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An increasingly competitive pharmaceutical market demands improvement in the efficiency
and probability of drug candidate discovery. Usually these new drug candidates are targeted
for oral administration, so a detailed understanding of the molecular-level properties that relate
to optimal pharmacokinetics is a critical step toward improving the probability of selecting
successful clinical candidates. Although the characteristics of druglike molecules have been
previously discussed in the literature, the importance of this topic sustains a continued interest
for additional perspective and further detailed statistical analyses. In this contribution, we
approach the analysis from the perspective of profiling distinguishing features of orally
administered drugs. We have compiled both structural and route-administration information
for a total of 1729 marketed drugs to provide a solid basis for developing a new perspective on
the characteristics of over 1000 orally administered drugs. The molecular properties and most
commonly occurring structural elements are statistically analyzed to capture the differences
between routes of administration, as well as between marketed drugs and SAR or clinical
compounds. We find that, with respect to other routes of administration, oral drugs tend to be
lighter and have fewer H-bond donors, acceptors, and rotatable bonds than drugs with other
routes of administration. These differences are particularly pronounced when comparing the
mean values for oral vs injectable drugs. We also demonstrate that the mean property values
for oral drugs do not vary substantially with respect to launch date, suggesting that the range
of acceptable oral properties is independent of synthetic complexity or targeted receptor. Finally,
we note that, while these properties are descriptive of each class, they are not necessarily
predictive of what class any particular drug will reside in, since there is significant overlap in
the acceptable ranges found for each drug class.

Introduction

Pharmaceutical researchers invoke the term “drug-
like”1-4 to describe molecules with properties that fall
within the boundaries delineated by the wide majority
of pharmaceutical agents. In general, druglike proper-
ties are viewed as those that convey desirable pharma-
cokinetic and pharmacodynamic (PK/PD) properties,1-8

independent of pharmacological target or indication.
With the recent upsurge in library synthesis, the
emphasis on understanding what constitutes druglike
properties has increasing significance. Molecules from
libraries that emphasize druglike properties are more
likely to produce viable structure-activity relationship
(SAR) starting points because in a typical SAR effort,
optimization of these properties is critical to the success
of delivering a clinical candidate and usually indepen-
dent of the specific pharmacological target.

Understanding which of the many possible molecular
properties that most directly influence the druglike
properties of a molecule has been the focus of significant
research. Lipinski defined the so-called rule of 59 in an
effort to address this question. More recently, workers
have examined parameters such as the number of
rotatable bonds, polar surface area, log D, and counts
of nitrogen and oxygen atoms in an effort to define easily

calculated properties that will be predictive of a favor-
able PK/PD outcome.1-3,10-12 These studies typically
compare ranges of molecular properties for known drugs
with pharmacologically active molecules that are not yet
drugs such as those in the MDDR database13 or for
compounds that are not likely to possess biological
activity such as those in the ACD database.14

In this paper we compare properties of known drugs
to two other sets of nondrugs: clinical candidates
(compounds not yet approved but in clinical trials) and
SAR compounds (compounds known to possess biological
activity but not of clinical interest). In addition, we
compare not just the properties of drug molecules known
to possess good PK/PD properties with nondrug mol-
ecules but also those of drug molecules known to exhibit
poor PK/PD properties. As a first approximation, we
have taken the set of approved drugs with an oral
formulation to represent drugs with good PK/PD prop-
erties and the set of approved drugs with no oral
formulation to represent drugs with poor PK/PD prop-
erties. This focuses any property differences on oral
bioavailability. We further partitioned the set of nonoral
drugs into three categories (injectable, topical, and
absorbent) and then compared all nonoral groups inde-
pendently to each other as well as to the set of oral
drugs.

A potential complication with the analysis of oral
drugs is the steady evolution of the industry’s ability to
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synthesize molecules of increasing complexity, coupled
with a shift over time in the nature and location of drug
targets in the body. These factors alone may cause
trends in some molecular properties. We have therefore
analyzed our set of oral drugs with respect to launch
date to determine, as a first approximation, if any
properties show a time dependence that is more likely
reflective of chemistry and business realities rather than
PK/PD properties.

Finally, we performed an analysis of both oral and
nonoral drug sets using Molecular Slicer (MS). This is
an in-house tool for computationally “slicing” molecules
into their component fragment and scaffold pieces. We
then examined the results to determine if certain
fragments or scaffolds occur at significantly higher rates
in one or the other group of compounds and attempt to
correlate the property trends of these fragments and
scaffolds with the observed property trends between
compound classes.

