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A two-step, fully automatic virtual screening procedure consisting of flexible docking followed
by activity prediction by COMparative BINding Energy (COMBINE) analysis is presented.
This novel approach has been successfully applied, as an example with medicinal chemistry
interest, to a recently reported series of 133 factor Xa (fXa)1 inhibitors whose activities
encompass 4 orders of magnitude. The docking algorithm is linked to the COMBINE analysis
program and used to derive independent regression models of the 133 inhibitors docked within
three different fXa structures (PDB entries 1fjs, 1f0r, and 1xka), so as to explore the effect of
receptor conformation on the overall results. Reliable docking conformations and predictive
regression models requiring eight latent variables could be derived for two of the fXa structures,
with the best model achieving a Q2 of 0.63 and a standard deviation of errors of prediction
(SDEP) of 0.51 (leave-one-out). The two-step procedure was then employed to screen a designed
virtual library of 112 ligands, containing both active and inactive compounds. While docking
energies alone could show a good performance for selecting hits, including structurally diverse
ones, inclusion of COMBINE analysis regression models provided improved rankings for the
identification of structurally related molecules in external sets. In our best case, a recognition
rate of ∼80% of known binders at ∼15% false positives rate was achieved, corresponding to an
enrichment factor of ∼450% over random.

Introduction
Structural information about the ligand-receptor

complex is becoming increasingly important in ligand
optimization,2-4 and with the advent of the human
genome and the ongoing Structural Genomics Initia-
tives,5 a large number of new pharmacological targets
and their corresponding experimental or modeled struc-
tures is expected to emerge.6 Methods to efficiently
integrate this rapidly increasing wealth of structural
data with more traditional lead optimization techniques
are beginning to be required in many drug discovery
projects.7 Docking programs are being used in conjunc-
tion with large three-dimensional (3D) databases of
small molecules, and different scoring functions are
being designed to predict de novo ligand affinity.8-11

While useful in the initial stages of lead detection,
available experience also indicates that predicted dif-
ferences of an order of magnitude between different
designs should not be relied upon as a basis for prefer-
ring one design to another. Therefore, regression-based
models must ultimately be considered during the course
of a drug design project so as to improve affinities. In
this setting, a sufficiently rapid, automatic, and predic-
tive QSAR-based analysis incorporating structural data
of the ligand-receptor complex could become most
valuable, by allowing maximal utilization of the avail-
able information in the iterative design-synthesis-test
cycles.

Here we report a novel, two-step fully automatic
procedure for the affinity optimization of a congeneric
series against a given target of known structure. The
approach is based on the use of a flexible docking
algorithm followed up by structure-activity model
derivation by COMparative BINding Energy (COM-
BINE) analysis.12,13 For the first step we describe a new
in-house flexible docking algorithm (see Methods for
details), which differs from most other approaches in
that it performs an exhaustive search of conformational
space. Since the subsequent structure-activity deriva-
tion is obtained from an analysis of the interaction
energetics, we considered it important to obtain complex
geometries corresponding to global minima of the energy
function employed (for our search space and at a given
degree of discretization), even if this goal entails an
increase in the computational demands. We also con-
sidered crucial, for optimal robustness and prediction
ability, to have a self-consistent method that employs
the well-established and widely used AMBER molecular
mechanics energy function14 for both the docking simu-
lation and the subsequent derivation of the regression
model. These reasons prompted us to develop a new
docking algorithm, consisting in a new alignment tool
playing the same logical role of the alignment algo-
rithms now available for CoMFA. It is not our intention
to describe here a general-purpose docking algorithm.
For the second part of the protocol, we derived a system-
specific, receptor-based QSAR model with the COM-
BINE analysis methodology,12 which allowed us to
estimate binding free energy differences based on the
computed interaction energies between ligand and
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receptor. The COMBINE analysis method has previ-
ously proved successful for deriving high quality recep-
tor-based QSAR models in a variety of protein-ligand
complexes, including enzyme-inhibitor,15-19 enzyme-
substrate,20-22 protein-DNA,23 and peptide-protein
complexes.24 Since the energetics of the binding process
are incorporated with modest computational require-
ments and the descriptors used to build the model are
physicochemically sound, an advantage of COMBINE
analysis is that it can potentially be applied to large
datasets and to the screening of virtual libraries while
preserving high predictive abilities. Despite these po-
tential benefits, however, to the best of our knowledge
the applicability of COMBINE analysis to virtual screen-
ing has not previously reported in the literature, and
this constitutes the first successful example.

As a test case we chose a recently reported congeneric
series of factor Xa (fXa) inhibitors.1 This series was
chosen not only because of its desirable properties (see
Methods) regarding number of compounds, diversity,
and affinity range, but also for their interest from a
medicinal chemistry standpoint. FXa is a member of the
trypsin-like family of serine proteases, an important
family of pharmacological targets relevant to a number
of diseases.25,26 In particular, fXa plays a critical role
in the formation of blood clots by ultimately regulating
the proteolysis of prothrombin to thrombin, the first step
that links the intrinsic and extrinsic coagulation path-
ways for converging to a final common route.27 This key
location, together with its role in thrombin activation
and potentiating effects on clot formation, identify it as
an attractive target in anticoagulant/antithrombic drug
development.28,29 The fXa inhibitors analyzed in this
paper correspond to a series of 138 compounds, origi-
nally described by Matter and co-workers and used by
these authors for the derivation of successful 3D-QSAR
models.1

The paper is organized as follows: first, in the
Methods section we describe the docking algorithm and
the COMBINE analysis method. Then, in the Results
and Discussion sections, we describe the accuracy of the
docking method, the predictive ability of the complexes-
based regression models, and the performance of the
two-step approach in virtual screening experiments of
molecular datasets. This is compared with the use of
the naked AMBER energy function14 employed within
the docking program. Finally, we close this paper with
a summary of the main conclusions obtained in this
work.

Methods
Docking Algorithm. Energy Function. The non-

bonded interaction energies of the AMBER force field14

(parm.99 parameter set30) using an all-atom model were
employed to model the ligand-receptor interaction. The
equation used here has the following form:

Aij and Bij represent the van der Waals (VDW)
parameters of the atom types assigned to atoms i and
j. Aij ) εijrm,12 whereas Bij ) 2εijrm.6 Parameters εij (in
kcal/mol) and rm (in Å) are obtained by applying the

Lorentz-Berthelot mixing rules. On the other hand, qi

and qj are the partial charges of atoms i and j,
respectively, and rij (in Å) is the distance between
them.31 We refer to the AMBER potential for details
about parameters.14 Hydrogen and oxygen radii were
scaled down with a factor of 0.8 for optimal performance,
based on trial and error tests (test results not shown).
A distance-dependent dielectric constant, ε ) 4, was
used. We have made some tests with more complicated
electrostatic models, but we did not observe in any of
the cases a statistically significant improvement in the
docking success rate (data not shown).

