
Three-Dimensional Quantitative Structure-Activity Relationship Analysis of
Propafenone-Type Multidrug Resistance Modulators: Influence of Variable
Selection on Test Set Predictivity

Romy Fleischer and Michael Wiese*

Institute of Pharmacy, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany

Received April 22, 2003

An extended set of multidrug-resistance modulators of the propafenone type were investigated
using CoMFA and CoMSIA. A number of 3D-QSAR models were derived from steric,
electrostatic, and hydrophobic fields and their combinations. The hydrophobic fields alone and
in combination with the steric and both (steric and electrostatic) fields yielded the models with
the highest cross-validated predictivity, in agreement with a previous analysis of a smaller
data set of propafenone-type multidrug-resistance (MDR) modulators. Inclusion of lipophilicity
did not lead to an improvement of the models. The results point to the importance of
hydrophobicity as a space-directed molecular property for MDR-modulating activity. The
influence of variable selection applying the GOLPE procedure was investigated with an external
test set. Variable-selection procedure was repetitively applied, keeping at each stage variables
with uncertain contribution to the models. For the CoMFA-based 3D-QSAR models, an increase
in external prediction quality was found. In contrast, the CoMSIA-based 3D-QSAR models
were not improved by the GOLPE variable-selection procedure.

Introduction

Multidrug resistance (MDR) is a major obstacle in the
chemotherapeutic treatment of cancer. It is a broad-
spectrum resistance to chemotherapy. Several mecha-
nisms have been shown to lead to the MDR phenotype.
The “typical” MDR is associated with the expression of
P-glycoprotein (P-gp). P-gp is a membrane integrated
transport protein thought to be able to recognize a large
variety of cytotoxic agents as substrates for ATP-
dependent efflux, thereby reducing their intracellular
concentration and preventing the cytotoxic effect. P-gp-
mediated MDR can be reversed by many drugs that are
noncytotoxic by themselves (calcium channel blockers,
antidepressants, antipsychotics, antiarrthythmics, and
many others). These drugs are called MDR reversers
or modulators and vary widely in their chemical struc-
tures and main biological action. Much effort has been
directed to finding out the relationships between the
structure and MDR reversal effect of these drugs. The
most widespread hypothesis about the mechanism of
action of these modulators assumes a competition
between the cytotoxic agent and MDR modulator for the
same binding site on P-gp.1 However, in the past years,
experimental evidence increased that indicated that
there is more than one binding site for MDR modulators
and cytotoxic drugs on P-gp.2 Thus, 3D-QSAR analysis
of structural features important for MDR reversal
activity should be restricted to compounds that presum-
ably bind to the same binding site of P-gp.

Some years ago, we performed the first 3D-QSAR
analysis of MDR modulators. In those studies, two large
classes of modulators were investigated, namely, pro-
pafenones3 and phenothiazines and related compounds.4

By use of the CoMFA approach, highly predictive models
were obtained in both cases; however, the number of
compounds and their structural variety were limited.
For this reason, we continued our investigation as new
data for propafenone derivatives became available. The
aim of this study was severalfold: to develop a new 3D-
QSAR model based on an expanded data set and to
compare the results with those from our earlier study,
to test the predictivity of the models on a larger and
more heterogeneous test set, and to study the effect of
variable selection on predictivity for an external test set.

Additionally we compared the traditional CoMFA
with the CoMSIA approach. The latter has been claimed
to be better interpretable and to give results comparable
to results from CoMFA.5

The GOLPE procedure has been shown to lead to 3D-
QSAR models with better internal predictions by select-
ing the most informative field regions and minimizing
redundant information.6-10 However, the influence of
this variable-selection procedure on external predictivity
for a test set has rarely been reported. Therefore, the
effect of these data pretreatment on predictive power
both for the cross-validation and the external test set
was investigated in detail.

