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Three different multivariate statistical methods, PLS discriminant analysis, rule-based methods,
and Bayesian classification, have been applied to multidimensional scoring data from four
different target proteins: estrogen receptor a (ERa), matrix metalloprotease 3 (MMP3), factor
Xa (fXa), and acetylcholine esterase (AChE). The purpose was to build classifiers able to
discriminate between active and inactive compounds, given a structure-based virtual screen.
Seven different scoring functions were used to generate the scoring matrices. The classifiers
were compared to classical consensus scoring and single scoring functions. The classifiers show
a superior performance, with rule-based methods being most effective. The precision of correctly
predicting an active compound is about 90% for three of the targets and about 25% for
acetylcholine esterase. On the basis of these results, a new two-stage approach is suggested
for structure-based virtual screening where limited activity information is available.

Introduction

Docking and virtual screening are widely used for
structure-based drug design and hit identification, as
well as focused library design. Docking, in this context,
means to predict the binding mode of a small molecule
when binding to a target protein with a known 3D
structure.! Flexible docking of small molecules to rigid
protein structures using fast, approximate algorithms
has been developed to a point where it is most often
possible to reproduce binding modes of ligands, given a
structure of a protein—ligand complex. It is often also
possible to predict reasonable binding modes of ligands
for which the correct binding mode is unknown,2=5 and
where no ligand—protein complex structure of a similar
ligand is available. Sometimes it is even possible to dock
ligands to a homology model.>¢ Even though a lot
remains to be done to solve problems such as induced
fit and better handling of low quality protein structures,
docking has become an invaluable tool in structure-
based lead optimization.

There are also examples of successful structure-based
virtual screens,” in which docking of large numbers of
compounds followed by selection based on simple scoring
functions has led to the identification of new binders or
at least to significant enrichment of binders in the set
of suggested compounds. Scoring functions are typically
weighted sums of energy terms, in which the weights
have been optimized to maximize correlation with
binding affinity for a set of known binders, or to
maximize the discrimination between a set of known
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actives and a set of known inactives.>® However, it is
clear that fast, approximate scoring functions still leave
much room for improvement. More correct prediction
of binding free energies still require more involved
computational methods based on simulations,® and
scoring functions used in virtual screening today should
rather be regarded as filters for distinguishing binders
from nonbinders than accurate predictors of binding free
energies.10

Using multiple, rather than single, scoring functions
has been shown to improve the discrimination between
binders and nonbinders.’°712 The individual scoring
functions have been combined in different ways, e.g.,
strict intersection of lists of high-scoring compounds,!
rank-sum, worst—best rank, or jury-based methods.!?
In this study, we have applied different multivariate
statistical methods to multidimensional scoring data to
investigate whether an improvement in discriminatory
power can be achieved. For this purpose, we have docked
389 ligands with known activity and 999 random,
diverse drug-like molecules from the MDL Drug Data
Report (MDDR, http://www.mdl.com) database to four
different target proteins. The sources of the actives are
listed in Table 1.

The four target proteins, estrogen receptor o (ERo),13
matrix metalloprotease 3 (MMP3),1# acetylcholine es-
terase (AChE),'® and factor Xa (fXa),'® represent quite
different active sites. All known ligands are derived from
published work and are somewhat diverse, especially
in the case of ERa (processed structures of ligands and
proteins are available at http://www.compumine.com/
research/scoring.html). The ligands have been prepared
in an automated fashion, to simulate a typical virtual
screen. The dockings have been performed using a single
structure of each protein, without the inclusion of water
molecules or modification of potentially flexible residues,
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Table 1. Ligand Sets and Crystal Structures Used in This
Study

target PDB file ligand source no. binders
ERa lere®3 Sippl“° (mimics) 36
ERa lere®® Shi et al.*! (toxins) 110
AChE leve®® Contreras et al.*? 54
MMP-3 1hy714 Ha et al.3 60
fXa 192116 Matter et al.*3 129

for the same reason. One way to handle flexibility in
the active site of the target protein is to dock to more
than one static representation of the same protein. For
large sets of ligands, this greatly increases the number
of required dockings and the amount of data that needs
to be processed. We want to see how well straightfor-
ward structure-based virtual screening, without any
attempt to handle receptor flexibility, can fare. Three
different docking programs, GOLD,'” Glide version
2.0,1819 and ICM version 2.820-21 were used, but because
the results obtained were comparable for all three
programs, only results based on the ICM dockings are
presented here.

Two scoring functions implemented in ICM and five
scoring functions implemented in CScore from Tripos!2
were used. The resulting seven-dimensional scoring
vectors were analyzed using both classical consensus
scoring as implemented in CScore and three different
statistical methods: PLS-DA,?2 Bayesian classifica-
tion,23 and rule-based methods.24 The three different
statistical methods all need a training set of known
actives and inactives. For this purpose the known
binders and potential nonbinders were partitioned into
one training set and one validation set for each set of
ligands and target protein, with a similar distribution
of activities in the case of known actives and molecular
weights in the case of potential inactives (for further
description, see Methods). Discriminators were con-
structed and evaluated, using both internal cross-
validation within the training set, and the external
validation set. The three different statistical methods,
single scoring function classifiers, and classical consen-
sus scoring are compared below, the results are dis-
cussed, and a general, stepwise protocol for virtual
screening utilizing information from small sets of known
binders is proposed.

Results

The classification models were built using the training
sets described in Methods below and subsequently
evaluated using the external validation sets. ERq, being
the only target for which we had two rather different
sets of ligands, was treated in a more elaborate fashion.