Automatic Ligand Parametrization. Ligand pa-
rametrization is automatically generated by means of
an analysis of the molecular topology of the ligand using
graph theory. After building the connectivity matrix of
the ligand, a depth-first search through the nodes of the
resulting graph is conducted. This allows the detection
and storage of bonded atoms, 1-4 atom groups, rings,
and fused rings in the molecule, as well as the location
of heteroatoms relative to the rings and the definition
of atomic hybridization states, among various topologi-
cal data. Once this information is gathered, the algo-
rithm attempts, in a second step, to assign AMBER
atom types14 to the molecule. This is done based on a
library of atom types and a set of classification rules
that use the topological data previously stored. At the
time of this writing, 22 different atom types from the
parm.99 parameter set30 of the AMBER force field14 are
being used and assigned (see Table A1, Supporting
Information, for atom types and rules). Atoms not falling
into any of the categories used by the program are
assigned generic types. Separately, unscaled atom-
centered charges for the ligand are obtained32 from a
linear fitting to the molecular electrostatic potential
computed using the AM1 Hamiltonian33 with the MO-
PAC program.34,35

Ligand Conformational Search. A torsion-driven
algorithm was developed to search the ligand confor-
mational space. Only torsion angles in rotatable bonds
are considered, with a rotatable bond defined as a single
or exocyclic double bond having at least one non-
hydrogen neighbor on each side of the bond. Rotations
affecting oxygen atoms in terminal groups, such as
carboxylates, phosphates, sulfonyl, etc., are skipped.
Amide bonds are not scanned unless asymmetric dis-
ubstitution is present on the amide nitrogen; otherwise
a 180° angle value is fixed for the dihedral X-N-C-X.
Sulfoamino nitrogen atoms are treated with sp3 hybrid-
ization. If a dihedral angle X-S-N-X needs to be
scanned, alternative eclipsed conformations (0°, 120°,
-120°) are considered. Only rotameric states are con-
sidered in general (although there are some special
cases; see below), with the following dihedral angles:
60°, 180°, and -60° for sp3-sp3 bonds; 0°, 60°, 120°,
180°, -60°, and -120° for sp3-sp2 bonds (when sym-
metry is present on sp2 only 60°, 180°, and -60° are
considered to avoid redundancies); and 0°, 180° for sp2-
sp2 bonds (again, symmetry existence is checked). There
are a few special cases: for sp2-sp2 rotatable bonds
attached to aromatic systems 0°, 90°, 180°, -90° angles
are used (when symmetry is present on sp2 only 0°, and
90° are scanned to avoid redundancies); on the other
hand oxygen-sp3 bonds in esters and ethers are treated

EMM ) ∑
i

prot

∑
j

lig [ Aij

rij
12

-
Bij

rij
6

+ 332
qiqj

εrij] (1)

806 Journal of Medicinal Chemistry, 2004, Vol. 47, No. 4 Murcia and Ortiz



as regular sp3-sp3 bonds except in cases where the sp3

center is located in a ring (e.g. ribose, glucose deriva-
tives), where eclipsed conformations are a common
trend. For these we consider 0°, 60°, 120°, 180°, -60°,
and -120°.

All possible dihedral angle combinations are gener-
ated, and the corresponding intramolecular energy of
each of the resulting conformations is computed based
on nonbonding 12-6 Lennard-Jones terms, without
considering 1-2 and 1-3 interactions, and with 1-4
interactions scaled down by a factor of 2, as it is
customary within the AMBER force field.14 No energy
minimization is performed in any of the conformations;
thus, a VDW energy cutoff of 5 kcal/mol is used to cap
each pairwise interaction. Only conformations with
computed VDW energies within 30 kcal/mol of the global
minimum are saved for docking. To reduce the combi-
natorial explosion, for sp3-sp2 bonds the program first
evaluates the local energy, up to 1-4 interactions,
associated with each of its six dihedral angles. The three
lowest energy values are then used in the combinatorial
search. This procedure proved very successful in keeping
the combinatorial size under control, while having minor
effects on the rate of bioactive conformation generation
and docking accuracy (data not shown).

The approach is designed specifically to have a high
information/CPU ratio. It has been shown recently that
the more sophisticated methods deliver only a small
margin of statistical improvement in reproducing bio-
active conformations with respect to the simple, rota-
meric-based torsional search.36

Grid Description of the Binding Site. The inter-
molecular energy is precomputed using an underlying
3D grid. A gridded box is created by adding a 3.5 Å
cushion to the maximum dimensions of the ligand
complexed with the protein and using a grid spacing of
0.3 Å. Then, for a ligand atom probe j at grid point
(k,l,m), the total interaction energy with all protein
atoms i is computed according to eq 1. Precalculating
the contribution of every receptor atom at every grid
point can be frustratingly lengthy, especially when large
sampling volumes are used. For this reason, and for
VDW terms only, a 12 Å cutoff around each grid point
is imposed. Only protein atoms within this specified
distance are considered. The precomputed grid energy
is then used during docking to calculate the protein-
ligand interaction energy for each conformer atom from
a trilinear interpolation, using the nearest eight grid
points surrounding the atom.31

Exhaustive Search Algorithm. A complete enu-
meration of all possible orientations of each ligand
conformer in the active site of the rigid protein is
computed. The conformer is translated and rotated in
the docking region using the ligand center of mass,
which is moved consecutively to every grid point in the
box using a grid spacing of 0.6 Å. At each grid point, a
complete sampling of the rotational space is achieved
by computing all nondegenerate sets of Euler angles
with a resolution of 27°.31 From here, the algorithm
switches to a greedy search. The best 512 energy
orientations obtained after this initial search with each
conformer are subjected to rigid body off-lattice energy
minimization using the SIMPLEX algorithm from Nelder
& Mead.37 The lowest energy pose obtained is stored as

the docking energy for that particular conformer. The
lowest energy conformation among all energies of the
conformers is taken as the predicted binding mode for
the ligand.

Docking Studies. Datasets Selection and De-
scription. We tested the performance of the flexible
docking procedure by studying two different datasets.
First, a general set of 55 noncovalent protein-ligand
complexes selected from the Protein Data Bank PDB38

(Table 1), with a broad range of diversity in both their
ligand structure (including atom types, number of
rotatable bonds, etc.) and binding site shapes. As a
second set, a series of sialic acid and benzoic acid
analogues described as inhibitors of the influenza type
A neuraminidase (NA) and cocrystallized with different
forms of this enzyme were used. These compounds,
which have been previously studied using COMBINE
analysis,19 provide a good system for testing both the
direct docking as well as the cross-docking performance
of our algorithm which considers only one rigid structure
for the protein. Only the X-ray structures were consid-
ered: 9 N2-strain A/Tokyo/67- and 23 N9-strain A/Tern/
Australia/G70c/75- subtypes (8 wild-type + 7 N9
Arg292Lys mutants + 8 Gly336Asn N9 mutants). Two
more influenza type B-strain B/LEE/40- NA in complex
with related ligands (PDB entries 1b9t and 1b9v)
completed the selection, giving a total of 34 complexes
containing 28 different inhibitors and three subtypes
of NA.

Preparation of Complexes for Docking. Protein
and ligand structural data were separated into different
files. Water molecules were removed from the protein
when present (except in NA series where the original
set up conditions for the protein file, containing some
water molecules, were kept as in the COMBINE analy-
sis from which they were taken).19 Protein hydrogen
atoms were first positioned using the protonate program
from the AMBER 7.0 package,39 while for the ligand,
hydrogen atoms were added using the InsightII40 builder
module, in both cases assuming physiological conditions.
As a rule, all carboxylic acid and phosphoric acid groups
were ionized, while all basic amino, amidino, and
guanidino groups were protonated. The orientation of
rotatable OH and NH3 groups was not optimized.
Standard AMBER force field14 charges and atom types
were used for the protein whereas the ligand was
treated as previously described.