Results and Discussion

The results for CoMFA models derived from the
training set of 48 MDR modulators (compounds 1-48
in Table 1) are presented in Table 2, and those for the
corresponding CoMSIA models are in Table 3. Models
were calculated for each field alone and in combination
with the other fields. The maximum number of compo-
nents to be included in the first cross-validated run was
set to 14 and increased if necessary to yield the model
with the highest Q2. Several local optima of SDEPcv for
some of the models with a high number of optimal
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Table 1. Structures, MDR Reversal Activities, and Calculated logP Values of the Investigated Propafenone-Type MDR Modulators
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components (ONC) as judged by Q2 were found. In these
cases Q2 increased slowly but steadily with the number
of considered latent variables, reaching its optimum at
a rather high number of latent variables. However, the
increase in Q2 was less than 0.01 in most cases when
compared to the ONC that yielded the lowest SDEP.

Therefore, for the variable-selection procedure, ONC
was selected on the basis of the number of components
yielding the lowest SDEPcv.

In both cross-validation schemes, the HINT hydro-
phobic field (H) yielded the best CoMFA models among
those derived from single fields, with the electrostatic
field giving the worst model and the steric and hydro-
phobic only field (Ho) lying in between (Table 2). This
result is in agreement with the results of our previous
CoMFA studies of propafenone-type MDR modulators.
For the smaller data set investigated in ref 3, the HINT
hydrophobic only field yielded the best cross-validated
model, followed by the HINT field, and the electrostatic
field always gave models with the lowest predictivity
as measured by Q2. For the previously investigated
smaller data set, this difference was even more pro-
nounced. One difference was the relative performance
of the hydrophobic and hydrophobic only fields. For the
larger data set investigated now, the Ho field was
always worse than the standard HINT field, pointing
to the possible role of hydrophilic/ampiphilic interactions
that were not apparent in the smaller data set. How-
ever, each field led to very satisfactory models with

Table 1 (Continued)

a R2 in position 3. b R2 in position 4. c R2 in position 4 and additionally a 3-phenylpropanoyl group in position 2.

Table 2. Summary of Cross-Validated Q2 Values Obtained
with the Different CoMFA Fields and Their Combinationsa

cross-validated Q2

field(s) LOO random groups

S 0.801 0.760
E 0.780 0.731
H 0.810 0.772
Ho 0.795 0.750
S & E 0.817 0.784
B 0.806 0.780
S & H 0.836 0.788
S & Ho 0.807 0.763
E & H 0.818 0.763
E & Ho 0.806 0.759
S & E & H 0.830 0.789
S & E & Ho 0.817 0.778
B & H 0.819 0.788
B & Ho 0.801 0.768

a Abbreviations: S (steric); E (electrostatic); H (HINT); Ho
(HINT, hydrophobic only); B (both standard CoMFA fields).

Table 3. Summary of Cross-Validated Q2 Values Obtained
with the Different CoMSIA Fields and Their Combinationsa

cross-validated Q2

field(s) LOO random groups

S 0.699 0.695
E 0.714 0.622
H 0.806 0.788
S & E 0.769 0.747
S & H 0.796 0.776
E & H 0.802 0.779
S & E & H 0.788 0.772

a Abbreviations: S (steric), E (electrostatic), H (hydrophobic)
CoMSIA fields.

Table 4. Summary of Cross-Validated Q2 Values Obtained
with the Different CoMFA Fields and Their Combination with
Lipophilicity Variablesa

cross-validated Q2

field(s) LOO random groups

S & logP 0.797 0.777
E & logP 0.815 0.797
S & HlogP 0.828 0.809
E & HlogP 0.854 0.843
H & HlogP 0.856 0.849
B & logP 0.824 0.814
B & HlogP 0.797 0.771

a Abbreviations: S (steric); E (electrostatic); H (HINT); B (both
standard CoMFA fields); logP (logPMolgen listed in Table 1); HlogP
(logPHINT Listed in Table 1).
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rather high Q2 values. Therefore, all fields seem to
include information relevant for the description of the
activity differences among the investigated derivatives.

In a comparison of the CoMFA-derived models with
the corresponding CoMSIA ones, it is obvious that the
CoMFA methodology gives models with considerably
higher Q2 and lower SDEPcv values (cf. Tables 2 and 3)
except for the hydrophobic field, where the difference
is small in the case of LOO and CoMSIA performs
slightly better in case of random group leave out.