Methods

Data Gathering. The data were gathered with the goal of
compiling the largest possible set of marketed drugs for which
the route of administration could be systematically assigned
from the FDA’s orange book and the Micromedex database.15

Both sources allow for a methodical assignment of the primary
routes of administration based on keywords or information in
the databases. The chemical structure was assigned to each
drug using the electronic MDL databases (MDDR,13 CMC3D16)
or when necessary by querying SciFinder.17

An initial list of 1477 single-ingredient FDA-approved drugs
was compiled from the 22nd edition of the FDA Orange Book.18

We were able to assign chemical structures and classify the
route of delivery for 1082 of these drugs. A total of 856 were
assigned structures using an exact trade name/alias match
between orange book and MDL databases (731 coming from
CMC3D database), and the structures of the remaining 226
drugs were retrieved from SciFinder.17 An additional 647 drugs
with entries in the 151st volume of the Drugdex15 database
were added to this list of 1082 drugs. From the set of 647, 525
of these had structures in the CMC3D or MDDR13,16 databases
and the remaining 122 structures were retrieved from Sci-
finder.17 By use of all of these sources, the number of marketed
drugs in our data set for which the chemical structures and
route of delivery information could be compiled is 1729.
Throughout the remainder of this paper we will term this set
of 1729 molecules as “marketed drugs”.

A secondary set of 1817 molecules was extracted from the
2002 edition of the MDDR database.13 These 1817 molecules
all had a clinical phase or clinical keyword in the PHASE field
of the MDDR database, and for this study, these molecules
will be termed “clinical compounds”. Finally, 113 937 molecules
were extracted from the MDDR database in which the PHASE
was classified as “biological testing”. These 113 937 molecules
will be termed “SAR compounds” in this analysis. These
molecules retrieved from the MDDR database contain a
reasonably comprehensive collection of patent and literature
compounds in early phase development and represent a
comparison set that captures some of the breadth of medicinal
chemistry SARs.

Route of Delivery Assignment for Drugs. From within
the entire set of 1729 marketed drugs, 1193 were assigned to
the “ORAL” category based on a clear specification of oral or
sublingual route of administration in the Orange Book18 or in
the dosage forms of the Drugdex15 database. Sublingual, which
accounts for 11 drugs, is distinctly different from oral and
technically should be a separate group. However, in practice
it is difficult to assess, without detailed studies, how much is
absorbed through the bucal membranes sublingually vs the
amount accidentally absorbed orally. Of the remaining mar-
keted drugs that did not have oral dosage forms, 112 have been

assigned to the “TOPICAL” category when there was a clear
indication of a topical route of delivery as defined in Orange
Book and Drugdex databases. An additional 116 drugs that
did not have oral or topical dosage forms and had ophthalmic,
otic, nasal, inhalation, vaginal, or rectal dosage forms were
assigned to the “ABSORBENT” category in which it is antici-
pated that the drugs are absorbed through membranes. The
remaining drugs that were not previously assigned and had
injectable formulations (intramuscular, intravenous, subcu-
taneous) were assigned to the “INJECTABLES” category.
These 308 drugs classified as “INJECTABLES” contain only
those that did not have any other specific oral, topical, or
absorbent specifications.

Description of Physical Property Calculations. Al-
though we have defined our sets of compounds for cross-
comparison more broadly than in previous studies, the physical
properties examined in our study have been used in previously
reported work.5,9,12,19 Using a consistent set of properties allows
us to easily cross-check our results derived from a larger data
set with the previous studies19 while still providing a compre-
hensive profile of the physical characteristics of drug groups,
clinical compounds, and SAR molecules. These computed
properties include molecular weight (MW), atom counts (NA-
TOM), computed logarithm of octanol-water partition coef-
ficient (CLOGP),20 number of rotatable bonds (ROT), number
of rings (NRING), counts of nitrogens and oxygens (ONs),
counts of OHs and NHs (OHNHs), rule-based counts of
hydrogen-bond acceptors (ACC), counts of hydrogen-bond
donors (DON), polar surface area (PSA),21 total surface area
(SA), and number of halogens (halogen).

