Parallel Solid-Phase Synthesis and Evaluation of Inhibitors of Streptomyces *coelicolor* Type II Dehydroquinase

Concepción González-Bello,*,[†] Emilio Lence,[†] Miguel D. Toscano,[‡] Luis Castedo,[†] John R. Coggins,[§] and Chris Abell[‡]

Departamento de Química Orgánica y Unidad Asociada al C.S.I.C., Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK, and Biochemistry and Molecular Biology, University of Glasgow, Glasgow G12 8QQ, UK

Received August 5, 2003

A series of 1-substituted and 4-substituted benzyl analogues of the known inhibitor (1S,3R,4R)-1,3,4-trihydroxy-5-cyclohexene-1-carboxylic acid has been synthesized and tested as inhibitors of Streptomyces coelicolor type II dehydroquinase. The solid-phase syntheses of 18 new analogues are reported. The most potent inhibitor, 2-nitrobenzyloxy analogue 5i, has K_i of 8 μ M, more than 30 times lower than the $K_{\rm M}$ of the substrate and approximately 4 times more potent than the original inhibitor. The binding modes of the synthesized analogues in the active site were studied by molecular docking with GOLD 2.0.

Introduction

The shikimate pathway is the biosynthetic pathway to the aromatic amino acids phenylalanine, L-tryptophan, and L-tyrosine, as well as precursors to the folate coenzymes, alkaloids, and vitamins.¹ The pathway is present in bacteria, fungi, and plants and has been recently discovered in apicomplexan parasites.² Its absence from mammals has made this pathway an attractive target for the development of herbicides and antimicrobial agents. The successful herbicide Glyphosate acts by specifically inhibiting the sixth enzyme on the pathway.³

Dehydroquinase (3-dehydroquinate dehydratase) is the third enzyme on the shikimate pathway and is responsible for catalyzing the conversion of 3-dehydroquinic acid (1) to 3-dehydroshikimic acid (2) (Scheme 1). There are two forms of the enzyme, type I (e.g. from Escherichia coli)⁴ and type II (e.g. from Streptomyces *coelicolor*).⁵ The type I enzyme mechanism involves covalent imine intermediates between the enzyme and the substrate and proceeds with syn stereochemistry.⁶ In contrast, the type II reaction proceeds through an enolate intermediate with overall anti stereochemistry.7 These mechanistic and stereochemical distinctions have allowed us to design and synthesize compounds that are specific to either the type I⁸ or type II⁹ enzymes.

The enolate intermediate in the type II reaction is flattened relative to the 3-dehydroquinic acid (1). In addition, a negative charge is localized toward the enolate oxygen. Both of these features have been exploited in the design of first-generation inhibitors.⁹ We have previously reported that analogue 3 (Scheme 2) showed a K_i of 30 μ M for *S. coelicolor* type II dehydroquinase. The crystal structure of S. coelicolor

dehydroquinase with 3 bound in the active site has recently been solved.¹⁰ This complex identifies a number of key interactions involved in inhibitor binding and sheds light on aspects of the catalytic mechanism of the enzyme. Also present in this structure was a molecule of glycerol, originated from the enzyme storage buffer, bound 3.7 Å away from the inhibitor **3**. This fact was used to design bifuntional inhibitors that straddle the two binding sites identified in the crystal structure of the enzyme.¹¹ The important observation that compounds with a double bond between C5-C6 bind in the manner predicted for transition state mimics encouraged us to design the next generation of inhibitors.

In this paper we describe attempts to make more potent inhibitors by incorporating binding interactions onto the core structure 3. We describe the synthesis of 18 new analogues, 4a-i and 5a-i (Scheme 2), using solid-phase organic synthesis (SPOS). The inhibition studies and the molecular docking with these compounds against *S. coelicolor* type II dehydroquinase are also described.

Synthesis of C-1 Substituted Analogues. The strategy used for making the analogues **4a**-**i** involved the initial preparation of the resin 8 (Scheme 3). This was made from hydroxycarbolactone 7, which was synthesized from benzoate 6 using our previously reported protocol.¹² Treatment of bromo-Wang resin¹³ with the sodium alkoxide of lactone 7 afforded the lactone resin 8. Although the reaction can be carried out using THF or DMF and at room temperature or 60 °C, the best results were obtained in DMF at 60 °C. The gel-phase FT-IR spectrum of the ether lactone resin 8 showed the lactone stretching band at 1797 cm^{-1} . Further evidence for the formation of 8 was obtained from examination of the gel-phase ¹³C NMR spectrum. Distinctive signals for the TBS group were observed at 25.6 and -3.1 ppm. In addition, the signal for the methylene benzyl group moved from 34.0 ppm in bromo-Wang resin to 71.2 ppm in the lactone resin $8.^{14}$ Deprotection of the tertiary hydroxyl group in 8 was

^{*} Corresponding author. Tel: +34 981 563100. FAX: +34 981 595012. E-mail: cgb1@lugo.usc.es. [†] Universidad de Santiago de Compostela. [‡] University Chemical Laboratory.

[§] University of Glasgow.

González-Bello et al.

Scheme 1. Conversion of 3-Dehydroquinic Acid (1) to 3-Dehydroshikimic Acid (2) Catalyzed by Type II Dehydroquinase

achieved by treatment of the lactone resin **8** with TBAF in THF at room temperature for 2 h. The gel-phase FT-IR spectrum of hydroxylactone resin **9** showed a strong band centered at 3414 cm⁻¹. The complete deprotection of the hydroxyl group was confirmed in the gel-phase ¹³C NMR spectra of **9**.

Treatment of hydroxylactone resin 9 with sodium hydride in DMF at 0 °C followed by treatment with an excess of the corresponding benzyl bromide and heating between 40 and 80 $^\circ C$ gave the corresponding ethers 10a-i.15 This reaction was highly dependent on the nature of the benzyl bromide. Electron-donating groups reacted faster and required lower reaction temperatures (40 °C). Electron-withdrawing groups slowed the reaction and required higher temperatures (80 °C). The synthesis of the nitro derivatives was particularly problematical, and the reaction proceeded very slowly. The extent of conversion of each benzylation reaction was monitored by gel-phase FT-IR spectroscopy following the disappearance of the band at 3414 cm⁻¹ corresponding to the tertiary hydroxyl group of hydroxylactone 9. The ether formation went to completion in all cases, except for the nitrobenzyl analogues. Treatment of the resins 10a-g with 50% TFA/DCM at room

temperature for 1 h afforded the corresponding lactones. Basic hydrolysis and washing the aqueous layer with diethyl ether to remove apolar impurities, followed by treatment with Amberlite IR-120 (H⁺) ion-exchange resin and lyophilization, gave the desired acids **4a**-**g** in good yield and excellent purities.

Scheme 4^a

^a Reagents and Conditions: (i) TBAF, THF, 0 °C (92%); (ii) (1) HNa, DMF, 0 °C; (2) nitrobenzyl bromide, 15-crown-5, 80 °C [**12** (41%); **13** (64%)]; (iii) KCN, MeOH, rt [**15** (60%) and **14** (traces); **16** (23%) and **17** (63%)]; (iv) (1) LiOH, THF, rt, (2) Amberlite IR-120 (H⁺) [**4h** (96%), **4i** (78%)].

Because of the slow reaction of **9** with nitrobenzyl bromide, the analogues 4h and 4i were eventually obtained as minor components in mixtures with unalkylated 3. Consequently, we decided to prepare 4h and 4i by solution-phase synthesis. The four-step synthesis is outlined in Scheme 4. Treatment of the silvl ether derivative 6 with TBAF gave the desired tertiary alcohol 11 in excellent yield. Alkylation of the corresponding alkoxide of 11 with 4-nitrobenzyl bromide afforded the corresponding ether 12 in 41% yield (with 30% of recovered starting material). The best yields for the alkylation reaction were obtained when the reaction was performed in DMF at 80 °C for 48 h in the presence of a catalytic amount of 15-crown-5 ether. No significant difference was observed if sodium or potassium hydride was used. The benzoyl group was removed by treatment of the lactone 12 with potassium cyanide in methanol

at room temperature to form the methyl ester **15** in 60% yield and traces of lactone **14**. Finally, conversion of methyl ester **15** to the desired acid **4h** was achieved by ester hydrolysis, followed by treatment with Amberlite IR-120 (H⁺) ion-exchange resin and lyophilization. A similar strategy was used for the preparation of acid **4i** using 2-nitrobenzyl bromide.

Synthesis of the 4-Substituted Analogues. The 4-substituted benzyl analogues **5a**–**g** were prepared on solid-phase as outlined in Scheme 5. The strategy used for making analogues **5a**–**g** required the initial preparation of the resins **19a,b**. Alkylation of bromo-Wang resin with the corresponding sodium alkoxide of hydroxycarbolactone **11** in DMF at 80 °C afforded the desired benzyl ether resin **18**. The gel-phase FT-IR spectrum of ether resin **18** showed two new stretching bands centered at 1794 and 1718 cm⁻¹ corresponding

Scheme 6^a

^a Reagents and Conditions: (i) (1) HNa, DMF, 0 °C; (2) nitrobenzyl bromide, Bu₄NI, 15-crown-5, 80 °C [**21** (24%); **22** (54%)]; (ii) TBAF, THF, 0 °C [**23** (43%); **24** (71%)]; (iii) (1) LiOH, THF, rt, (2) Amberlite IR-120 (H) [**5h** (74%), **5i** (94%)].

to the new carbonyl groups. Examination of the gelphase ¹³C NMR spectrum showed distinctive signals at 73.6, 69.9, and 67.5 ppm.¹⁴ Deprotection of the benzoyl group in resin 18 was achieved by treatment of 18 with potassium cyanide in methanol at room temperature for 2 h. This gave the resin 19 in two forms: as the carbolactone 19a (minor) and as the methyl ester 19b (major). The gel-phase FT-IR spectrum of hydroxy resins 19a,b confirmed the disappearance of the benzoyl ester band at 1718 cm⁻¹. The spectra showed a new strong band at 1736 cm⁻¹ corresponding to the methyl ester and also the stretching band corresponding for the lactone at 1792 cm⁻¹. The alkylation of the resin **19a,b** was achieved by heated the corresponding sodium alkoxide of 19a,b with the various benzyl bromides in DMF in the presence of a catalytic amount of 15-crown-5 ether. The extent of conversion was followed by monitoring the disappearance of the band at 3596 cm^{-1} corresponding to the hydroxyl group in **19a,b** in the gelphase FT-IR spectra. In all the cases the ether formation went to completion. Treatment of the resins **20a**-g with 50% TFA/DCM at room temperature for 1 h afforded the corresponding lactones. Finally, basic hydrolysis and washing the aqueous layer with diethyl ether, followed by treatment with Amberlite IR-120 (H⁺) ion-exchange resin and lyophilization, afforded the desired acids 5a-g in good yields and excellent purities.