Combining two fields increased Q2 despite the relative
high values already obtained with single fields. This
indicates partly different information captured by the
fields. Again, models containing the hydrophobic field
were the best, especially the combination with the steric
field, as found before for the smaller set of propafenone
derivatives. The combination of steric and electrostatic
fields that contain additional points with limit values
((30 kcal/mol) slightly outperformed the B field; how-
ever, it became worse after variable selection (see
below). Therefore, these points seem to introduce noise
into the model that cannot be removed by the variable-
selection procedure. For the CoMSIA models, the com-
bination of steric and electrostatic fields increased Q2

considerably (Table 3). However, the addition of the
steric or electrostatic field to the hydrophobic one did
not lead to an improvement. Finally, combining all three
types of fields did not further increase the internal
predictive power.

Total lipophilicity, though explaining about 50% of the
variance, did not contribute much to the quality of the
CoMFA models, but the differences in Q2 between LNO
and LOO cross-validations were halved and corre-
sponded to those of the CoMSIA models (Table 4). The
strongest effect was observed for the electrostatic field
that gave the worst model. By addition of logPMolgen or
especially HlogP, its internal predictivity was greatly
enhanced (compare Tables 2 and 4). Also, the combina-
tion of the Hint field and Hint-logP did not lead to a
significant improvement. This was tested because logP
should capture the general lipophilicity, while the Hint
field represents the spatial arrangement of hydrophobic
properties. But again, this combination gave the best
model among those that included lipophilicity as an
additional scalar variable. The differences between the
models derived either from logP or from Hint-logP was
small, Hint-logP yielding the better ones, when com-
bined with single fields. Because the effect of scalar
lipophilicity descriptors on the quality and stability of
the models was small, the other combinations were not
calculated further.

Variable Selection. Variable selection did not re-
duce the number of latent variables necessary to obtain
the highest Q2 value in most cases, or it reduced the
number only slightly by 1. Before variable selection, the
optimal number of components determined via the
highest Q2 and the lowest SDEP (calculated according
to SYBYL CoMFA) were equal or differed by 1 only
(data not shown).

After the first run of variable selection, Q2 was
increased by ca. 0.05 in most cases (Figures 1 and 2).
Repeated application of fractional factorial design (FFD)
led to a further increase of Q2 that became smaller with
each repetition. It seemed that a maximal Q2 was

asymptotically reached, the level depending on the
quality of the starting model. However, in a few cases
(CoMFA and CoMSIA steric fields alone), the third FFD
led to a decrease in Q2.

The number of “fixed” variables that was found by
FFD to positively contribute to the cross-validated
predictive power varied during the FFD runs and
generally decreased from the first to the third run. This
shows that the judgment of a variable to positively
contribute to the model is very much dependent on the
presence of other X variables and underlines the im-
portance of keeping “uncertain” variables.

Again, Hint was the best single field, and the differ-
ence in Q2 in comparison to the other fields was
increasing (Figure 1). When Q2 values from LOO and
LNO are compared, a stabilizing effect of the GOLPE
variable selection became apparent. Before fractional
factorial design based selection, the differences were on
average 0.04 and decreased to 0.02 after the second FFD
run.

Also, CoMFA models combined with logP were sub-
jected to variable selection. Though the same trends
were observed in general, the increase in Q2

LOO and
especially in Q2

LNO was much less pronounced for the
combination of single fields and logP or HlogP. For the
Both field, HlogP performed worse than logP, but the
difference was greatly reduced after the first run of
variable selection (Figure 2).

From the relatively large number of omitted com-
pounds (eight per run) and the low standard deviation
of the SDEP values (about 10% of SDEP), it could be
estimated that the models should have good predictive
power.