Chemical Fragments. Molecular Slicer. The structural
fragments analyzed in this paper were generated using an
internally developed tool, Molecular Slicer (MS), which we
routinely use to analyze the common fragments of biologically
targeted compounds. MS is similar to other retrosynthetic
algorithms previously described in the literature, such as
RECAP22 and REOS.23 Our tool deconstructs compounds into
scaffolds and side chain fragments using a sequential set of
15 preassigned rules. Side chain fragments are characterized
by having only one “break point”, while scaffolds have two or
more. The “break points” are not always based on a logical
retrosynthetic step but are frequently defined in a manner that
allows us to analyze the composition of large volumes of
compounds from a pharmacophore perspective.24 The rules
encoded and used in this study to generate these fragments
are detailed in Table 1. After the molecules are processed, the
resulting fragments (with the addition of explicit hydrogens)
are then used to perform substructure searches to determine
the frequency of occurrence of these specific fragments in each
set of analyzed molecule sets. Example fragments, substruc-
ture queries, and matching molecules are shown in Figure 1.

Statistical Analysis. All statistical analyses were per-
formed within the JMP statistical package.25 Hypothesis tests
were conducted using one parametric (two-sample t-test) and
two nonparametric (Wilcoxon and median test) tests to com-
pare the means of molecular properties across the various
groups of molecules. We have used a p-value significance level
of 0.05 in at least two of the three tests as a guideline for
determining statistical significance. For count-based properties
(e.g., number of rings), a (count + 0.5)1/2 transformation was
done prior to the t-test. Additionally, because of the large
sample sizes associated with these comparisons, we also
provide some discussion about scientifically meaningful dif-
ferences in group means to supplement the statistical testing.

Results and Discussion

Physical Property Selection Based on Descrip-
tor Correlation. Although we will present the distri-
bution data for all the properties in this study, we will
limit most of our discussion to what is most relevant in
differentiating the categories. The most relevant drug-
like properties were selected by comparing their cor-
relations with each other.
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Table 2 shows the correlation matrix of physical
property descriptors for the set of 1729 marketed drugs
used in this study. On the basis of the correlation
threshold of R ) 0.9, the initial list of 12 descriptors
can be narrowed down to 8 representative properties.
The following descriptors were deemed secondary on the
basis of their strong correlation with a more fundamen-

tal property: PSA(21) based on a 0.96 correlation with
ON count; total SA based on a 0.96 correlation with MW;
NATOM based on a 0.97 correlation with MW; DON
based on a 0.995 correlation with NHOH count (there
are very few donors in drugs including ionized guanidi-
num groups that differ from OHNH counts). The
remaining core set of physical descriptors that will be

Table 1. Sequentially Applied SMARTS29 Queries Used in Molecular Slicer Algorithma

SMARTS query atoms bond break

a-[CH,CH2;R0;0*] 0 1
[C0*D>1,c0*D>1]-[NH,ND2,ND3,OD2;R0;0*] 0 1
[R;0*]-[CH2R0,NHR0,OR0;0*]-[R] 0 1
*-[CD3H,ND2;R0;0*](-a)-a 0 1
[a]-&!@[a] 0 1
[NR;0*]-[CD3R0;0*]()O)-[R] 0 1
[NR;0*]-[CD2R0;0*]-[R] 0 1
[N0*,n0*;!H2]-[SR0;0*]-[CD>1,cD>1,ND>1] 0 1
[NR;0*]-[CD2R0;0*]-[CD2,CD3,OD2,ND2,ND3,aD2,aD3] 0 1
a-[NHR0]-[CR0;0*]()O)-[OR0,NR0;0*] 0 1
[CRD>1;0*]-[NH,O;0*]-[CR0;0*]()O)-[NH,O;0*] 1 2
[OD1H0])[CD3R0;0*](-[ND2,ND3;0*]-[CD>1,aD>1;0*])-[CD>1,OD2,aD>1,ND>1;0*] 1 2
[OD1H0])[CD3R0;0*](-[CD>1;0*])-[CH2;R0;0*] 1 3
[a;0*]-[CD3R0;0*]()O)-[D2,D3,D4;0*]-[D<4]-[D<4] 0 1
[CR,NR])[CR]-&!@[a] 1 2

a The bond breakages occur between the indicated pair of query atoms. The SMARTS contain locally developed extensions to the SMARTS
language, most notably the relational operator. Isotopic labels are applied to designate previously perceived bond breakages, so the queries
require nonisotopic atoms for new breakages.

Figure 1. Example of molecular slicer fragments and substructure queries for side chains (a) and scaffolds (b). The MS identified
fragment (right) is converted to a substructure query (middle), which is then used to identify the number of molecules containing
the fragment (right).