We emphasize that during the conformational search,
the conformation of the bound ligand did not form part
of the pool of conformers at any point. All conformers
in the pool were generated by assigning canonical
rotameric states. As initial structures for this confor-
mational search, we used two sets: in one the bound
structure of the ligand was employed to carry out this
dihedral assignment. In a second set we started from
structures generated from scratch using standard bond
lengths and angles by applying CORINA41,42 with
default settings. These CORINA-generated structures
were then subjected to the same exact protocol for
conformer generation and docking.

Docking Evaluation. As metric for the evaluation
of the docking protocol, we used the root-mean-square
deviation (RMSD) of the best energy-scored solution
compared to the ligand position in the crystal structure.
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In keeping with standard practices in the docking field,9
we considered that a correct binding mode has been
reproduced when RMSD between predicted and experi-
mental coordinates was less than or equal to 2 Å. Direct
RMSD calculations used standard algorithms, consider-
ing heavy atoms and atom equivalences. For cross-
docking, pairwise superimposition with the MAM-
MOTH43 program was employed to obtain the alignment
between the protein considered for docking and the
actual binding partner of the ligand in the PDB. The
rotation matrix and translation vector obtained in this
way were applied to the ligand coordinates prior to the
RMSD computation.

COMBINE Analysis Theory Overview. For the
sake of completeness, we briefly summarize the basis
of the COMBINE analysis here.12,13 In COMBINE, the
binding free energy ∆G of the receptor-ligand complex
(or an equivalent expression such as pKi, pIC50, etc.) is
correlated with a set of selected interaction energy

components. Each selected energy component ui con-
tributes to the binding free energy according to its
weight wi:

Having a sufficiently high number of molecules with
known affinity in a training set and a dataset of ligand-
receptor models for these molecules, we can estimate
weights by linear fitting.

Since in the linear system in eq 2 there are usually
many more unknowns than equations, the use of
standard multiple regression techniques is precluded,
but a solution can be found by applying partial least
squares (PLS) analysis. Details of the PLS algorithm
are outside of the scope of this paper, but excellent
references are available.44

The energy terms entering eq 2 should reflect as

Table 1. Performance of the Docking Algorithm. Table Sorted by Number of Torsionals in the Ligand (ntor)

a PDB ID, Protein Data Bank entry. b nat, total number of ligand atoms. c char, ligand formal charge. d ntor, total number of rotatable
dihedral angles in the ligand. e logrotsel, number of ligand rotamers selected for docking analysis (within 30 kcal/molof the lowest energy)
expressed in logarithmic units. f RMSD dock, docking RMSD (Å) of the docked (best energy scored) conformation coordinates compared
with the crystal structure; a docking RMSD of 2.0 Å or less is considered a successful solution. g ENE dock, computed docking energy
(kcal/mol). h first rank, first docking solution with RMSD equal or less than 2.0 Å according to an energy-based rank. i first RMSD, RMSD
of the first rank. j gapVDW, energy difference (kcal/mol) between the VDW energy of the best scored docking solution and the VDW
docking energy average corresponding to the five following solutions in the energy ranked list of docked conformations. k VDW/hatm,
average VDW docking energy per ligand heavy atom (kcal/mol). l ND, not determined. For ligands without rotatable bonds (ntor ) 0),
only one docking solution corresponding to the ridig docking of the unique conformation is saved. m NF, not found. Shaded entries correspond
to program failures in finding the correct binding mode as the lowest energy pose (RMSD greater than 2.0 Å).

∆G ) ∑wiui + C (2)
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closely as possible a true partition of the binding free
energy. Entropic terms are however elusive to incorpo-
rate, so that it is customary to introduce only electro-
static interactions, ui

ele, and VDW interactions, ui
vdw,

between the inhibitor and each protein residue in the
energy-minimized structure to estimate the pKi value:

The important residues contributing to the activity
should exhibit large wi

vdw and/or wi
ele values. Note that

a larger (more positive) pKi value in eq 3 represents
stronger binding and corresponds to a more negative
binding free energy, ∆G, in eq 2.

The major advantages of this procedure over simply
correlating the observed ∆G with the total computed
binding energy are (i) that errors either in the field
parametrization or in modeled 3D structures can be, at
least partly, filtered out by the PLS analysis, and (ii)
that the resultant model can help to pinpoint those
interactions that are key for the observed differences
in binding affinity. This latter information can provide
important hints both for the design of molecules with
improved binding properties and for the prediction of
point mutation effects. The basis of this paper is to show
that these analyses can be automated to screen ligand
libraries.

COMBINE Analysis of FXa Inhibitors. A series
of 3-amidino-1H-indole-2-carboxamides and analogues
as inhibitors of fXa1 was used as an application of the
methodology. The general chemical scaffold and struc-
tural variations in the series are schematically shown
in Figure 3. All compounds reported in the original
study were used, with the exception of racemic com-
pounds, resulting in a set of 133 compounds out of the
138 initially described, with inhibitory activities cover-
ing 4 logarithmic units.1

Protein-Ligand Docking. Molecules were model-
built in InsightII40 Builder module in arbitrary confor-
mations, using standard bond lengths and angles. The
benzamidine moiety and basic amino functional groups
were protonated, and amides and primary and second-
ary amino groups adjacent to aromatic portions were
treated as uncharged. All carboxylate groups were
considered to be deprotonated. Atomic charge calcula-
tions and conformational sampling were carried out as
described before. Three publicly available X-ray struc-
tures of fXa in complex with nonpeptidic benzamidine-
related inhibitors (PDB entries 1fjs,45 1f0r,46 and 1xka47)
were selected for the docking studies and COMBINE
analysis of the indole derivatives. The previously de-
scribed docking protocol was used for each of these
receptor templates, and the rest of the procedure was
carried out in parallel for each of the three sets of fXa-
inhibitor complexes.

Energy Minimization of the Complexes. In prepa-
ration for COMBINE analysis, topology and coordinate
files of each modeled complex were obtained with the
tLEaP module from AMBER 7.0,39 and their geometries
were refined with module sander following an energy
minimization protocol consisting of 100 steps of steepest
descent and up to 400 steps of conjugate gradient during
which only protein atoms were allowed to relax. A
distance-dependent dielectric constant, ε ) 4rij, was

used throughout, and no cutoff distance was used in the
evaluation of nonbonded interactions. We note that,
since the conformation of the ligand was kept frozen,
no intramolecular ligand force field terms were required
during the minimization, facilitating the high-through-
put character and automation of the approach.