For the CoMSIA models, the difference in Q2 between
LOO and LNO was even lower for most models (Figure
3), pointing to the fact that LOO is more overoptimistic
especially in the case of CoMFA-derived models. Also,
for CoMSIA models, qualitatively the same behavior
was observed; the first run of the variable-selection
procedure led to an increase in Q2 of about 0.05, while
repetition of variable selection yielded smaller increases
in Q2. Thus, the models derived from either the CoMFA
fields or the CoMSIA fields behaved similarly in terms
of internal predictivity. However, the effect of the second
and third FFD run on internal predictivity was smaller
for the CoMSIA-derived models. Inspection of the
number of removed field variables showed that the first
FFD run eliminated usually between 20% and 30% of
the initial field variables from both kind of fields, while
the effects of the second and third FFD were smaller
and differed for the CoMFA and CoMSIA fields. For the
same fields and field combinations, the second FFD
reduced the number of X variables about 2 times more
for the CoMFA fields than for the CoMSIA fields. And
this discrepancy was even more pronounced for the third
FFD that eliminated only a few percent of the X
variables in the case of CoMSIA fields. This could be
attributed to distribution of the values of the property
fields. In the CoMSIA approach, the potentials that
create the fields are much “softer” than in CoMFA and
elimination of irrelevant variables seems to be easier
for the GOLPE algorithm than in the case of CoMFA.
In the case of the CoMSIA fields, considerably less
irrelevant variables remained after the first FFD run;
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thus, it is expected that further elimination of a few
irrelevant variables will change the result to a lesser
extent as in CoMFA.

External Predictivity. Because the GOLPE proce-
dure is based on Q2, e.g., internal predictivity of the
training set, it was of interest to study how it influenced
the prediction of an external test set. This kind of
prediction is far more important for the design of new
compounds. Therefore, we compared the cross-validation
results with those of the test set in detail.

Inspection of the test set predictions as a function of
the number of latent variables revealed that internal
and external predictivity was not much related. A local
or even a global maximum in predictivity occurred, with
two latent variables (Figure 4). This maximum was
shifted to three latent variables when logP or HlogP was
additionally included. This is in agreement with obser-
vations made by others that more robust models with
respect to external predictivity are obtained with a
smaller number of latent variables. The same tendency

Figure 1. Summary of cross-validated Q2 values obtained with different CoMFA fields after different runs of variable selection
by FFD. Shown on the left are Q2 values from the leave-one-out procedure, and on the right are those from random group leave
out. Abbreviations are the following: S (steric), E (electrostatic), H (HINT), Ho (HINT, hydrophobic only), B (both standard CoMFA
fields).
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was observed when the newly introduced figure of merit
P2 was used (Figure 5). When Figures 4 and 5 are
compared, it can be seen that P2 yielded higher values,
a fact that was observed in all cases and that can be
attributed to the differences of the mean and standard
deviation between training and test sets (mean was 5.89
vs 6.14 and SD was 0.87 vs 0.67 for training and test
sets respectively). Thus, P2 is to be preferred if the mean
values of the training and test sets differ.

To compare the predictivity of the different fields and
variable-selection steps, the optimal number of compo-
nents as determined by random group selection from
the training set was used. Thus, not the “best” Q2 and
P2 results were used, as can be seen from Figures 4 and
5, where the maximum was at five latent variables. This
was done as in a real test; no prior information about
the number of latent variables to be chosen is available.
In the prediction process, those compounds that were
mispredicted by more than two standard deviations of
the cross-validated training set model were considered
to be outliers.

When the performance on the training and the test
sets was compared, the order changed in the case of
single fields. While the HINT field gave the best model
according to cross-validation for up to three FFDs
(Figure 1), with the order H > S > Ho ∼ E, the steric
field yielded the best overall prediction (order: S > Ho
> H . E). This difference was mainly due to three
compounds (those activities were underestimated by
about 1 log unit using the hydrophobic field), namely,

compounds t_1l, t_6b, and t_2c (Table 5). The first two
of these three were also underpredicted in the case of
the other fields, though to a lesser extent. Compound
t_1l was the most active one of the whole data set; thus,
its correct prediction required an extrapolation out of
the activity range. Compound t_6b, which possesses a
diphenylmethyl moiety, was more active (by about 1
order of magnitude) than compounds with the same
moiety present in the training set (8, 17, 24). And
compound t_2c was a benzofurane derivative that
showed the highest activity in this series, being more
active than a similar derivative (t_2f) by a factor of
about 20.