Table 2. Property Correlations for Marketed Drugsa

MW CLOGP ONs OHsNHs NATOM NRING ROT total SA PSA ACCb DONb HALOGEN

MW 0.18 0.45 0.12 0.96 0.51 0.50 0.88 0.33 0.39 0.13 0.15
CLOGP -0.03 -0.55 -0.40 0.23 0.20 0.09 0.33 -0.60 -0.51 -0.38 0.16
ONs 0.82 -0.44 0.43 0.41 0.04 0.36 0.28 0.93 0.79 0.42 -0.18
OHsNHs 0.66 -0.44 0.78 0.11 -0.07 0.12 0.06 0.54 0.34 0.99 -0.11
NATOM 0.97 0.01 0.82 0.65 0.59 0.49 0.92 0.28 0.32 0.12 0.01
NRING 0.55 0.20 0.34 0.21 0.62 -0.29 0.38 -0.06 0.07 -0.05 -0.03
ROT 0.77 -0.10 0.72 0.62 0.77 0.16 0.70 0.25 0.17 0.11 -0.09
total SA 0.96 0.05 0.78 0.64 0.98 0.54 0.84 0.14 0.18 0.07 -0.08
PSA 0.74 -0.53 0.96 0.82 0.72 0.24 0.67 0.68 0.81 0.53 -0.18
ACCb 0.70 -0.46 0.87 0.64 0.67 0.26 0.54 0.62 0.88 0.32 -0.10
DONb 0.66 -0.42 0.77 1.00 0.66 0.22 0.62 0.64 0.81 0.62 -0.11
HALOGEN 0.08 0.15 -0.13 -0.09 -0.04 -0.08 -0.05 -0.06 -0.13 -0.08 -0.09

a On the basis of the correlation threshold of R ) 0.9, the initial list of 12 descriptors can be narrowed down to 8 representative properties,
and these are shown in bold. Correlation coefficient R(25) is shown. Number of atoms (NATOM), number of donors (DON, computed by
a set of donor rules), total surface area (SA), and polar surface area (PSA) are highly correlated with simpler properties. Correlations for
all 1719 marketed drugs for which all properties were computed are displayed in the lower diagonal, while the correlations for 1384
drugs that satisfy 10-90% MW coverage (i.e., 196-563 Da) are shown in the upper diagonal. b Donors (DON) and acceptors (ACC) are
defined according to a set of substructure-based rules derived on the basis of group Pka values and conversations with experienced medicinal
chemists. One example of how these classifications differ from simple enumeration of OH, NH groups is the case of a phenol with tert-
butyl substituents adjacent to the OH. In this case, the OH group is considered spatially hindered from participating in hydrogen bonding.
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used in further discussions includes MW, ON, OHNH,
ACC, NRING, ROT, HALOGEN, and CLOGP. Two
representative graphs of these correlations are shown
in Figure 2a (all drugs) and Figure 2b (drugs with ON
count between 2 and 12) for PSA vs count of ONs. It is
worth noting that the polar surface distribution for
marketed oral drugs is qualitatively similar to the
results from a study of 1590 oral drugs that reached at
least phase II efficacy studies.26 The above-mentioned
correlations for PSA indicate that more fundamental
properties can in principle be used for explaining
bioavailability12 and brain penetration of sets of com-
pounds.26 However, in practice these properties have
limited usage for general groups of compounds where
metabolism could be a significant factor in oral bioavail-
ability or brain penetration.

The significance of these computed physical properties
can also be examined by studying how the means of
different physical properties vary with respect to their
FDA approval date. For this analysis, we used a subset
of 1082 FDA-approved oral drugs for which the approval
date was readily available in the Orange Book.18 The
relationship is depicted for the 691 ORAL drugs in
Figure 3a for molecular weight and in Figure 3b for the
CLOGP. No meaningful trend with time is observed for
either MW or CLOGP. Similar results were obtained
for the entire set of 1082 FDA-approved drugs as well
as for all other physical descriptors. By contrast, the
nature of drug and disease targets has varied consider-
ably over this same time period. We examined the
distribution of indications for all oral drugs approved
in the years 1982, 1992, and 2002 (Figure 4). These
could be divided broadly into six classes: inflammation/

asthma, cardiovascular, central nervous system, hor-
mones, infectious disease, and metabolic disease. In
1982, 8 of the 14 approved oral drugs targeted inflam-
mation or cardiovascular pathways (typically peripheral
targets). In 1992, 7 of 15 approved oral drugs targeted
infectious disease (exogenous pathogens). In 2002, 4 out
of the 10 approved drugs targeted the central nervous
system. Despite this dramatic variation in the nature
and location of the drug target, the mean molecular
properties of the drugs do not significantly vary with
respect to launch date. The necessity to maintain these
physical properties within a particular range highlights
the need of all oral drugs to be permeable and absorbed
independently of receptor target and strengthens the
case for using this subset of physical properties to
characterize molecule sets as druglike.