Five different performance measures were used when
evaluating the different classifiers. The basic measures
are accuracy, precision, and recall. Accuracy is the
overall classification accuracy of a prediction model,
including both active and inactive compounds. It is
defined by

tp + tn )
tp+fp+tn+fn

accuracy =

where tp is the number of true positives, tn is the
number of true negatives, fp is the number of false
positives and fn is the number of false negatives.
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Precision is a measure of the accuracy of predicting a
specific class. In this work, the precision of the active
class is of particular interest and is thus the only class
for which precision is reported. It is defined by

. tp
recision = ——— 2
P tp + fp 2)
Recall is a measure of the ability of a prediction model
to select instances of a certain class from a data set. It
is defined by the formula:

__1p
recall = tp+ 3)

None of these three numbers are absolute measures of
classification performance by themselves, but should be
seen together. It is important to have a high accuracy,
but because the number of inactives is much larger than
the number of actives, it is possible to get a good
accuracy while predicting no actives. In the same way,
it is possible to get a good precision by predicting only
very few examples of the considered class, but being
correct in those predictions. A high precision for the
active class may be a good behavior of a classifier if the
starting number of compounds to classify is very large.
In large-scale structure-based virtual screening it might
be acceptable to miss many binders, if only the com-
pounds predicted to bind actually do so. However, in the
tests created here, with relatively few compounds and
a rather large ratio of actives to inactives, a classifier
can only be seen as really successful if high precision is
accompanied by high recall. The expectation values of
the precision and recall for the active class of a random
classifier is given by the ratio of actives in the entire
set and the ratio between the number of predicted
actives and the total number of compounds, respectively.
For each set of ligands and target protein, the
enrichment factor (EF) was also calculated. This is the
relative enrichment of active compounds in the set of
instances predicted to be active in relation to the
fraction of active compounds in the original data set:

F— precision
(tp + fn)/(tp + fp + tn + fn)

(4)

The enrichment factor of a random classifier is 1.
Finally, the “E-value” of each classification result was
calculated. This is defined as the probability to achieve
the exact same classification or better by chance, and
is calculated using the hypergeometric distribution. A
better result is defined as classifying the same number
of actives, but with a larger number of true actives.
Since the probabilities are very low, the E-value is given
as pE, i.e., the negative logarithm of the E-value. The
results are shown in Table 2, and for the five ERa
models also in Table 3. The different methods are
summarized and compared in Figure 1.

Discussion

Enrichment is a good basis of comparison between
different methods for the same ligand set and target
protein, even though the actual values will depend on
the number of actives included in the validation set. The
basic result is that the rule-based RDS models have the
best overall performance in all sets of ligands and target
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Table 2. Performance of the Discriminators for the Different Ligand Sets and Target Proteins, Using the External Validation Set

data set no. examples (no. actives) method accuracy precision recall enrichment pE
ERa-mimics*® 345 (12) ca 0.994 1.000 0.833 28.8 16.9
Bayes, pact = 0.0348° 0.980 0.692 0.750 19.9 12.1

PLS-DA 0.986 0.706 1.000 20.3 17.9

PLS-DA, limit 0.14¢ 0.991 0.909 0.833 26.1 15.9

ICM score, T = —31.744 0.985 0.769 0.833 20.9 145

consensus > 58 0.568 0.067 0.833 1.8 2.3

ERa-toxins* 369 (36) RP-B-10f 0.976 0.935 0.806 9.6 334
Bayes, pact = 0.100° 0.905 0.508 0.861 5.2 22.4

PLS-DA 0.881 0.446 0.917 4.6 22.4

PLS-DA, limit 0.3¢ 0.959 0.784 0.806 8.0 28.6

ICM score, T = —33.644 0.940 0.927 0.464 8.9 17.8

consensus > 5°¢ 0.549 0.109 0.464 1.0 0.5

fXalt 376 (43) RP—B-50s9 0.928 0.833 0.465 7.3 17.0
Bayes, pact = 0.114° 0.944 0.750 0.767 6.56 28.4

PLS-DA 0.910 0.567 0.884 5.0 27.6

PLS-DA, limit 0.2¢ 0.918 0.630 0.674 55 20.4

ICM score, T = —22.0d 0.615 0.252 0.853 1.8 10.7

consensus > 4¢ 0.657 0.276 0.853 1.9 12.2

MMP34 353 (20) RP-B-10f 0.992 0.947 0.900 16.7 26.3
Bayes, pact = 0.0567P 0.972 0.708 0.85 12.5 20.0

PLS-DA 0.941 0.488 1.000 8.6 20.9

PLS-DA, limit 0.3¢ 0.986 0.800 1.000 14.1 27.6

ICM score, T = —21.22d 0.615 0.252 0.853 1.8 10.2

consensus > 5 0.657 0.276 0.853 1.9 10.8

AChE® 351 (18) C-w2Qh 0.869 0.220 0.611 4.3 5.6
Bayes, pact = 0.0513P 0.903 0.250 0.444 49 4.3

PLS-DA 0.681 0.108 0.722 21 31

PLS-DA, limit 0.2¢ 0.766 0.110 0.500 2.1 2.0

ICM score, T = —26.644 0.484 0.084 0.907 1.6 2.8

consensus > 5¢ 0.496 0.086 0.907 1.7 2.9

a Covering. ? Bayes, pact = p — Bayesian classification with a priori probability p for being active. ¢ PLS-DA, limit R — partial least-
squares discriminant analysis with y-value threshold R for actives. 9 ICM score, T = t — single scoring function ICM to discern actives
from inactives, threshold t. ¢ Consensus > ¢ — consensus scoring according to default settings in Tripos CScore, with threshold c. f Recursive-
partitioning in combination with Bagging for 10 iterations. 9 Recursive-partitioning in combination with Bagging for 50 iterations, using
random sampling of examples. " Covering with the active class up-weighted 20 times.

Table 3. Performance of Classifiers Constructed and Tested Using Different Combinations of Training and Validation Sets from the
Two Available ERa Sets

data set combination no. examples (no. actives) method accuracy  precision recall enrichment pE
actives? 381 (48) RP-B-50 0.979 0.955 0.875 7.6 46.2
Bayes, pact = 0.126 0.895 0.551 0.896 4.4 28.9

PLS-DA 0.869 0.489 0.938 3.9 28.2

PLS-DA, limit 0.3 0.961 0.811 0.896 6.4 40.7

mimicsP 345 (12) C 0.994 1.000 0.833 28.8 23.0
Bayes, pact = 0.0348 0.980 0.692 0.750 19.9 16.5

PLS-DA 0.986 0.706 1.000 20.3 24.1

PLS-DA, limit 0.14 0.991 0.909 0.833 26.1 20.9

toxins® 369 (36) RP-B-10 0.976 0.935 0.806 9.6 334
Bayes, pact = 0.100 0.905 0.508 0.861 5.2 22.4