When combinations of different fields were used to
build the CoMFA models, a different behavior was
observed in the prediction process. The combinations
involving the hydrophobic field proved to be superior
to the others, leading to the highest R2

pred and P2 values
for the external test set.

The inclusion of total lipophilicity as an additional
independent variable led to somewhat different results.
While the overall predicitivity was not or only moder-
ately improved, the two compounds that were found to
be outliers in all cases (t_1l, t_6b) were now much better
predicted (Table 6). This can be attributed to their high
calculated logP values that lie in the uppermost range
of the training set. When two fields were combined, the
cross-validation results were improved (cf. Figure 1),
with the standard Both or steric and hydrophobic fields
giving the best models. The same ranking was observed

Figure 2. Summary of cross-validated Q2 values obtained with different CoMFA fields and their combination with lipophilicity
variables after different runs of variable selection by FFD. Shown on the left are Q2 values from the leave-one-out procedure, and
on the right are those from random group leave out. Abbreviations are the following: S (steric), E (electrostatic), H (HINT), B
(both standard CoMFA fields), logP (logPMolgen listed in Table 1), HlogP (logPHINT listed in Table 1).
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for the external predictions, where the combination of
steric and hydrophobic fields yielded the best result (P2

≈ 0.70), followed by the Both fields (P2 ≈ 0.63). Also, in
this case, inclusion of lipophilicity led to a minor
improvement in P2 only.

The effect of variable selection by repeated FFD runs
was not fully consistent among the models derived from
different fields and combinations of them, but a general
trend could be observed. The R2

pred increased after the
first run of variable selection in almost all cases, while
the effects of the second and third run differed (Table
5). In some cases, such as the combination of steric and
hydrophobic HINT fields, a steady increase in R2

pred
occurred, while in most cases the influence on R2

pred was
small, either increasing or decreasing it very slightly
as in case of the steric field (Figure 4, Table 5). Also,
differences in the behavior of P2 and R2

pred were
observed. The influence of the variable selection on P2

was generally not as strong as in case of R2
pred. This

could be explained by the observation that the outliers
became mostly better predicted with increasing runs of
the variable selection process (Table 5).

For the CoMSIA-derived models, similar results were
obtained. Again, in most cases, a maximum in external
predictivity occurred with two components. This is
followed by a second maximum in the range of 5-10
components, 10 being the maximum of latent variables
that were considered. There was one noticeable excep-
tion. The combination of steric plus electrostatic field
yielded a nearly perfect prediction prior to variable
selection, with a R2

pred and P2 of 0.95 (Figure 6). This
must be regarded as chance result because Q2 was much
lower for the training set. The first run of variable

selection decreased P2 and R2
pred to values in the range

observed for the other models with good predictivity,
and the second run led to an increase in P2.

The hydrophobic field that led to the best model
(Figure 2) yielded also the best external predictions,
considering single fields, followed by the steric field,
while predictions based on the electrostatic field alone
were clearly worse with negative R2

pred and P2 values.
This was in contrast to CoMFA-derived models, where
the hydrophobic field yielded the best model but led to
poorer predictions than the steric field.

From a comparison of the combined fields, the com-
bination of all three fields led to the best predictions,
followed by the combination of steric plus hydrophobic
fields (Figure 6).

The outliers in the predictions were mostly similar
to those of the CoMFA-derived models (Table 7). Again,
compound t_1l with the highest activity was poorly
predicted by all models except the one based on the
steric field alone. Compound t_6a was overpredicted
when the hydrophobic field alone or in combination with
the steric one had been used to generate the CoMSIA
model. When the steric field derived model for prediction
was used, compounds t_2c and t_2d were consistently
outliers whose activities were underestimated (Table 7).
t_2c was also found to be an outlier in most of the
CoMFA-derived predictions.

