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Ditopic dynamic combinatorial libraries were generated and screened toward inhibition of the
bifunctional enzyme HPr kinase/phosphatase from Bacillus subtilis. The libraries were
composed of all possible combinations resulting from the dynamic interconversion of 16
hydrazides and five monoaldehyde or dialdehyde building blocks, resulting in libraries
containing up to 440 different constituents. Of all possible acyl hydrazones formed, active
compounds containing two terminal cationic heterocyclic recognition groups separated by a
spacer of appropriate structure could be rapidly identified using a dynamic deconvolution
procedure. Thus, parallel testing of sublibraries where one specific component was excluded
basically revealed all the essential components. A potent ditopic inhibitor, based on 2-amino-
benzimidazole, was identified from the process.

Introduction
Dynamic combinatorial chemistry (DCC) is a recently

introduced concept in drug discovery, based on the
generation and implementation of adaptive libraries.1-6

This supramolecular approach is based on the reversible
connection between different basic components to pro-
duce continually interchanging library constituents
representing all possible combinations of all components
available (Figure 1). Each library constituent affects and
is affected by all other surrounding constituents, allow-
ing for target-driven and self-screening processes that
lead to the preferential expression and retrieval from
the library of the active species that present the
strongest binding to the target entity.

Such libraries have been implemented in a number
of cases concerning either the receptor-driven generation
of a substrate/inhibitor or the reverse. In our laboratory,
the anion-dependent generation of circular helicates led
to the formulation of the DCC concept,7,8 and the proof
of principle has been further substantiated in studies
including inorganic9-12 and organic model systems,13-18

as well as studies involving biological target mole-
cules.19-25 In the context of the present study, the
induction of an inhibitor of carbonic anhydrase20 and
the discovery of a bis-cationic ligand toward acetylcho-
linesterase24 have shown that DCC is well-adapted to
the discovery of enzyme inhibitors.

Kinases and phosphatases are classes of enzymes that
are becoming increasingly important as targets for drug
discovery.26-30 Protein phosphorylation (and dephos-
phorylation) is the key regulatory mechanism for most
essential cellular functions, including gene transcrip-
tion, cell growth, cell metabolism, and immune response.

Phosphorylation processes also underlie many severe
disorders, such as diabetes, hypertension, infectious
diseases, and cancer. Therefore, the direct inhibition of
individual kinases or phosphatases could produce pre-
cise and efficient control over such cellular processes
and diseases. In parallel with the intense mapping of
such kinase-dependent regulatory processes, attempts
have been made to discover kinase inhibitors. However,
because of the complex nature of kinase regulation, it
has been difficult to find highly potentsand at the same
time highly specificskinase/phosphatase inhibitors, and
new approaches to inhibitor discovery are therefore
warranted. Only recently has it become apparent that
selective inhibitors can be obtained despite the great
similarity of the active sites of different kinases.31

Kinases are potentially very suitable targets for di- or
oligotopic dynamic combinatorial libraries. These en-
zymes often have several binding sites for substrates
(ATP, proteins), activators/attenuators, and protomer
interface recognition. Thus, combinations of inhibitors
of the respective sites could in principle lead to inhibi-
tors presenting both high affinity and high selectivity.

One such target candidate is the HPr kinase (HPrK/
P), a key enzyme in the bacterial carbon catabolite
repression (CCR) pathway. In low-GC (guanine, cy-
tosine) Gram-positive bacteria, the main mechanism for
hierarchical control of carbohydrate utilization involves
the reversible phosphorylation of HPr (histidine-con-
taining protein) at Ser-46 by the ATP-dependent en-
zyme, which in addition to kinase activity also possesses
phosphatase activity in Bacillis subtilis.32-34 Metaboliz-
ing a preferred carbohydrate, e.g., glucose, generates
high concentrations of ATP and FBP (fructose-1,6-
diphosphate), whereby the expression of secondary
catabolic genes becomes repressed in a cascade of events
that is controlled by HPrK/P. On the contrary, during
starvation with high concentrations of inorganic phos-
phate, the phosphatase activity of the enzyme becomes
prevalent, leading to dephosphorylation of HPr(Ser-P).
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Thus, mechanistic control involves activation of either
the kinase- or the phosphatase activity, depending on
the energy state of the cell. Carbon catabolite repression
and also carbon catabolite activation (CCA), including
regulation of central metabolic pathways such as gly-
colysis, are assumed to be the consequence of this
regulatory mechanism.35-40 Since HPrK/P-deficient bac-
terial mutants show severe growth defects (Lactobacil-
lus casei, Staphylococcus xylosus, and B. subtilis),41-43

and the main mechanism of CCR/CCA is suggested to
involve the enzyme HPrK/P, inhibitors of this key
enzyme could form a new family of antibiotic drugs.