PLS-DA 0.881 0.446 0.917 4.6 22.4

PLS-DA, limit 0.3 0.959 0.784 0.806 8.0 28.6

mimics to toxinsd 443 (110) RP-B-50 0.887 0.969 0.564 3.9 41.8
Bayes, pact = 0.248 0.935 0.945 0.782 3.8 61.8

PLS-DA 0.932 0.851 0.882 34 63.8

PLS-DA, limit 0.2 0.932 0.955 0.764 3.8 60.8

toxins to mimics® 369 (36) C-B-10s 0.986 0.919 0.944 9.4 41.4
Bayes, pact = 0.0976 0.911 0.522 1 5.4 30.4

PLS-DA 0.894 0.480 1.000 4.9 28.6

PLS-DA, limit 0.2 0.965 0.745 0.972 7.6 36.8

a Training set is from both Sippl“® and Shi et al.,*! validation set is from both Sippl4? and Shi et al.#! ? Both training set and validation
sets are from Sippl.4° ¢ Both training set and validation set are from Shi et al.** 9 Training set is from Sippl,*° validation set from Shi
et al.*1 ¢ Training set is from Shi et al.,*! validation set from Sippl.*°

proteins (see Figure 1 and Table 2). PLS-DA where the
threshold for being part of the active class has been set
using the training set often performs slightly better than
Bayesian classification. The a priori probability of being
active, a parameter used in the Bayesian classifier, can
be changed to alter the behavior of that particular type
of classifier. By decreasing this probability, the precision
increases and the recall decreases, while the number
of predicted actives decreases, and the enrichment factor

increases (data not shown). This can be utilized to get
a useful number of predicted actives from a structure-
based virtual screen, i.e., if the number of starting
compounds is large, the a priori probability of being
active can be decreased to get a manageable number of
predicted actives, without losing precision but probably
missing a few true binders.

Of the seven single scoring functions used here, the
energy-based ICM scoring function shows best discrimi-
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Figure 1. Accuracy, precision, recall, and enrichment of all
methods for the different target proteins and ligand sets.

natory power. As can be seen for ERq, it is very good at
scoring hydrophobic interactions. Using the ICM scoring
function only, with a threshold based on the results for
the training set, is the second or third best overall
method for discriminating actives when docking to the
mainly hydrophobic binding site of ERa. However, no
single scoring function is good for all target proteins.
For example, the Glide scoring function showed simi-
larly good results for MMP-3 (data not shown), due to
the explicit metal—ion interaction term in that scoring
function, but performed much worse on ERa. Looking
at the result for classical consensus scoring, it can be
observed that it performs slightly better than any single
scoring function if no scoring function stands out as
superior, i.e., consensus scoring as implemented here
can improve the results if the scoring functions are
comparable in performance, but if one scoring function
is much more correct than the others this will be lost
in the consensus approach, as can be seen in the ERa
results. On the contrary, the multivariate methods do
capture such information.

AChE stands out as a target being particularly hard
to dock to. Looking closer at the individual docking
modes of the known actives, it is apparent that many
of the suggested binding modes in fact are wrong. The
AChE binding cavity is large with many water mol-
ecules and more than one clear binding region in the
pocket has been identified.? The ligand—protein interac-
tions observed in the crystal structure of the AChE
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complex used for docking mainly consist of van der
Waals and hydrophobic interactions, with only one
positively charged ligand atom involved in electrostatic
interactions. No direct hydrogen bonds between the
ligand and the protein have been observed, only water-
bridged hydrogen bonds. The known actives used here
are rather symmetrical, with aromatic rings involved
in 7— interactions with the protein in both ends of the
molecule. 7—z stacking is not modeled by the force field
employed in ICM. It has also been observed that
hydrogen bonds are particularly important for obtaining
correct docking modes for this particular docking pro-
gram. The symmetry of the molecules, the lack of
modeling of #—x interactions, and falsely predicted
hydrogen bonds result in a large number of improbable
docking poses. To obtain more consistently correct
docking results for this particular target one would
probably need to include specific water molecules and
visually inspect more than one suggested docking pose
per ligand. However, even for AChE, the best classifier
finds about 60% of the actives, with an average accuracy
of about 90% for a single classification and with a
precision of about 25% (Table 2).

The precision is the ratio of compounds classified as
active actually being active. Hence, a precision of about
90%, while retaining well above half of all actives, as
was obtained for three of the datasets, is very useful
for focusing a given library toward a given target, and
a precision of 25%, with a recall of about 50%, is still
not useless. The precision of a random classifier is given
by the ratio between the number of actives and the total
number of examples (given in Tables 2 and 3 for the
tests constructed here), so for AChE it is 5% and for
fXa, the target with the highest number of actives
included, it is 11%. The pE-values, the negative loga-
rithms of the probabilities of achieving the exact same
results or better by random selection of compounds, are
an alternative way of measuring the significance of the
results, when compared to a random classifier. The pE-
values of the different classifiers are given in Table 2,
and these values also indicate the usefulness of multi-
variate analysis of scoring data, as compared to using
a single scoring function or classical consensus scoring.

Taken together, these results show that multivariate
statistical methods greatly increase the discriminative
power of consensus scoring, perhaps mostly so for the
rule-based methods implemented in RDS, but both PLS-
DA and Bayesian classification can be used to build
useful classifiers able to discriminate between actives
and nonactives, given a virtual screen.

However, we have failed to build good regression
models from our data, i.e., we cannot find a straight-
forward correlation between docking scores and true
activity enabling us to reliably predict the quantitative
activity given a set of docking scores, using PLS or other
methods. Therefore, we think the best approach when
using structure-based virtual screening for finding new
binders is to use the docking scores for removing as
many nonbinders as possible without losing the true
binders. This means that a classifier with high precision
and high recall for the active class is needed. This will
decrease the number of compounds necessary to take
into consideration, enabling more thorough analysis of
the remaining compounds, by looking closer on the
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dockings and/or applying other, more computationally
expensive methods or even go ahead and test every
remaining compound experimentally. We show here
that different multivariate statistical methods are well
suited for this type of filtering, specifically much better
than using classical consensus scoring or single scoring
functions.