The effect of variable selection on external predictivity
differed somewhat for the CoMSIA-derived models. In
all cases, a slight (0.01-0.02) to moderate (by 0.07)
decrease in P2 occurred after the first run of variable
selection (with the exception of the combination of steric
plus electrostatic field, were the decrease was 0.36 due

Figure 3. Summary of cross-validated Q2 values obtained with different CoMSIA fields after different runs of variable selection
by FFD. Shown on the left are Q2 values from the leave-one-out procedure, and on the right are those from random group leave
out. Abbreviations are the following: S (steric), E (electrostatic), H (hydrophobic) CoMSIA fields.
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to the perfect prediction occurring by chance). But the
continuation of the variable-selection process mostly led
to a returned increase that exceeded the decrease
considerably for the model with the best predictivity
(steric + electrostatic + hydrophobic field), while for
others approximately the same P2 and R2

pred values as
without variable selection were reached or slightly
exceeded after the second run of variable selection
(Figure 6). The third FFD run led generally to a (small)
decrease in P2 and R2

pred.
When the predictions obtained from the CoMFA and

CoMSIA models were compared, the latter ones were
less dependent on the field chosen. With the exception
of the electrostatic field, which gave negative R2

pred and
P2 values, the other fields and their combinations led
to predictions with similar P2 in the range 0.56-0.68,
with the exception of the best combination (steric +
electrostatic + hydrophobic: 0.77). The differences for
the CoMFA-derived models were somewhat larger,
again with the electrostatic field leading to a far worst
prediction when used alone. For the other fields, P2 was
ranging from 0.47 for the hydrophobic field to 0.79 for
the steric field.

Conclusion

For the CoMFA fields derived models, the variable
selection increased not only internal predictions but also
the external predictivity for the test set. A second
application of the FFD variable selection led either to a
further slight increase in prediction quality or did not

change it. A further run of the variable selection did
not change the predictivity for the test set, or it slightly
decreased the predictivity in some cases. Thus, one or
two rounds of variable selection seem to be advanta-
geous, while a too strong variable selection leads to
overfitting and poorer external predictions.

In contrast, for CoMSIA-derived models, variable
selection improved the cross-validation results but did
not lead to an improvement of the predictions for the
external test set. For only the best model that was based
on all three fields, a significant improvement was
obtained after the second FFD run. This difference in
behavior could be due to the differences in the field
variables. In CoMFA, interactions with a probe are
collected outside the molecules, while in CoMSIA, the
similarity at and near the atomic positions is calculated
and used in the 3D-QSAR. Of course, further studies
must be undertaken to investigate whether this trend
that was observed is a more general one.

Experimental Section
Compounds and Biological Activity Data. Data on MDR

reversing activity in vitro in the CCRF-CEM/VCR-1000 cell
line resistant to vincristine were collected from papers of Ecker
and co-workers.11-15 A total of 70 compounds were available
for analysis. In these papers, three different measures of MDR
reversal activity had been applied: MTT assay of daunomycin
cytotoxicity, inhibition of rhodamine-123 efflux, and inhibition
of daunomycin efflux. Because inhibition of daunomycin efflux
is the most direct measure of P-gp modulating activity and
had been determined for most of the compounds, it was
selected as a measure of biological activity. When the reported
activity values were compared, it was noted that the activity
values of several derivatives in ref 14 differed from those

Figure 4. Influence of the number of latent variables on
external predictivity as measured by R2

pred. Shown are two
representative examples: (top) steric CoMFA field; (bottom)
combination of steric and HINT fields. The arrow indicates
the optimal number of latent variables (6) as obtained from
random group leave out statistics.

Figure 5. Influence of number of latent variables on external
predictivity as measured by P2. Shown are the same fields as
in Figure 4: (top) steric CoMFA field; (bottom) combination
of steric and HINT fields. The arrow indicates the optimal
number of latent variables (6) as obtained from random group
leave out statistics.
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reported in the later work of Ecker et al. To include the four
compounds (1b-d,g) from ref 14 that were mentioned only in
this paper, their log(1/IC50) values were fitted to the other data
by linear regression based on the high correlation (r2 ) 0.969)
observed for 14 overlapping derivatives for which multiple
activity data were available.

