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To provide practical means for rapidly scanning the extensive experimental combinatorial
chemistry libraries now available for high-throughput screening (HTS), it is essential to
establish computational virtual ligand screening (VLS) techniques to rapidly identify out of a
large library all active compounds against a particular protein target. Toward this goal we
developed HierVLS, a fast hierarchical docking approach that starts with a coarse grain
conformational search over a large number of configurations filtered with a fast but crude
energy function, followed by a succession of finer grain levels, using successively more accurate
but more expensive descriptions of the ligand-protein-solvent interactions to filter successively
fewer cases. The final step of this procedure optimizes one configuration of the ligand in the
protein site using our most accurate energy expression and description of the solvent, which
would be impractical for all conformations and sites sampled in the coarse level. HierVLS is
based on the HierDock approach, but rather than allowing an hour or more to determine the
best binding site and energy for each ligands (as in HierDock), we have adapted our procedure
so that it can lead to reliable results while using only 4 min (866 MHz Pentium III processor)
per ligand. To validate the accuracy for HierVLS to predict the experimentally observed binding
conformation, we considered 37 cocrystal structures comprising 11 target proteins. We find
that HierVLS identifies the correct binding mode for all 37 cocrystals. In addition, the calculated
binding energies correlate well with available experimental binding constants. To validate how
well HierVLS can identify the correct ligand in an extensive library of decoys, we considered
a library of over 10 000 molecules. HierVLS identifies 26 out of the 37 cases in the top 2%
ranked by binding affinity among the 10 037 molecules. The failures result from either metal-
containing sites on the protein or water-mediated ligand-protein interactions, which we
anticipate can be solved within the constraints of practical VLS. We then applied HierVLS to
screen a 55000-compound virtual library against the target protein-tyrosine phosphatase 1B
(ptp1b). The top 250 compounds by binding affinity included all six ptp1b cocrystal ligands
added to the library plus three other experimentally confirmed binders. The best (top 1) binder
is an experimentally confirmed positive. We conclude that HierVLS is useful for selecting leads
for a particular target out of large combinatorial databases.

1. Introduction
The number of potential therapeutic target proteins

is proliferating rapidly, making it increasingly impor-
tant to develop techniques for rapidly discovering and
optimizing novel therapeutic agents for these new
targets. Experimental combinatorial chemistry has
provided enormous libraries with millions of potential
ligands quickly accessible for experimental tests to find
positive lead compounds against specific target proteins.
However, to achieve high-throughput screening (HTS),
time is a critical limitation and it is often not practical
to test experimentally all compounds against each
target. This sets the stage for computational virtual
ligand screening (VLS), where the task is to rapidly
identify out of a large library all active compounds
against a particular protein target. Here, it is essential
to minimize elapsed computational time while ensuring
that no active compound is missed. Thus, for a typical
library of 500 000 compounds and a computer cluster
of 200 processors all working on the same target site,

the average time per ligand must be less than 4 min to
finish the task within a week.

The two main VLS approaches are the following: (1)
descriptor-based methods (e.g., QSAR) in which the
screening is based on common structural features
among known ligands to the particular target1 (this does
not require the 3D structure of the target); (2) structure-
based methods in which the 3D structure of the target
is known and the affinity of a particular ligand for the
target is estimated by how well its structure comple-
ments the target binding site2 (this does not require
experimental data on various ligands to a particular
target).

Our interest is in structure-based methods because
they can be applied to novel targets for which there is
little or no experimental binding data. Structure-based
methods have successfully retrieved potential ligands
from large databases,3 but it is necessary to reduce the
costs and to increase the reliability of identifying in a
large library a small subset containing all active com-
pounds for subsequent synthesis and experimental
testing.
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This paper introduces the HierVLS protocol, a fast
hierarchical docking approach that starts with a coarse
grain conformational search over a large number of
configurations filtered with a fast but crude energy
function, followed by a succession of finer grain levels,
using successively more accurate but more expensive
descriptions of the ligand-protein-solvent interactions
to filter successively fewer cases. The final step of
HierVLS uses our most accurate energy expression and
description of the solvent but would be impractical for
all conformations and sites sampled in the coarse level.
HierVLS is a VLS adaptation of the HierDock ligand-
binding protocol developed for predicting binding sites
and energies for selected ligands.4-6 However, rather
than allowing an hour or more to determine the best
binding site and energy for each ligand (as in HierDock),
we adapted the procedure to reduce the computational
time so that we can obtain reliable results while using
only 4 min (866 MHz Pentium III processor) per ligand.

