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Abstract: Methodology is presented for assembling fluores-
cently labeled bivalent molecules from monovalent constitu-
ents, without side chain protection or coupling agents. To
illustrate the procedure, a series of bivalent peptidomimetics
directed toward the Trk receptors were prepared and screened
via fluorescent activated cell sorting scan assays.

Many signaling processes are associated with confor-
mational changes of cell surface receptors induced by
dimeric protein ligands.1-3 Synthetic bivalent ligands
therefore can be valuable mimics of these ligand-
receptor interactions.4-7 Combinatorial chemistry is
ideally suited to formation of bivalent molecules because
n(n + 1)/2 products could be prepared by combining n
monovalent ones with themselves, providing rapid ac-
cess to large libraries.

The main obstacles to combining monovalent mol-
ecules with themselves to form libraries of bivalent
products relate to the chemistry used to assemble them.
Formation of bivalent compounds can be efficient if the
monovalent starting materials are not protected, but if
they are, it is almost always necessary to purify each
deprotected compound prior to testing. An ideal method
would assemble small amounts of two samples into
heterobivalent dimers on mixing, without recourse to
protecting groups or reagents that give contaminating
byproducts. Practically, efficient coupling of molecules
with reactive, unprotected side chains is nontrivial.
There are no known methodologies that allow selective
formation of heterobivalent compounds from starting
materials with unmasked reactive functionalities (e.g.,
typical pharmacophores such as amines and carboxylic
acids). This communication describes methodology that,
unlike previous routes to bivalent compounds,8-15 fa-
cilitates this and simultaneously labels every single
dimer with a fluorescent label.

Our method arose out of a subtle feature of chemo-
selective reactions of amines with triazines that is
illustrated in the trial reactions shown in Scheme 1. A
supported aminofluorescein-chlorotriazine adduct was
exposed to three different unprotected peptidomimetics
in solution for extended reaction times. The solution-
phase peptidomimetics all had primary amine function-
ality (from Lys) and a secondary amine group from

sarcosine, proline, or 4-pipicolic acid. Only the latter
combined with the supported triazine to any appreciable
extent. This series of experiments indicated that pip-
eridine-based amines react with 2,4-diamino-6-chloro-
triazines at ambient temperature whereas other sec-
ondary amines and the Lys side chain do not. We
inferred that it might be possible to tag monovalent
peptidomimetics with a piperidine functionality that
would later serve as a handle for selective dimerization
reactions.

Solid-phase approaches tend to require large excesses
of one reactant, and this may not be practical if that is
a valuable peptidomimetic. Consequently, our studies
focused on exploiting the implications of the experi-
ments in Scheme 1 to develop a way of combining near-
equimolar amounts of two components in solution.
Scheme 2 shows the approach that worked.

A library of 12 peptidomimetics 1 was prepared using
solid-phase syntheses developed in this group.16-19 Each
sample was divided into two portions; one was cleaved
from the resin, and the other was treated with dichlo-
rotriazinyl-5-aminofluorescein in each case. Compounds
2 and 3 were purified (RP-HPLC). Finally, aliquots of
each unlabeled sample 2 were systematically combined
in separate vessels with near-equimolar amounts of
each labeled 3, as indicated in Scheme 2 (with elabora-
tion of structure information in Table 1).

Figure 1 shows the crude purities of the bivalent
molecules. We used 85% (UV) purity as a threshold for
testing. Compounds 4 that formed with inferior purities
were purified (RP-HPLC), but most met our purity
threshold and were tested “as is”. The bivalent mol-
ecules that were formed in less than 85% purity were
clustered around monovalent constituents i and j; we
believe that this may be attributed to slight decomposi-

* To whom correspondence should be addressed. Phone: 979-845-
4345. Fax: 979-845-8839. E-mail: burgess@tamu.edu.

§ Texas A & M University.
‡ Current address: Department of Chemistry, Faculty of Science,

Chiang Mai University, Chiang Mai 50200, Thailand.
† McGill University.

Scheme 1a

a Only the piperidine-based nucleophile adds to the chlorotri-
azine; sarcosine, proline, and the Lys side chain are unreactive.
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tion of these starting materials before the dimerization
reaction rather than to failure of the key transformation.