For seven structurally diverse benzofurane derivatives (1f
and 2a-f), only inhibition of rhodamine-123 efflux had been
reported in ref 15. As for 12 other derivatives, inhibition of
both daunomycin and rhodamine-123 had been reported, which
proved to be highly correlated (r2 ) 0.968). Again, the missing
values were calculated by linear regression. This allowed the
inclusion of additional and structurally deviating derivatives.
To give no priority to the daunomycin or the rhodamine-123
values, two regressions were performed, using either of them
as a dependent variable and averaging the calculated dauno-
mycin log(1/IC50) values.

We divided the available data into training and external
test sets to investigate the effect of variable selection on
external predictivity. For the selection of which compounds
should form the external test set, basically two strategies can
be used: (1) clustering of the derivatives according to struc-
tural similarity and then picking of test set members from the
clusters; (2) a kind of random selection. We used the latter
approach because the selection based on similarity would yield
a test set too similar to the training set. Therefore, we decided
to select the 48 derivatives for which data had been reported
in ref 11 as a training set, leaving 22 other compounds for the
external test set. This selection can be regarded as a rather
hard test of the external predictivity because of the structurally
deviating benzofuranes being in the test set only. However,
these derivatives can be easily overlaid with the other deriva-
tives and do not occupy space in 3D uncovered by the training
set.

Table 1 shows the structures and IC50 values of the
compounds studied. The HINT and logP values reported by
Ecker et al. are also included because they were used as an
additional descriptor in the 3D-QSAR studies. In the table,
the same codes of the compounds are used as in the source
papers and the test set compounds are preceded by “t_”.

Optimization and Alignment of the Structures. The
conformations of the previously studied 28 derivatives were
taken from ref 3 and were used without modification. The
structures of the remaining compounds were generated by
modification of closely related structures followed by energy
minimization. For the compounds t_6a, t_6b, and 8, a sys-
tematic conformational search around the flexible nitrogen
substituent was performed. From the extracted local energy

minima, selections were those that showed the best overlap
of the aromatic rings, with the other derivatives possessing
also an aromatic nitrogen substituent.

The alignment of all derivatives was based on the Ar-Ar-N
alignment used in our previous study of the smaller subset of
propafenone derivatives.3 In this alignment rule, the centroids
of both aromatic rings and the basic nitrogen are overlaid. The
structures having no second aromatic ring (18, 19, 25-27, 41-
43, 46-48, t_2a) were aligned on the carbon atoms of the
benzene ring and the basic nitrogen. In that case, the weight
of the nitrogen in the fitting was increased to 6 in order to
equally contribute to the alignment.

Computational Approaches. The initial CoMFA and
CoMSIA16,17 models were calculated with the SYBYL 6.5
molecular modeling software.18 For the calculation of charges,
the AM1 Hamiltonian was used as implemented in MOPAC 6
and supplied by SYBYL. The HINT (Hydropatic INTeraction)
program19,20 was used for the calculation of the hydrophobic
fields used in CoMFA. Two types of hydrophobic fields were
considered because both of them had been shown to give
superior results in previous CoMFA analyses:3,4 the standard
hydrophobic field (H) and the hydrophobic only field (Ho)
where negative (hydrophilic) values are truncated to zero. The
following standard characteristics were used to calculate the
CoMFA and CoMSIA fields: 2 Å regular grid spacing in all
three dimensions within the defined region; 4 Å extension of
the region beyond the van der Waals volume of the molecules;
an sp3 carbon probe atom with +1 charge; a distance-
dependent dielectric constant. The same region was used in
all calculations. As in the SYBYL implementation of CoMFA,
different results were obtained when steric and electrostatic
fields were computed together (B, both field) or separately and
later combined (S&E, steric and electrostatic); both methods
of calculation were included. This difference is due to the fact
that in case of the B field the electrostatic field is assigned a
missing value inside atoms and therefore is ignored at these
points, while when the electrostatic field is calculated sepa-
rately, points inside atoms are set to the selected cutoff and
are subsequently taken into account in the PLS analysis.

For the CoMSIA fields, the default settings were used. In
addition to the steric and electrostatic fields, the hydrophobic
field was considered. For the calculation of the hydrophobic
CoMSIA fields, atomic values that are directly based on the
research of Viswanadhan et al.21 are used.