All methods described here, apart from the consensus
scoring approach implemented in CScore, require a
training set. Our results imply that accurate quantita-
tive activity information for that set is not necessary.
Also, the results for the different ERa sets, especially
the mimics to toxins results, where the 36 known actives
in the mimics set of ligands is used to train and the
resulting classifier is evaluated using the 110 known
actives in the toxins set of ligands as an external
validation set, imply that the training set can be
structurally diverse compared to the evaluation set and
still be used to construct models that can identify
binders. This suggests that the docking scores and their
correlation patterns mostly describe the binding site and
how well the ligands fit this, and not the ligands
themselves. Hence, results from a limited experimental
screen, identifying a few binders, probably with confir-
mation assays run for the hits, could be used as a
training set. Virtual screening followed by scoring using
multiple functions and proper statistical analysis as
described here could then serve as a method to identify
more hits with alternative scaffolds, in a way similar
to similarity searching?>26 or pharmacophore search-
ing,2” but requiring less ligand activity information
which also can be less precise, and probably enabling
the identification of scaffolds more different from the
known binders. Our proposed combination of structure-
based virtual screening and supervised multivariate
classifiers is illustrated in Figure 2.

Using RDS, PLS-DA, or Bayesian classification to
construct classifiers from a training set of known
binders and nonbinders gives a much better classifica-
tion than using a previously presented consensus scor-
ing method. We think this is both because a training
set is used, making the classifier applicable to the target
being studied, and the ability of our methods to take
guantitative measures of correlations between different
scoring function into account. The approach to include
inactives in the training set and create classifiers
instead of regression models based only on known
actives is probably also important. A regression model
can have a good Q? when predicting the activity of active
compounds, but fail totally when confronted with a
nonbinder, where the docking scores have been calcu-
lated from a docking mode of a compound, which does
not actually bind.

Terp et al.28 also use two multivariate methods, PCA
and PLS, to analyze scoring data. They dock a set of
known binders to three different matrix metallo pro-
teases, score 10 poses per ligand using 8 different
scoring functions and perform a PCA on the resulting
set of scores. The first principal component is then used
to re-rank poses when performing docking. Since the
activities are known, a PLS model is also constructed,
and is used to rescore docked ligands. They do not use
the resulting scoring function to do structure-based
virtual screening, but evaluate it using known binders
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Figure 2. Schema of our proposed use of virtual screening
for identifying binders from large sets of virtual compounds.

and try to quantitatively predict the binding affinity of
these compounds. There are no results indicating how
well the scoring function fares when confronted with
scoring data from compounds which actually are non-
binders. Hence, the most important differences between
the work presented here and the work done by Terp et
al. is the inclusion of inactives and construction of
classifiers, for use in structure-based hit identification,
as well as the difference in the employed multivariate
methods.

In our virtual screening setup, there are many sources
of errors in the scoring vectors, apart from the inherent
inaccuracy of the scoring functions themselves. The
docking mode used as input for the scoring function
must be correct, both in terms of ligand and protein
conformation and in terms of ligand placement, for the
scoring function to be able to produce a correct result.
We have not assured, using visual inspection, that every
docking mode used for scoring is plausible, since this
would not have been possible if the number of com-
pounds had been in the 100 000 range. Since the results
acquired for AChE differed significantly from those
acquired for the other targets, we performed a closer
visual inspection of these docking modes. As was stated
above, this showed a large number of improbable
docking poses, which of course will have a negative
effect on the resulting classifiers. We also did not refine
our binding sites to any larger extent, meaning that we
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Figure 3. Activity histograms of each of the five sets of known
binders. For the two ERa sets activities are given as log(RBA),
i.e., logarithm of 100 x [17f-estradiol]/[tested compound] at
50% decrease of receptor bound 173-estradiol; for AChE and
MMP3 the activities are given as plC50 and for fXa the
activities are given as pKi.

have not tried to include explicit waters or refined the
conformations of seemingly flexible side-chains to en-
sure consistently correct docking poses of known bind-
ers. It would probably be beneficial for the docking of
known actives with similar structures if the binding site
would be relaxed around such a bound ligand with a
known binding mode (i.e., from a complex structure).
However, this would also bias the binding site toward
ligands with that specific scaffold and possibly make the
resulting classifier, comprised of a docking setup and a
multivariate classifier, less general. The main focus of
our study is the statistical properties of scoring data and
identification of appropriate methods to capture the
information present in such data. More correct protein
conformations and more elaborate methods for ensuring
the correctness of the individual binding modes can only
improve the results.

The tests constructed for this study, i.e., the combina-
tions of target structures and sets of ligands, are not
actual HTS results, but a combination of published,
known binders and random, drug-like molecules. The
known binders are to large extent analogues of each
other, or are at least made up of a small number of
compound series, with the exception of the ERa toxins
set. However, the activity spans are quite large (see
Figure 3). The internal diversity of the sets of known
actives and the cross-diversity between actives and
inactives, and between the two different ERa sets, are
given in Table 4. Comparing the classifiers perfor-
mances (Tables 2 and 3 and Figure 1) to the diversity
of the sets, it looks like it is much more important to
dock the compounds correctly than to use similar
compounds in the test and training sets, since the AChE
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set of ligands are quite similar, but the difficulties in
docking and scoring them correctly makes the resulting
classifiers fare much worse than for example the ERa
toxins set or the mimics to toxins set. This implies that
the methods evaluated here are applicable to structure-
based virtual screening of large sets of diverse com-
pounds using screening data from a much smaller
number of diverse compounds. We have also used RDS
and the methodology presented here in actual in-house
projects, creating classifiers using screening data from
diverse compounds and successfully sorting out actives
from inactives after docking and scoring of diverse,
virtual compounds.

To be able to construct good regression models, or to
improve the performance of the classifiers for hard cases
such as AChE, one might combine the scoring matrices
with molecular descriptors. By adding ligand-specific
descriptors to the score matrices before performing the
multivariate analysis, it might be possible to construct
QSAR models with higher significance than when using
only docking scores. However, the resulting models will
inevitably be more local, i.e., more dependent on the
structures in the training set. If a rather homogeneous
set of known actives is used, and molecular descriptors
are calculated, the resulting model will not be able to
predict structurally different ligands. This might be a
rewarding extension of our methodology in some cases,
but probably not as useful for filtering virtual screening
results from large sets of diverse virtual molecules.