We validate HierVLS in several ways. First, we
consider 37 cocrystal structures comprising 11 target
proteins and examine how well HierVLS predicts the
binding mode found in the crystal. Here, we consider
the performance both with crystallographic waters and
without. We find that HierVLS identifies the correct
binding mode for 37 out of the 37 cocrystals studied. In
addition, the calculated binding energies correlate well
with available experimental binding constants.

Then we considered a library of 10 037 molecules
consisting of the 37 ligands plus 10 000 molecules. The
VLS validation assesses how well we can predict the
binding mode of known ligands and how efficiently we
can select all high-affinity ligands among a large set of
decoys. We find that for 26 out of the 37 cases, the
current procedure identifies the correct ligand in the top
2% ranked by binding affinity among the 10 037 mol-
ecules. The average time for screening all 11 targets
against the 10 037 compounds library was 4 min per
ligand. We compare the result for HierVLS to the results
of three other widely used docking methods (Dock4.0,
FlexX, and ICM; Bursulaya et al., private communica-
tion7), where we find HierVLS to represent a significant
improvement.

As an example of the application of HierVLS, we used
it to screen a 55000-compound proprietary virtual
library against the target protein-tyrosine phosphatase
1B (ptp1b). The top 250 compounds by binding affinity
included all six ptp1b cocrystal ligands added to the
library plus three other experimentally confirmed bind-
ers. The best (top 1) binder is an experimentally
confirmed positive.

The methods and other details are summarized in
section 2. The results are discussed in section 3. In
section 4 we summarize the results and improvements
we are considering. Finally section 5 has the conclu-
sions.

2. Methods

2.1. Overview. The three major elements of a docking
algorithm are (1) a good representation of the molecular search
space, (2) an efficient algorithm to search this conformational
space, and (3) a scoring method that leads to accurate
structures and interaction energies. Techniques available for
docking ligands into receptor can be categorized as (1) match-
ing methods, in which trial ligands are matched onto the ligand

binding site on the receptor and (2) Monte Carlo methods that
use statistical sampling techniques combined with simulated
annealing.

Matching methods include Dock4.0, the docking protocol
developed by Kuntz and co-workers.8,9 In Dock4.0 the potential
ligand docking regions are represented by a set of overlapping
spheres generated using the molecular surface of the target
protein. A conformational search is performed using either
rigid or flexible ligands for a fixed receptor conformation.
Dock4.0 uses electrostatic and van der Waals interactions
evaluated over a grid to calculate the binding energy of a
docked conformation. Dock4.0 employs an efficient mapping
of conformational space to be searched, but the conformational
search may not be exhaustive.

Other docking methods in use involve evolutionary and
heuristic algorithms10 and internal coordinate Monte Carlo.11

Rather than a single conformational search method using
a single scoring function, a two-stage approach has been shown
to be successful for docking.12-14 Bissantz and co-workers14

used three docking programs (Dock, FlexX, and Gold) and
seven scoring functions (Chemscore, Dock, FlexX, Fresno, Gold,
PMF, and Score) to assess the VLS performance of different
combinations of docking/scoring methods applied to two tar-
gets: thymidine kinase (10 experimentally determined co-
crystals structures) and estrogen receptor (2 known cocrystals
structure). They found that the use of consensus lists using
two or three scoring functions significantly improve hit rates
and that accuracy in binding mode prediction does not neces-
sary translate to screening efficacy.