The GOLPE procedure (generating optimal linear PLS
estimations) is a method for detecting variables that increase
the predictivity of PLS models.22 In the data pretreatment,
very small X values below 0.01 were converted to zero with
the zeroing option. A minimum standard deviation of 0.2 was
used to remove variables with very low variance. BUW scaling
(block unscaled weight) was used in the case of combined fields
to normalize the variance of each block (field), thus giving the
same importance to each field.

The initial PLS models were developed by setting the
maximal dimensionality to the optimum number of compo-
nents obtained from the initial PLS calculation with SYBYL
plus 1. This setting was chosen to ensure that the optimal
model was included. The models were validated by cross-
validation using both leave-one-out and leave-N-out with six
random groups. Each of these groups was omitted from the
data set at a time, and a reduced PLS model was built with
the remaining compounds. The whole procedure was repeated
20 times, the default value within GOLPE. This cross-
validation scheme is expected to yield a more realistic estimate
of the predictivity of the PLS model than the usual leave-one-
out procedure. During the cross-validation, the weights were
recalculated each time. This is a time-consuming process, but
the calculation is more accurate. The quality of the 3D-QSAR
models was estimated with two methods: best Q2 and best
SDEPcv values. For the calculation of SDEPcv, basically two
formulas are used in the literature that differ slightly. For the
estimation of the optimal number of components (Nopt), the
following formula was used:

Figure 6. External predictivity of the CoMSIA models as
measured by P2 after different runs of variable selection by
FFD. Abbreviations are the following: S (steric), E (electro-
static), H (hydrophobic) CoMSIA fields. The electrostatic field
is omitted because it yielded negative P2 values.
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It corresponds to the formula used in SYBYL and takes into
account the number of components used to build the model.
In this way, the tradeoff between an increase in Q2 and
increasing model complexity due to increasing number of
components is taken into account. The “best” model was taken
as the one with the lowest SDEPcv. Because in GOLPE the
number of components is calculated according to

which does not consider the number of components used to
build the model and parallels Q2, the SDEPcv values from
GOLPE were recalculated according to eq 1.

The estimation and comparison of the performance of the
generated models require some caution. The calculation of Q2

for an external test set is only suitable if the mean values of
the training and test sets are identical or at least differ by
not too much. Therefore, training and test set predictions were
compared using eq 2. Compared to the use of eq 1, this is
advantageous for the test set because otherwise the number
of compounds in the test set and the number of components
would influence and bias the result.

A few years ago, a new method was published by Silverman
for the calculation of the quality of test set predictions.23 This
method avoids problems due to differences in the mean values
of the training and test sets. A parameter called P2 was defined
according to

where pi and pj are the predicted activities, mi and mj are the
measured activity values of the external test set, and the
summation runs over all pairs of compounds i and j in the
test set. P2 is based on pairwise predicted and observed activity
differences. The advantage of P2 is the fact that it is indepen-
dent of additive constants such as the mean and equals Q2 in
the case of identical mean values of the test and training sets.
Therefore, this measure of predictive performance was also
calculated and considered.

The selection of the X variables was performed by applying
first the smart region definition (SRD) followed by fractional
factorial design (FFD). The selection of the seed variables for
the SRD was based on the PLS weights of the X variables.
The dimensionality was set to the optimal number of compo-
nents based on the minimal SDEP value as obtained from the
previous PLS analysis. The critical distance in grid units was
left at its default value of 1, and collapsing of groups was
allowed using a collapsing distance of two grid units. The
number of seeds that are extracted from the X variables was
increased to 50% of the X variables because in initial experi-
ments we found that several X variables with high weights
were not selected when using the default settings.

The fractional factorial design to identify contributing
variables was performed with the default settings except that
foldover design was used to evaluate the effect of the variables
on the model predictivity in a more reliable fashion. Uncertain
X variables, those contributions that could not be distinguished
from the added dummy variables, were retained. This was
done to avoid destroying the structure of the X variables. After
FFD, the negatively contributing X variables were deleted and
a new PLS model was generated.

The procedure of grouping of seeds followed by variable
selection with FFD was repeated up to three times.
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