In search of potent inhibitors against kinases in
general, and the kinase activity of HPrK/P in particular,
an in-house patrimonial collection of molecules (Uni-
versity Louis Pasteur, Faculty of Pharmacy) was re-
cently investigated.44,45 Upon screening of this highly
diverse 1440-membered library, at a concentration of
each library member of approximately 30 µM, a hetero-
cyclic bis-cation was found that inhibited HPrK/P
(Figure 2), with an inhibitory binding efficiency in the
micromolar range (IC50 ∼ 10 µM).

With this hit as a starting point, ditopic dynamic
combinatorial libraries were designed where the recog-
nition groups, as well as the structural linker component
between them, were probed and evaluated. Thus, a set
of different headgroups, resembling the original hit, was
tested together with linkers of various type. Reversibil-
ity in the connections was based on acyl hydrazone
formation and exchange, previously known to be easily
controlled and also compatible with aqueous phase
enzyme assays.24,46 Because of the instability and
limited availability of the enzyme, a preequilibration
approach was also followed,22,24 where a sensitive
radioactive kinase assay was applied posterior to dy-
namic combinatorial library (DCL) generation. To iden-
tify active components, a dynamic deconvolution pro-

tocol24 was employed for the efficient characterization
of the active constituents through identification of their
building blocks.

Results and Discussion

Generation of the Dynamic Combinatorial Li-
brary (DCL). Choice of Building Blocks. At the
outset, a library composed of 16 different hydrazide
headgroups and five different aldehydes were chosen
as library components (Table 1). The headgroups se-
lected were based on the previously known heterocyclic
cationic structure emanating from the patrimonial
library. Derivatives of this aminobenzimidazole struc-
tural motif were prepared and mixed with other cationic
species, as well as uncharged, unrelated components for
reference. As spacer units, three different dialdehydes
were used, monitored in comparison with two different
monoaldehydes. This ensemble of components amounts
to a relatively focused library, in which several of the
final constituents may lead to inhibition, potentially
impeding their efficient identification.

DCL Generation. The complete library resulting
from these 21 components would contain 800 different
constituents (for a calculation, see ref 24), but on
accounting for symmetry effects, this number is reduced
to an ensemble of 440 different library members, all
formed at the same time in the same solution under
dynamic conditions. Generation of this library was
easily accomplished at moderately acidic pH (acetate
buffer, pH 4), upon agitation overnight. In general,
generation and interconversion of acyl hydrazone librar-
ies are completed within 15 min to a couple of hours,
depending on the hydrazide/aldehyde combination and
the pH of the solution, a lower pH resulting in a more
rapid reaction.24,46 In the present case, repeated studies
with prolonged reaction times did not result in altered
results, indicative of complete reaction progress. Since
some of the components (notably compound 10) resulted
in acyl hydrazones of low solubility in the aqueous
buffer; DMSO was also added to the samples. This
modification was however of no concern, neither for the
dynamic generation of the library nor for its interaction
with the HPrK/P. The final concentration of the libraries
amounted to 15.2 mM in total hydrazide and 9.5 mM
in total aldehyde, respectively, resulting in a theoretical
yield of 7.4-119 µM per library member (Table 2).

Screening of the DCL by Dynamic Deconvolu-
tion.

Sample Preparation. The protein substrate HPr
and the enzyme HPrK/P were purified and tested as
previously reported,47 and a radioactive phosphorylation

Figure 1. Schematic representation of the DCC process. A collection of different building blocks is allowed to form an ensemble
of assemblies/adducts, held together through reversible interconnections, and in continuous exchange with one another. Subsequent
addition of a target species, e.g., an enzyme, leads to the selection of the best bound library constituent, allowing the identification
of the active species.

Figure 2. Structure of compound identified from an in-house
patrimonial collection (University Louis Pasteur, Faculty of
Pharmacy).
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assay was used throughout in the selection process. All
screening reactions were performed at pH 8.0 in Tris‚
HCl buffer, containing the phosphoryl donor, [γ-32P]-
ATP, together with MgCl2 and FBP. The DCLs appro-
priately diluted 2-10 times were then added to the
assay, to 20% (v/v), and in all samples a total concentra-
tion of 10% DMSO was maintained. The degree of
dilution was probed in each case to ensure optimal
observable effects, i.e., an overall inhibition by the
complete libraries of approximately 80-90%. The reac-
tions were then initiated by the addition of enzyme (1%

with respect to HPr), and after incubation for 10 min
at 37 °C, they were stopped and the degree of phospho-
rylation determined.

Screening/Dynamic Deconvolution. When testing
the complete 440-membered library against HPrK/P, it
became clear that it contained active species, potent
inhibitors of the HPr phosphorylation. Thus, addition
of the complete library to the kinase assay resulted in
strong inhibition of the phosphorylation signal to a
concentration of 1/50 of the stock solutions, corresponding
to approximately 0.15-2.4 µM of each library member.