It again proved problematical to make the nitrobenzyl analogues on solid-phase, so they were synthesied in solution as outlined in Scheme 6. Treatment of the corresponding sodium alkoxide of 7 with 4-nitrobenzyl bromide in DMF at 80 °C for 48 h in the presence of a catalytic amount of 15-crown-5 ether afforded the corresponding ether **21** in 24% yield, with recovery of 40% unreacted starting material. The silyl group was removed by treatment with TBAF to yield the correspond-

Table 1. Inhibition Results for Assays with *S. coelicolor* TypeII Dehydroquinase^a

compd	R	$K_{\rm i}$ ($\mu { m M}$)	compd	R	$K_{\rm i}$ (μ M)
4a	Н	380 ± 30	5a	Н	200 ± 20
4b	4-F	375 ± 30	5b	4-F	70 ± 5
4 c	3-F	425 ± 40	5c	3-F	140 ± 10
4d	2-F	260 ± 20	5d	2-F	130 ± 10
4e	$4-CO_2H$	170 ± 15	5e	4-CO ₂ H	100 ± 10
4f	4-CH ₂ OH	1330 ± 100	5f	4-CH ₂ OH	>2000
4g	4-CN	430 ± 40	5g	4-CN	330 ± 30
4h	$4-NO_2$	980 ± 90	5h	$4-NO_2$	200 ± 20
4i	$2-NO_2$	45 ± 5	5i	$2-NO_2$	8 ± 2

^{*a*} $K_{\rm M}$ value of 250 μ M was obtained at the assay conditions.

ing tertiary alcohol **23**. Finally, treatment of lactone **23** with lithium hydroxide, followed by treatment with Amberlite IR-120 (H^+) ion-exchange resin and lyophilization, afforded the desired acid **5h**. Acid **5i** was prepared by a similar reaction sequence using 2-nitrobenzyl bromide.

Assay Results. The 18 acids 4a-i and 5a-i were assayed in the presence of 3-dehydroquinic acid (1) for their inhibitory properties against *S. coelicolor* type II dehydroquinase. The inhibition data are summarized in Table 1. A UV spectrophotometric assay was used to measure the initial rate of product formation, detecting the enone–carboxylate chromophore at 234 nm in 3-dehydroshikimic acid (2). The assays with **4e**, **5e**, **4g**, and **5g** were performed at 260 nm due to the strong UV absortion of these analogues at 234 nm. The K_i values were obtained from Dixon plots (1/v vs [I]).

All the compounds were shown to be reversible competitors of S. coelicolor type II dehydroquinase. The 4-substituted series was found to be generally more potent than the 1-substituted series. However, there was a general correlation across the two series. The three isomeric fluorobenzyl derivatives showed potency similar to or somewhat lower than the parent compound (4a and 5a) in both series. The 2-nitro derivatives were the most potent compounds in each series. The 4-substituted analogue **5i** had a K_i of 8 μ M compared with 30 μ M for the original inhibitor **3**, and considerably below the $K_{\rm M}$ of 250 μ M. The 4-carboxy benzyl derivatives 4e and 5e were both potent, the 4-cyano analogues 4g and 5g less so. The 4-hydroxymethyl compounds 4f and **5f** were surprisingly poor inhibitors. The correlation between the two series broke down for the 4-nitrobenzyl derivatives, where the 1-substituted compound 4h was considerably less potent than the 4-substituted analogue 5h.

Docking Studies. To gain some insight into how the inhibitors were binding to the active site of S. coelicolor type II dehydroquinase, docking studies were carried out using GOLD 2.0.¹⁶ The starting point for this study was the crystal structure of the enzyme with the anhydro inhibitor **3** bound in the active site.¹⁰ This structure has the carboxyl group of **3** binding to the backbone amides of Ile107 and Ser108 and the C-1 hydroxyl binding to His106. There was an additional binding pocket close by that was occupied by a glycerol molecule (from the buffer). The molecule of 3, the glycerol molecule, and all the water molecules except one (which is conserved in a series enzyme inhibitor complexes)¹⁰ were removed from the structure. No energy minimization was performed on the enzyme. The structures of the inhibitors were prepared and energy-

Figure 1. Comparison between position of **3** (purple) in the crystal structure of *S. coelicolor* type II dehydroquinase and the docking results of the highest score solution of (a) ligand **5a** (green), (b) ligand **4e** (blue), and (c) ligand **5i** (yellow).

minimized either using SYBYL6.5 and the Tripos force field or using Gaussian 98W¹⁷ and AM1. All the inhibitors were docked as their carboxylate anions and 25 independent GOLD runs were performed for each ligand. The ChemScore scoring function was used.

The 4-substituted series 5a-i (with the exception of 5i) docked so that the anhydro ring of the inhibitor occupied approximately the same site as was occupied by **3** in the crystal structure of the enzyme inhibitor complex,¹⁰ and the benzyl group occupied the pocket that had previously been occupied by the glycerol molecule (Figure 1a). The carboxyl and C-1 hydroxyl groups of the inhibitors occupied the same binding pocket as for 3, although the orientation of the actual ring was twisted relative to the binding of **3**. The key binding interactions for the benzyl substituent appeared to be π stacking against Tyr28 and electrostatic or hydrogen-bonding interactions with Arg23. The potency of the 4-carboxy and 4-nitro analogues 5e and 5h may be due to this latter interaction. The poor binding of the hydroxymethyl analogue 5f may be because of limited space at the top of the binding pocket.

The 1-substituted series **4a**-**i** bound in a generally similar orientation to the 4-substituted series. The anhydro ring of the inhibitor occupied approximately the same site as was occupied by 3 in the crystal structure of the enzyme-inhibitor complex, and the benzyl group occupied the pocket that had previously been occupied by the glycerol molecule (Figure 1b). However, the different position of the benzyl substituent on the anhydro ring led to some differences in the binding relative to the 4-substituted series. These are most clearly seen in a different orientation of the anhydro ring, caused by the need to put the benzyl group into the glycerol pocket. The carboxyl group still bound into the carboxylate binding pocket, but in some analogues the anhydro ring was conformationally flipped so that the C-5 hydroxyl group can bind to His106. The benzyl substitutent occupied a similar position to that found for the 4-substituted series, with the same interactions with Tyr28 and Arg23. The latter interaction may again be responsible for the relative potency of the 4-carboxybenzyl analogue 4e.

The one anomalous result from the docking study was the binding predicted for the most potent inhibitor **5i**, the 4-substituted 2-nitrobenzyl analogue. This suggested that the relative positions of the two rings was reversed, so that the benzyl group occupied the binding site occupied by **3**, with the nitro group binding into the carboxylate binding site (Figure 1c). The anhydro ring docked into the glycerol pocket, with the carboxylate binding to Arg23. This result is surprising and may be an artifact of the way the active site is prepared for the docking (if more of the original water molecules are retained, docking similar to that for the other 4-substitued analogues was observed).

These docking studies have proved useful in giving some clues as to the possible binding orientations of the analogues and have highlighted some possible interactions that can be targeted in the next generation of inhibitors. However, they need to be supported with structural studies of enzyme—inhibitor complexes, and these are underway.

Conclusions

Solid-phase organic synthesis and solution-phase synthesis have been used to make a series of 1-benzylated and 4-benzylated analogues of the known inhibitor **3**. The 4-substituted 2-nitrobenzyl analogue **5i** was found to have a K_i of 8 μ M, making it one of the most potent known inhibitor against any type II dehydroquinase. Docking studies have identified two binding pockets likely to be occupied by the inhibitor and provide some rationale for the relative potencies of the inhibitors.

Experimental Section

General Procedures. All starting materials and reagents were commercially available and used without further purification. FT-IR spectra were recorded as NaCl plates or KBr disks. $[\alpha]_D$ values are given in $10^{-1}~deg~cm^2~g^{-1}.$ $^1H~NMR$ spectra (250, 300, and 500 MHz) and $^{13}C~NMR$ spectra (63, 75, and 100 MHz) were measured in deuterated solvents. J values are given in hertz. NMR assignments were made by a combination of 1 D, COSY, and DEPT-135 experiments. All procedures involving the use of ion-exchange resins were carried out at room temperature and used Mili-Q deionized water. Amberlite IR-120 (H⁺) (cation exchanger) was washed alternately with water, 10% NaOH, water, 10% HCl, and finally water before use. Purity of the carboxylic acids was analyzed by HPLC and NMR. HPLC was performed on a preparative (300 mm \times 16 mm) Bio-Rad Aminex Ion exclusion HPX-87H organic acids column. The eluant used for these columns was 75 mM aqueous formic acid, at a flow rate of 0.6 mL min⁻¹.

Dehydroquinase Assay. *S. coelicolor* type II dehydroquinase was purified as described previously,⁵ as a concentrated solution (1.5 mg mL⁻¹) in potassium phosphate buffer (50 mM, pH 7.0); DTT (1 mM) was filter-sterilized through a 0.2 μ m filter and stored at 4 °C under which conditions it was stable for at least 9 months. When required for assays, aliquots

of the enzyme stocks were diluted into water and buffer and stored on ice.