Chemometric Analysis. All computations were car-
ried out with our in-house program COMBINE. For
comparison purposes and easier manipulation, only
common residues within the three fXa structures were
considered, yielding a total of 286 residues, the number
present in the 1f0r PDB entry.46 Therefore, each com-
plex was then described by 286 intermolecular electro-
static energy variables (using a dielectric constant of ε

) 4) and 286 intermolecular VDW energy variables,
giving a total of 572 unscaled x-variables which were
used directly in the analysis without further pretreat-
ment. Introduction of additional external variables, such
as electrostatic desolvation energies, entropy estima-
tions, or distance-dependent dielectric constants, did not
produce improved models (data not shown). The y-
variable was assigned as pKi. Initial PLS analysis with
the 133 complexes gave leave-one-out (LOO) cross-
validation Q2 values in the range of 0.3, due to the
presence of some outliers. We ascribed the existence of
these outliers to wrong docking modes predicted by our
docking program (vide infra, Results and Discussion).
These complexes were removed, and PLS analyses were
repeated. This procedure gave final training sets of 114
(1fjs), 107 (1f0r), and 113 (1xka) compounds. Statistics
from the analysis of the 1fjs- and 1f0r-based models are
found in Table 2 and are further discussed in the
Results and Discussion sections, while the poorer qual-
ity of the final 1xka-based regression model made us
discard it for further applications.

Since we removed some of the complexes from the set,
it was important to establish the robustness of the
generated regression models. Two tests were carried
out. The first was a scrambling test: activity data for
each final COMBINE analysis training set (1fjs and
1f0r-based models) were randomly scrambled 100 times,
producing 100 regression models with the randomly
assigned activities, which were further analyzed and are

Table 2. COMBINE Analysis Perfomance for the fXa
Inhibitors Seriesa

PDB ID 1fjs 1f0r

number of variables 286*2 286*2
number of LV 8 8
n 114 107
R2 (fitting) 0.752 0.761
SDEC 0.415 0.394
Q2 (cross-validation) 0.628 0.607
SDEP 0.509 0.506

a Abbrevations: PDB ID, Protein Data Bank entry used for
generating the fXa-inhibitor complex models; LV, latent variables;
n, number of compounds in the training set; R2, correlation
coefficient (fitting performance given by R2 ) 1 - [∑i)1

n (yexp(i) -
yfitt(i))2]/[∑i-1

n (yexp(i) - 〈yexp〉)2] where yfitt(i) corresponds to the value
of the quantity fitted with the model for complex i, yexp(i) is the
experimental value of the quantity for complex i, and 〈yexp〉 is the
average experimental value of the quantity for the complete set
of n complexes); Q2, predictive correlation coefficient (the equiva-
lent of R2 calculated for the cross-validated predictive perfor-
mance); SDEC, standard deviation of errors of correlation (given
by SDEC ) {[ ∑i)1

n (yexp(i) - yfitt(i))2]/n}1/2); SDEP, standard devia-
tion of errors of cross-validated prediction (the equivalent of SDEC
calculated for cross-validation).

pKi ) ∑
i

wi
vdwui

vdw + ∑
i

wi
eleui

ele + C (3)
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described in the Results section. For the second test,
external cross-validation was simulated by randomly
taking 13 complexes from the original dataset of 133
compounds and using them as external sets, while the
remaining complexes were used to derive COMBINE
analysis models, exactly in the same way as described
above. Twenty such test models were generated for the
1fjs and 1f0r sets of complexes, and these are discussed
in the Results and Discussion sections.

Virtual Screening Experiments. We have inves-
tigated the use of the two-step procedure, flexible
docking, and external pKi prediction with COMBINE,
to automatically screen virtual libraries. For this pur-
pose, we have designed a small in-house virtual library
of 99 ligands, containing both inactive and active
compounds (see Tables A2 and A3, Supporting Informa-
tion). Ligands were prepared and docked into the fXa
binding site (using both 1fjs and 1f0r PDB entries) as
previously described. In our evaluation protocol, 20
different sets of molecules (each containing 13 randomly
chosen compounds) were left-out, one at a time, from
the original list of 133 inhibitors and mixed with the
rest of the compounds (see Tables A2 and A3, Support-
ing Information) that made up the virtual library. Thus,
each trial of the library consisted of 86 inactive mol-
ecules (Table A2, Supporting Information), although we
do not have experimental data to support this conten-
tion, 13 fXa inhibitors not related to the series (Table
A3, Supporting Information), and 13 inhibitors from the
Matter et al. series not used in the derivation of the
COMBINE analysis model. Each COMBINE analysis
model derived for the remaining 120 fXa ligands was
then used to screen the library.

The screening results were analyzed using the famil-
iar Receiver Operating Characteristic (ROC) plots:48 the
13 known fXa inhibitors that were not members of the
series studied were marked as active, a pKi cutoff of 5.5
was used to regard the 13 excluded series members as
active or inactive, and the remaining 86 compounds in
the library were marked as inactive. The active/inactive
list was ranked according to the COMBINE analysis
predicted affinity. The percentage of successfully found
binders (true positives) was scanned through the ranked
database and plotted as a function of the cumulative
percentage of nonbinders (false positives) (Figure 8). In
addition, enrichment factors9 (concentration of binders
in a subset/concentration of binders in the database)
were also computed through the database and plotted
against the corresponding percentage of the screened
database (Figure 9).

For comparison, the screening methodology was also
pursued for both sets of complexes (1fjs and 1f0r) using
the naked AMBER energy function employed within our
docking program. Ligand sets were ranked according
to their computed docking energy, and ROC and enrich-
ment factor plots were then produced as described
before (Figures 8 and 9). Average plots are presented
except for the docking energy-based virtual search of
fXa inhibitors that were different from the studied
series, where only one list results.

Results

Evaluation of the Docking Algorithm. We have
tested the performance of the flexible docking procedure

by assessing its ability to reproduce the experimental
docking orientation, as expressed in terms of the RMSD
of the lowest energy pose found by the program. We
studied two different test sets, a first series of 55
structurally diverse complexes, and a second series of
34 NA inhibitors that have been cocrystallized with
different forms of this enzyme.19

Docking Performance with the General Test
Set. The performance of the docking algorithm on the
set of 55 structurally diverse protein-ligand complexes
is shown in Table 1. The results are summarized in
Figure 1, which displays the binned and integrated
RMSD distributions for the lowest energy poses in the
test set. In 40 out of 55 cases (73%), the lowest energy
pose is within 2.0 Å RMSD with respect to the X-ray
PDB complex (see Table 1, Figure 1a and Discussion).
The results are not dependent on the ideality of the bond
lengths and angles in the molecule: the CORINA
generated conformers show an almost identical behavior
to the PDB based conformers. As for the remaining 27%,
the program fails to obtain the correct binding mode as
the lowest energy pose (shaded entries in Table 1).
Among these, in 15 cases the binding mode is within
2.5 Å of the experimental solution. In 10 cases the
algorithm finds a correct binding mode within the first
15 energy ranked solutions. Only in three cases does
the algorithm fail to find correct solutions in the upper
ranking list. When these failures were analyzed, we
found that in most cases (as in 1aqw, 1 mLd, 1tnk, 1ppc,
2tsc, 1mts, or 4dfr) the docked ligand largely overlaps

Figure 1. Histograms showing (a) the docking RMSD (Å)
distribution starting either from the crystallographic ligand
structure (darker line and bars) or from de novo built ligand
structure (lighter colors) when generating the rotamers to be
docked (see text for details) (RMSD of 2.0 Å or less is
considered a successful solution) and (b) the computing time
(sec) distribution in our docking validation set of 55 complexes.
In all cases, both binned and integrated distributions are
shown.
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with the experimental binding mode, but has one
portion of the molecule in a different orientation. On
the other hand, the programs failed completely in the
recognition of the binding modes for 1bma and 1d0l.