Methods combining docking and molecular dynamics (MD)
simulations have been tested.13 The main drawback of these
methods is that only one protein/ligand complex structure was
kept from the coarse grain docking methods for MD simula-
tions. This is risky considering that the coarse grain docking
does not use an accurate scoring function including solvation.

Free energy perturbation methods lead to accurate free
energies of binding but are computationally intensive and not
readily applicable to a wide variety of ligands.15

The HierVLS approach introduced here uses a hierarchy
proceeding from a coarse grain conformational search through
several levels of increasingly better descriptions of the protein-
ligand interactions including solvation. This allows a practical
procedure for examining a large number of protein-ligand
configurations, progressively eliminating the less favorable
ones while spending more time refining promising configura-
tions. The sequence of steps is designed with the goal of
retaining all active compounds while eliminating inactive
compounds with the least possible computational effort.

2.2. Preparation of the Protein and Ligand Struc-
tures. The coordinates (in mol2 file format) for 11 protein
targets and their 37 cocrystal ligands, plus an additional
screening library of 10 000 molecules randomly selected from
the ACD database, were kindly provided by B. D. Bursulaya
and P. G. Schultz. This set was previously used in a compara-
tive study of docking algorithms for virtual library screening.7

We assigned CHARMM2216 charges for the proteins and
Gasteiger17 charges for the ligands. The potential energy of
each ligand was minimized (to an rms force of 0.5 kcal/(mol‚
Å)) in the gas phase using the Dreiding force field.18

The potential energy (using the Dreiding force field) of each
protein was minimized in the gas phase to relax the structure,
but this was done for just 100 conjugate gradient steps to
ensure that no significant change would occur in the initial
structure. This was necessary to guarantee that each target
protein structure remains as close as possible to those used
with other methods [Dock9 4.0, FlexX19 1.8, AutoDock10 3.0,
GOLD20 1.2, ICM11 2.8, and DockIt 1.0 (Daylight Inc.)] used
in previous studies for cross comparison. Each ligand and
amino acid used the formal charges appropriate to pH 7. All
histidines were neutral except for His231 in thermolysin,
which was assigned a +1 charge based on the nature of the
ligand-protein interaction in the crystal structure.

The target proteins with their respective Protein Databank
codes are listed in Table 1. There were at least two cocrystal
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structures for each target protein, but only one protein
conformation was selected for each case and that conformation
was kept frozen throughout the calculations. The only excep-
tion was carbonic anhydrase II where all three protein
conformations were used to dock all three ligands. The PDB
code corresponding to the reference conformation used in this
study for each target is underlined in Table 1.

Water molecules that mediate hydrogen bonds (HB) between
protein and ligand were included in the calculations only for
those cases in which they were the only HB formed by that
ligand or receptor atom (see Table 2). Hydrogen bonds were
calculated using HBPLUS21 for the original PDB files (before
force-field minimization). After addition of hydrogens to the
ligands, the positions of crystallographic water molecules were
optimized by minimizing the ligand and water with fixed
protein. The waters were subsequently kept fixed during
docking (level 0) but were allowed to relax with the ligands
during optimization (level 1).

2.3. Hierarchical Virtual Ligand Screening (HierVLS)
Protocol. The HierVLS protocol combines a coarse grain
conformational search using Dock4.0 and its simple energy
function, ligand conformation filtering using a combined
criterion of buried surface area and energy score from Dock4.0,
followed by minimization using an all-atom force field (FF)
with solvation evaluated using the analytical volume general-
ized Born (AVGB) model. HierVLS consists of the following
steps.

I. Definition of Docking Region. The docking region for
each target protein was based on the superposition of the
cocrystal structures available for that target. The coordinates

of the superposed ligands were used as the sphere centers
required by Dock9 4.0.

II. Protein Grid Calculation. The docking step uses an
energy grid for the protein contribution to the interaction
energy. This grid is calculated only once per target using the
program Grid, which is part of the Dock4.0 package. This grid
used a box constructed with a 10 Å margin around the sphere
centers defining the docking region. Water molecules were
considered as part of the target protein during conformational
search, and thus, their energy contribution was included in
the target energy grid.