The fluorescein label in 4 serves dual roles. First, it
facilitates direct binding assays of the bivalent mol-
ecules. This is of vital importance. If every compound
in a library is labeled, it becomes possible to detect even

weak binding. Conversely, competitive binding assays
using labeled, natural ligands and unlabeled libraries
would not reveal weak binders if the affinity of the
natural ligand is high, and it usually is. We believe that
the importance of “universally labeled” combinatorial
libraries in binding assays to detect small molecules that
mimic or disrupt protein-protein interactions is under-
appreciated in the field. However, such libraries are
easily prepared by the methodology shown in Scheme
2. The second advantage of including a fluorescein label
is that it can help to improve the water solubilities of
some peptidomimetics.

Most of the compounds 4 were designed as mimics of
two neurotrophins: nerve growth factor (NGF) and
neurotrophin-3 (NT-3). We have previously reported
that some monovalent compounds in the series I-V can
bind to their high-affinity receptors, TrkA and TrkC,
respectively, and initiate functional responses.19,20 Nor-
mally, our “first-pass” assay to detect small molecules
that bind the Trk receptors is a functional one based
on rescuing cells from apoptotic cell death that other-
wise ensues if the cells are placed in a medium without
growth factors. However, in this work, 3 and 4 were
screened in a fluorescent activated cell sorting (FACS)
assay using transfected cells that overexpress TrkA
receptors. The parent nontransfected cell lines were
used as negative controls for nonspecific binding to the
cells, and monoclonal antibodies (mAb’s) specific to TrkA
and TrkC (Kd ) 2-8 nM)19,21 were used as positive
controls. Figure 2 shows the data obtained for all the
monomers 3 and the most active dimers 4.22

Strong staining for homodimer ee was particularly
interesting because the monovalent unit e closely
resembles a NGF mimic we reported previously.20

However, most of the actives were selective to TrkC
binding; this was expected because most of the mono-
meric units used were NT-3 mimics.23 The screen clearly
shows that some of the bivalent molecules, compound
aa for instance, give levels of fluorescence staining that

Scheme 2. General Approach to Bivalent Compounds

Table 1.

dimerizing
partners

macrocyclic
structure AA1 AA2

a I Glu Lys
b I Lys Ser
c I Ile Lys
d I Ile Arg
e II Glu Lys
f I Ser Lys
g III Gly Lys
h III Ile Lys
i III Ile Arg
j IV Lys Tyr
k V Ile Arg
l V Ile Lys

Figure 1. HPLC purities of the bivalent turn mimics 4 as
assessed by UV detection.

Figure 2. FACS data for 3 and the most strongly bound
bivalent ones 4.
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approach those obtained from the monoclonal antibodies
that bind the Trk receptors strongly. The next step in
this study will be to prepare analogues of compounds
such as aa without the fluorescent label for testing in
competitive binding assays with radiolabeled NT-3 (a
reagent that most laboratories would consider too
expensive to use in high-throughput assays of compound
libraries) and for functional assays. In that case, the
group that is substituted for fluorescein could be used
to adjust the physical properties of the bivalent molecule
in some favorable way (e.g., to improve the water
solubility). Some other data shown in Figure 2 merit
further investigation. For instance, dimer ee strongly
stains the TrkA receptor, but the heterodimer ek
unexpectedly stained TrkC with high selectivity. This
is a very surprising result. Conversely, some cases
where strong staining might have been expected but
was not observed can be explained in terms of in-
appropriate linker geometries and/or steric effects caused
by the linker and fluorescein label.

In summary, we have developed a method for selec-
tively forming fluorescently labeled homo- and hetero-
bivalent molecules. It enables small quantities (e.g., 1
mg amounts) of unprotected peptidomimetics with reac-
tive side chains to be coupled with high efficiencies. No
protecting groups or coupling agents are required, so
the products are isolated in high states of purity, often
enough to be used in a preliminary screen. All the
bivalent molecules prepared were fluorescently labeled
so that they could be tested in direct binding assays via
FACS. Such direct assays facilitate detection of weak
binders that might be missed in competitive assays
using labeled natural ligands that bind with very high
affinities. FACS assays are convenient and allow a
reasonably high throughput of compounds to be tested,.
They also tolerate higher DMSO levels than a standard
cell survival assay for screening growth factor mimics;
hence, more poorly water-soluble compounds can be
tested. In the case of neurotrophin peptidomimetics
binding the Trk receptors, this work has exposed some
interesting homo- and heterobivalent molecules for
further investigation.
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