Dehydroquinase was assayed in the forward direction by monitoring the increase in absorbance at 234 nm in the UV spectrum due to the absorbance of the enone–carboxylate chromophore of 3-dehydroshikimic acid (**2**) (ϵ/M^{-1} cm⁻¹ 12 000). Standard assay conditions for type II dehydroquinase were pH 7.0 at 25 °C in Tris/HCl (50 mM). Each assay was initiated by addition of the enzyme. Solutions of 3-dehydroquinic acid (**1**) were calibrated by equilibration with type II dehydroquinase and measurement of the change in the UV absorbance at 234 nm due to the formation of the enone–carboxylate chromophore of 3-dehydroshikimic acid (**2**). In the case of acids **4e**, **5e**, **4g**, and **5g**, assays were performed at 260 nm.

Docking. The receptor and ligands were used as MOL2 files. Each ligand was docked using GOLD 2.0 in 25 independent genetic algorithm (GA) runs, and for each of these a maximum number of 100 000 GA operations was performed on a single population of 50 individuals. Operator weights for crossover, mutation, and migration in the entry box were used as default parameters (95, 95, and 10, respectively), as well as the hydrogen bonding (4.0 Å) and van der Waals (2.5 Å) parameters. The position of the active site was introduced and the radius was set to 15 Å, with the automatic active-site detection on. The "flip ring corners" flag was switched on, while all the other flags were off.

Preparation of Resin 8. To a stirred solution of the alcohol 7¹² (1.4 g, 5.18 mmol) in dry DMF (20 mL) at 0 °C under inert atmosphere was added sodium hydride (222 mg, 5.54 mmol, ca. 60% in mineral oil). After 30 min at this temperature the resultant suspension was added *via* cannula to a preswollen PS-brominated Wang resin¹³ (1 g, ~1.6 mmol/g, ~1.6 mmol) in dry DMF (17 mL) at 0 °C and under inert atmosphere. Then, 15-crown-5 ether (30 μ L, 0.26 mmol) was added and the resultant suspension was shook at 0 °C for 30 min and at room temperature for 24 h. The resin was thoroughly washed with DMF, DMF–water (3:1), THF, and dry DCM and dried under high vacuum to afford pale yellow beads of **8** (1.02 g): gelphase FTIR (cm⁻¹) 1797 and 1611; gel-phase ¹³C NMR (63 MHz, CDCl₃) δ (ppm) 128.5, 118.7, 114.7, 73.7, 71.2, 69.9, 64.8, 40.4, 37.7, 25.6, and -3.1.

Preparation of Resin 9. To preswollen resin **8** (1 g, ~1 mmol) in dry THF (16 mL) at 0 °C and under inert atmosphere was added a solution of tetrabuthylammonium fluoride in THF (1.4 mL, ca. 1 M in THF). The resultant suspension was shook for 2 h at room temperature. The resin was thoroughly washed with THF, THF–5% HCl (3:1), THF, and dry DCM to afford after drying in vacuo pale yellow beads of resin **9** (~0.9 g): gel-phase FTIR (cm⁻¹) 3414, 1789, and 1609; gel-phase ¹³C NMR (63 MHz, CDCl₃) δ (ppm) 136.4, 129.5, 121.5, 115.3, 74.6, 71.1, 53.5, and 36.9.

General Procedure for the Preparation of Resins 10a-g and 20a-g. To preswollen resin in dry DMF at 0 °C and under inert atmosphere was added sodium hydride (6 equiv, ca. 60% in mineral oil). The resultant suspension was shook for 1 h at room temperature, and then the corresponding bromide (10 equiv) and 15-crown-5 ether (0.3 equiv) were added. The resin was gently stirred and heated between 40 and 80 °C for 24–48 h. The resin was thoroughly washed with THF, THF–10% HCl (3:1), THF, and dry DCM to afford after drying in vacuo resins 10a-i and 20a-g.

General Cleavage Procedure. The resin was treated with (1:1) TFA-DCM (1 mL per 100 mg of resin) at room temperature for 1 h. The resin was filtered and washed with dry DCM. The filtrate was evaporated and dried in vacuo. The obtained residue was redissolved in THF and treated with 5 equiv of 0.5 M aqueous lithium hydroxide. The mixture was stirred for 30 min and then it was diluted with water and washed with diethyl ether ($3 \times$). The aqueous extract was treated with Amberlite IR-120 (H+) until pH 6. The resin was filtered and washed with water. The filtrate was lyophilized to afford a colorless oil or a foam unless specified.

(1*R*,3*R*,4*R*)-1-Benzyloxy-3,4-dihydroxycyclohex-5-en-1carboxylic acid (4a): 85% overall; retention time 25 min; $[\alpha]_{\rm D}{}^{25}$ +15° (c 0.7 in H₂O); $^{1}{\rm H}$ NMR (250 MHz, D₂O) δ (ppm) 7.31 (m, 5H), 5.93 (d, 1H, J 10.1), 5.82 (dd, 1H, J 10.1 and 1.8), 4.41 (s, 2H), 4.00 (dd, 1H, J8.3 and 1.8), 3.77 (td, 1H, J11.9, 8.3, and 3.5), 2.14 (dd, 1H, J13.6 and 3.5), and 1.87 (dd, 1H, J13.6 and 3.5), and 11.9); $^{13}{\rm C}$ NMR (100 MHz, D₂O) δ (ppm) 178.1, 137.9, 134.2, 128.8, 128.8, 128.4, 127.3, 80.8, 72.6, 69.5, 67.7, and 37.9; $v_{\rm max}$ (KBr)/cm $^{-1}$ 3434, 1714, and 1578; MS (CI) m/z (%) 247 (MH⁺ – H₂O); HRMS calcd for C₁₄H₁₅O₄ (MH⁺ – H₂O) 247.0970, found 247.0965.

(1*R*,3*R*,4*R*)-1-(4'-Fluorobenzyloxy)-3,4-dihydroxycyclohex-5-en-1-carboxylic acid (4b): 67% overall; retention time 26 min; $[\alpha]_D^{25} + 9^\circ$ (*c* 1.0 in H₂O); ¹⁹F NMR (282 MHz, D₂O) δ (ppm) -112.6 (tt, 1F, J 9.1 and 5.2); ¹H NMR (250 MHz, D₂O) δ (ppm) 7.32 (dd, 2H, J 7.7 and 5.7), 7.04 (t, 2H, J 8.7), 5.91 (m, 2H), 4.40 (s, 2H), 4.03 (dd, 1H, J 8.2 and 1.2), 3.78 (dd, 1H, J 11.6, 8.2, and 3.5), 2.15 (dd, 1H, J 13.6 and 3.5), and 1.90 (dd, 1H, J 13.6 and 11.6); ¹³C NMR (63 MHz, D₂O) δ (ppm) 177.8, 162.7 (J 242), 134.8, 133.8, 131.1 (J 8), 127.0, 115.6 (J 21), 80.3, 72.7, 69.6, 67.2, and 38.0; v_{max} (KBr)/cm⁻¹ 3420, 1716, and 1605; MS (CI) *m*/*z* (%) 265 (MH⁺ – H₂O); HRMS calcd for C₁₄H₁₄O₄F (MH⁺ – H₂O) 265.0876, found 263.0880.

(1*R*,3*R*,4*R*)-1-(3'-Fluorobenzyloxy)-3,4-dihydroxycyclohex-5-en-1-carboxylic acid (4c): 63% overall; retention time 29 min; $[\alpha]_D^{25} + 11^\circ$ (*c* 0.6 in H₂O); ¹⁹F NMR (282 MHz, D₂O) δ (ppm) -111.8 (dt, 1F, *J* 9.6 and 5.6); ¹H NMR (250 MHz, D₂O) δ (ppm) 7.61 (m, 1H), 7.43-7.26 (m, 3H), 6.23 (d, 1H, *J* 10.1), 6.14 (dd, 1H, *J* 10.1 and 1.8), 4.72 (s, 2H), 4.31 (dt, 1H, *J* 8.2 and 1.8), 4.08 (ddd, 1H, *J* 12.2, 8.2, and 3.7), 2.44 (ddd, 1H, *J* 13.6, 3.0, and 1.1), and 2.19 (dd, 1H, *J* 13.6 and 12.2); ¹³C NMR (63 MHz, D₂O) δ (ppm) 175.2, 162.9 (*J* 242), 140.6 (*J* 7), 134.6, 130.6 (*J* 8), 127.2, 124.5 (*J* 3), 115.4 (*J* 21), 115.1 (*J* 21), 80.0, 72.7, 69.6, 67.1, and 38.2; v_{max} (KBr)/cm⁻¹ 3400, 1716, and 1592; MS (CI) *m*/*z* (%) 265 (MH⁺ - H₂O); HRMS calcd for C₁₄H₁₄O₄F (MH⁺ - H₂O) 265.0876, found 265.0870.

(1*R*,3*R*,4*R*)-1-(2'-Fluorobenzyloxy)-3,4-dihydroxycyclohex-5-en-1-carboxylic acid (4d): 70% overall; retention time 28 min; $[\alpha]_D^{25} - 5^\circ$ (*c* 0.7 in H₂O); ¹⁹F NMR (282 MHz, D₂O) δ (ppm) -117.0 (dt, 1F, *J*10.5 and 6.3); ¹H NMR (250 MHz, D₂O) δ (ppm) 7.41-7.29 (m, 2H), 7.15-7.02 (m, 2H), 5.94 (d, 1H, *J*10.1), 5.86 (dd, 1H, *J*10.1 and 1.7), 4.50 (s, 2H), 4.02 (dt, 1H, *J*8.2 and 1.7), 3.78 (ddd, 1H, *J*12.1, 8.2, and 3.6), 2.18 (ddd, 1H, *J*13.7, 3.6, and 1.4), and 1.90 (dd, 1H, *J*13.7 and 12.1); ¹³C NMR (63 MHz, D₂O) δ (ppm) 177.8, 161.2 (*J*244), 135.0, 131.8 (*J*4), 130.9 (*J*8), 127.0, 124.6 (*J*18), 124.7, 115.7 (*J*21), 80.3, 72.7, 69.6, 61.6 (*J*4), and 37.8 (CH₂); v_{max} (KBr)/cm⁻¹ 3420, 1717, and 1589; MS (CI) *m*/*z* (%) 265 (MH⁺ - H₂O); HRMS calcd for C₁₄H₁₄O₄F (MH⁺ - H₂O) 265.0876, found 265.0876.