Although difficult to quantify, different docking stud-
ies over different systems (data not shown) have allowed
us to observe that as a general trend, successful docking
runs tend to present more negative values of the VDW
energy per heavy atom and a larger VDW energy gap
(measured as the VDW energy difference between the
model ranked first and the average of the next five
poses). These energy values are shown for the docking
models presented in Table 1. This tendency is in
agreement with a funnellike view of the energy land-
scape in molecular recognition, with a predominant role
of shape complementarity in selecting the binding
mode.49 As native interactions are on average stronger
than non-native ones, increasingly larger decreases in
energy are expected as the nativelike binding mode is
approached.

Cross Docking Performance on a NA-Inhibitor
Set. Many proteins undergo small side chain or even
backbone movements upon ligand binding. In some
extreme cases large loop movements or even domain
shifts can be induced.50,51 This induced fit is potentially
problematic for virtual screening computations, as in
most cases there is only one crystal structure to be used
during the screening process.52 Assessing the sensitivity
of the predicted docking modes in relation to the extent
of structural changes is therefore important. The impact
that small conformational shifts may have on the
docking performance of our algorithm was evaluated
through cross-docking experiments of 28 derivatives of
sialic acid and benzoic acid analogues as ligands into
34 X-ray protein structures of influenza NA taken from
a series previously used in the application of the
COMBINE analysis19 as well as from two additional
PDB entries (see Methods). NA is known to exhibit
small but significant induced fit effects upon ligand
binding. Previous docking studies have indicated that
some docking methods are sensitive to the induced fit
effects present in the NA-inhibitor series of com-
plexes.53 On the other hand, a recent report by Birch et
al. has showed a significantly robust and accurate

performance of GOLD on this application.54 Thus, it was
of interest to study the performance of our algorithm
on this set.

The full set of 34 complexes was tested and the RMSD
to the reference structures calculated. As shown in
Figure 2, in 82% of the cases the algorithm correctly
docks the ligand into the binding site of its experimental
partner. This is better than the 73% success rate seen
against the general test set, and slightly worse than the
results (87%) obtained for the full set tested with
GOLD.56 As previously observed, when failures are
present the predicted conformation largely overlaps with
the experimental binding mode. The cross-docking
experiments had a high success rate, even for ligands
that are known to cause small but significant induced
fit effects. Thus, considering all possible cross-docking
cases, the algorithm found the experimental binding
mode in 66% of the cases (Figure 2), although results
varied significantly with the protein model. While some
models produced consistently good binding modes (e.g.,
82% of ligands correctly docked against bc6 conforma-
tion), others performed poorly on average (e.g., only 21%
and 27% of ligands were correctly docked against 1ivd
and 1ive, respectively). These differences might be
related to either the quality of the X-ray structure or
the degree of “promiscuity” of some cavities or both, as
discussed by Birch and co-workers.54 Taking into con-
sideration the differences in the series, we can conclude
that our algorithm appears to be fairly insensitive to
small protein shifts whereas its sensitivity to induced
shifts is similar to that described for GOLD (76% of
success for the cross-docking into the protein structures
of their full set), despite our use of a sharp 12-6
potential for the VDW interactions.

COMBINE Analysis of fXa Inhibitors. Docking
of FXa Inhibitors. For the derivation of the QSAR
model and all subsequent experiments, our first objec-
tive was to derive binding modes for all members in the
set of 3-amidinobenzyl-1H-indole-2-carboxamide ana-
logues published by Matter et al.1 (Figure 3). Various
protein structures were considered in order to study the
dependence of the COMBINE analysis models on the
structural variability of the receptor. PDB entries 1fjs,45

1f0r,46 and 1xka47 were selected. The series of 133

Figure 2. Histograms showing the docking RMSD (Å) distribution (RMSD of 2.0 Å or less is considered a successful solution) in
a set of 34 neuraminidase-inhibitor complexes taken as representative congeneric series example.19 Direct docking (black) and
cross-docking (gray) results are compared. Both binned (bars) and integrated (lines) distributions are shown.
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molecules was docked in each one of them following the
procedures already described in the previous sections.

Before discussing our docking results, we briefly
introduce the fXa binding site. The main determinant
for the specificity of ligands toward proteins of the
chymotrypsin-like family such as fXa is believed to be
the deep S1 or specificity pocket.55 The interior of the
S1 pocket is fairly hydrophobic, except for the presence
of the acidic carboxyl side chain of Asp189 (numbering
scheme following chymotrypsin) at the bottom. This
acidic group usually forms a salt bridge with positively
charged ligand moieties, such as guanidinium groups,
amines, or amidines. The catalytic triad, or S2 pocket,
is formed by residues His57, Asp102, and Ser195.
Additionally, the binding site possesses a S3 binding
subsite, consisting of Gly216. Finally, there is a rather
structured and mostly hydrophobic distal S4 region,
lined by residues Tyr99, Phe174, Trp215, and Glu217,
which is known as the aryl binding region. This pocket
has been largely exploited in the design of selective fXa
inhibitors.28,29 The arrangement of the binding site and
a typical binding mode for members of the series studied
here can be observed in Figure 4a. This binding mode
is consistent with the available data. As shown by
Matter et al.,1 the amidinobenzyl at the indole N1 is
located in the fXa S1 pocket, interacting with the basal
Asp189. The indole scaffold itself is solvent-exposed,
stacked against the flexible side chain of Gln192, and

involved in VDW contacts with the Cys191-Cys220
disulfide bond. The terminal group of the 3-amidinoben-
zyl-1H-indole-2-carboxamides and esters is situated in
the S4 pocket, either parallel or perpendicular to the
Trp215 indole ring, depending on its nature and sub-
stitution pattern.1

Visual inspection of the docking results indicated that
predictions were generally consistent with the canonical
binding mode. However, and as expected based on the
validation sets, some alternative docking modes were
also found. Differences were also found depending on
the PDB employed for the protein. 1Fjs docking modes
were more homogeneous, commonly implicating either
the standard mode or a reverse mode, inverted by 180°
so that the benzamidine fragment occupied the S4
pocket while the distal ring was at the S1 subsite. This
inverted mode was also the most frequent alternative
pose at 1f0r enzyme cavity. As an example, the standard
binding mode is shown for compound 34 (original series
numbering1) in Figure 4a, while the inverted pose for
compound 30 is presented in Figure 4b, both docked to
1f0r. With 1f0r a similar fraction of canonical modes was
observed compared to 1fjs, however, there was less
homogeneity regarding alternative poses. Many solu-
tions showed the benzamidine ring inside the S1 pocket,
while the indole scaffold presented a different pose,
perpendicularly situated with respect to the binding
conformation shown in Figure 4a, and with the side
chain connecting both lateral rings of the ligand struc-
ture pointing toward the S2 subsite, and leading also
to a slightly different occupation of S4. Finally, 1xka
showed the least “promiscuous” docking cavity. It is
interesting to note that this is the structure solved at
lower resolution. On the other hand, a linear correlation
between the computed docking energy for the ligands
and their fXa inhibitory activity was observed only for
1fjs-based models.

Chemometric Analysis. The same procedure was
followed in parallel for each of the three sets of fXa-

Figure 3. General structure of the series of 3-amidinobenzyl-
1H-indole-2-carboxamides and analogues1 used for our COM-
BINE analysis studies of the blood coagulation enzyme fXa
inhibitory activity.