Physical Properties of Oral Drugs. A number of
researchers have examined the distribution of computed
physical properties of drugs.5,12,19,27,28 We examined the
means and percentiles of physical properties for mar-
keted drugs (grouped by delivery route) as well as
clinical and SAR compounds. These results are pre-
sented in parts a, b, c, and d of Table 3 for the means,
0-100th percentiles, 10-90th percentiles, and 5-95th
percentiles, respectively. On the basis of the means and
percentiles of these properties, oral drugs have the
lowest MW of all groups while injectable drugs have the
highest MW and lowest mean CLOGP. In addition,
CLOGP 90th percentiles of all groups, except SAR
compounds, are within 1 log unit (the approximate
accuracy in the CLOGP computation) of 5, with clinical
compounds on average higher and injectables/absor-
bents lower. The halogen content of all drugs is nearly

Figure 2. Correlation between selected physical properties for marketed drugs. (a) Polar surface area (PSA)21 correlation25 with
the count of oxygens and nitrogens (ON) for 1719 marketed drugs used in this study (some drugs failed PSA computation because
of their large size). The R2 is 0.93, indicating that 93% of variance of PSA can be explained by the simple counts of oxygens and
nitrogens. (b) PSA correlation with ON count for 1510 drugs with ON count between 2 and 12 (corresponding to 10-90% range
of ON for all drugs). R2 of 0.79 indicates that 79% of variance in total PSA for this group can be explained by the ON count. The
difference between (a) and (b) is indicative of the fact that PSA might be nonredundant with ON count for narrow ranges of ON,
even though it is not adding value when compounds with wide ranges of ON count are considered. For all comparisons presented
in this paper, PSA gives trends consistent with ON count.
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identical with the exception of the topicals, which
possess a slightly higher halogen content.

Upon comparing these results to the breakthrough
work of Lipinski9 and the more recent work by Wen-

lock19 and Blake,28 we find that our set of 1193 marketed
oral drug molecules show property distributions es-
sentially identical to those of the set of 594 oral drugs
examined by Wenlock, with minor differences in the
distribution for the 90th percentiles for hydrogen-bond
donors and acceptors (Table 4).

Comparison of Marketed Oral Drugs to Other
Marketed Drugs. Physical Properties. One of the
major goals of this study is to compare computed
properties between oral drugs and drugs with different
routes of administration. The percentile comparisons
presented in Table 3, although informative, cannot be
easily used to determine statistical significance of
differences. We reduced the questions of meaningful
difference between physical properties of oral drugs and
other groups into a comparison of means of distribu-
tions. One parametric (t-test) and two nonparametric
(Wilcoxon and median test) testing methods were used
because of the skewness and outliers present in several
of the groups. The statistical significance alone as
determined by p-values for these large sample sizes is
only a guide, since statistically significant differences
is a necessary, but not sufficient, criterion for scientifi-
cally meaningful differences.

Figure 3. Median properties of FDA-approved ORAL drugs over time. The earliest approval year for each drug is used. Thick
horizontal lines show the median for that year. Each point represents one drug’s property. The mean values of properties show
the same lack of trend with time: (a) molecular weight medians per FDA approval year; (b) CLOGP medians.

Figure 4. Distributions of drug classes approved by the FDA
in 1982, 1992, and 2002. Only drugs present in this study are
classified.
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Table 5 shows the property distribution means,
median values, and p-values between the means of the
marketed oral drugs and all other groups. On the basis
of a significance of 0.05 in at least two of the three tests,
oral drugs differ from injectables in all properties we
evaluated. Specifically, we find that injectables have
significantly higher mean MW, ON, OHNH, NRING,
rotatable bonds, and acceptor counts and lower mean
CLOGP and halogen counts than oral drugs. Generally
the differences are quite large and indicate that inject-
able drugs are significantly heavier, more polar, and
more flexible than oral drugs. Interestingly, in four of
these seven properties (MW, OHNH, rotatable bonds,
and acceptor count), the oral and injectable sets are at
or near the extremes for mean values across all the sets
examined. We can therefore look at the means of these
two groups as two extreme cases of physical properties
acceptable for xenobiotics.