(1*R*,3*R*,4*R*)-3,4-Dihydroxy-1-(4'-carboxy)benzyloxycyclohex-5-en-1-carboxylic acid (4e): 65% overall; retention time 27.5 min; mp 161–162 °C; $[\alpha]_D^{25}$ +16° (*c* 1.3 in CH₃OH); ¹H NMR (250 MHz, CD₃OD) δ (ppm) 7.94 (d, 2H, *J* 8.2), 7.45 (d, 2H, *J* 8.2), 6.01 (d, 1H, *J* 10.1), 5.87 (dd, 1H, *J* 10.1 and 1.9), 4.61 (d, 1H, *J* 11.8), 4.54 (d, 1H, *J* 11.8), 3.99– 3.82 (m, 2H), 2.26 (dd, 1H, *J* 13.2 and 3.4), and 1.96 (dd, 1H, *J* 13.2 and 11.5); ¹³C NMR (63 MHz, CD₃OD) δ (ppm) 177.0, 170.0, 145.6, 135.7, 130.6, 128.5, 128.2, 80.7, 74.1, 70.9, 67.5, and 30.8; v_{max} (KBr)/cm⁻¹ 3444 and 1697; MS (CI) *m/z* (%) 291 (MH⁺ - H₂O); HRMS calcd for C₁₅H₁₅O₆ (MH⁺ - H₂O) 291.0869, found 291.0873.

(1*R*,3*R*,4*R*)-3,4-Dihydroxy-1-(4'-hydroxymethyl)benzyloxycyclohex-5-en-1-carboxylic acid (4f): 75% overall; retention time 21 min; mp 143–144 °C; $[\alpha]^{25}$ +21° (*c* 0.8 in CH₃OH); ¹H NMR (250 MHz, CD₃OD) δ (ppm) 7.30 (d, 2H, *J* 8.3), 7.24 (d, 2H, *J* 8.3), 5.97 (d, 1H, *J* 10.1), 5.85 (dd, 1H, *J* 10.1 and 1.9), 4.52 (s, 2H), 4.47 (d, 1H, *J* 11.0), 4.42 (d, 1H, *J* 11.0), 3.93 (dt, 1H, *J* 7.9 and 1.9), 3.83 (ddd, 1H, *J* 11.6, 7.9 and 3.5), 2.22 (m, 1H), and 1.90 (dd, 1H, *J* 13.3 and 11.6); ¹³C NMR (63 MHz, CD₃OD) δ (ppm) 176.7, 141.9, 139.0, 135.9, 129.1, 127.9, 127.8, 80.4, 74.1, 70.8, 68.0, 65.0, and 39.6; v_{max} (KBr)/cm⁻¹ 3372 and 1699; MS (CI) *m*/*z* (%) 259 (MH⁺ – 2H₂O); HRMS calcd for C₁₅H₁₅O₄ (MH⁺ – 2H₂O) 259.0970, found 259.0967.

(1*R*,3*R*,4*R*)-3,4-Dihydroxy-1-(4'-cyano)benzyloxycyclohex-5-en-1-carboxylic acid (4g): 70% overall; retention time 33 min; mp 81–82 °C; $[\alpha]_D^{25}$ +18° (*c* 0.6 in CH₃OH); ¹H NMR (250 MHz, CD₃OD) δ (ppm) 7.66 (d, 2H, *J* 8.3), 7.55 (d, 2H, *J* 8.3), 6.01 (d, 1H, *J* 10.1), 5.87 (dd, 1H, *J* 10.1 and 2.0), 4.64 (d, 1H, *J* 12.3), 4.56 (d, 1H, *J* 12.3), 3.98 (dt, 1H, *J* 7.8, 2.0, and 1.8), 3.86 (ddd, 1H, *J* 11.5, 7.8, and 3.6), 2.26 (ddd, 1H, *J* 13.3, 3.6, and 2.2), and 1.98 (dd, 1H, *J* 13.3 and 11.5); ¹³C NMR (63 MHz, CD₃OD) δ (ppm) 177.2, 146.4, 135.7, 133.1, 129.3, 128.3, 119.8, 111.9, 80.8, 74.1, 70.9, 67.1, and 39.7; ν_{max} (KBr)/cm⁻¹ 3410, 2232, and 1716; MS (CI) *m*/*z*(%) 272 (MH⁺ – H₂O); HRMS calcd for C₁₅H₁₄NO₄ (MH⁺ – H₂O) 272.0923, found 272.0930.

(1R,3R,4R)-4-Benzoyloxy-1-hydroxycyclohex-5-en-1,3carbolactone (11). To a stirred solution of the silyl ether 6 (2.16 g, 5.78 mmol), under argon and at 0 °C, in 80 mL of a dry THF, was added tetrabutylammonium fluoride (6.4 mL, 6.36 mmol, ca. 1.0 M in THF). After stirring for 30 min, dilute HCl was added and the organic layer was extracted with DCM $(3\times)$. The combined organic extracts were dried (anhydrous Na₂SO₄) and concentrated under reduced pressure. The crude reaction was purified by flash cromatography eluting with 75% diethyl ether-hexanes and recrystallized from hexane to yield the alcohol **11** as white needles (1.38 g, 92%): $[\alpha]_D^{25} - 103^\circ$ (*c* 0.6 in CHCl₃); mp 104-105 °C (hexane); ¹H NMR (250 MHz, CDCl₃) δ (ppm) 8.03 (dd, 2H, J 8.5 and 1.4), 7.60 (m, 1H), 7.46 (t, 1H, J7.5), 6.30 (d, 1H, J9.7), 5.88 (ddd, 1H, J9.7, 3.3, and 1.1), 5.54 (t, 1H, J 3.0), 4.90 (m, 1H), 3.79 (br s, 1H), 2.55 (ddd, 1H, J 11.7, 5.2, and 1.7), and 2.49 (d, 1H, J 11.7); ¹³C NMR (63 MHz, CDCl₃) δ (ppm) 177.1, 165.2, 138.6, 133.7, 129.8, 128.9, 128.6, 124.2, 74.3, 73.3, 66.1, and 37.2; v_{max} (KBr)/cm⁻¹ 3478, 1775, and 1722; MS (CI) m/z (%) 261 (MH)+; HRMS calcd for C14H13O5 (MH+) 261.0763, found 261.0755. Anal. Calcd for C14H12O5: C, 64.60; H, 4.65. Found: C, 64.60; H, 4.65.

(1R,3R,4R)-4-Benzoyloxy-1-(4'-nitrobenzyloxy)cyclohex-5-en-1,3-carbolactone (12). To a stirred solution of the alcohol 11 (93 mg, 0.36 mmol) in dry DMF (1.6 mL) at 0 °C under inert atmosphere was added sodium hydride (17 mg, 0.43 mmol, ca. 60% in mineral oil). After 30 min at this temperature 4-nitrobenzyl bromide (156 mg, 0.72 mmol), tetrabutylammonium iodide (27 mg, 0.07 mmol), and 15crown-5 ether (10 μ L, 0.04 mmol) were added. The resultant blue suspension was heated at 80 °C for 24 h. The suspension was diluted successively with diethyl ether and water. The organic layer was separated and the aqueous layer was extracted with diethyl ether (3 \times 20 mL). All the combined organic layers were dried (anhydrous Na₂SO₄), filtered, and evaporated. The crude residue was purified by flash chromatography eluting with 70% DCM-hexanes to afford 58 mg (41%) of ether 12 as an amorphous pale yellow solid and also 28 mg (30%) of starting material was recovered: mp 135-136 °C (diethyl ether); $[\alpha]_D^{25} - 254^\circ$ (*c* 0.9 in CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ (ppm) 8.23 (dt, 2H, J 8.8 and 2.1), 8.04 (dt, 2H, J 7.0, and 1.5), 7.60 (m, 3H), 7.46 (m, 2H), 6.41 (dd, 1H, J 9.8 and 2.0), 5.98 (ddd, 1H, J 9.8, 3.4, and 2.1), 5.57 (t, 1H, J 3.0), 4.93 (m, 1H), 4.84 (d, 1H, J 12.6), 4.79 (d, 1H, J 12.6), 2.71 (ddd, 1H, J 10.9, 6.0, and 2.0), and 2.40 (d, 1H, J 10.9); ¹³C NMR (63 MHz, CDCl₃) δ (ppm) 173.1, 165.1, 147.6, 144.5, 136.2, 133.8, 129.8, 128.9, 128.6, 127.8, 125.0, 123.7, 78.9, 73.5, 66.4, 66.3, and 33.9; v_{max} (KBr)/cm⁻¹ 1801, 1722, and 1604; MS (CI) *m*/*z* (%) 396 (MH⁺); HRMS calcd for C₂₁H₁₈NO₇ (MH⁺) 396.1083, found 396.1066.

Methyl (1*R*,3*R*,4*R*)-3,4-Dihydroxy-1-(4'-nitrobenzyloxy)cyclohex-5-en-1-carboxylate (15). To a stirred suspension of the benzoate 12 (62 mg, 0.16 mmol) in dry methanol (1.5 mL) was added potassium cyanide (12 mg, 0.18 mmol). The resultant red solution was stirred at room temperature for 1 h. DCM was added and then water. The organic layer was separated and the aqueous layer was extracted twice with DCM. All the combined organic extracts were dried (anhydrous Na₂SO₄), filtered, and evaporated. The obtained residue was purified by flash chromatography eluting with 40% ethyl acetate-hexanes to yield diol 15 (31 mg, 60%) as a pale yellow oil: $[\alpha]_D^{25} + 5^\circ$ (*c* 0.9 in CH₃OH); ¹H NMR (250 MHz, CD₃OD) δ (ppm) 8.24 (br d, 2H, J 8.9), 7.69 (br d, 2H, J 8.9), 6.00 (s, 2H), 4.73 (d, 1H, J 12.6), 4.67 (d, 1H, J 12.6), 4.39 (br s, 1H), 4.26 (br s, 1H), 4.03 (m, 1H), 3.91 (m, 1H), 3.77 (s, 3H), 2.30 (ddd, 1H, J 13.5, 3.6, and 0.9), and 1.98 (dd, 1H, J 13.5 and 11.7); $^{13}{\rm C}$ NMR (62.5 MHz, CD₃OD) δ (ppm) 172.1, 146.9, 146.3, 136.3, 127.7, 124.4, 122.9, 78.8, 72.8, 69.1, 65.4, 51.5, and 38.0; $v_{\rm max}$ (NaCl)/cm $^{-1}$ 3390, 1740, and 1606; MS (CI) m/z (%) 306 (MH⁺ - H₂O); HRMS calcd for C₁₅H₁₆NO₆ (MH⁺ - H₂O) 306.0978, found 306.0978.