Figure 4. Details of binding models obtained for the studied indole derivatives as fXa inhibitors using our flexible docking
algorithm. (a) Standard (correctly modeled) binding mode is shown for compound 34 (original series numbering) as an example,
while for an (b) inverted type binding pose, compound 30 was chosen as an example. In both shown examples, 1f0r PDB entry
was used for representing the fXa binding site. S1 and S4 denote subsites 1 and 4, respectively, in the binding site of fXa, as
defined in ref 55. Note that occupations of S1 and S4 pockets of the fXa binding site by the ligand benzamidine aromatic moiety
and the distal aromatic subunit are inverted. Surface coloring scheme is according to the contributing atom.
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inhibitor docking models (1fjs, 1f0r, and 1xka-based
models). The predicted binding modes (see Methods for
details) were used for the derivation of the QSAR model
using COMBINE analysis. Initial PLS analyses, con-
sidering all 133 fXa inhibitors, gave low LOO Q2 values
in the range of 0.2-0.3. While this may point to some
systematic errors in structural modeling or energy
computation, it is most likely due to the presence of
wrongly predicted docking modes for some inhibitors.
Although PLS can cope with a certain amount of noise,
the existence of these cases can compromise model
derivation. In practice, a procedure must be imple-
mented to cope with these cases by detecting likely
wrong docking modes. Several approaches could have
been used for this. We chose a self-consistent method
where we assumed that significant deviation from the
trend provided by the majority of the members in the
sample most likely implies a wrong docking mode for
the outlier. The best predictive model from this first run,
as judged by Q2 values in LOO cross-validation (1fjs-8
latent variables, Q2 ) 0.317, R2 ) 0.564; 1f0r-5 latent
variables, Q2 ) 0.214, R2 ) 0.404; 1xka-3 latent vari-
ables, Q2 ) 0.249, R2 ) 0.331) was chosen, and com-
pounds with unsigned errors of more than 1.2 pKi units
were removed from the training set, and a new PLS
model was derived. The procedure was repeated until
no outliers were found. In all cases three iterations were
required, leaving 114 (1fjs), 107 (1f0r), and 113 (1xka)

compounds out of the initial set of 133. As expected,
most of the outliers removed had docking modes incon-
sistent with the known binding modes. The statistical
parameters corresponding to the 1fjs and 1f0r-based
models at the optimal dimensionality of 8 are given in
Table 2, while their fitted and predicted pKi values are
plotted against their experimental pKi values in Figure
5. The poorer quality of the final 1xka-based regression
model made us discard it for further applications (Q2 )
0.487, R2 ) 0.584, SDEP ) 0.555).

There is risk of over-fitting in the procedure applied
to generate the final models, and appropriate tests must
be used. To test the statistical significance of these
models, scrambling tests were performed. Activity data
were randomly scrambled 100 times producing 100
regression models. As can be seen in Figure 6, both
models were robust according to the scramble runs. In
a second test, external cross-validation was simulated
by randomly taking 13 complexes out of the original
dataset of 133 complexes to be used as a prediction or
test set. The new training set of 120 inhibitors was used
to build a model following the same protocol as applied
to the whole dataset and the pKi of the test set finally
predicted with the purged training set. 20 of such test
models were generated, using the same sets for 1fjs as
well as for 1f0r-based COMBINE analysis validations.
Models with similar internal predictive ability were
obtained (1fjs - 3 to 8 latent variables, Q2 ) 0.478 to

Figure 5. Predicted pKi (a) fitted or (b) cross-validated, versus experimental pKi for the fXa inhibitory activity for the 1fjs-based
set (114 complexes) and the 1f0r-based set (107 complexes) included in the derivation of the corresponding COMBINE analysis
model. The dark line corresponds to the regression line and the lighter lines mark deviations of (1.5*SDEP pK units.
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0.642; 1f0r - 5 to 9 latent variables, Q2 ) 0.502 to
0.679). However, although validation by permutation
confirms no chance correlation in these final models
(Figure 6), the external predictive performances were
proved to be not only worse than the internal, as
expected, but really variable depending on the chosen
external set due to the presence of some outliers
(statistical data considering all compounds in the fil-
tered external test sets: 1fjs: Q2 ) 0.2060, R2 ) 0.3116
SDEP ) 0.7940; 1f0r: Q2 ) 0.1029, R2 ) 0.2379, SDEP
) 0.8919). The cross-validated (both internally and
externally) predicted pKi values are plotted against
experimental pKi values for the 20 models in Figure 7.
Overall, both 1fjs-based and 1f0r-based COMBINE
analysis models produced reasonable predictions. This
analysis indicates that it is possible to remove mis-
docked solutions on the basis of the predictive ability
in the context of the congeneric series, without produc-
ing a noticeable over-fit in the final models.

Virtual Screening Experiments. We generated a
small in-house virtual library of 112 ligands (Tables A2
and A3, Supporting Information), containing both active
and inactive compounds, as described in Methods. The
AMBER energy-based and COMBINE analysis-based
activity predictions are shown in Figure 8 in the form
of ROC48 plots. COMBINE analysis models improve the
ability to identify structurally related molecules in
external sets over the naked AMBER force field, achiev-
ing in our best case a recognition rate of ∼80% of known
binders at ∼15% false positives rate. The performance
with the 1f0r-based COMBINE analysis model was
slightly better than the 1fjs-based one (Figure 8a) but,
qualitatively, the results are similar. In the down side,
it can also be observed that it is not possible to identify
structurally unrelated inhibitors from those in the
training series with COMBINE; pKi predictions in this
case are not significantly better than random (Figure
8b). Interestingly, the naked AMBER energy function
has in this case some predictive ability for 1f0r-based
models (Figure 8b).

The superiority of COMBINE analysis was also shown
when the enrichment factors were analyzed (Figure 9).
For members of the Matter et al. series, the COMBINE-
based method achieved enrichment factors of 350-

450%, depending on the receptor structure used, whereas
the AMBER-only energy function produced poorer re-
sults.

Insights into FXa Inhibition. We used a threshold
of 0.05/-0.05 on the PLS coefficients*STD to extract
“important” VDW variables (Figure 10a), i.e., variables
that are relevant to explain the activity differences
across the series. VDW variables above the threshold
in both COMBINE analysis models come from residues
Ala190, Arg222, Gln192, Glu217, Gly216, Phe174, and
Tyr99. Gly219 and Thr98 are important in 1fjs-based
COMBINE analysis models, while for 1f0r-based analy-
sis their contributions are not significant; His57, and
to some extend Gln61, are more relevant in the 1f0r-
based model. On the other hand, electrostatic variables
above our selected threshold (0.1/-0.1, see Figure 10b)
come mostly from charged residues: Arg143, Arg222,
Asp102, Asp189, Asp194, Glu217, Glu97, Ile16, and
Lys96. Specific to the 1fjs model are: Asp100, Lys148,
Lys156, Lys224, and Trp215. On the other side, Glu147
is relevant only in the 1f0r-based model.

Figure 6. Histograms showing the cross-validated Q2 value
binned distribution for 100 regression models obtained after
randomly scrambling the activity data. 1Fjs-based models are
shown in black while gray is used for the 1f0r-based models.
Arrow lines mark the cross-validated Q2 value for the real
models.