Conclusions

In conclusion, we have generated scoring matrices for
known actives and potential inactives for four different
target proteins, using docking followed by scoring with
seven different scoring functions. We used these matri-
ces to construct multivariate classifiers, evaluated these
with external test sets, and compared them to classical
consensus scoring and single scoring functions. We
found that proper multivariate analysis of scoring data
is very rewarding in terms of recall of known actives
and enrichment of true actives in the set of predicted
actives. Rule-based methods implemented in RDS show
the best performance, but also PLS-DA and simple
Bayesian classification perform very well.

On the basis of this we propose a new methodology
for the use of virtual screening to identify novel binders,
requiring prior knowledge of a small set of actives
(Figure 2). We think it is clear that the imprecise nature
of docking and scoring makes blind virtual screening of
large number of compounds without any information
about true actives or known experimental complex
structures a risky exercise. Limited experimental in-
formation and proper multivariate statistical treatment
of the scoring data dramatically increase the value of
these kinds of computations.

Methods

Docking and Scoring. To evaluate the multivariate
analysis methods on scoring data, sets of binders with known
affinity for the four target proteins were collected from the
literature. The number of ligands and their sources are listed
in Table 1. In addition to the known binders, we used 999
diverse drug-like ligands extracted from MDDR, selected using
2D fingerprint-based clustering in ChemEnlighten.?° 3D rep-
resentations of the ligands were generated using CORINA
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Table 4. Diversity of the Ligand Sets Used in the Study, as Measured by dbcmpr from Tripos,2 Which Uses UNITY 2D Fingerprints
to Calculate Tanimoto Similarities between Each Compound in the Reference and Test Sets

ref set test set Tanimoto similarity < 0.85° Tanimoto similarity mean Tanimoto similarity standard deviation
AChE AChE 26% 0.88 0.13
fXa fXa 7.1%° 0.95 0.05
MMP3 MMP3 16% 0.93 0.07
ERa mimics ERa mimics 42%® 0.83 0.18
ERa toxins ERa toxins 34% 0.86 0.15
ERa mimics ERa toxins 83%f 0.63 0.20
ERa toxins ERa mimics 50%9 0.84 0.15
Inactives Inactives 100%, nearest 0.82 0.58 0.09
Inactives AChE 93% 0.68 0.12
Inactives fXa 100%, nearest 0.70 0.56 0.03
Inactives MMP3 96% 0.64 0.09
Inactives ERo mimics 100%, nearest 0.68 0.56 0.06
Inactives ERa toxins 100%, nearest 0.77 0.50 0.11

a htpp://www.tripos.com. ? The percentage of compounds in the test set for which the Tanimoto similarity to the nearest neighbor in
the reference set is less than or equal to 0.85. ¢ Of the 129 fXa compounds, two have the exact same 2D fingerprints as other compounds,
i.e., the percentage refers to a total of 127 compounds. 9 5 of 60 compounds have 2D fingerprints identical to other compounds in the set.
e 10 of 36 compounds have 2D fingerprints identical to other compounds in the set. f Of the 17% which have a Tanimoto similarity > 0.85
to its nearest neighbor in the ERa mimics set, 9.1% (10 compounds) have a Tanimoto similarity of 1, i.e., the 2D fingerprints are identical.
9 Ten compounds in the ERa. mimics set have 2D fingerprints identical to its nearest neighbor’s in the ERa toxins set.

version 2.4 (Molecular Networks GmbH, http://www.molecular-
networks.de),?° and it was assumed that the stereochemistry
implied in the drawings in the original publications was the
correct for binding. That is, only the drawn stereoisomer was
used, not all possible. lonization states for the ligands were
set using a SYBYL Programming Language (SPL) script, in
which SLNs8! are used to find substructures (e.g., carboxylic
acids and various amines) that are substituted for their ionized
counterparts. Only one ionization state per ligand, the fully
ionized one, was used. For the MDDR ligands, a single,
randomly selected stereoisomer was used for chiral compounds.
This automated pretreatment of ligands is typical for a large-
scale virtual screening study.

The diversity of the different ligand sets was analyzed using
dbcmpr from Tripos (http://www.tripos.com). dbcmpr is a
utility which calculates the Tanimoto similarities, using
UNITY 2D fingerprints, between all compounds in a set and
their nearest neighbors in another set. The results are shown
in Table 4. The percentage of compounds in the test set having
a Tanimoto similarity less than or equal to 0.85 to its nearest
neighbor in the reference set is given, as well as the means
and standard deviations of the Tanimoto similarities between
all compounds in the test set and their nearest neighbors. The
comparison is done by constructing UNITY databases of each
set. When the databases are constructed only one entry is
created for each unique 2D fingerprint. In the fXa, MMP3, and
ERa mimics ligand sets, there are 2, 5, and 10 compounds with
identical 2D fingerprints, respectively. This should be taken
into account when the results in Table 4 are interpreted.

The target protein structures (PDB files are listed in Table
1) were preprocessed using ICM. First, hydrogens were added
with random orientation, and then all polar hydrogens were
oriented, one at a time, by performing a systematic search of
the relevant torsion angle, while keeping the rest of the
structure fixed. Arginines and lysines were set to be positively
charged, and aspartates and glutamates were set to be
negatively charged. All other side-chains were treated as
neutral. Finally, all histidines and side-chain amides (glut-
amines and asparagines) were processed. For each histidine,
the two possible side-chain tautomers were tested and the one
with the lowest energy was kept. The side-chain terminal
amides were tested both in their original orientation and
rotated by 180° and the orientation with the lowest energy
was kept. Because we wanted to dock diverse ligands with
large variations in size and possible interactions, all waters
in the active sites were removed, as to not bias the docking to
one particular binding mode. The idea is that a smaller ligand,
binding to the binding site together with a number of water
molecules, will still be able to dock correctly if no waters are
included, but a larger ligand occupying parts of space occupied
by water molecules when the smaller ligand binds, cannot dock

correctly if these waters are kept. All the processed structures
(SD and PDB files) are available for downloading at http://
www.compumine.com/research/scoring.html, with the ligands
in their respective docking poses.