(1R,3R,4R)-3,4-Dihydroxy-1-(4'-nitrobenzyloxy)cyclohex-5-en-1-carboxylic Acid (4h). A solution of the methyl ester 15 (25 mg, 0.08 mmol) in 0.5 mL of THF and 0.4 mL of 0.5 M aqueous lithium hydroxide was stirred at room temperature for 1 h. The resultant solution was diluted with water and treated with Amberlite IR-120 (H⁺) until pH 6. The resin was filtered and washed with water. The filtrate was concentrated to afford acid 4h (23 mg, 96%) as a pale yellow oil: retention time 40 min; $[\alpha]_D^{25} + 13^\circ$ (*c* 2.2 in CH₃OH); ¹H NMR (250 MHz, CD₃OD) δ (ppm) 8.38 (d, 2H, J 8.7), 7.82 (d, 2H, J 8.7), 6.23 (d, 1H, J10.0), 6.09 (d, 1H, J10.0 and 1.8), 4.90 (d, 1H, J12.6), 4.82 (d, 1H, J12.6), 4.20 (br d, 1H, J7.8), 4.07 (m, 1H), 2.48 (br d, 1H, J12.8), and 2.20 (dd, 1H, J12.8 and 11.8); ¹³C NMR (63 MHz, CD₃OD) δ (ppm) 177.5, 148.8, 148.6, 136.1, 129.5, 128.5, 124.5, 81.2, 74.3, 71.2, 67.2, and 40.0; v_{max} (KBr)/cm⁻¹ 3419, 1718, and 1604; MS (CI) m/z (%) 292 (MH⁺ H_2O); HRMS calcd for $C_{14}H_{14}NO_6$ (MH⁺ – H_2O) 292.0821, found 292.0821.

(1*R,3R*,4*R*)-4-Benzoyloxy-1-(2'-nitrobenzyloxy)cyclohex-5-en-1,3-carbolactone (13). To a stirred solution of the alcohol 11 (200 mg, 0.77 mmol) in dry DMF (7 mL) at 0 °C under inert atmosphere was added sodium hydride (37 mg, 0.92 mmol, ca. 60% in mineral oil). After 30 min at this temperature 2-nitrobenzyl bromide (216 mg, 1.00 mmol), tetrabutylammonium iodide (28 mg, 0.08 mmol), and 15crown-5 ether (20 μ L, 0.08 mmol) were added. The resultant blue suspension was heated at 80 °C for 24 h. The suspension was diluted successively with diethyl ether and water. The organic layer was separated and the aqueous layer was extracted with diethyl ether (3 \times 20 mL). All the combined organic layers were dried (anhydrous Na₂SO₄), filtered, and evaporated. The crude residue was purified by flash chromatography eluting with 70% DCM-hexanes to afford 196 mg (64%) of ether 13 as amorphous beige solid and also 24 mg of starting material (12%) was recovered: $[\alpha]_D^{25} - 290^\circ$ (c 1.5 in CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ (ppm) 8.05 (m, 4H), 7.70 (t, 1H, J7.6), 7.61 (t, 1H, J7.4), 7.47 (t, 3H, J7.5), 6.43 (dd, 1H, J 9.8 and 1.5), 5.98 (ddd, 1H, J 9.8, 3.3, and 1.3), 5.57 (t, 1H, J 3.1), 5.17 (d, 1H, J 14.3), 5.01 (d, 1H, J 14.3), 4.94 (m, 1H), 2.74 (ddd, 1H, J 10.9, 6.1, and 1.9), and 2.50 (d, 1H, J10.9); ¹³C NMR (63 MHz, CDCl₃) δ (ppm) 173.0, 165.1, 146.7, 136.3, 134.0, 133.7, 129.8, 128.9, 128.9, 128.6, 128.4, 125.3, 124.7, 78.7, 73.6, 66.2, 64.3, and 33.8; $v_{\rm max}$ (NaCl)/cm $^{-1}$ 1793 and 1718; MS (CI) m/z (%) 396 (MH+); HRMS calcd for C₂₁H₁₈NO₇ (MH⁺) 396.1083, found 396.1083.

(1*R*,3*R*,4*R*)-4-Hydroxy-1-(2'-nitrobenzyloxy)cyclohex-5-en-1,3-carbolactone (16) and Methyl (1*R*,3*R*,4*R*)-3,4-Dihydroxy-1-(2'-nitrobenzyloxy)cyclohex-5-en-1-carboxylate (17). To a stirred suspention of the benzoate 13 (127 mg, 0.32 mmol) in dry methanol (3 mL) was added potassium cyanide (24 mg, 0.37 mmol). The resultant solution was stirred at room temperature for 1 h. DCM was added and then water. The organic layer was separated and the aqueous layer was extracted twice with DCM. All the combined organic extracts were dried (anhydrous Na₂SO₄), filtered, and evaporated. The obtained residue was purified by flash chromatography eluting with diethyl ether—ethyl acetate (90:10) to yield carbolactone 16 (24 mg, 26%) and diol 17 (65 mg, 63%).

Data for carbolactone **16**: $[\alpha]_D^{25} - 175^{\circ}$ (*c* 1.4 in CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ (ppm) 8.10 (dd, 1H, *J* 8.2 and 1.3), 7.96 (dd, 1H, *J* 7.9 and 1.0), 7.68 (m, 1H), 7.47 (m, 1H), 6.25 (dd, 1H, *J* 9.8 and 1.6), 5.87 (ddd, 1H, *J* 9.8, 3.3, and 1.2), 5.11 (d, 1H, *J* 14.4), 4.95 (d, 1H, *J* 14.4), 4.74 (m, 1H), 4.33 (t, 1H, *J* 3.1), 2.61 (ddd, 1H, *J* 10.9, 6.1, and 2.1), and 2.40 (d, 1H, *J* 10.9); ¹³C NMR (63 MHz, CDCl₃) δ (ppm) 173.8, 146.7, 134.4,

134.0, 133.8, 128.9, 128.4, 128.3, 124.8, 79.1, 76.2, 65.1, 64.2, and 32.8; v_{max} (NaCl)/cm⁻¹ 3459 and 1790; MS (CI) *m*/*z* (%) 292 (MH⁺); HRMS calcd for C₁₄H₁₄NO₆ (MH⁺) 292.0821, found 292.0827.

Data for diol **17**: $[\alpha]_D^{25} + 43^{\circ}$ (*c* 1.5 in CHCl₃); ¹H NMR (250 MHz, CDCl₃) (ppm) δ 7.97 (dd, 1H, *J* 8.2 and 1.0), 7.79 (dd, 1H, *J* 7.8 and 1.0), 7.60 (dt, 1H, *J* 7.6 and 1.0), 7.38 (dt, 1H, *J* 7.8 and 1.0), 5.95 (s, 2H), 4.84 (d, 1H, *J* 14.5), 4.78 (d, 1H, *J* 14.5), 4.08 (d, 1H, *J* 8.0), 3.93 (m, 1H), 3.72 (s, 3H), 2.33 (dd, 1H, *J* 13.6 and 3.1), and 1.98 (dd, 1H, *J* 13.6 and 12.1); ¹³C NMR (63 MHz, CDCl₃) δ (ppm) 172.4, 147.1, 135.8, 134.2, 133.7, 129.3, 128.1, 125.1, 124.4, 78.8, 73.2, 69.8, 63.8, 52.7, and 38.0; v_{max} (NaCl)/cm⁻¹ 3390 and 1739; MS (CI) *m/z* (%) 292 (MH⁺ – HOCH₃); HRMS calcd for C₁₄H₁₄NO₆ (MH⁺ – HOCH₃) 292.0821, found 292.0823.

(1R,3R,4R)-3,4-Dihydroxy-1-(2'-nitrobenzyloxy)cyclohex-5-en-1-carboxylic Acid (4i). A solution of the methyl ester 17 (65 mg, 0.20 mmol) in 2 mL of THF and 1 mL of 0.5 M aqueous lithium hydroxide was stirred at room temperature for 1 h. The resultant solution was diluted with water and treated with Amberlite IR-120 (H⁺) until pH 6. The resin was filtered and washed with water. The filtrate was concentrated to afford acid 4i (48 mg, 78%) as a beige oil: retention time 35 min; $[\alpha]_D^{25} - 19^\circ$ (c 0.7 in CH₃OH); ¹H NMR (250 MHz, CD₃OD) δ (ppm) 7.96 (dd, 1H, J 8.2 and 1.1), 7.87 (br d, 1H, J7.9), 7.63 (m, 1H), 7.42 (m, 1H), 5.97 (d, 1H, J10.1), 5.86 (d, 1H, J10.1), 4.84 (s, 2H), 3.94 (d, 1H, J7.8), 3.85 (m, 1H), 2.26 (br d, 1H, J13.6), and 1.96 (dd, 1H, J13.6 and 12.0); ¹³C NMR (63 MHz, CD₃OH) δ (ppm) 178.4, 148.6, 136.7, 135.1, 134.5, 131.5, 128.9, 125.2, 73.6, 73.2, 71.2, 64.4, and 39.7; v_{max} (KBr)/ cm^{-1} 3398, 1707, and 1578; MS (CI) m/z (%) 292 (MH⁺ – H₂O); HRMS calcd for $C_{14}H_{14}NO_6$ (MH⁺ – H₂O) 292.0821, found 292.0820.