Absorbent drugs show significant differences when
compared to oral drugs in CLOGP and OHNH counts,
in the same direction though not to the same degree as

injectables. No significant difference was found for MW
or the counts of ONs, halogens, rings, rotatable bonds,
and acceptors.

Topical drugs are similar to oral drugs in acceptors,
ONs, OHNHs, acceptors, and rotatable bonds, while
showing statistically significant differences in MW,
number of rings, halogens, and CLOGP. The difference
in physical properties of oral drugs is most meaningful
when compared to injectables but is significant in some
properties when compared to absorbent and topical
drugs as well. Of the three nonoral drug categories,
topical and absorbent drugs appear most similar in their
properties to oral drugs. Solely on the basis of these
calculated properties, many topical drugs may in fact
possess favorable PK/PD profiles but are administered
topically to limit their distribution to the desired regions
of the body.

We next compared the physical property means of oral
drugs to results from the clinical and SAR sets. SAR
molecules present in MDDR possess physical properties
significantly (due to large sample sizes) and meaning-

Table 3. Physical Property Means and Percentiles for All Compound Groups Used in This Study

route MW CLOGP ONs OHsNHs NATOM NRING ROT total SA PSA ACC DON HALOGEN

(a) Means

oral (1193) 343.7 2.3 5.5 1.8 23.9 2.6 5.4 395 78 3.2 1.8 0.5
absorbent (116) 392.3 1.6 6.5 3 27.2 2.5 7.9 456.8 100.5 3.6 3 0.6
injectable (308) 558.2 0.6 11.3 4.7 37.7 3.2 12.7 532.4 143.6 6.2 4.7 0.4
topical (112) 368.5 2.9 5 1.9 25.4 2.9 5.3 412.4 75.4 3.2 1.8 0.9
clinical (1817) 422.5 2.8 7 2.2 29.8 3.3 8 486 98.3 3.9 2.2 0.5
SAR (113937) 447.5 3.4 7.1 2.1 31.5 3.5 8.4 511.5 96.7 4 2.1 0.6

(b) Minimum and Maximum Values (0-100% Percentiles)

oral (1193) 74-1449 -7.6 to 20.2 0-33 0-18 4-101 0-10 0-40 99-1300 0-447 0-17 0-18 0-18
absorbent (116) 117-1324 -8.7 to 11.7 0-31 0-18 7-96 0-9 0-48 147-1492 0-505 0-16 0-18 0-7
injectable (308) 46-5826 -19.9 to 10 0-144 0-75 3-406 0-11 0-156 86-2387 0-879 0-75 0-75 0-14
topical (112) 60-1423 -11.3 to 10 0-33 0-21 4-100 0-6 0-35 100-1542 0-557 0-23 0-21 0-6
clinical (1817) 30-1456 -11.7 to 22 0-36 0-22 2-100 0-11 0-68 105-1903 0-627 0-22 0-22 0-8
SAR (113937) 59-2133 -19.5 to 30 0-58 0-26 4-100 0-34 0-82 105-2056 0-838 0-41 0-26 0-18

(c) (5-95% Percentiles)

oral (1193) 164-589 -1.9 to 6.3 2-12 0-4 11-41 1-5 1-12 211-624 13-169 0-7 0-4 0-2
absorbent (116) 160-1007 -3.5 to 5.9 1-20 0-12 10-69 0-5 1-26 177-1073 12-343 0-11 0-12 0-3
injectable (308) 163-1297 -5.0 to 5.8 2-30 0-17 11-90 0-7 1-42 205-1230 20-416 0-15 0-16 0-3
topical (112) 130-505 -2.4 to 6.7 1-10 0-5 9-36 0-5 0-13 171-556 4-156 0-7 0-4 0-3
clinical (1817) 213-755 -1.7 to 7.2 2-15 0-6 15-53 1-6 1-19 265-824 28-215 1-9 0-6 0-3
SAR (113937) 242-776 -1.4 to 7.6 3-15 0-6 17-54 1-6 2-20 287-860 28-207 1-9 0-6 0-3