Table 1. Library Elements
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To identify the active compounds of the libraries, a
dynamic deconvolution protocol24 was utilized. This
method, which implements the dynamic features of the
library, is based on the removal of a given building
block, which leads to a redistribution of the remaining
components, such that all constituents that contain this
unit will automatically be suppressed from the equili-
brating library. By removal of single building blocks
from the pool library (Table 3),24 for each component
making up the DCL, a sublibrary is prepared from
which all library constituents based on this element are
deleted. Thus, when using this dynamic exclusive de-
convolution (DED) strategy, a decrease in inhibitory
effect reveals the importance of the removed component
in the generation of active compounds in the dynamic
library. This protocol leads to a limited number of
samples (one for each building block + references), but
is nevertheless highly efficient in targeting active spe-
cies.

The complete pool library (all) was generated by
adding all building blocks (1-16, A-E) simultaneously
under preequilibrating conditions in acidic buffer at
ambient temperature. At the same time, 21 sublibraries
were formed by mixing all components, with the excep-
tion of one specific hydrazide or aldehyde building block,
under the same conditions. The respective libraries
obtained are composed of all possible condensation
products in proportion to their relative thermodynamic

stability. Together with a reference sample (buffer),
containing no building blocks, this series of 23 samples
was sufficient for screening the entire 440-member
library. Following equilibration, the libraries were
subjected to the kinase assay, in which the inhibitory
potency of HPrK/P for its natural substrate HPr was
monitored.

The results obtained from this library generation/
screening process are presented in Figure 3, where the
sublibraries’ effects have been related to the complete
library’s. The inhibition of the HPrK/P activity (low
phosphorylation signal) by a library indicates the pres-
ence of one or several active adducts in a given equili-
brated mixture. On sequential removal of each building
block, one at a time, from the complete library, an
increase in activity indicates that the omitted compo-
nent contributed significantly to the inhibitory effect,
and a decrease in activity that the component hampers
the effect of the more active compounds. The data in
Figure 3 show that several components proved active
in the present study, the largest effect arising from
removal of the dialdehyde B from the complete DCL.
Clearly, B is necessary for inhibition to occur, whereas
the other aldehyde building blocks are less important.
Similarly, for the recognition headgroups, hydrazide 3
proved most active and smaller effects were observed
for compounds 9 and 15. Consequently, the most active
constituent is likely to come from the assembly of
fragments 3 and B. By testing the combinations of the
headgroups 3 and 15 with linker B, it could furthermore
be concluded that the homodimeric species 3-B-3 was
more potent than the heterodimeric constituent 3-B-
15.

In the deconvolution protocol used, all samples can
be prepared in advance and a readout can be obtained
immediately after testing them. This is an advantage
especially for larger libraries, where the deconvolution
strategy can be directly programmed into the control
software of a dispensing robot. Repetitive testing and
intermittent analysis of sample pools are in this case

Table 2. Concentrations of Library Constituents

Table 3. Dynamic Exclusive Deconvolution (DED)

all 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C D E
ref - - - - - - - - - - - - - - - - - - - - -
E1 - 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C D E
E2 1 - 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C D E
E3 1 2 - 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C D E
E4 1 2 3 - 5 6 7 8 9 10 11 12 13 14 15 16 A B C D E
E5 1 2 3 4 - 6 7 8 9 10 11 12 13 14 15 16 A B C D E
E6 1 2 3 4 5 - 7 8 9 10 11 12 13 14 15 16 A B C D E
E7 1 2 3 4 5 6 - 8 9 10 11 12 13 14 15 16 A B C D E
E8 1 2 3 4 5 6 7 - 9 10 11 12 13 14 15 16 A B C D E
E9 1 2 3 4 5 6 7 8 - 10 11 12 13 14 15 16 A B C D E
E10 1 2 3 4 5 6 7 8 9 - 11 12 13 14 15 16 A B C D E
E11 1 2 3 4 5 6 7 8 9 10 - 12 13 14 15 16 A B C D E
E12 1 2 3 4 5 6 7 8 9 10 11 - 13 14 15 16 A B C D E
E13 1 2 3 4 5 6 7 8 9 10 11 12 - 14 15 16 A B C D E
E14 1 2 3 4 5 6 7 8 9 10 11 12 13 - 15 16 A B C D E
E15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 - 16 A B C D E
E16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 - A B C D E
EA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 - B C D E
EB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A - C D E
EC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B - D E
ED 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C - E
EE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C D -

a Sublibraries (S1-16 and SA-SE) were prepared, where one specific component (1-16, A-E) is excluded in each library. The response
(negative or positive) in the analytical assay is indicative of the importance of this component. In addition, the complete library (all),
composed of all components, and reference samples (ref) containing no components were made for comparison. In the present example,
23 different samples needed to be prepared.

5806 Journal of Medicinal Chemistry, 2003, Vol. 46, No. 26 Bunyapaiboonsri et al.



not needed, and the entire process can be performed in
one single operation.