Figure 7. Cross-validated versus experimental pKi for the
inhibitors included in the training set (black dashes) and the
corresponding inhibitors randomly extracted as a external set
(white squares), using (a) 1fjs-inhibitor docking models or (b)
1f0r-inhibitor docking models for the COMBINE analysis
derivation. The prediction data for each of the twenty ran-
domly chosen external test sets of 13 inhibitors and the
resulting internal training sets are shown together for each
fXa PDB entry (see text for details). The dark line corresponds
to a hypothetical perfect regression line (x ) y) and the lighter
lines mark deviations of (2*SDEP pK units (SDEP values are
taken from the full models).
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As can be observed in Figure 10, the most influential
variables are correlated in both models. However, there
are also a few terms with considerably larger signifi-
cance in one model than in the other. For example, the
VDW contribution of Gln192 and Gly219 is larger with
1fjs than with 1f0r, while the opposite occurs with
Gly216 (Figure 10a). More notable is the different
behavior in the electrostatic interactions profiles, par-
ticularly for residues of Arg222, Glu217, Asp102, Arg143,
and Glu147 (Figure 10b). In Figure 10c we show the
most prominent differences within the structural con-
text. Note the different conformation of the S4 aromatic
box in 1fjs and 1f0r. Both Phe174 and Tyr99 side chains
are displaced in the same direction giving a shifted
configuration for their location. This relative swing
movement might affect the affinity contribution profile
of residues close to the benzenic side chains that have
the same or similar side chain conformation in both
X-ray structures, namely Glu217 and more strikingly
His57, Thr98, and Asp102. The side chain of Gln192,
located at the entrance of the S1 pocket, is also notably
different in the two PDB entries employed, as well as
Gln61, and to a lesser extend Arg143 and Arg222 side
chains. Other residues having notably different contri-
butions are second-shell charged residues such as

Glu97, Lys96, Lys148, Lys156, Lys224, and Glu147.
Therefore, while qualitative analysis of regression coef-
ficients is robust to the different conformational sub-
states of the receptor, quantitative analysis is not
warranted.

Finally, a view of the electrostatic and VDW energy
contributions selected by COMBINE analysis at the fXa
binding site is shown in Figure 11. It is reassuring that
all pockets known to be required for inhibition with this
series are selected, namely the S1 pocket in the neigh-
borhood of Asp189, including Arg143, Arg222, Gly219,
and Gln192 amino acids; the S4 pocket containing the
aromatic box and Glu217; the S2 region; and to a minor
extent the interaction with the backbone through resi-
due Gly216, known as the S3 area.

Discussion
A two-step, fully automated procedure consisting of

ligand-receptor docking and affinity prediction using
COMBINE analysis is presented as a useful method for
lead optimization, including virtual screening-based
optimization. This is exemplified with a set of fXa
inhibitors,1 selected as a realistic model for lead opti-
mization. Complexes were generated by automatically
docking the ligands into fXa binding sites, solved with

Figure 8. Receiver Operating Characteristic (ROC) plots for the fXa inhibitory activity detection in virtual screening experiments
of our “toy library”: (a) series members fXa ligands and (b) fXa inhibitors nonstructurally related to the series. Both, 1fjs-based
models and 1f0r-based models are shown. Molecules were ranked using two different scoring schemes: docking energy score
(gray line) and COMBINE analysis externally predicted (cross validated) pKi (black line). The percentage of successfully found
binders (true positives) is scanned through the ranked database and plotted (points) as a function of the percentage of false
positives accumulated for each one of the randomly chosen test sets. The average plot (lines) is also shown (see text for details).
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proteins bound to structurally unrelated ligands. The
series is large (133 members), as it would be expected
on an ongoing drug discovery program.

The first step in the procedure makes use of an
automatic docking algorithm. We have applied a deter-
ministic approach, splitting up the conformational space
into quantized units by only considering torsional
degrees of freedom and fixing each torsional angle into
coarse rotameric states (see Methods). By doing this,
we are certain we can select the lowest energy pose with
our scoring function at a given level of discretization,
but this comes with a price. There is a risk of missing
conformations that are outside the defined torsional
space.36 However, and despite the coarse set of angles
employed, the strategy has proved surprisingly robust
and successful, as exemplified by the 73% success rate
in our set of 55 different complexes. This is similar to
or better than the success rates reported for the most
successful docking algorithms over large datasets. For
example, studies with GOLD have reported a 71%
success rate out of a list of 100 examples,56 while similar
studies with FlexX have reported only 46.5% in a 200
compounds database,57 although Gohlke et al. presented
a substantial improvement within FlexX by reranking
the poses with DrugScore. In this case, 75% of the cases,
using two datasets of 91 and 68 complexes, were
predicted correctly.58 Finally, Surflex,59 a flexible dock-
ing algorithm that combines the scoring function from

Hammerhead60 with a search engine that relies on a
surface-based molecular similarity method, obtained
∼70% success rate on a list of 81 complexes. As an
additional test to validate the docking results, we
selected from published data for these programs a set
of 53 complexes reproducing the rotatable bond distri-
bution of Table 1 (for GOLD data were taken from
http://www.ccdc.cam.ac.uk/prods/gold/rms_tab.html;
for FlexX data were downloaded from http://www.
biosolveit.de/FlexX; and for Surflex data were selected
from the original reference). Using our criteria of success
we obtained the following success rates for the different
programs: 79% (Surflex); 77% (Gold); 53% (FlexX). This
should be compared with the 73% success rate of our
program.

Although we were initially surprised with the per-
formance of the algorithm using such a naı̈ve approach,
other groups have documented similar observations. For
example, Richards and co-workers have also recently
shown that it is possible to discretize the search space
in very coarse “chunks” and yet achieve successful
docking predictions.61 Similarly to us, they employ a
coarse set of rotameric states, in their case with a step
size of 60°. A flexible ligand docking protocol that uses
a grid-based method to sample the conformation of an
unbound ligand and to select the low-energy conformers,
followed by rigid docking and structure refinement has
been also successfully applied by Wang et al.62

Figure 9. Enrichment factor for the fXa inhibitory activity detection in virtual screening experiments of our “toy library” scanned
through the ranked database: (a) series members fXa ligands and (b) fXa inhibitors nonstructurally related to the series. Both,
1fjs-based models and 1f0r-based models are shown. Molecules were ranked using two different scoring schemes: docking energy
score (gray line) and COMBINE analysis externally predicted (cross validated) pKi (black line). The enrichment factor (concentration
of found binders in subset/concentration of binders in database) is computed through the ranked database for the randomly chosen
test set (see text for details).
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Obviously, there were some failures clearly due to this
representation. For example, 3ert (human estrogen
receptor Rligand-binding domain in complex with 4-hy-
droxytamoxifen) can be successfully docked only after
introducing, together with the default values of 90° and
0°, an additional rotameric state at 45° for dihedral
angles Csp2(benzene)-Csp2(benzene)-CdC. Similarly,
in 1tni (trypsin complexed with the inhibitor 4-phenyl-
butylamine) the presence of an eclipsed conformation
on the central Csp3-Csp3 bond in the crystal structure
cannot be reproduced by our default set of torsional
angles. The simplification affects negatively large, flex-
ible molecules, where dihedral deviation from ideal
values are transmitted throughout the structure and,
due to leverage, amplified at distant positions. A second,
related risk with the enumeration approach is combi-
natorial explosion. Highly flexible compounds, with a
large number of conformers, cannot be evaluated ex-
haustively. Both factors add up, so that molecules
having eight or more rotatable bonds are difficult to
dock by our method (Table 1). Nevertheless, for most

druglike rule-of-five-compliant molecules, this is not a
problem, and computing times are kept manageable. For
typical ligands, and considering that the algorithm
needs ∼10 s per sampled conformation (Figure 1b),
flexible docking requires of the order of minutes on a
desktop workstation. The approach seems accurate and
robust enough for virtual screening applications. Toler-
ance to small structural shifts in the receptor is ob-
served, as exemplified with the NA dataset, where our
results are similar to those obtained with GOLD,55 and
an improvement over those previously reported with
PRO_LEADS.53 Thus, the algorithm seems able to
handle minor conformational changes, while still taking
advantage of the rigid protein approximation.

