N⁶-Substituted D-4'-Thioadenosine-5'-methyluronamides: Potent and Selective Agonists at the Human A₃ Adenosine Receptor

Lak Shin Jeong,^{*,†} Dong Zhe Jin,[‡] Hea Ok Kim,[†] Dae Hong Shin,[†] Hyung Ryong Moon,[†] Prashantha Gunaga,[†] Moon Woo Chun,[‡] Yong-Chul Kim,[§] Neli Melman,[#] Zhan-Guo Gao,[#] and Kenneth A. Jacobson[#]

Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea, College of Pharmacy, Seoul National University, Seoul 151-742, Korea, Department of Life Science, Kwangju Institute of Science & Technology, Gwangju 500-712, Korea, and Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892

Received May 10, 2003

Abstract: 4'-Thio analogues **3**–**5** of Cl-IB-MECA (2) ($K_i = 1.0 \pm 0.2$ nM at the human A₃ adenosine receptor) were synthesized from D-gulono- γ -lactone via 4-thioribosyl acetate **14** as the key intermediate. All synthesized 4'-thionucleosides exhibited higher binding affinity to the human A₃ adenosine receptor than Cl-IB-MECA, among which **4** showed the most potent binding affinity ($K_i = 0.28 \pm 0.09$ nM). **4** was also selective for A₃ vs human A₁ and human A_{2A} receptors by 4800-and 36000-fold, respectively.

Introduction. Adenosine is known to be involved in regulation of many physiological functions through specific adenosine receptors, which are expressed on the surface of nearly all cells.¹ Four subtypes of adenosine receptors have now been cloned, characterized pharmacologically, and classified as A1, A2A, A2B, and A3. Among these, the A₃ adenosine receptor was the most recently identified and cloned from a rat brain cDNA library and later from sheep and human brain.^{2–4} This receptor is a G-protein-coupled receptor, and its activation inhibits adenylate cyclase and stimulates phospholipase C, leading to protein kinase C activation and histamine release from rat mast cells.⁵ Since the A₃ adenosine receptor is closely related to several diseases such as cardiac ischemia,6 cerebral ischemia,7 and inflammation,^{8,9} it has been a promising target for the development of new therapeutic agents. Thus, A₃ adenosine receptor agonists are under consideration in the treatment of cardiac and cerebral ischemia and cancer,¹⁰ while A₃ adenosine receptor antagonists have been suggested to be useful as a potential treatment for glaucoma and asthma.¹¹

A number of ligands have been synthesized and tested for binding affinity at the rat, sheep, and human A_3 versus A_1 and A_{2A} receptors. Among these ligands,

Figure 1. Rationale for the design of the target 4'-thionucleo-sides.

IB-MECA (1) was found to be a highly potent rat A_3 agonist ($K_i = 1.1$ nM), which is 50-fold selective for rat brain A_3 versus either A_1 or A_2 receptors.¹² Introduction of chlorine at the 2-position of IB-MECA, resulting in the formation of Cl-IB-MECA (2) dramatically increased binding affinity and selectivity.¹² 2 has been reported to display a K_i value of 0.33 nM and showed 2500- and 1400-fold rat A_3 receptor selectivity versus A_1 and A_{2A} receptors, respectively. 2 is now being used extensively as a pharmacological tool for studying A_3 receptors.¹³

Therefore, on the basis of the high binding affinity and selectivity of 2 on A_3 adenosine receptors, we designed and synthesized the 4'-thio analogue 3 of Cl-IB-MECA and its related analogues 4 and 5, since a sulfur atom may serve as a bioisostere of an oxygen atom (Figure 1). The N^6 -methyl group was introduced because this substituent is associated with enhanced affinity at the human (but not rat) A₃ adenosine receptor.¹⁴ A new ligand, thio-Cl-IB-MECA (3), and its derivatives 4 and 5 were efficiently synthesized from D-gulono- γ -lactone using a highly efficient synthetic route to prepare the 4-thioribose derivative. The synthesized N⁶-substituted 4'-thionucleoside derivatives 3, 4, and 5 consistently exhibited subnanomolar affinity and high selectivity for human A3 receptors versus human A_1 and A_{2A} receptors. Such agonists may be useful as pharmacological tools and also are of interest for the development as therapeutic agents.

Results and Discussion. Chemistry. The synthetic strategy to the desired nucleosides was to synthesize the glycosyl donor and then to condense with nucleobases. The synthesis of the glycosyl donor **14**, starting from D-gulono- γ -lactone (**6**), is shown in Scheme 1.