III. Level 0: Coarse Grain Conformational Search.
Generation of docked conformations of each ligand into the
binding site of the target protein was performed using Dock9,22

4.0. We use the options of flexible docking, Dock energy
scoring, maximum of 8 bumps simplex minimization before
scoring, and 300 maximum scored conformations. The Dock4.0
scoring function calculates Coulomb and van der Waals
interaction energies for all atoms of the ligand. We used
Gasteiger charges17 for the ligands and default van der Waals
radii for Dock4.0. The van der Waals radii for the ligands (but
not the protein or waters) were reduced by 25% to allow closer
contacts to the target protein. We saved for subsequent steps
the best 50 conformations by Dock scores for each ligand in
the library. Crystal waters, if present, are considered as part
of the protein and were kept fixed during docking.

IV. Buried Surface Filter. The percentage of ligand buried
surface area was evaluated for the 50 conformations per ligand
from level 0. Configurations with less than 30% of buried
surface area were eliminated, and the remaining ligand
configurations were scored by a double sorting of their
percentage of buried surface (% BSA) and their Dock scores.
The best five configurations per ligand were carried to the next
step.

V. Level 1: Limited Minimization. For each of the five
conformations per ligand that passed the buried-surface filter,
we minimized the structure of the ligand with fixed protein
(25 conjugate gradient steps) using the all-atom Dreiding FF
for ligand and protein but no solvation. Any water molecules
present in the binding site were allowed to relax during this
minimization. The lowest energy configuration was selected
for subsequent steps.

VI. Ligand Ranking. For the best conformation per ligand
from level 1, we evaluated the solvation for both the protein-
ligand complex and the free ligand using the AVGB23 con-
tinuum solvation approach. Binding affinities were calculated
as the difference between the energy of the solvated complex
and that of the free protein and free solvated ligand in their
docked conformations:

We denote this binding energy as the “vertical binding energy”
to indicate that the conformations of the free protein and free
ligand correspond to the ones in the optimized protein/ligand
complex. The ligand list is then sorted by binding affinity.

2.4. Scoring the Experimental Cocrystal Conforma-
tions. We calculated the binding affinity for the cocrystal
(reference) configurations using eq 1. The starting configura-
tion of the complex was obtained by superposing the PDB files
corresponding to different cocrystals of the same target protein
and then placing the superposed ligands into the protein
conformation chosen for docking (which was prepared as
described in “Preparation of the Protein and Ligand Struc-
tures”). The reference cocrystal energies were obtained by
minimizing each cocrystal ligand inside the chosen protein
target conformation without allowing the protein conformation
to relax (protein fixed minimization). Thus, for each fixed
target conformation we find the best complex configuration
matching that particular target conformation. Calculating the
reference binding affinity in this way allows us to compare
the HierVLS scores to the reference binding affinities corre-
sponding to the same target conformation used for docking.

Table 1. The 11 Target Proteins and the PDB Codes for the 37
Cocrystal Considered in This Paper (Listed by PDB Code)a

target protein (nickname) complex PDB code

intestinal FABP (fab) 1icm
1icn
2ifb

neuraminidase (nad) 1nsc
1nsd
1nnb

penicillopepsin (pep) 1apt
1apu

ε-thrombin (ret) 1etr
1ets
1ett

ribonuclease T1 (rib) 1gsp
1rhl
1rls

L-arabinose binding protein (ara) 1abe
1abf
5abp

carbonic anhydrase II (cah) 1cil
1okl
1cnx

carboxypeptidase A (car) 1cbx
3cpa
6cpa

cytochrome P-450cam (cyt) 1phf
1phg
2cpp

thermolysin (tmn) 3tmn
5tln
6tmn

trypsin (trp) 3ptb
1tng
1tni
1tnj
1tnk
1tnl
1tpp
1pph

a For each protein, there are at least two cocrystals; however,
for docking multiple ligands, we used just the one protein
conformation underlined. The exception is carbonic anhydrase II
where we considered separately all three protein conformations.

