2. Potency and Chirality. J. Med. Chem. 2002, 45, 1-18.
(10) Hoffman, V. R. m-Trifluoromethylbenzenesulphonyl Chloride. Org. Synth. 1982, 60, 121-126.
(11) Reynolds, R. C.; Crooks, P. A.; Maddry, J. A.; Shamin Akhtar, M.; M ontgomery, J . A.; Secrist III, J. A. Synthesis of Thymidine Dimers Containing Internucleoside Sulfonate and Sulfonamide Linkages. J Org. Chem. 1992, 57, 2983-2985.
(12) Borthwick, Alan David; Davies, David Evan; Exall, Anne Marjorie; J ackson, Deborah Lynette; Mason, Andrew 'McMurtrie; Pennell, Andrew Michael Kenneth; Rahim, Saad George; Trivedi, Naimisha; Weingarten, Gordon Gad. Preparation of pyrrolo-
pyrrolidinones as antiviral agents. World patent wo 9843975 A1 1998.
(13) Borthwick, A. D.; Fogden, Y. C. unpublished work based on the synthesis of the α-methyl derivative $\mathbf{1}$ from the ethyl anal ogue of 3, 1997.
(14) Borthwick, A. D.; Exall, A. M.; Haley, T. M.; J ackson, D. L.; Mason, A. M.; Weingarten, G. W. Design and Synthesis of Pyrrolidine-5,5-trans-lactams (5-Oxo-hexahydro-pyrrolo[3,2-b]pyrroles) as Novel Mechanism-Based inhibitors of Human Cytomegalovirus Protease. 3. Potency and Plasma Stability. Bioorg. Med. Chem. Lett. 2002, 12, 1719-1722.
(15) Borthwick, A. D.; Exall, A. M. Unpublished work based on the synthesis of the c-2, c-3-dimethylcyclopropyl-r-1-carbonyl isomer 45 (Scheme 4) from 4 and t-2, t-3-dimethylcyclopropyl-r-1carboxylic acid, 1996.
(16) Greiner, A. An Improvement of the N-Arylation of Amides Application to the Synthesis of Substituted 3-(Acetyl-N-PhenyI amino)-Pyridines. Synthesis 1989, 312-313.
(17) IC_{50} values were determined as described previously (ref 18). The enzyme concentration used in these assays is, nominally, $0.5 \mu \mathrm{M}$. Thus, the lowest theoretical IC_{50} value that can be determined is $0.25 \mu \mathrm{M}$. However, in practice, experimental error means that if values lower than $1-1.5 \mu \mathrm{M}$ are obtained, the limit of the assay must be considered to have been reached. To allow some discrimination between compounds, whose IC_{50} values are at or around the limit of the assay, an alternative approach was needed. This was achieved by fitting the rate against inhibitor concentration data to an equation describing tight-binding behavior (ref 19). Using this approach, potencies as low as 5 nM could be determined with confidence, and structure-activity relationships could be deduced that was not apparent when using $I C_{50}$ measurements.
(18) Borthwick, A. D.; Weingarten, G.; Haley, T. M.; Tomaszewski, M.; Wang, W.; Hu, Z.; Bedard, J .; J in, H.; Yuen, L.; Mansour, T. S. Design and Synthesis of Monocyclic β-Lactams as MechanismBased Inhibitors of Human Cytomegal ovirus Protease. Bioorg. Med. Chem. Lett. 1998, 8, 365-370.
(19) Cha, S. Tight-binding Inhibitors-I Kinetic Behaviour. Biochem. Pharmacol. 1975, 24, 2177-2185.
J M 030810W

[^0]: * Corresponding author. Telephone: +44 (0)1438 763422. E.mail: alan.d.borthwick@gsk.com. Fax: + 441438768483.
 ${ }^{\dagger}$ Department of Medicinal Chemistry CVU UK.
 \ddagger Department of Molecular Immunology.
 ${ }^{\S}$ Department of Biomolecular Structure.
 "Department of Enzyme Pharmacol ogy.
 ${ }^{1}$ Department of Virology.
 \# Department of Drug Metabolism.

[^1]: ${ }^{\text {a }}$ Tested in fresh human plasma $100 \mu \mathrm{M} .{ }^{14}$ b HCMV pNA assay. ${ }^{9} \mathrm{C} \mathrm{HCMV}$ Elisa assay (see experimental). $\mathrm{pl}=\mathrm{IC}_{50}$ in antiviral plaque