Further Evaluation of Observed Species. Once
the active building blocks had been identified with the
deconvolution procedure, a more detailed study was
undertaken. The most potent library component 3-B-3
was synthesized separately and its inhibitory effects
further characterized. The results, shown in Table 4,
indicate that 3-B-3 is indeed a relatively potent HPrK/P
inhibitor, displaying a 50% inhibitory concentration
(IC50) in the micromolar range, comparable to the
compound identified from the patrimonial library.

The screening results also reveal some structural
features required for efficient inhibition. From the
exclusive deconvolution protocol, it is seen that a ditopic
structure leads to higher inhibition than a monotopic
adduct. Also, the orientation and/or distance between
the headgroups are important factors, where a 1,4-
phenyl scaffold (B) leads to a higher effect. When a
longer spacer unit than B based on pentaethylene glycol
(26-atom linker) was tested, no improvement could be
detected (data not shown), indicating that the linker
structure was sensitive to change. The structural de-
terminants of the headgroup hydrazides can also be
deduced to some extent, a charged 1,3-disubstituted
2-amino-benzimidazole unit (compound 3) being very
efficient for inhibition in combination with linker B.
With an uncharged headgroup (1), no inhibition was
detected. Likewise, removal of the 2-amino group (5)
yielded a considerably reduced effect. In addition, sub-
stituing the N-benzyl group for a methyl resulted in loss
of activity, indicating a substantial contribution of an
aromatic/lipophilic moiety in that position. Other struc-
tural motifs proved less efficient, including the 4-ami-

noquinaldine group (15) previously known to display
potent inhibitory effect against protein kinase C.48

The mechanism of inhibition for HPr kinase has been
found to be of complex nature, similar to many other
kinases.45 Although, a detailed mechanistic study of
compound 3-B-3 has not been the focus in the present
study, studies with the compound found from the
patrimonial library have shown that this structure is
not an ATP competitor, but rather acts on the protein
substrate binding site. 3-B-3 is likely to present the
same type of mechanism.

Conclusions
It has been shown that potent kinase inhibitors can

be generated by acyl hydrazone formation and exchange
that allow the efficient generation of dynamic combi-
natorial libraries in aqueous media. A set of 21 initial
building blocks yielded a library containing 440 different
species in a single step in a short time. Among all
possible acyl hydrazones formed, active compounds of
appropriate length containing potent recognition groups
could be rapidly identified using a dynamic deconvolu-
tion process. In addition to its straightforward nature,
this strategy is also amenable to modern high-through-
put robotics, the deconvolution process facilitating the
screening operation. The concept can in principle be
extended to encompass much larger combinatorial
libraries, allowing swifter library generation and more
expeditious screening than when using individual test-
ing.

Experimental Section
General. All reagents were purchased from commercial

sources and used after appropriate purification. 1H and 13C
NMR spectra were recorded using a Bruker AC200 spectrom-

Figure 3. Dynamic exclusive deconvolution: relative activity (kinase assay) of each sublibrary (E1-EE), compared to complete
library. Exclusion of hydrazides 3, 9, and 15, and especially dialdehyde B, leads to reduction in inhibitory effect (SEM, n ) 3).

Table 4. Inhibitory Activities (IC50 Values) of Selected Ditopic Inhibitor
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eter at 298 K. Mass spectra were determined by the Service
de spectrométrie de masse at the Institut de Chimie, Univer-
sité Louis Pasteur. Microanalyses were performed at Service
de microanalyse at the Institut de Chimie, Université Louis
Pasteur, or at the Institut Universitaire de Technologie,
Strasbourg-sud, France.

General Procedure for the Synthesis of Hydrazide
Derivatives. Library hydrazides 1-5 were synthesized from
the corresponding methyl esters,49-52 by addition of hydrazine
hydrate in methanol at ambient temperature (Scheme 1)
analogous to the protocol for compound 2.

Compound 2. Hydrazine hydrate (96 µL, 2.0 mmol) was
added to a suspension of 2-amino-1-methyl-3-carbomethoxy-
methylbenzimidazolium bromide (300 mg, 1.0 mmol) in 15 mL
of MeOH. The mixture was stirred at ambient temperature
overnight. The resulting precipitate was filtered off, washed
with ethanol, and dried. Recrystallization from ethanol/diethyl
ether yielded 244 mg of pure product (82%). 1H NMR (200
MHz, DMSO-d6, 25 °C): δ ) 9.49, 8.97 (s, 1H, NH-amide), 8.86
(br, 2H, NH2), 7.60-7.56 (m, 1H, H-Ar), 7.43-7.27 (m, 3H,
H-Ar), 5.20, 4.87 (s, 2H, CH2), 4.56, 4.39 (br, 2H, NH2-
hydrazide), 3.67 (s, 3H, Me). 13C NMR (50 MHz, DMSO-d6,
25 °C): δ ) 168.29, 164.07, 150.53, 130.16, 130.01, 129.67,
123.56, 123.41, 110.22, 110.02, 44.04, 29.59. FAB-MS (positive
mode): m/z 220.1 [M - Br-], calcd 220.12. Anal. Calcd for
C10H14BrN5O (%): C 40.01, H 4.70, N 23.33. Found: C 39.88,
H 4.55, N 23.45.