BindE ) Esolvated_complex - Esolvated_free_protein -
Esolvated_free_ligand (1)

58 Journal of Medicinal Chemistry, 2004, Vol. 47, No. 1 Floriano et al.



3. Results and Discussion

3.1. Binding Mode Accuracy for Known Cocrys-
tal Structures. The first test of the HierVLS protocol
is the accuracy of predicting the crystallographic binding
mode for the 37 cocrystal structures listed in Table 2.
To do this, we performed steps I-VI of the HierVLS
protocol as detailed in section 2. The best conformation
for each ligand obtained from the HierVLS protocol was
compared to the experimentally determined conforma-
tion for the cocrystal ligands. These results are shown
in Table 3.

We found that 37 out of our 37 predicted cocrystals
were within 2 Å CRMS (coordinate root mean square)
deviation from the experimental crystal conformation
(not the minimized structure), which we consider as the
minimal agreement of a good match. We found that 21
out of 37 are within 1.0 Å CRMS to the crystal, which
we consider as the desired accuracy for binding mode
prediction. Thus, we consider that HierVLS performs
this test satisfactorily.

In the above test, crystallographic waters found to
mediate hydrogen bonds between ligand and protein
were initially placed in their positions for the particular
protein structure we used for docking (described more
completely in the following sections). The position of
such waters would be unknown for most applications.

Hence, a better test is to remove all crystallographic
waters before docking the ligands. In this case, HierVLS
predicts 32 out of the 37 cocrystal structures within 2
Å. This can be compared to the performance of three
other docking programs (Dock, FlexX, and ICM) as
reported by Bursulaya et al.7 for the same set of 37
cocrystals presented here. These calculations did not
include crystallographic waters. Thus, the number of
cases in which the predicted ligand conformation is
within 2 Å CRMS of the experimental crystal structure
is as follows: HierVLS, 32 out of 37; Dock4.0, 11 out of
37; FlexX, 13 out of 37; ICM, 29 out of 37.

Binding mode accuracy has also been reported using
Dock, Gold, and FlexX for 10 cocrystals of thymidine
kinase.14 In that work, Dock and FlexX predicted 4 out
of 10 cocrystal ligands within 2 Å CRMS, while Gold
predicted 6 out of 10 within 2 Å CRMS. We believe that
the better performance of the HierVLS protocol dem-
onstrates the necessity of multiple-step hierarchical
algorithms for VLS.

3.2. Database Screening Efficacy. In addition to
reproducing the correct binding modes, a useful VLS
protocol must identify all high-affinity ligands as top
rankers from a large and diverse ligand library. Here,
we consider 2% as the minimal criterion for success. To
provide a test for database screening efficiency, we used

Table 2. Water-Mediated Hydrogen Bonds Found in the 37 Cocrystal Casesa

target PDB code ligand atom DA (Å) HOH atom HOH number HOH atom DA (Å) residue atom residue ID

pep 1apu O (A) 2.88 O (D) 606 O (D) 3.26 O (A) Ser74
ret 1etr N (D) 3.33 O (A) 616 O (D) 2.64 O (A) Ser214

NH1 (D) 3.22
ara 1abe O2 (A) 2.61 O (D) 309 O (D) 2.85 OE1 (A) Gln11

O3 (A) 3.23 O (D) O (D) 2.72 OE2 (A) Glu14
O5 (A) 2.80 O (D) 310 O (D) 2.71 O (A) Asp89

O (A) 2.39 OG1 (D) Thr147
1abf O2 (A) 2.61 O (D) 311 O (D) 2.73 OE1 (A) Gln11

O3 (A) 3.17 O (D) O (D) 2.74 OE2 (A) Glu14
O (A) 2.96 ND2 (D) Asn205

O5 (A) 2.74 O (D) 349 O (D) 2.83 O (A) Asp89
O (D) 2.91 OG1 (A) Thr147

5abp O2 (A) 2.77 O (D) 309 O (D) 2.94 OE1 (A) Gln11
O3 (A) 3.17 O (D) O (D) 2.66 OE2 (A) Glu14