(d) (10-90% Percentiles)

oral (1193) 200-475 -0.8 to 5.2 2-9 0-3 14-33 1-4 1-10 246-547 22-134 1-6 0-3 0-2
absorbent (116) 172-666 -2.3 to 4.8 2-14 0-7 11-43 0-4 2-16 225-704 20-219 1-7 0-7 0-2
injectable (308) 196-1085 -3.3 to 4.9 3-23 0-11 13-71 1-6 2-27 238-979 28-311 1-11 0-11 0-1
topical (112) 188-495 -0.6 to 6.0 2-8 0-3 12-35 1-5 1-9 227-531 21-114 0-5 0-3 0-3
clinical (1817) 250-614 -0.7 to 6.0 3-12 0-4 18-43 1-5 2-15 293-696 39-169 1-7 0-4 0-2
SAR (113937) 276-646 -0.0 to 6.6 3-12 0-4 19-45 2-5 2-16 324-726 38-167 1-7 0-4 0-2

Table 4. Comparison of the Distribution of Rule of 5 Properties with the Previously Published Work of Lipinski9 and Wenlock19

grouping maketed orala
selected

USAN compoundsb
marketed oral

from Wenlock et al.c
Lipinski set
recomputedd

number of molecules 1193 2245 594 1791
mean MW 344 337 300
mean CLOGP 2.3 2.5 2.5
mean acceptors/ON 5.5 4.9 4.5
mean donors/NHOH 1.8 2.1 3
90th percentile MW 474.6 500 (89%) 473 427.5
90th percentile CLOGP 5.2 5 5.5 5.3
90th percentile acceptors (ON) 9 10 8 8
90% donors (NHOH) 3 5 4 3

a Data from this study. b Data from Lipinski’s original work.9 c Data from Wenlock’s paper.19 d A set used in Lipinski’s work9 with
only unique active ingredient organic structures present based on the 2001 edition of the WDI.30 The recomputed data for Lipinski’s
USAN set show good agreement with our properties of oral drugs with the exception of having a smaller mean molecular weight. The
differences in our distributions from those of the original report by Lipinski9 are possibly due to slight differences in salt handling, duplicate
structure removal, and other details in data processing.
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fully different from those of the marketed oral drugs
(Table 5). The same is true for the majority of properties
characterizing clinical compounds, with only the number
of halogens showing a similar mean to oral drugs.
Interestingly, all properties for clinical and SAR com-
pounds have higher means in contrast to the other drug
groups, which usually balance higher MW with lower
CLOGP or other properties as shown in Table 3. This
relative imbalance of properties of clinical and SAR
compounds compared to that of drugs suggests one
reason for the high attrition rate of drug candidates.

Unique Features of Marketed Oral Drugs. Com-
mon Fragments. Next, we considered whether molec-
ular fragments commonly found in drugs exhibit mo-
lecular property trends similar to those of their parent
molecules. To answer this question, we employed our
pseudo-retrosynthetic tool, Molecular Slicer (MS), to
identify the molecular fragments and count the occur-
rence of them in the different drug groups. Because the
number of marketed nonoral drugs in each category was
small, we decided to use INJECTABLE category only
for this comparison. The 15 most common side chains
(one MS break point) identified for each group are
shown in Figure 5.

We then calculated the mean molecular properties for
both the common ORAL and INJECTABLE fragments
and looked for significant differences between the two
groups. In contrast to the analysis of the drug molecules
as a whole, none of the eight properties examined
showed a statistically significant difference between the
two groups; indeed, several of the most common side
chains were found in both groups.

We next examined MS-derived scaffolds (fragments
with two or more MS break points), depicted in Figure

6. These scaffolds can be thought of as linkers between
side chains. The mean values for both ON count,
rotatable bonds, and CLOGP showed statistically sig-
nificant differences between the ORAL and INJECT-
ABLE sets, with a magnitude and direction for the
difference consistent with the trends observed for the
whole molecule. A cursory visual comparison of the most
frequent scaffolds reveals that the INJECTABLE scaf-
folds tend toward more polar character and flexibility
than the ORAL scaffolds, and many would appear to
be peptide in nature. This is consistent with a signifi-
cant increase in the number of rotatable bonds for
nonoral drugs; previous studies have shown that more
rigid structures favor desirable PK/PD properties,12

although we caution that it is difficult to assign causa-
tion using highly correlated observational data. Our
analysis would suggest that this increased flexibility for
nonoral relative to oral drugs tends to reside in the core
of the molecule rather than in the side chains.

Conclusions
Differences between the marketed oral drugs and

other marketed drug groups reveal the factors influenc-
ing oral bioavailability. Structurally, these differences
tend to reside in the central scaffolds of drug molecules
rather than in the appended side chains. The lower
molecular weight, balanced CLOGP, and greater rigidity
improve the likelihood of producing drugs candidates
with an oral route of administration.