Dockings were performed using ICM version 2.8.2° It is
implemented as a Monte Carlo minimization of the total
energy of the ligand (both internal energy and interaction
energy), where a set of protein-derived grids is used to model
the interaction energy of the protein and ligand. The Monte
Carlo procedure produces a stack of possible docking modes
for each ligand, sorted by energy. In this study we kept only
the highest ranking mode, again to simulate a virtual screen-
ing setup with its demand for throughput and automation.
During lead optimization, when trying to dock a manageable
number of known binders, it can be very rewarding to analyze
a number of high-ranking docking poses, and choose the most
probable, to get a good binding hypothesis for proposing
chemical modifications to increase the affinity of the known
binder. In structure-based virtual screening, the goal is to
propose a small set of potential actives given a large number
of compounds, and it is not possible to manually review the
docking stacks of each compound, but one has to let the scoring
function rank the different poses suggested by the docking
program. For the same reason, the docking modes were not
manually analyzed to remove obviously faulty dockings, but
all ligands were scored. This will further increase the noise in
the resulting scoring data and make the task of building a
classifier harder. Two other docking programs, GOLD?" and
Glide,*® were also evaluated, but since the statistical analysis
gave similar results for all three programs and for clarity and
brevity, only the results for ICM are described further.

Two scoring functions are implemented in ICM: one energy-
based, calculated as a weighted sum of energy terms,?° and
one calculated using MolSofts implementation of potential
mean forces (PMF), derived from a set of known protein—
ligand complexes, similar to Muegge et al.®? In addition to
these two scoring functions, the five scoring functions imple-
mented in Tripos CScore were used,? resulting in a total of
seven score values per docked ligand. The CScore scoring
functions are Tripos implementations of FlexX-score,3 DOCK
score,®* PMF score,®> GOLD score,® and ChemScore.*®

The ligands were partitioned into four different groups for
each set of ligands and target proteins. Approximately two-
thirds of the actives and inactives were used as training sets
and one-third were used as external test sets. The partitioning
into training and validation sets was done by sorting the
ligands according to activity (known actives) and molecular
weight (inactives), treating each category separately, and
setting apart every third compound as a validation compound.
This scheme results in four matrices of scores for each
combination of ligand set and target protein, with the dimen-
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sions 7x (number of ligands in set), namely, scores of actives
in training set, scores of actives in validation set, scores of
inactives in training set, and scores of inactives in validation
set. The quantitative activity values of the known actives were
not used explicitly in this study even though they span a rather
wide activity range (the activity histograms are given in Figure
3). The same set of 999 MDDR compounds were used as
inactives in all five sets of ligands and target proteins.

For one target, ERa, we had two different sets of ligands
with known activity, which were used to build discriminators
to test the applicability of our methodology to more diverse
sets of ligands. In addition to building discriminators using
the two different training sets and evaluating them with the
corresponding external validation sets (denoted mimics and
toxins in Table 3), we built one model with both training sets,
evaluating it with both validation sets (denoted Actives in
Table 3), and two “cross-models” (denoted mimics to toxins and
toxins to mimics in Table 3), where the models were built using
all active compounds from one set as training set and all active
compounds from the other set as validation set. As can be seen
in Table 4, the toxins set cover the mimics set quite well, and
there are actually 10 compounds in the ERa toxins set having
2D fingerprints identical to a compound in the ERo. mimics
set. Hence, the toxins to mimics results in Table 3 are not too
surprising, even though they show that the training set can
be diverse in itself. However, the mimics set cover the toxins
set to a much lower degree, and the toxins set is rather diverse
in itself, but still the precision and recall values for mimics to
toxins are comparable to the other results.

The number of actives and the total number of compounds
in each validation set are shown in Tables 2 and 3.

Rule-Based Methods. The data mining system rule dis-
covery system (RDS)?* was used to create rule-based prediction
models based on the scoring matrices. Rule-based models are
sets of if—then rules, in which each rule has conditions for
one or more of the attributes of the examples, in this case the
numerical values of the individual scoring functions. These
rules can be derived from data either for the purpose of making
categorical predictions (classification) or numerical predictions
(regression). In this study, classification models were created
only. Models were induced in a number of ways. Two basic
rule-induction strategies, namely, recursive-partitioning (RP),3¢
which produces decision trees, and covering (C),%” which
produces unordered sets of rules, were used both individually
and in combination with the ensemble learning scheme bag-
ging.® Bagging generates ensemble models consisting of a
preselected number of basic models by generating repeated
bootstrap replicates of the training examples. A large number
of models were generated and compared. The models were
evaluated using cross-validation with the training set, and the
best model for each set of ligands and target protein was put
forward for final evaluation with the external validation set.

PLS and PLS-DA. The relationships between the depend-
ent values (active = 1 or inactive = —1) for each data set and
the computed scoring values for each compound were deter-
mined using the PLS (partial least squares projections to latent
structures) method,?? employing an in-house program imple-
mented at AstraZeneca, with core algorithms very similar to
those implemented in SIMCA from Umetrics AB (http:/
www.umetrics.com). The number of significant components
was determined using a 4-fold cross-validation procedure.®
The difference between ordinary PLS analysis and PLS
discriminant analysis (PLS-DA) is that in the former analysis
the dependent variable is a continuous variable while in the
latter type of analysis there are only two levels, in this case 1
or —1, for the dependent variable, related to the two classes
under investigation. The standard classification of the results
from PLS-DA is as follows: positive predictions from the model
are regarded as belonging to active class (1), while negative
predictions from the model are regarded as belonging to
inactive class (—1). However, if the classes are unevenly
populated, which is the case in the investigations presented
here, the cross-validation procedure may indicate that there
is a need to shift the cutoff limit for assessing class member-
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ship from zero (0) to a number that ensures a more balanced
prediction of false positives and false negatives.

Bayesian Classification. MatLab (MathWorks Inc., http:/
www.mathworks.com) was used to implement a simple Baye-
sian two-class classifier, assuming normally distributed dock-
ing scores. A Bayesian classifier is constructed using Bayes
theorem, assuming a distribution for the data and a priori
probabilities for the classes (eq 5).