Starting material **6** was converted to the diacetonide **7** under the standard reaction conditions. Reduction of **7** with NaBH₄ followed by mesylation of the resulting diol afforded the dimesylate **8**. Cyclization of **8** with anhydrous sodium sulfide smoothly proceeded upon

^{*} To whom correspondence should be addressed. Phone: 82-2-3277-3466. Fax: 82-2-3277-2851. E-mail: lakjeong@ewha.ac.kr.

Ewha Womans University.

[‡] Seoul National University.

[§] Kwangju Institute of Science & Technology.

[#] National Institute of Diabetes and Digestive and Kidney Disease.

^{*a*} Reagents: (a) CH_3COCH_3 , H_2SO_4 , $CuSO_4$, room temp; (b) NaBH₄, MeOH; (c) MsCl, Et₃N, CH_2Cl_2 ; (d) Na₂S, DMF, heat; (e) 30% AcOH; (f) Pb(OAc)₄, EtOAc; (g) NaBH₄, MeOH; (h) BzCl, pyridine; (i) *m*CPBA, CH_2Cl_2 ; (j)Ac₂O.

heating in DMF to yield the thiosugar **9** in 94% yield. Selective hydrolysis of the 5,6-acetonide in the presence of 2,3-acetonide was achieved using 30% aqueous acetic acid to give diol **10** in 90% yield, based on recovered starting material. Oxidative cleavage of **10** with lead tetraacetate followed by reduction of the resulting aldehyde with NaBH₄ afforded **11**, which was treated with benzoyl chloride to give the benzoate **12**. Oxidation of **12** with *m*CPBA followed by heating of the sulfoxide **13** with acetic anhydride produced the key intermediate **14**.

The glycosyl donor 14 was utilized for the synthesis of 2-chloro N⁶-substituted 4'-thiopurine nucleosides 3-5 as shown in Scheme 2. The glycosyl donor 14 was condensed with silvlated 2,6-dichloropurine in the presence of TMSOTf to give the β -anomer **15** (60%) and its α -anomer in 9:1 ratio. Anomeric configurations were easily assigned using results from ¹H NOE experiments. The β -anomer **15** was converted to **16**, **17a**, **b**, and **18a**, **b** by treating with 3-iodobenzylamine, methylamine, and ammonia, respectively. For the synthesis of the uronamide derivatives, compounds 16, 17a, and 18a were treated with 80% aqueous acetic acid to give the diol derivatives, which were protected as disilyl ethers and then debenzoylated to afford the 4'-hydroxymethyl analogues 19, 20, and 21, respectively. Oxidation of 19, 20, and **21** with PDC in DMF followed by esterification with potassium carbonate and dimethyl sulfate in acetone, conversion of the 5'-esters to 5'-uronamides by treating

^{*a*} Reagents: (a) silylated 2,6-dichloropurine, TMSOTf; (b) RNH₂; (c) BzCl, pyridine; (d) 80% AcOH; (e) TBSOTf, pyridine; (f) NaOMe, MeOH; (g) (i) PDC, DMF, (ii) K_2CO_3 , (CH₃O)₂SO₂; (h) 2 N MeNH₂, THF; (i) *n*-Bu₄NF, THF.

with 2 N methylamine, and the final desilylation yielded the final nucleosides **3**, **4**, and **5**, respectively.

Biological Activity. The synthesized analogues were tested in radioligand binding assays¹⁵ using rat cortical A₁ receptors or striatal A_{2A} receptors or in Chinese hamster ovary (CHO) cells stably expressing the recombinant receptors (human A₁, A_{2A}, or A₃). Radioligands for A₁, A_{2A}, and A₃ receptors were the selective agonists [³H]-*N*⁶-(*R*)-phenylisopropyladenosine (PIA) (A₁), [³H]-CGS21680 (A_{2A}), and [¹²⁵I]I-AB-MECA [*N*⁶-(4-amino-3-iodobenzyl)adenosine-5'-(*N*-methyluronamide)] (A₃), respectively.