Compound 1. Yield: 67%. 1H NMR (200 MHz, DMSO-d6,
25 °C): δ ) 9.45, 8.78 (s, 1H, NH-amide), 7.15 (d, J ) 7.4 Hz,
1H, H-Ar), 7.03 (d, J ) 7.4 Hz, 1H, H-Ar), 6.95 (t, J ) 7.4
Hz, 1H, H-Ar), 6.86 (t, J ) 7.4 Hz, 1H, H-Ar), 6.47 (br, 2H,
NH2), 4.96, 4.60 (2H, CH2), 4.35 (br, 2H, NH2-hydrazide). 13C
NMR (50 MHz, DMSO-d6, 25 °C): δ ) 170.37, 166.15, 155.33,
142.62, 134.96, 134.42, 120.40, 120.06, 117.98, 117.78, 114.63,
114.43, 107.40, 107.26, 43.36. FAB-MS (positive mode): m/z
206.0 [M - H+], calcd 206.10. Anal. Calcd for C9H11N5O (%):
C 52.67, H 5.40, N 34.13. Found: C 52.90, H 5.20, N 34.33.

Compound 3. Yield: 80%. 1H NMR (200 MHz, DMSO-d6,
25 °C): δ ) 9.60, 8.96 (br, 1H, NH-amide), 9.07 (br, 2H, NH2),
7.48-7.23 (m, 9H, H-Ar and H-phenyl), 5.55 (s, 2H, CH2-
benzyl), 5.31, 4.98 (s, 2H, CH2), 4.59, 4.44 (br, 2H, NH2-
hydrazide). 13C NMR (50 MHz, DMSO-d6, 25 °C): δ ) 168.29,
164.16, 150.82, 150.73, 134.38, 129.33, 128.70, 127.92, 126.91,
123.70, 110.65, 110.31, 45.50, 44.19; FAB-MS (positive
mode): m/z 296.1 [M - Br-], calcd 296.15. Anal. Calcd for
C16H18BrN5O (%): C 51.08, H 4.82, N 18.61. Found: C 50.90,
H 4.86, N 18.49.

Compound 4. Yield: 100%. 1H NMR (200 MHz, DMSO-
d6, 25 °C): δ ) 9.77, 9.71 (s, 1H, H-Ar), 9.69, 9.07 (br, 1H,
H-amide), 8.09-8.00 (m, 1H, H-Ar), 7.98-7.88 (m, 1H, H-Ar),

7.75-7.67 (m, 2H, H-Ar), 5.60, 5.28 (s, 2H, CH2), 4.68, 4.44
(br, 2H, NH2-hydrazide), 4.15 (s, 3H, Me). 13C NMR (50 MHz,
DMSO-d6, 25 °C): δ ) 168.34, 163.82, 143.74, 143.59, 143.50,
131.66, 131.47, 131.32, 131.22, 126.61, 126.52, 126.42, 126.23,
113.61, 113.52, 113.32, 47.29, 47.10, 33.32. FAB-MS (positive
mode): m/z 205.1 [M - Br-], calcd 205.11. Anal. Calcd for
C10H13BrN4O (%): C 42.12, H 4.60, N 19.65. Found: C 41.88,
H 4.50, N 19.56.

Compound 5. Yield: 79%. 1H NMR (200 MHz, DMSO-d6,
25 °C): δ ) 10.07, 10.01 (s, 1H, H-Ar), 9.79, 9.11 (br, 1H,
H-amide), 8.04-7.95 (m, 2H, H-Ar), 7.72-7.61 (m, 2H, H-Ar),
7.56-7.37 (m, 5H, H-phenyl), 5.89 (s, 2H, CH2-benzyl), 5.66,
5.36 (s, 2H, CH2), 4.72, 4.47 (br, 2H, NH2-hydrazide). 13C NMR
(50 MHz, DMSO-d6, 25 °C): δ ) 168.29, 163.82, 143.69, 143.45,
133.94, 133.84, 132.00, 131.61, 130.45, 128.89, 128.65, 128.17,
126.76, 126.66, 113.85, 113.66, 49.77, 47.63, 47.54. FAB-MS
(positive mode): m/z 281.1 [M - Br-], calcd 281.14. Anal. Calcd
for C16H17BrN4O (%): C 53.20, H 4.74, N 15.51. Found: C
53.44, H 4.68, N 15.70.