Preparation of Resin 18. To a stirred solution of the alcohol **11** (1.43 g, 5.48 mmol) in dry DMF (25 mL) at 0 °C under inert atmosphere was added sodium hydride (264 mg, 6.60 mmol, ca. 60% in mineral oil). After 30 min at this temperature the resultant suspension was added *via* cannula to a preswollen PS-brominated Wang resin (1.4 g, ~1.6 mmol/ g, ~2.24 mmol) in dry DMF (16 mL) at 0 °C and under inert atmosphere. Then, 15-crown-5 ether (60 μ L, 0.32 mmol) was added and the resultant suspension was shook at 0 °C for 30 min and at 80 °C for 48 h. The resin was thoroughly washed with DMF, DMF–water (3:1), THF, and dry DCM and dried under high vacuum to afford brown beads of **11** (1.4 g): gelphase FTIR (cm⁻¹) 1794, 1718, and 1611; gel-phase ¹³C NMR (63 MHz, CDCl₃) δ (ppm) 137.0, 133.6, 129.5, 114.6, 73.6, 70.0, 67.5, 40.4, and 34.0.

Preparation of Resin 19. To preswollen resin **18** (1.1 g, ~1.3 mmol) in dry THF (6 mL) was added a solution of potassium cyanide (136 mg, 2.09 mmol) in methanol (2 mL). The resultant suspension was bubbled through with argon for 2 h at room temperature. The resin was thoroughly washed with THF, methanol, THF, and dry DCM to afford after drying in vacuo pale brown beads of resin **19** (~1 g): gel-phase FTIR (cm⁻¹) 3392, 1792, 1732, and 1604; gel-phase ¹³C NMR (63 MHz, CDCl₃) δ (ppm) 129.6, 114.6, 70.2, 67.4, 53.4, and 40.4.

(1*R*,3*R*,4*R*)-4-Benzyloxy-1,3-dihydroxycyclohex-5-en-1carboxylic acid (5a): 75% overall; retention time 27 min; $[\alpha]_D^{25} - 128^{\circ}$ (*c* 3.4 in H₂O); ¹H NMR (250 MHz, D₂O) δ (ppm) 7.15–7.03 (m, 5H), 5.65 (dd, 1H, *J* 9.8 and 1.6), 5.41 (d, 1H, *J* 9.8), 4.44 (d, 1H, *J* 13.8), 4.39 (d, 1H, *J* 13.8), 3.77–3.60 (m, 2H), and 1.74 (d, 2H, *J* 6.2); ¹³C NMR (63 MHz, CD₃OD) δ (ppm) 177.8, 139.0, 131.3, 130.6, 128.9, 129.0, 128.6, 81.0, 75.0, 72.7, 69.1, and 40.8; v_{max} (KBr)/cm⁻¹ 3420 and 1706; MS (+FAB) *m*/*z* (%) 247 (MH⁺ – H₂O); HRMS calcd for C₁₄H₁₅O₄ (MH⁺ – H₂O) 247.0970, found 247.0964.

(1*R*,3*R*,4*R*)-4-(4'-Fluorobenzyloxy)-1,3-dihydroxycyclohex-5-en-1-carboxylic acid (5b): 72% overall; retention time 28 min; $[\alpha]^{25}_{\rm D} - 133^{\circ}$ (*c* 0.9 in H₂O); ¹⁹F NMR (282 MHz, D₂O) δ (ppm) -112.5 (tt, 1F, *J* 9.2 and 5.2); ¹H NMR (250 MHz, D₂O) δ (ppm) 7.35 (t, 2H, *J* 5.8), 7.04 (t, 2H, *J* 8.3), 5.87 (d, 1H, *J* 9.7), 5.65 (d, 1H, *J* 9.7), 4.61 (s, 2H), 3.92 (m, 2H), and 1.98 (d, 2H, *J* 6.8); ¹³C NMR (63 MHz, D₂O) δ (ppm) 179.0,

162.8 (J 242), 133.5, 131.0 (J 8), 130.9, 128.9, 115.7 (J 21), 80.0, 74.2, 71.3, 67.8, and 39.7; v_{max} (Nujol)/cm⁻¹ 3391, 3333, and 1713; MS (CI) *m*/*z* (%) 265 (MH⁺ – H₂O); HRMS calcd for C₁₄H₁₄O₄F (MH⁺ – H₂O) 265.0876, found 265.0875.

(1*R*,3*R*,4*R*)-4-(3'-Fluorobenzyloxy)-1,3-dihydroxycyclohex-5-en-1-carboxylic acid (5c): 75% overall; retention time 31 min; $[α]^{25}_{D} - 127^{\circ}$ (*c* 0.9 in H₂O); ¹⁹F NMR (282 MHz, D₂O) δ (ppm) -111.6 (dt, 1F, *J* 9.5 and 5.6); ¹H NMR (250 MHz, D₂O) δ (ppm) 7.21 (m, 1H), 7.04 (m, 2H), 6.92 (m, 1H), 5.79 (d, 1H, *J* 10.0), 5.61 (d, 1H, *J* 10.0), 4.55 (s, 2H), 3.86 (m, 2H), and 1.94 (d, 2H, *J* 6.0); ¹³C NMR (63 MHz, D₂O) δ (ppm) 178.1, 162.9 (*J* 245), 140.3 (*J* 7), 131.1, 130.6 (*J* 8), 128.5, 124.4 (*J* 3), 115.3 (*J* 22), 115.2 (*J* 21), 80.2, 73.9, 71.2, 67.7, and 39.5; v_{max} (NaCl)/cm⁻¹ 3410 and 1726; MS (CI) *m/z* (%) 283 (MH⁺); HRMS calcd for C₁₄H₁₆O₅F (MH⁺) 283.0982, found 283.0978.

(1*R*,3*R*,4*R*)-4-(2'-Fluorobenzyloxy)-1,3-dihydroxycyclohex-2-en-1-carboxylic acid (5d): 70% overall; retention time 29 min; $[\alpha]^{25}_{D} - 134^{\circ}$ (*c* 3.0 in H₂O); ¹⁹F NMR (282 MHz, D₂O) δ (ppm) -116.9 (dt, 1F, *J* 10.5 and 6.4); ¹H NMR (250 MHz, D₂O) δ (ppm) 7.26 (t, 1H, *J* 7.2), 7.13 (m, 1H), 6.98 (t, 1H, *J* 7.0), 6.90 (t, 1H, *J* 8.9), 5.70 (d, 1H, *J* 9.9), 5.55 (d, 1H, *J* 9.9), 4.55 (s, 2H), 3.83 (m, 2H), and 1.92 (m, 2H); ¹³C NMR (63 MHz, D₂O) δ (ppm) 178.2, 161.2 (*J* 245), 131.5 (*J* 4), 130.9, 130.8 (*J* 10), 128.7, 124.7 (*J* 3), 124.5 (*J* 15), 115.7 (*J* 21), 80.4, 73.9, 67.7, 65.9 (*J* 3), and 39.5; v_{max} (Nujol)/cm⁻¹ 3430 and 1718; MS (CI) *m/z* (%) 283 (MH⁺); HRMS calcd for C₁₄H₁₆O₅F (MH⁺) 283.0982, found 283.0970.

(1*R*,3*R*,4*R*)-4-(4'-Carboxybenzyloxy)-1,3-dihydroxycyclohex-5-en-1-carboxylic acid (5e): 68% overall; retention time 32 min; mp 187–188 °C; $[\alpha]^{25}_{D}$ –152° (*c* 1.1 in CH₃OH); ¹H NMR (300 MHz, CD₃OD) δ (ppm) 7.98 (d, 2H, *J* 7.8), 7.50 (d, 2H, *J* 7.8), 5.90 (dd, 1H, *J* 1.8 and 9.9), 5.71 (d, 1H, *J* 9.9), 4.80 (s, 2H), 4.04 (m, 1H), 3.92 (d, 1H, *J* 7.5), and 2.10 (m, 2H); ¹³C NMR (75 MHz, CD₃OD) δ (ppm) 177.7, 168.9, 144.6, 130.0, 130.0, 129.8, 127.5, 80.5, 73.6, 71.0, 68.2, and 39.9; v_{max} (KBr)/cm⁻¹ 3423 and 1699; MS (CI) *m*/*z* (%) 291 (MH⁺ – H₂O); HRMS calcd for C₁₅H₁₄O₆ (MH⁺ – H₂O) 291.0869, found 291.0880.

(1*R*,3*R*,4*R*)-1-Hydroxy-4-(4'-hydroxymethyl)benzyloxycyclohex-5-en-1-carboxylic acid (5f): 77% overall; retention time 21 min; $[\alpha]^{25}_{\rm D}$ –136° (*c* 1.3 in CH₃OH); ¹H NMR (250 MHz, CD₃OD) δ (ppm) 7.42 (d, 2H, *J* 8.1), 7.36 (d, 2H, *J* 8.1), 5.90 (dd, 1H, *J* 10.0 and 1.7), 5.72 (d, 1H, *J* 10.0), 4.75 (s, 2H), 4.62 (s, 2H), 4.06 (m, 1H), 3.93 (d, 1H, *J* 7.4), and 2.11 (m, 2H); ¹³C NMR (63 MHz, CD₃OD) δ (ppm) 178.6, 142.1, 138.9, 131.2, 130.7, 129.1, 128.0, 81.0, 74.6, 72.6, 69.2, 64.9, and 40.0; v_{max} (NaCl)/cm⁻¹ 3364 and 1730; MS (CI) *m*/*z* (%) 277 (MH⁺ – H₂O); HRMS calcd for C₁₅H₁₇O₅ (MH⁺ – H₂O) 277.1076, found 277.1083.