Set example E to class:

ar P(C,|IE), P(GE) = W (5)
g mi’:lX il=) i P(E)

Here E is an example being classified and C; is a class (e.g.,
active). P(E|C;i) can be calculated given a distribution. As is
common, the normal distribution was used, which requires
estimating the mean value vectors and covariance matrices
of our two classes. The multivariate normal distribution is
assumed for computational simplicity, not because of any
inherent property of multidimensional scoring data. The
multivariate normal distribution is given by eq 6.

9\ 1 —1/2(X—7)TCYX—q)

fX) =———— 6
) (27[)3/2|C|1’2 (6)
Here C is the covariance matrix, and u is the expectation value
vector. The actual classifier is implemented by reformulating
eq 5 using probability density functions and inserting eq 6.
Using the natural logarithm results in the discriminant
function eq 7.

609 = P(i)| - 5in
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P(i) is the a priori probability for class i. Classifiers were built
using different a priori probabilities of a given example to
belong to the active class. Varying the a priori probability can
be seen as weighting the different classes, and we have tested
different levels to estimate the impact of doing this. In a real
case, the a priori probability of being active, i.e., the ratio of
actives in the total set being classified (e.g., a large set of
commercial compounds or the in house compound collection
of a pharmaceutical company) is often not known. In the
constructed evaluation presented here, it is known that the
ratio of actives in the evaluation set is similar to that of the
training set. Therefore, we show the results from using the
actual priors, as calculated from the ratio of inactives and
actives in the training set, even though in an actual case the
a priori probability of being active can be varied to achieve a
satisfying number of predicted actives.

P(E) is simply a normalization factor and can be disregarded
when comparing a posteriori probabilities of different classes.
The training set is used to estimate the means and covariance
matrices of the two classes. An example vector is classified to
belong to the active class if the a posteriori probability, P(Ci|E),
for that class is larger than the probability of the inactive class,
which is equivalent to the discriminant function gi(x) being
larger for the active class.

A Bayesian classifier is optimal if the dimensions are
independent, which is most likely not the case for multidi-
mensional scoring data, but given its simplicity it often works
remarkably well also for dependent data.?®

Classical Consensus Scoring. As a comparison a simple
classical consensus scoring classifier was built. The imple-
mentation is identical to the default behavior of the classifier
in Tripos CScore.*? For each dimension (i.e., scoring function),
the range is calculated and halved, giving a threshold value.
The minimum score in the training set for each scoring
function is subtracted from each individual score. If the
resulting number is higher than the threshold (calculated as
half the range) for a specific scoring vector, that vector is given
a score of one for that particular scoring function. Hence, in
our case the maximum consensus score is 7. A classifier is built
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by setting a threshold for being active in “consensus scores”,
typically, 5—6 in our case.

Clark et al.’?2 compared four different consensus scoring
approaches, of which CScore is one, and got comparable
results. Therefore, we have only implemented CScore as an
example of classical consensus scoring.

Acknowledgment. We gratefully acknowledge Dr.
Wolfgang Sippl for supplying the 3D structures of the
ERa “mimics” set of known actives and Dr. Jerk
Vallgarda for selecting the set of diverse drug-like
molecules from MDDR used as inactives. Dr. Evert
Homan and Dr. Anders Karlén are acknowledged for
critical review of the manuscript.

References

(1) Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of
docking: An overview of search algorithms and a guide to scoring
functions. Proteins 2002, 47, 409—443.

(2) Sippl, W.; Contreras, J. M.; Parrot, I.; Rival, Y. M.; Wermuth,
C. G. Structure-based 3D QSAR and design of novel acetylcho-
linesterase inhibitors. J. Comput.-Aided Mol. Des. 2001, 15,
395-410.

(3) Ha, S.; Andreani, R.; Robbins, A.; Muegge, |. Evaluation of
docking/scoring approaches: a comparative study based on
MMP3 inhibitors. J. Comput.-Aided Mol. Des. 2000, 14, 435—
448.

(4) Abagyan, R.; Totrov, M. High-throughput docking for lead
generation. Curr. Opin. Chem. Biol. 2001, 5, 375—382.

(5) Stahl, M.; Rarey, M. Detailed analysis of scoring functions for
virtual screening. J. Med. Chem. 2001, 44, 1035—1042.

(6) Schapira, M.; Raaka, B. M.; Samuels, H. H.; Abagyan, R.
Rational discovery of novel nuclear hormone receptor antago-
nists. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 1008—1013.

(7) Filikov, A. V.; Mohan, V.; Vickers, T. A.; Griffey, R. H.; Cook, P.

D. et al. Identification of ligands for RNA targets via structure-

based virtual screening: HIV-1 TAR. J. Comput.-Aided Mol. Des.

2000, 14, 593—610.

Schapira, M.; Totrov, M.; Abagyan, R. Prediction of the binding

energy for small molecules, peptides and proteins. J. Mol.

Recognit. 1999, 12, 177—190.

(9) Aqvist, J.; Marelius, J. The linear interaction energy method
for predicting ligand binding free energies. Comb. Chem. High
Throughput Screening 2001, 4, 613—626.

(10) Bissantz, C.; Folkers, G.; Rognan, D. Protein-based virtual
screening of chemical databases. 1. Evaluation of different
docking/scoring combinations. J. Med. Chem. 2000, 43, 4759—
4767.

(11) Charifson, P. S.; Corkery, J. J.; Murcko, M. A.; Walters, W. P.
Consensus scoring: A method for obtaining improved hit rates
from docking databases of three-dimensional structures into
proteins. J. Med. Chem. 1999, 42, 5100—5109.

(12) Clark, R. D.; Strizhev, A.; Leonard, J. M.; Blake, J. F.; Matthew,
J. B. Consensus scoring for ligand/protein interactions. J. Mol.
Graphics Modell. 2002, 20, 281—295.

(13) Brzozowski, A. M.; Pike, A. C.; Dauter, Z.; Hubbard, R. E.; Bonn,
T.; et al. Molecular basis of agonism and antagonism in the
oestrogen receptor. Nature 1997, 389, 753—758.