Compound 14. Compound 14 was prepared in four steps
from 2-amino-1-benzylbenzimidazole according to Scheme 2.
Thus, bromoacetaldehyde dimethyl acetal was initially coupled
at position 3 to give compound I, and upon hydrolysis of the
acetal in dilute HBr, cyclization occurred readily, yielding
compound II. Subsequent coupling of methyl bromoacetate at
the 1-position gave III, which by reaction with hydrazine,
following a procedure analogous to that used for the prepara-
tion of 2, yielded 14.

Compound I. To a suspension of 2-amino-1-benzylbenz-
imidazole (5.0 g, 22.4 mmol) in butanone (150 mL) was added
bromoacetaldehyde dimethyl acetal (8 mL, 67.2 mmol). The
reaction mixture was refluxed for 72 h (after heating for 5 min,
the suspension became soluble), then the resulting precipitate
was filtered off, washed with acetone, and dried to yield the
white product (1.93 g, 22%). 1H NMR (200 MHz, DMSO-d6,
25 °C): δ ) 9.01 (br, 2H, NH2), 7.66-7.61 (m, 1H, H-Ar),
7.51-7.25 (m, 8H, H-Ar), 5.53, 5.51 (s, 2H, CH2-benzyl), 4.75
(t, J ) 5.1 Hz, 1H, CH), 4.37 (d, J ) 5.1 Hz, 2H, CH2-acetal),
3.66 (s, 3H, OCH3). 13C NMR (50 MHz, DMSO-d6, 25 °C): δ )
150.14, 134.42, 129.96, 129.14, 128.75, 127.92, 126.81, 123.61,
111.28, 110.51, 101.39, 55.35, 45.50, 44.96. FAB-MS (positive
mode): m/z 312.4 [M - Br-], calcd 312.17. Anal. Calcd for
C18H22BrN3O2 (%): C 55.11, H 5.65, N 10.71. Found: C 55.17,
H 5.43, N 10.85.

Compound II. A suspension of acetal I (1.5 g, 3.8 mmol)
in hydrobromic acid (10 wt % in water, mL) was stirred at
60 °C for 24 h. After cooling the reaction mixture, the new
precipitate was filtered off, washed with water, and dried to
yield the white product (1.14 g, 91%). 1H NMR (200 MHz,
DMSO-d6, 25 °C): δ ) 8.25 (d, J ) 2.4 Hz, 1H), 8.15-8.11 (m,
1H), 7.83-7.75 (m, 1H), 7.73 (d, J ) 2.4 Hz, 1H), 7.57-7.29
(m, 7H), 5.66 (s, 2H, CH2). 13C NMR (50 MHz, DMSO-d6,
25 °C): δ ) 142.82, 134.62, 134.47, 128.80, 128.17, 127.39,
125.55, 123.75, 122.93, 120.74, 113.08, 122.30, 109.78, 47.24;
FAB-MS (positive mode): m/z 248.1 [M - Br-], calcd 248.12.
Anal. Calcd for C16H14BrN3 (%): C 58.55, H 4.30, N 12.80.
Found: C 58.38, H 4.31, N 12.80.

Compound III. To a solution of ester II (1.0 g, 3.1 mmol)
in methanol (40 mL) was added methyl bromoacetate (0.6 mL,
6.2 mmol) and sodium methoxide (0.2 g, 3.7 mmol). The
reaction mixture was refluxed for 48 h. Then the solvent was
evaporated under reduced pressure and the residual reaction
was purified by flash chromatography (silica gel, step gradient
from 5% CH2Cl2 in MeOH to 20% CH2Cl2 in MeOH) to yield
the product (0.49 g, 38% yield). When using ethanol as solvent
in the reaction, the yield was 71%, but a mixture of methyl
ester and ethyl ester was obtained. 1H NMR (200 MHz, DMSO-
d6, 25 °C): δ ) 8.42 (d, J ) 2.4 Hz, 1H, H-Ar), 8.28-8.19 (m,
1H, H-Ar), 7.93-7.84 (m, 1H, H-Ar), 7.69 (d, J ) 2.4 Hz,
1H, H-Ar), 7.67-7.53 (m, 2H, H-Ar), 7.42-7.22 (m, 5H,
H-Ar), 5.86 (s, 2H, CH2-benzyl), 5.36 (s, 2H, CH2), 3.44 (s,
3H, OCH3). 13C NMR (50 MHz, DMSO-d6, 25 °C): δ ) 166.98,
140.68, 135.40, 134.76, 128.85, 128.07, 126.37, 126.27, 125.01,
123.80, 123.27, 113.27, 112.50, 109.78, 52.53, 47.68, 46.66.

Scheme 1. General Procedure for the Preparation of
the Hydrazide Elementsa

a (a) Hydrazine hydrate, MeOH, rt.
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FAB-MS (positive mode): m/z 320.1 [M - Br-], calcd 320.14.
Anal. Calcd for C19H18BrN3O2 (%): C 57.01, H 4.53, N 10.50.
Found: C 57.28, H 4.51, N 10.52.