(1*R*,3*R*,4*R*)-1,3-Dihydroxy-4-(4'-cyanobenzyloxy)cyclohex-5-en-1-carboxylic acid (5g): 70% overall; retention time 37 min; mp 137–138 °C; $[\alpha]^{25}_{\rm D}$ –157° (*c* 1.0 in CH₃OH); ¹H NMR (300 MHz, D₂O) δ (ppm) 7.40 (d, 2H, *J* 7.8), 7.28 (d, 2H, *J* 7.8), 5.72 (d, 1H, *J* 9.9), 5.57 (d, 1H, *J* 9.9), 4.55 (s, 2H), 3.84 (m, 2H), and 1.92 (d, 2H, *J* 7.2); ¹³C NMR (75 MHz, D₂O) δ (ppm) 178.3, 143.6, 132.6, 130.4, 129.0, 128.5, 119.6, 110.4, 80.4, 73.9, 70.7, 67.8, and 39.6; v_{max} (KBr)/cm⁻¹ 3398, 2231, and 1720; MS (CI) *m*/*z* (%) 272 (MH⁺ – H₂O); HRMS calcd for C₁₅H₁₄O₄N (MH⁺ – H₂O) 272.0923, found 272.0923.

(1*R*,3*R*,4*R*)-1-(*tert*-Butyldimethylsilyloxy)-4-(4'-nitrobenzyloxy)cyclohex-5-en-1,3-carbolactone (21). To a stirred solution of the alcohol 7 (164 mg, 0.61 mmol) in dry DMF (6 mL) at 0 °C under inert atmosphere was added sodium hydride (29 mg, 0.73 mmol, ca. 60% in mineral oil). After 30 min at this temperature 4-nitrobenzyl bromide (171 mg, 0.79 mmol), tetrabutylammonium iodide (23 mg, 0.06 mmol), and 15crown-5 ether (10 μ L, 0.08 mmol) were added. The resultant blue suspension was heated at 80 °C for 48 h. The suspension was diluted successively with diethyl ether and water. The organic layer was separated and the aqueous layer was extracted with diethyl ether (3 × 20 mL). All the combined organic layers were dried (anhydrous Na₂SO₄), filtered, and evaporated. The crude residue was purified by flash chromatography eluting with 70% DCM-hexanes to afford 60 mg (24%) of ether **21** as amorphous pale yellow solid: $[\alpha]_D{}^{25}-172^{\circ}$ (c 2.0 in CHCl_3); 1 H NMR (250 MHz, CDCl_3) δ (ppm) 8.21 (d, 2H, J 8.8), 7.50 (d, 2H, J 8.8), 6.15 (ddd, 1H, J 9.8, 1.7, and 1.0), 5.78 (ddd, 1H, J 9.8, 3.2, and 1.1), 4.77 (s, 2H), 4.73 (m, 1H), 3.98 (t, 1H, J 3.2), 2.42 (ddd, 1H, J 10.6, 5.2, and 1.8), 2.37 (d, 1H, J 10.6), 0.90 (s, 9H), 0.17 (s, 3H), and 0.14 (s, 3H); 13 C NMR (63 MHz, CDCl_3) δ (ppm) 175.3, 147.5, 144.9, 138.9, 127.7, 124.2, 123.7, 75.0, 73.4, 72.4, 70.9, 37.7, 25.5, 17.9, and $-3.1; v_{max}$ (NaCl)/cm $^{-1}$ 1793; MS (CI) m/z (%) 406 (MH⁺); HRMS calcd for $C_{20}H_{28}O_6NSi$ (MH⁺) 406.1686, found 406.1676.

(1R,3R,4R)-1-Hydroxy-4-(4'-nitrobenzyloxy)cyclohex-5-en-1,3-carbolactone (23). To a stirred solution of the silyl ether 21 (95 mg, 0.23 mmol), under argon and at 0 °C, in 2 mL of dry THF, was added tetrabutylammonium fluoride (0.25 mL, 0.25 mmol, ca. 1.0 M in THF). After stirring for 30 min, dilute HCl was added and the organic layer was extracted with DCM $(3\times)$. The combined organic extracts were dried (anhydrous Na₂SO₄) and concentrated under reduced pressure. The crude reaction product was purified by flash cromatography eluting with diethyl ether to afford alcohol 23 as a pale yellow oil (29 mg, 43%): $[\alpha]_D^{25}$ –265.5° (*c* 1.2, in CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ (ppm) 8.22 (d, 2H, *J* 8.7), 7.51 (d, 2H, *J* 8.7), 6.17 (d, 1H, J 9.8), 5.82 (ddd, 1H, J 9.8, 3.3, and 1.0), 4.81 (m, 1H), 4.78 (s, 2H), 4.02 (t, 1H, J 3.3), 3.35 (br s, 1H), and 2.44 (m, 2H); $^{13}\mathrm{C}$ NMR (63 MHz, CDCl₃) δ (ppm) 177.2, 147.6, 144.8, 137.4, 127.7, 125.1, 123.8, 74.5, 73.4, 72.2, 71.0, and 36.9; $v_{\rm max}$ (NaCl)/cm⁻¹ 3405 and 1784; MS (CI) m/z (%) 292 (MH⁺); HRMS calcd for C₁₄H₁₄O₆N (MH⁺) 292.0821, found 292.0826.

(1R,3R,4R)-1,3-Dihydroxy-4-(4'-nitrobenzyloxy)cyclohex-5-en-1-carboxylic Acid (5h). A solution of the carbolactone 23 (28 mg, 0.10 mmol) in 1 mL of THF and 0.5 mL of 0.5 M aqueous lithium hydroxide was stirred at room temperature for 1 h. The resultant solution was diluted with water and treated with Amberlite IR-120 until pH 6. The resin was filtered and washed with water. The filtrate was concentrated to afford acid 5h (23 mg, 74%) as a pale yellow amorphous solid: retention time 48 min; $[\alpha]_D^{25} - 121^\circ$ (*c* 1.1, in CH₃OH); ¹H NMR (250 MHz, CD₃OD) δ (ppm) 8.20 (d, 2H, J 8.8), 7.65 (d, 2H, J 8.8), 5.93 (dd, 1H, J 10.0 and 1.8), 5.73 (d, 1H, J 10.0), 4.84 (s, 2H), 4.04 (m, 1H), 3.93 (dt, 1H, J7.9 and 1.8), and 2.07 (m, 2H); ¹³C NMR (63 MHz, CD₃OD) δ (ppm) 176.8, 147.6, 147.1, 130.4, 129.3, 128.1, 123.4, 81.1, 73.5, 70.4, 68.2, and 40.2; v_{max} (KBr)/cm⁻¹ 3528 and 1596; MS (CI) m/z (%) 310 (MH⁺); HRMS calcd for C₁₄H₁₆NO₇ (MH⁺) 310.0928, found 310.0928.

(1R,3R,4R)-1-(tert-Butyldimethylsilyloxy)-4-(2'-nitrobenzyloxy)cyclohex-5-en-1,3-carbolactone (22). To a stirred solution of the alcohol $\mathbf{7}$ (138 mg, 0.51 mmol) in dry DMF (4 mL) at 0 °C under inert atmosphere was added sodium hydride (27 mg, 0.66 mmol, ca. 60% in mineral oil). After 30 min at this temperature 2-nitrobenzyl bromide (165 mg, 0.77 mmol), tetrabutylammonium fluoride (28 mg, 0.08 mmol), and 15crown-5 ether (10 μ L, 0.08 mmol) were added. The resultant blue suspension was heated at 80 °C for 24 h. The suspension was diluted successively with diethyl ether and water. The organic layer was separated and the aqueous layer was extracted with diethyl ether (3 \times 20 mL). All the combined organic layers were dried (anhydrous Na₂SO₄), filtered, and evaporated. The crude residue was purified by flash chromatography eluting with 25% diethyl ether-hexanes to afford 111 mg (54%) of ether **22** as amorphous beige solid: $[\alpha]_D^{25}$ -205° (c 1.2 in CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ (ppm) 8.06 (dd, 1H, $J\,8.1$ and 1.0), 7.67 (m, 2H), 7.48 (dt, 1H, $J\,8.2$ and 1.8), 6.15 (dd, 1H, J 9.8 and 1.7), 5.81 (ddd, 1H, J 9.8, 3.3, and 1.9), 5.08 (d, 1H, J 13.9), 5.00 (d, 1H, J 13.9), 4.78 (m, 1H), 4.02 (t, 1H, J 3.1), 2.43 (ddd, 1H, J 10.8, 5.8, and 1.9), 2.33 (d, 1H, J 10.8), 0.91 (s, 9H), 0.18 (s, 3H), and 0.14 (s, 3H); ¹³C NMR (63 MHz, CDCl₃) δ (ppm) 175.4, 147.4, 138.7, 133.6, 129.0, 128.6, 124.7, 124.3, 75.0, 73.2, 72.5, 69.0, 37.7, 25.5, 17.9, and –3.2; $v_{\rm max}$ (NaCl)/cm⁻¹ 1798; MS (CI) m/z (%) 406 (MH⁺); HRMS calcd for C₂₀H₂₈O₆NSi (MH⁺) 406.1686, found 406.1703.

(1R,3R,4R)-1-Hydroxy-4-(2'-nitrobenzyloxy)cyclohex-5-en-1,3-carbolactone (24). To a stirred solution of the silyl ether 22 (165 mg, 0.41 mmol), under argon and at 0 °C, in 4 mL of a dry THF, was added tetrabutylammonium fluoride (0.45 mL, 0.45 mmol, ca. 1.0 M in THF). After stirring for 30 min, dilute HCl was added and the organic layer was extracted with DCM $(3\times)$. The combined organic extracts were dried (anhydrous Na₂SO₄) and concentrated under reduced pressure. The crude reaction was purified by flash cromatography eluting with 75% diethyl ether-hexanes to yield the alcohol **24** as beige oil (85 mg, 71%): [α]_D²⁵ –269° (*c* 0.9 in CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ (ppm) 8.04 (dd, 1H, J 8.1 and 1.2), 7.74-7.61 (m, 2H), 7.46 (dt, 1H, J8.1 and 1.8), 6.16 (ddd, 1H, J 9.8, 1.5, and 0.7), 5.84 (ddd, 1H, J 9.8, 3.4, and 1.1), 5.08 (d, 1H, J14.0), 5.00 (d, 1H, J14.0), 4.85 (m, 1H), 4.05 (dt, 1H, J 3.4 and 0.7), 3.81 (br s, 1H), 2.46 (ddd, 1H, J 11.0, 5.4, and 1.5) and 2.39 (d, 1H, J 11.0); $^{13}\mathrm{C}$ NMR (63 MHz, CDCl_3) δ (ppm) 177.5, 147.3, 137.0, 133.7, 133.6, 128.9, 128.6, 125.1, 124.8, 74.3, 73.4, 72.4, 69.0, and 36.8; v_{max} (NaCl)/cm⁻¹ 3432 and 1790; MS (CI) m/z (%) 292 (MH⁺); HRMS calcd for C₁₄H₁₄O₆N (MH⁺) 292.0821, found 292.0824.