(14) Natchus, M. G.; Bookland, R. G.; Laufersweiler, M. J.; Pikul,
S.; Almstead, N. G. et al. Development of new carboxylic acid-
based MMP inhibitors derived from functionalized propargylg-
lycines. J. Med. Chem. 2001, 44, 1060—1071.

(15) Kryger, G.; Silman, I.; Sussman, J. L. Structure of acetylcho-
linesterase complexed with E2020 (Aricept): implications for the
design of new anti-Alzheimer drugs. Struct. Fold Des. 1999, 7,
297-307.

(16) Nar, H.; Bauer, M.; Schmid, A.; Stassen, J. M.; Wienen, W.; et
al. Structural basis for inhibition promiscuity of dual specific
thrombin and factor Xa blood coagulation inhibitors. Structure
(Cambr.) 2001, 9, 29—37.

(17) Jones, G.; Willett, P.; Glen, R. C. Molecular recognition of
receptor sites using a genetic algorithm with a description of
desolvation. J. Mol. Biol. 1995, 245, 43—53.

(18) Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee,
R. P. Empirical scoring functions: 1. The development of a fast
empirical scoring function to estimate the binding affinity of
ligands in receptor complexes. J. Comput.-Aided Mol. Des. 1997,
11, 425—445.

(@

~

Journal of Medicinal Chemistry, 2003, Vol. 46, No. 26 5789

(19) Schrddinger FirstDiscovery 2.5 Operating Manual; Schrodinger
Press: 2003.

(20) Abagyan, R.; Totrov, M. ICM online manual, http://www.mol-
soft.com/.

(21) Abagyan, R.; Totrov, M. Biased probability Monte Carlo confor-
mational searches and electrostatic calculations for peptides and
proteins. J. Mol. Biol. 1994, 235, 983—1002.

(22) Wold, S.; Johansson, E.; Cocchi, M. PLS—Partial least-squares
projections to latent structures. In 3D QSAR in Drug Design;
ESCOM: Leiden, 1993; pp 523—550.

(23) Domingos, P.; Pazzani, M. On the optimality of the simple
bayesian classifier under zero-one loss. Machine Learning 1997,
29, 103-130.

(24) Rule Discovery System (RDS) 0.8, http://www.compumine.com;
Compumine AB.

(25) Martin, Y. C.; Kofron, J. L.; Traphagen, L. M. Do structurally
similar molecules have similar biological activity? J. Med. Chem.
2002, 45, 4350—4358.

(26) Wilton, D.; Willet, P. Comparison of Ranking Methods for Virtual
Screening in Lead-Discovery Programs. J. Chem. Inf. Comput.
Sci. 2003, 43, 469—474.

(27) Patel, Y.; Gillet, V. J.; Bravi, G.; Leach, A. R. A comparison of
the pharmacophore identification programs: Catalyst, DISCO
and GASP. J. Comput.-Aided Mol. Des. 2002, 16, 653—681.

(28) Terp, G. E.; Johansen, B. N.; Christensen, I. T.; Jgrgensen, F.
S. A New Concept for Multidimensional Selection of Ligand
Conformations (MultiSelect) and Multidimensional Scoring (Mul-
tiScore) of Protein—Ligand Binding Affinities. J. Med. Chem.
2001, 44, 2333—2343.

(29) Clark, R. D. OptiSim: An Extended Dissimilarity Selection
Method for Finding Diverse Representative Subsets. J. Chem.
Inf. Comput. Sci. 1997, 37, 1181—-1188.

(30) Sadowski, J.; Gasteiger, J. From atoms and bonds to three-
dimensional atomic coordinates: Automatic model builders.
Chem. Rev. 1993, 93, 2567—2581.

(31) Ash, S.; Cline, M. A.; Homer, R. W.; Hurst, T.; Smith, G. B.
SYBYL line notation (SLN): A versatile language for chemical
structure representation. J. Chem. Inf. Comput. Sci. 1997, 37,
71-79.

(32) Muegge, I.; Martin, Y. C. A general and fast scoring function
for protein—ligand interactions: a simplified potential approach.
J. Med. Chem. 1999, 42, 791—-804.

(33) Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible
docking method using an incremental construction algorithm.
J. Mol. Biol. 1996, 261, 470—489.

(34) Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin,
T. E. A geometric approach to macromolecule-ligand interactions.
J. Mol. Biol. 1982, 161, 269—288.

(35) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R.
Development and validation of a genetic algorithm for flexible
docking. J. Mol. Biol. 1997, 267, 727—748.

(36) Quinlan, J. R. Induction of decision trees. Machine Learning
1986, 1, 81—106.

(37) Bostrom, H. Covering vs Divide-and-Conquer for Top-Down
Induction of Logic Programs. Fourteenth International Joint
Conference on Artificial Intelligence; Morgan Kaufmann: San
Mateo, California, 1995; pp 1194—1200.

(38) Breiman, L. Bagging Predictors. Machine Learning 1996, 24,
123-140.

(39) Wold, S. Cross-validatory estimation of the number of compo-
nents in factor and principal components models. Technometrics
1979, 20, 379—-405.

(40) Sippl, W. Receptor-based 3D QSAR analysis of estrogen receptor
ligands—merging the accuracy of receptor-based alignments with
the computational efficiency of ligand-based methods. J. Com-
put.-Aided Mol. Des. 2000, 14, 559—572.

(41) shi, L. M,; Fang, H.; Tong, W.; Wu, J.; Perkins, R.; et al. QSAR
models using a large diverse set of estrogens. J. Chem. Inf.
Comput. Sci. 2001, 41, 186—195.

(42) Contreras, J. M.; Parrot, 1.; Sippl, W.; Rival, Y. M.; Wermuth,
C. G. Design, synthesis, and structure—activity relationships of
a series of 3-[2-(1-benzylpiperidin-4-yl)ethylamino]pyridazine
derivatives as acetylcholinesterase inhibitors. J. Med. Chem.
2001, 44, 2707—-2718.

(43) Matter, H.; Defossa, E.; Heinelt, U.; Blohm, P. M.; Schneider,
D. et al. Design and quantitative structure—activity relationship
of 3- amidinobenzyl-1H-indole-2-carboxamides as potent, non-
chiral, and selective inhibitors of blood coagulation factor Xa.
J. Med. Chem. 2002, 45, 2749—2769.

JMO030896T