As shown in Table 1, all synthesized 4'-thionucleosides exhibited high binding affinity to the human A_3 receptor in the nanomolar range, while very low binding affinities to A_1 and A_{2A} receptors were observed. Among them, **4** displayed a K_i value of 0.28 nM at the A_3 receptor and had the highest affinity among the synthesized compounds. It was selective for A_3 vs human A_1 and human A_{2A} receptors by 4800- and 36000-fold, respectively. **3** and **5** with 3-iodobenzylamino and amino substituents at the N⁶ position also exhibited higher binding affinity to the A_3 receptor ($K_i = 0.38$ and 0.40 nM, respectively) than Cl-IB-MECA. To our knowledge, it is the first example of a 4'-thionucleoside exhibiting highly potent and selective binding affinity to the A_3 adenosine receptor. Compounds **3**–**5** were demonstrated

Table 1. Affinities of 4'-Thionucleoside Analogues in Radioligand Binding Assays at A₁, A_{2A}, and A₃ Receptors (Human or Rat, As Indicated)^a

		K _i (nM) or, if indicated, % displacement				
compd	hA ₁	\mathbf{rA}_1	hA _{2A}	rA_{2A}	hA ₃	
Cl-IB-MECA (2) 3 4 5	$\begin{array}{c} 1240\pm 320\\ 193\pm 46\\ 1330\pm 242\\ 89.2\pm 11.7\end{array}$	$\begin{array}{c} 820\pm 570\\ 140\pm 43\\ 198\pm 14\\ 294\pm 115\end{array}$	$\begin{array}{c} 5360 \pm 2470 \\ 223 \pm 36 \\ 20\% \ (10 \ \mu \mathrm{M}) \\ 158 \pm 29 \end{array}$	$\begin{array}{c} 470 \pm 365 \\ 348 \pm 110 \\ 6340 \pm 90 \\ <10\% \ (1 \ \mu M) \end{array}$	$\begin{array}{c} 1.0 \pm 0.2 \\ 0.38 \pm 0.07 \\ 0.28 \pm 0.09 \\ 0.40 \pm 0.06 \end{array}$	

^{*a*} All human AR experiments were performed using adherent CHO cells stably transfected with cDNA encoding the appropriate receptor. Binding at rat A_1 and A_{2A} ARs was carried out using rat brain homogenates. Radioligands: A_1 ([³H]- N^6 -(R)-phenylisopropyladenosine), A_{2A} ([³H]CGS21680), A_3 ([¹²⁵I]iodo-AB-MECA). to be full agonists in an assay of human A_3 receptor mediated inhibition of cyclic AMP in transfected CHO cells. 16 The IC_{50} values were 0.21 \pm 0.4 nM (4), 0.38 \pm 0.6 nM (3), and 1.0 \pm 0.3 nM (5).

In conclusion, we have designed and synthesized novel 4'-thioanalogues of Cl-IB-MECA as the A_3 receptor ligands on the basis of the bioisosteric rationale. We have found novel 2-chloro- N^6 -methyl-4'-thioadenosine-5'-methyluronamide (**4**) as a highly potent and selective agonist at the human A_3 adenosine receptor.

This result is of great significance in that there are few highly selective A_3 agonists. The selectivity of IB-MECA is evident in some pharmacological systems but not in others.¹⁷ Cl-IB-MECA is selective; however, it has associated toxicity in vivo. The finding that the 4'-thio modification is associated with high potency and selectivity significantly expands the possibilities to design additional A_3 agonists, which may potentially be useful as in vivo tools. Thorough investigation of the structure—activity relationship of this series and a molecular modeling study are in progress in our laboratory and will be reported in due course.

Acknowledgment. This research was supported by a grant from the Korea Science and Engineering Foundation (Grant KOSEF 2002-2-21500-001-3).

Supporting Information Available: Experimental procedures and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Olah, M. E.; Stiles, G. L. The role of receptor structure in determining adenosine receptor activity. *Pharmacol. Ther.* 2000, *85*, 55–75.
- (2) Zhou, Q. Y.; Li, C. Y.; Olah, M. E.; Johnson, R. A.; Stiles, G. L.; Civelli, O. Molecular cloning and characterization of an adenosine receptor—the A₃ adenosine receptor. *Proc. Natl. Acad. Sci.* U.S.A. **1992**, *89*, 7432–7436.
- (3) Linden, J. Molecular approach to adenosine receptors: receptormediated mechanism of tissue protection. *Annu. Rev. Pharmacol. Toxicol.* 2001, 41, 775–787.
- (4) Salvatore, C. A.; Tilley, S. L.; Latour, A. M.; Fletcher, D. S.; Koller, B. H.; Jacobson, M. A. Disruption of the A₃ adenosine receptor gene in mice and its effect on stimulated inflammatory cells. *J. Biol. Chem.* **2000**, *275*, 4429–4434.
- (5) (a) Jacobson, K. A. A₃ adenosine receptors: Novel ligands and paradoxical effects. *Trends Pharmacol. Sci.* **1998**, *19*, 184–191.
 (b) Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Merighi, S.; Varani, K.; Borea, P. A.; Spalluto, G. A₃ adenosine receptor ligands: History and perspectives. *Med. Res. Rev.* **2000**, *20*, 103–128.