Compound 14. Yield: 75%. 1H NMR (200 MHz, DMSO-
d6, 25 °C): δ ) 9.60, 9.00 (s, 1H, H-amide), 8.51, 8.48 (d, J )
2.4 Hz, 1H, H-Ar), 8.30-8.24 (m, 1H, H-Ar), 7.80-7.65 (m,
2H, H-Ar), 7.58-7.47 (m, 2H, H-Ar), 7.41-7.27 (m, 5H,
H-phenyl), 5.78, 5.67 (s, 2H, CH2-benzyl), 5.37, 5.05 (s, 2H,
CH2), 4.57, 4.29 (br, 2H, NH2-hydrazide). 13C NMR (50 MHz,
DMSO-d6, 25 °C): δ ) 168.87, 164.60, 140.97, 135.01, 134.86,
128.80, 128.21, 128.07, 126.95, 126.71, 126.03, 124.96, 123.61,
123.36, 113.32, 112.64, 109.73, 109.39, 47.92, 47.20. FAB-MS
(positive mode): m/z 320.0 [M - Br-], calcd 320.15. Anal. Calcd
for C18H18BrN5O‚EtOH (%): C 53.82, H 5.42, N 15.69. Found:
C 53.72, H 5.39, N 15.79.

Compound 15. Compound 15 was prepared from 4-ami-
noquinaldine according to Scheme 3. The 1-methoxycarbon-
ylmethyl derivative (IV) was prepared by condensation with
methyl bromoacetate, and 15 was subsequently acquired
following addition of hydrazine in a manner analogous to that
used for the preparation of 2.

Compound IV. To a suspension of 4-aminoquinaldine (5.0
g, 31.6 mmol) in butanone (130 mL) was added methyl
bromoacetate (3.6 mL, 37.9 mmol). The reaction mixture was
refluxed for 24 h, then the resulting precipitate was filtered
off and washed with acetone. The resulting precipitate (mix-
ture of product and starting material) was purified by flash
chromatography (neutral alumina, step gradient from 10%
CHCl3 in MeOH to 20% CHCl3 in MeOH) to yield the product
(1.87 g, 19% yield). 1H NMR (200 MHz, DMSO-d6, 25 °C): δ
) 9.58, 9.52 (br, 2H, NH2), 8.69 (d, J ) 8.2 Hz, 1H, H-Ar),
8.02-7.91 (m, 2H, H-Ar), 7.71-7.63 (m, 1H, H-Ar), 6.88 (s,
1H, H-Ar), 5.53 (s, 2H, CH2), 3.75 (s, 3H, OMe), 2.64 (s, 3H,
Me). 13C NMR (50 MHz, DMSO-d6, 25 °C): δ ) 167.79, 157.65,
155.32, 139.75, 134.51, 125.78, 124.90, 117.63, 116.17, 103.66,

52.86, 49.22, 21.52. FAB-MS (positive mode): m/z 231.1 [M -
Br-], calcd 231.11. Anal. Calcd for 0.45C13H15BrN2O2‚
0.55C13H14N2O2 (%): C 58.55, H 5.46, N 10.50. Found: C 58.52,
H 5.66, N 10.37.

Compound 15. Yield 43%. 1H NMR (200 MHz, DMSO-d6,
25 °C): δ ) 9.89, 9.04 (br, 1H, H-amide), 9.18 (br, 2H, NH2),
8.57 (d, J ) 8.2 Hz, 1H, H-Ar), 7.97-7.92 (m, 2H, H-Ar),
7.72-7.64 (m, 1H, H-Ar), 6.82 (s, 1H, H-Ar), 5.54, 5.26 (s,
2H, CH2-hydrazide), 4.83, 4.40 (s, 2H, NH2-hydrazide), 2.66,
2.60 (s, 3H, Me). 13C NMR (50 MHz, DMSO-d6, 25 °C): δ )
168.92, 164.89, 157.27, 157.18, 155.97, 155.82, 139.86, 134.33,
125.69, 125.60, 124.53, 124.38, 117.88, 117.64, 116.28, 116.18,
103.57, 103.42, 49.14, 21.77, 21.63. FAB-MS (positive mode):
m/z 231.0 [M - Br-], calcd 231.12. Anal. Calcd for 0.5C12H15-
BrN4O‚0.5C12H14N4O (%): C 53.24, H 5.40, N 20.70. Found:
C 53.32, H 5.67, N 20.58.