When considering the docked models of the 133 series
of fXa inhibitors, it was reassuring to verify that they
were, for the most part, consistent with the expected
orientation for this set of compounds.1 Alternative
binding modes were also found, usually consisting of a
180° rotation that involves an interchange of the
moieties interacting at S1 and S4 subsites (Figure 4).

Figure 10. (a) VDW and (b) electrostatic PLS coefficients*STD in the 1fjs- versus 1f0r-based COMBINE analysis models. Residues
with high coefficients are labeled. (c) Residues behaving in a different manner in both models shown at the fXa binding site.
Compound 34 is shown as an example. Gray color is used for 1fjs PDB, while black is employed for highlighting 1f0r side chains.
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The fraction of the series inhibitors docked in such a
way is of approximately 30% for 1fjs and 1f0r based
docking models, and slightly lower (%20) for the 1xka
ones. Interestingly, Mikol and co-workers have recently
reported crystal structures for a series of sulfonylpip-
erazinones bound in the same reverse orientation, with
neutral groups occupying the S1 pocket while basic
moieties, including benzamidine rings, bind to S4,
indicating that formation of a salt bridge in S1 is not
an absolute prerequisite for high affinity.63 While it is
likely that the scaffold in the ligand, among other
factors, influences equilibrium between both binding
modes, our results suggest that there is a possibility
that some of the inhibitors in our series can also bind
using this reverse mode.

Turning to the regression models, it is of interest to
note that only two (1fjs and 1f0r-based) of the three
initially developed COMBINE analyses proved predic-
tive (Table 2, Figures 5 and 7). We ascribe this result
to poorer docking models with 1xka than with the other
two proteins, likely caused by the conformational sub-
state of 1xka or its lower experimental resolution.
Analyzing the two predictive models, we observe that,
as expected, prediction of inhibitory activity in the
external test sets is better for compounds that are
similar to those in the training set. External predictions
are shown in Figure 7. Based on energy-landscape
criteria of what is or is not most likely to be a correct
binding mode, the study of the docking models obtained
for the fXa inhibitors in the three PDB based-employed
conformations for the enzyme, made it possible to
establish an energy cutoff value for the energy gap and
the average VDW energy per heavy atom as filter for
the docking models obtained in this system. Thus, only
compounds docked with a positive value for the VDW
energy gap and a VDW docking energy per number of

ligand heavy atoms lower than -1.2 kcal/mol were
selected as reliably docked conformations.

Comparing the results with both scoring systems, it
can be concluded that COMBINE analysis provides good
predictive abilities and a moderate degree of robustness
against fluctuations in the protein structure when
addressing congeneric series optimization, while the
naked AMBER energy function is less predictive and
more dependent on the specific details of the protein
conformation. On the negative side, when the objective
was the identification of structurally unrelated inhibi-
tors (i.e., new leads), only the naked AMBER energy
showed some predictive ability, and only with one of the
receptor conformations (1f0r, see Figures 8b and 9b).
We caution, however, that a limitation in this part of
the study is the small size of the library being used,
which translates into considerably fluctuations in the
computed plots (Figures 8 and 9). Nevertheless, the
salient features of our study seem to be robust enough,
and independent of these fluctuations.

Mechanistic interpretations of COMBINE analysis
models have been previously used to help understanding
SARs.12,13,21 Here we have taken the opportunity to
check the consistency of such interpretations for the fXa
inhibitor series, by comparing the results in the two
different receptor conformations. The examination of the
regression coefficients plot (Figure 10), along with the
structures of the ligand-receptor complexes (Figures 4
and 11), can pinpoint key interactions responsible, in a
statistical sense, of the differences in affinity. As can
be observed in Figure 10, 1fjs and 1f0r roughly share
the same set of relevant variables to explain affinity.
However, there are a few terms playing a substantially
more prominent role in one model than in the other (see
Results for details). Thus, although affinity factors can
be rationalized and dissected to a certain extent, care
must be taken when attempting quantitative analysis
to avoid overinterpretation. The derived regression
models are conformation dependent, and in the absence
of conformational sampling in the receptor are more
adequate for qualitative reasoning. This is particularly
important if insights extracted from the analysis are
going to be used in the next round of ligand design. Our
results suggest that in those cases it may be wise to
confirm the relevance of the interactions by repeating
the analysis with alternative conformations of the
receptor, either experimentally available or extracted
from a molecular dynamics trajectory.

Conclusions

A new protocol is presented for virtual screening-
based lead optimization in receptor-based drug design,
and applied to a series of recently reported fXa inhibi-
tors. A docking algorithm is used to generate ligand-
receptor complexes that are analyzed using COMBINE
analysis to obtain SARs in the context of the interaction
energetics. While more research is required, the ap-
proach holds considerable promise in the problem of
optimizing leads using virtual libraries.

Our findings suggest that ligand screening using force
field energies and COMBINE analysis could be used
complementarily. The use of naked docking energies
seems to be more adequate for screening general
databases or creating targeted libraries during a lead

Figure 11. COMBINE analysis coefficients mapping into the
fXa binding site. Relevant residues for VDW interaction are
colored in orange, while red is used for electrostatically
important residues. Compound 34 is shown as an example.
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discovery program, where diverse scaffolds need to be
identified. In contrast, COMBINE analysis predictions
are better suited for screening focused libraries during
a lead optimization program, where a scaffold has
already been defined. Mixing both scoring schemes can
also be advantageous from a computational standpoint.
A useful strategy worth pursuing would be to dock and
score libraries using the standard force field and then
to rerank the upper ∼15% or so of the list with the
COMBINE analysis methodology.

Reliable docking has been shown to be, as expected,
a key ingredient. Here, we have taken an approach
different from most available docking algorithms in that
we have tried to exhaustively enumerate receptor-
ligand orientations using a rather drastic discretization
of conformational space. Although we were initially
surprised with the performance of the algorithm using
such a naı̈ve approach, other groups have recently
documented similar observations.61,62 Finally, while
dependencies of the COMBINE analysis models on
receptor conformation have been detected, the docking
algorithm itself is reasonably insensitive to small
structural shifts in the receptor, as exemplified with the
cross-docking experiments using the NA dataset. If the
purpose of the COMBINE analysis is to obtain mecha-
nistic insights about the inhibition process, introduction
of protein flexibility51 is most likely required to establish
consistency.
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