- (6) Liang, B. T.; Jacobson, K. A. A Physiological role of the adenosine A₃ receptor: sustained cardioprotection. *Proc. Natl. Acad. Sci.* U.S.A. **1998**, *95*, 6995–6999.
- (7) Von Lubitz, D. K.; Ye, W.; McClellan, J.; Lin, R. C. Stimulation of adenosine A₃ receptors in cerebral ischemia. Neuronal death, recovery, or both? *Ann. N. Y. Acad. Sci.* **1999**, *890*, 93–106.
- (8) Sajjadi, F. G.; Takabayashi, K.; Foster, A. C.; Domingo, R. C.; Firestein, G. S. Inhibition of TNF-alpha expression by adenosine: role of A₃ adenosine receptors. *J. Immunol.* **1996**, *156*, 3435–3442.
- (9) Ramkumar, V.; Stiles, G. L.; Beaven, M. A.; Ali, H. The A₃ adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. *J. Biol. Chem.* **1993**, *268*, 16887–16890.
- (10) Fishman, P.; Madi, L.; Bar-Yehuda, S.; Barer, F.; Del Valle, L.; Khalili, K. Evidence for involvement of Wnt signaling pathway in IB-MECA mediated suppression of melanoma cells. *Oncogene* **2002**, *21*, 4060–4064.
- (11) Meade, C. J.; Mierau, J.; Leon, I.; Ensinger, H. A. In vivo role of the adenosine A₃ receptor: N⁶-2-(4-aminophenyl)ethyladenosine induces bronchospasm in BDE rats by a neurally mediated mechanism involving cells resembling mast cells. *J. Pharmacol. Exp. Ther.* **1996**, *279*, 1148–1156.
- (12) Kim, H. O.; Ji, X.-d.; Siddiqi, S. M.; Olah, M. E.; Stiles, G. L.; Jacobson, K. A. 2-Substitution of N⁶-benzyladenosine-5'-uronamides enhances selectivity for A₃-adenosine receptors. *J. Med. Chem.* **1994**, *37*, 3614–3621.
- (13) Jacobson, K. A.; Knutsen, L. J. S. P1 and P2 purine and pyrimidine receptors. In *Purinergic and Pyrimidinergic Signalling I*; Abbracchio, M. P., Williams, M., Eds.; Handbook of Experimental Pharmacology, Vol. 151/I; Springer-Verlag: Berlin, Germany, 2001; pp 129–175.
- (14) (a) Volpini, R.; Costanzi, S.; Lambertucci, C.; Taffi, S.; Vittori, S.; Klotz, K.-N.; Cristalli, G. N⁶-Alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A₃ receptor and a starting point for searching A_{2B} ligands. J. Med. Chem. 2002, 45, 3271–3279. (b) Gao, Z.-G.; Blaustein, J. B.; Gross, A. S.; Melaman, N.; Jacobson, K. A. N⁶-Substituted adenosine derivatives: selectivity, efficacy, and species differences at A₃ adenosine receptors. Biochem. Pharmacol. 2003, 65, 1675–1684.
- (15) Jacobson, K. A.; Ji, X.-d.; Li, A.-H.; Melman, N.; Siddiqui, M. A.; Shin, K.-J.; Marquez, V. E.; Ravi, R. G. Methanocarba analogues of purine nucleosides as potent and selective adenosine receptor agonists. *J. Med. Chem.* **2000**, *43*, 2196–2203.
- (16) Gao, Z. G.; Kim, S.-K.; Biadatti, T.; Chen, W.; Lee, K.; Barak, D.; Kim, S. G.; Johnson, C. R.; Jacobson, K. A. Structural determinants of A₃ adenosine receptor activation: nucleoside ligands at the agonist/antagonist boundary. *J. Med. Chem.* 2002, 45, 4471–4484.
- (17) Klotz, K.-N.; Hessling, J.; Hegler, J.; Owman, B.; Kull, B.; Fredholm, B. B.; Lohse M. J. Comparative pharmacology of human adenosine subtypes-characterization of stably transfected receptors in CHO cells. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1998**, *357*, 1–9.

JM034098E