Compound 3-B-3. Terephthalaldehyde (47.7 mg, 0.36
mmol) was suspended in a solution of hydrazide 3 (211 mg,
0.56 mmol) in hydrobromic acid (3 wt % in water, 15 mL). After
stirring at ambient temperature for 2 h, the resulting precipi-
tate was filtered off, washed with water and acetonitrile, and
dried to yield the desired compound as a pale yellow precipitate
(229 mg, 92%). 1H NMR (200 MHz, DMSO-d6, 25 °C): δ )
12.28, 12.08 (2H, H-amide), 9.24, 9.19 (br, 4H, amine), 8.41,
8.20 (2H, H-imine), 8.02-7.80 (m, 4H, H-Ar), 7.75-7.58 (m,
2H, H-Ar), 7.58-7.46 (m, 2H, H-Ar), 7.46-7.25 (m, 14H,
H-Ar and H-Ph), 5.60, 5.24 (4H, CH2). 13C NMR (50 MHz,
DMSO-d6, 25 °C): δ ) 166.56, 150.84, 143.71, 135.51, 135.31,
134.39, 130.41, 130.12, 129.25, 128.76, 127.98, 127.40, 126.87,
123.76, 110.71, 45.50, 44.97. FAB-MS (positive mode): m/z
345.2 [M - 2Br-], calcd 345.16. Anal. Calcd for C40H38-
Br2N10O2‚2H2O (%): C 54.19, H 4.77, N 15.80. Found: C 54.35,
H 4.51, N 15.84.

Generation of the Dynamic Combinatorial Libraries
(DCLs). DCLs Used in DED. Solutions of individual hy-
drazides (20 mM) and aldehydes (40 mM) were prepared in
NaOAc buffer pH 4.0, 50% DMSO, v/v. The libraries were
subsequently generated by combining the solutions (15 µL,
each) and allowing the resulting mixture to equilibrate at
ambient temperature for 3 days to ensure full reaction.
Aliquots of the equilibrated solution were subsequently tested
in the kinase assay. Sublibraries were prepared in the same
way, using NaOAc buffer pH 4.0, 50% DMSO, v/v, solution
instead of the excluded building blocks.

Purification of HPrK/P and HPr from B. subtilis.
HPrK/P and HPr from B. subtilis were purified as previously
reported, expressed as HPrK/P(Trx-His6-S-tag) and HPr(His)6

Scheme 2a

a (a) Hydrazine hydrate, MeOH, rt; (b) BrCH2CH(OMe)2, butanone, reflux; (c) 10% HBr, 60 °C; (d) BrCH2CO2Me, NaOMe, MeOH,
reflux.

Scheme 3

a (a) Hydrazine hydrate, MeOH, rt; (e) BrCH2CO2Me, butanone,
reflux.
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in E. coli.47 The concentration of HPrK/P was determined
spectrophotometrically using the Bio-Rad protein assay with
bovine gammaglobulin as standard, and the concentrations of
HPr were determined by UV spectrophotometry (ε ) 2900 M-1

cm-1). Protein solutions were stored at -20 °C.
Radioactive Kinase Assay. The general kinase assay for

phosphorylation of HPr(His)6 was composed of the DCL or
inhibitor sample (4 µL, 50 mM NaOAc, pH 4.0, 50% DMSO,
v/v), 50 mM Tris‚HCl, pH 7.0 or 8.0, 5 mM MgCl2, 0.5 mM
ATP (3.3-5 Bq, leading to 200-300 cpm [γ-32P]ATP/pmol
ATP), 2 mM FBP, 0.1% BSA, 10 µM HPr, and, to initiate the
reaction, 100 nM HPrK/P, in a final volume of 20 µL. The
mixture was incubated at 37 °C for 10 min and the phospho-
rylation reaction was then terminated by spotting samples
onto 1 × 1-cm P81 phosphocellulose paper (Whatman) and
dropped immediately into a beaker containing 75 mM H3PO4.
The total volume of phosphoric acid solution used was ap-
proximately 10 mL for each paper. Unreacted ATP was
removed by washing three times with 75 mM H3PO4, 15 min
each, and once with ethanol, just covering the papers, for 5
min. The papers were dried and transferred to scintillation
vials containing 6 mL of scintillation solution for water
samples (Rotiszint ecoplus, Carl Roth), and the radioactivity
was determined in a scintillation counter (LKB 1211, Rack-
beta, Perkin-Elmer).

Estimation of IC50 Values. The IC50 (50% inhibition of
phosphorylation) curves were based on 13 consecutively diluted
concentrations of tested inhibitor included in the assay before
initiating the reaction by the addition of enzyme. Typically,
each condition was tested in triplicate. The volume was 2 µL
of the inhibitor dissolved in DMSO (10% v/v final DMSO
concentration). Control reaction mixtures contained 10% v/v
DMSO instead of test compound. The program GraphPad
Prism (GraphPad Software) was adopted for nonlinear regres-
sion analysis determining IC50 values and Hill coefficient using
the following equation: P ) Pmin + (Pmax - Pmax)/(1 +
10(C-log IC50)H), where P is the degree of phosphorylation, C is
the inhibitor concentration, and H is the Hill coefficient.
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