(1R,3R,4R)-1,3-Dihydroxy-4-(2'-nitrobenzyloxy)cyclohex-5-en-1-carboxylic Acid (5i). A solution of the carbolactone 24 (23 mg, 0.08 mmol) in 1 mL of THF and 0.4 mL of 0.5 M aqueous lithium hydroxide was stirred at room temperature for 1 h. The resultant solution was diluted with water and treated with Amberlite IR-120 (H⁺) until pH 6. The resin was filtered and washed with water. The filtrate was concentrated to afford acid 5h (23 mg, 94%) as a beige amorphous solid: retention time 46 min; $[\alpha]_D^{25}$ –59° (*c* 1.0, in CH₃OH); ¹H NMR (250 MHz, CD₃OD) δ 8.01 (dd, 1H, J 8.1 and 1.2), 7.89 (br d, 1H, J 8.4), 7.68 (dt, 1H, J 7.6 and 1.2), 7.49 (m, 1H), 5.89 (d, 1H, J 9.7), 5.72 (d, 1H, J 9.7), 5.09 (br s, 2H), 4.03 (m, 1H), 3.93 (d, 1H, J7.5), and 2.05 (m, 2H); ¹³C NMR (63 MHz, CD₃OD) δ 176.7, 148.1, 135.0, 133.5, 130.4, 129.6, 129.3, 128.4, 124.4, 81.3, 73.6, 68.7, 68.4, and 40.1; v_{max} (NaCl)/ cm^{-1} 3397, 1716, and 1609; MS (CI) m/z (%) 292 (MH⁺ – H₂O); HRMS calcd for $C_{14}H_{14}O_6N$ (MH⁺ - H₂O): 292.0821, found 292.0819

Acknowledgment. Financial support from the Xunta de Galicia (PGIDIT02RAG20901PR) and from the Spanish Ministry of Science and Technology (SAF2001-3120) is gratefully acknowledged. E.L. thanks the Spanish Ministry of Education and Culture for an FPU scholarship. M.D.T. thanks the Fundaçao para a Ciência e a Tecnologia for a scholarship.

Supporting Information Available: Copies of ¹H NMR and ¹³C NMR spectra of compounds **4a**–**i** and **5a**–**i**, ¹⁹F NMR spectra of compounds **4b**–**d** and **5b**–**d**, and gel-phase ¹³C NMR spectra of **8**, **9**, **18**, and **19**. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Abell, C. Enzymology and Molecular Biology of the Shikimate Pathway. In Comprehensive Natural Products Chemistry, ed. Sankawa, U., Pergamon, Elsevier Science Ltd.: Oxford, 1999; p 573.
- p 573.
 (2) Roberts, F.; Roberts, C. W.; Johnson, J. J.; Kyle, D. E.; Krell, T.; Coggins, J. R.; Coombs, G. H.; Milhous, W. K.; Tzipori, S.; Ferguson, D. J. P.; Chakrabarti, D.; McLeod, R. Evidence for the shikimate pathway in apicomplexan parasites. *Nature* 1998, 393, 801.
- (3) (a) Steinrucken, H. C.; Amerhein, N. 5-Enolpyruvylshikimate-3-phosphate synthase of Klebsiella pneumoniae 2. Inhibition by glyphosate [N-(phosphonomethyl)glycine]. Eur. J. Biochem. 1984, 143, 351. (b) Steinrucken, H. C.; Amerhein, N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid 3-phosphate synthase. Biochem. Biophys. Res. Commun. 1980, 94, 1207.
- (4) Chauduri, C.; Ducan, K.; Graham, L. D.; Coggins, J. R. Identification of the active-site lysine residues of two biosynthetic 3-dehydroquinases. *Biochem. J.* 1990, 275, 1.
- (5) White, P. J.; Young, J.; Hunter, I. S.; Nimmo, H. G.; Coggins, J. R. The purification and characterization of 3-dehydroquinase from *Streptomyces coelicolor. Biochem J.* **1990**, *265*, 735.

- (6) (a) Shneier, A.; Kleanthous, C.; Deka, R.; Coggins, J. R.; Abell, C. Observation of an imine intermediate on dehydroquinase by electrospray mass spectrometry. J. Am. Chem. Soc. **1991**, 113, 9416. (b) Leech, A. P.; James, R.; Coggins, J. R.; Kleanthous, C. Mutagenesis of active site residues in type I dehydroquinase from *Escherichia coli*. Stalled catalysis in a histidine to alanine mutant. J. Biol. Chem. 1995, 270, 25827. (c) Hanson, K. R.; Rose, I. A. The absolute stereochemical course of citric acid biosyn-thesis. *Proc. Natl. Acad. Sci. U.S.A.* **1963**, *50*, 981. (d) Smith, B. W.; Turner, M. J.; Haslam, E. Stereochemical course of the 3-dehydroquinate dehydratase reaction and a novel preparation of shikimic acid labeled with isotopic hydrogen at C-2. J. Chem. Soc., Chem. Commun. **1970**, 842. (e) Haslam, E.; Turner, M. J.; Sargent, D.; Thompson, R. S. Shikimate pathway. I. Preparation of stereospecifically labeled 2-deuterio deuterio deuterio and 3-de-hudrowing cardia I. (Chem. C. (C) 1000 hydroquinic acid. J. Chem. Soc. (C) 1971, 1489. (f) Harris, J.; Kleanthous, C.; Coggins, J. R.; Hawkins, A. R.; Abell, C. Different mechanistic and sterechemical courses for the reactions catalysed by type I and type II dehydroquinases. J. Chem. Soc., Chem. Commun. 1993, 13, 1080. (g) Butler, J. R.; Alworth, W. L.; Nugent, M. Mechanism of dehydroquinase catalysed dehydratation. I. Formation of a schiff base intermediate. J. Am. Chem. Soc. 1974, 96, 1617. (h) Chaudhuri, S.; Duncan, K.; Graham,. L. D.; Coggins, J. R. Identification of the active-site lysine residues of two biosynthetic 3-dehydroquinases. Biochemistry 1991, 275, 1.
- (7) Harris, J.; González-Bello, C.; Kleanthous, C.; Coggins, J. R.; Hawkins, A. R.; Abell, C. Evidence from kinetic isotope studies for an enolate intermediate in the mechanism of type II dehydroquinases. *Biochem. J.* **1996**, *319*, 333.
- (8) González-Bello, C.; Harris, J. M.; Manthey, M. K.; Coggins, J. R.; Abell, C. Irreversible Inhibition of Type I dehydroquinase by substrates for type II dehydroquinases. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 407.
- (9) Fredrickson, M.; Parker, E. J.; Hawkins, A. R.; Coggins, J. R.; Abell, C. Selective inhibition of type II dehydroquinases. *J. Org. Chem.* **1999**, *64*, 2612.
- (10) Roszak, A. W.; Robinson, D. A.; Krell, T.; Hunter, I. S.; Frederickson, M.; Abell, C.; Coggins, J. R.; Lapthorn, A. The structure and mechanism of the type II dehydroquinase from *Steptomyces Coelicolor. Structure* **2002**, *10*, 493.
- (11) Toscano, M. D.; Frederickson, M.; Evans, D. P.; Coggins, J. R.; Abell, C.; González-Bello, C. Design, synthesis and evaluation of bifunctional inhibitors of type II dehydroquinase. *Org. Biomol. Chem.* 2003, 1, 2075.

- (12) González, C.; Carballido, M.; Castedo, L. Synthesis of polyhydroxycyclohexanes from (–)-quinic acid. J. Org. Chem. 2003, 68, 2248.
- (13) Brominated Wang resin was prepared from Wang resin as indicated previously Lee, C. E.; Kick, E. K.; Ellman, J. A. General solid-phase synthesis approach to prepare mechanismbased aspartyl protease inhibitor libraries. Identification of potent Cathepsin D inhibitors. J. Am. Chem. Soc. 1998, 120, 9735.
- (14) The loading of the resin was calculated by treatment of a small amount of resin (50 mg) with in 1 mL of TFA/DCM (1:1) for 1 h. The resin was filtered and washed with THF. The filtrate was evaporated. The obtained residue was redissolved in DCM and washed with a diluted solution of sodium bicarbonate. The organic layer was dried (anhydrous Na_2SO_4), filtered, and evaporated.
- (15) 4-(*tert*-Butyldimethylsilyloxymethyl)benzyl bromide was prepared from methyl 4-bromomethylbenzoate by reduction with DIBAL-H at -78 °C in THF followed by protection of the obtained alcohol with TBSOTf/Et₃N in DCM at 0 °C.
 (16) (a) Jones, G.; Willett, P.; Glen, R. C. Molecular recognition of a
- (16) (a) Jones, G.; Willett, P.; Glen, R. C. Molecular recognition of a receptor sites using a genetic alorithm with a description of desolvation. J. Mol. Biol. 1995, 245, 43. (b) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and validation of a genetic alorithm for flexible docking. J. Mol. Biol. 1997, 267, 727.
- (17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; J. A. Montgomery, J.; Stratmann, R. E.; Burant, J. C.; Perich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; González, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98W* (Revision A.9); Gaussian, Inc., Pittsburgh, PA, 1998.

JM030987Q