The differences between the marketed oral drugs and
clinical or SAR compound properties, strengthened by
the recent finding on the convergence of properties
throughout development phases,19,28 reveal possible
reasons for the high attrition rates in development and

Table 5. Differences in Means for Selected Properties between Oral and Nonoral Drugsa

descriptor

oral mean
(median)
n ) 1202

absorbent mean
(median)
n ) 118 p-value

injectable mean
(median)
n ) 328 p-value

topical mean
(median)
n ) 113 p-value

SAR mean
(median)

n ) 113 937

clinical mean
(median)
n ) 1817

0.0016 <0.0001 0.092
MW 343.7 392.3 0.49 558.2 <0.0001 368.5 0.0094 447.5 422.5

(322.5) (332.4) 0.43 (416.4) <0.0001 (379.1) 0.017 (414.6) (390.5)

0.0059 <0.0001 0.032
CLOGP 2.3 1.6 0.02 0.6 <0.0001 2.9 0.001 3.4 2.8

(2.3) (2.0) 0.18 (0.7) <0.0001 (3.3) 0.0002 (3.5) (3)

0.073 <0.0001 0.06
ONs 5.5 6.5 0.99 11.3 <0.0001 5 0.02 7.1 7

(5) (5) 0.27 (8) <0.0001 (4) 0.12 (6) (6)

<0.0001 <0.0001 0.76
OHsNHs 1.8 3 0.007 4.7 <0.0001 1.9 0.25 2.1 2.2

(1) (2) 0.03 (2) <0.0001 (1) 0.38 (2) (2)

0.055 0.0002 0.2
NRING 2.6 2.5 0.053 3.2 0.0007 2.9 0.026 3.5 3.3

(3) (2) 0.65 (3) <0.0001 (3) <0.0001 (3) (3)

<0.0001 <0.0001 0.57
rotbond 5.4 7.9 0.15 12.7 <0.0001 5.3 0.36 8.4 8

(5) (4.5) 0.89 (7) <0.0001 (5) 0.62 (7) (6)

0.21 <0.0001 0.71
ACC 3.2 3.6 0.48 6.2 <0.0001 3.2 0.74 4 3.9

(3) (3) 0.63 (5) <0.0001 (3) 0.16 (3) (3)

0.38 0.087 <0.0001
HALOGEN 0.5 0.6 0.84 0.4 0.0003 0.9 <0.0001 0.6 0.5

(0) (0) 0.64 (0) <0.0001 (0) 0.0002 (0) (0)
a Within a p-value cell, the top p-value is from the two-sample t-test, the middle p-value is from the Wilcoxon test, and the bottom

p-value is from the median test. For count-based descriptors, the t-test was performed on a (count + 0.5)1/2 transformation. All p-values
for the SAR group were <0.0001 and are not included in the table. All p-values, except for the halogen count, were <0.0001 for the
clinical group and are not included in the table. Values in bold indicate that at least two of the three p-values are <0.05.
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suggest the range of preferred physical properties and
molecular building blocks to be targeted in the develop-
ment of oral drugs. Although the pharmacological
targets have changed over the years, the necessary
characteristics for producing a drug candidate that is
amenable to oral delivery have remained relatively
stable. This implies that medicinal chemistry explora-
tions of SARs with mean properties and scaffolds
preferentially present in oral drugs should result in
clinical candidates with favorable oral bioavailablity.

Finally, although comparing the means of physical
properties between various drugs or drug fragments is

informative, we caution against using these insights as
predictors for “druglike” vs “non-drug-like” properties
for individual substances. Because of the substantial
overlap in the range of properties found between the
different drug classes, we cannot accurately classify a
particular drug as either oral or injectable on the basis
of simple physical property calculations. These proper-
ties should instead be viewed as multivariate profiles
that can be used to compare sets of molecules (i.e.,
synthetic libraries) to determine if a set is more or less
like the oral drug group defined here. This work
presents statistically motivated ideas and hypotheses

Figure 5. Comparison of the most frequent side chains: (a) oral; (b) injectable. The numbers indicate the count of the drugs
containing that fragment. The means of properties are not significantly different for (a) and (b).

Figure 6. Comparison of most frequent scaffolds: (a) oral; (b) injectable. The numbers indicate the number of drugs containing
the fragment. The means of physical properties (CLOGP, ON, rotbond) are significantly different for (a) and (b).
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regarding characteristics of druglike molecule and frag-
ment sets that we hope can be applied to early-phase
research to decrease the time and increase the prob-
ability of delivering successful clinical candidates.
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