O (A) 2.87 ND2 (D) Asn205
O6 (A) 2.67 O (D) 310 O (D) 2.78 O (A) Asp89

O (D) 2.85 OG1 (A) Thr147
O (A) 3.34 N (D) Met108

cah 1cil N14 (D) 2.92 O (A) 406 O (D) 3.39 OD1 (A) Asn67
O (A) 2.88 NE2 (D) Gln92

1cnx N2 (D) 2.91 O423 (A) 423, 419 O419 (D) 3.48 OD1 (A) Asn67
car 6cpa O6A (A) 2.68 O (D) 460 O (A) 2.58 NE (D) Arg71

3.06 NH1 (D)
O (A) 2.93 NH2 (D) Arg127

2.68 Glu72
tmn 3tmn OXT (A) 2.61 O (D) 803 O (D) 3.22 OD1 (A) Asp226

6tmn O (A) 2.64 O (D) 5 O (D) 2.42 O (A) Leu4
O2P (A) 2.86 O (D) 362 O (A) 2.98 N (D) Trp115
N (D) 2.90 O (A) O (D) 3.25 OE1 (A) Glu143

trp 3ptb N2 (D) 3.13 O (A) 416 O (D) 3.30 OG (A) Ser190
O (D) 3.20 O (A) Trp215
O (D) 2.84 O (A) Val227

1tnj N (D) 3.32 O (A) 248 O (D) 2.93 O (A) Ser217
O (D) 2.72 O (A) Lys224
O (A) 2.86 N (D) Gln221

1tpp N2 (D) 2.88 O (A) 416 O (D) 3.33 OG (A) Ser190
O (D) 3.21 O (A) Trp215
O (D) 2.78 O (A) Val227

1pph NG1 (D) 2.92 O (A) 235 (416 3ptb) O (D) 3.24 OG (A) Ser190
O (D) 3.11 O (A) Trp215
O (D) 2.90 O (A) Val227

a DA is the donor-acceptor distance in units of angstrom.
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the 10 037 ligand library prepared as detailed in section
2 and performed steps I-VI of the HierVLS protocol on
the 11 protein targets. This database screening was
performed on a dual 866 MHz Pentium III processor
Linux cluster with 80 nodes. Each processor performs
one target/ligand combo at a time with the complete
target/ligand list evenly distributed across all available
processors.

When put to the 10 037 ligand library test, HierVLS
found 23 out of the 37 cocrystal ligands in the top 2% of
the library screening ranked by binding energy. These
results are shown in Table 4. This can be compared to
the results for the other methods as follows: HierVLS,

23 out of 37; Dock4.0, 7 out of 37; FlexX, 11 out of 37;
ICM, 20 out of 37.

If screening is done including crystal waters, we find
the cocrystal ligands in the top 2% ranking for 26 out
of the 37 cases (70% of true hits in the top 2% of the
ranked database compared to 62% for no water cases).

Screening efficacy has also been evaluated for other
VLS methods.14,24-26 Bissantz and co-workers14 docked
(using Dock, FlexX, and Gold) and scored (using Chem-
score, Dock, FlexX, Fresno, Gold, PMF, Score, and
combinations of them) 10 experimentally active ligands
plus a library of 990 decoy molecules to the targets
thymidine kinase (TK) and estrogen receptor (ER). Out

Table 3. Accuracy in Predicting Binding Mode, Showing the Coordinate Root Mean Square (CRMS) Deviation of the Non-Hydrogen
Atoms in the Predicted Structure from the Experimental Cocrystal Configurationa

a The highlighting in yellow are cases in which the predicted cocrystal CRMS deviation is 2 Å or less. A single protein conformation
was used for docking multiple ligands in all cases except carbonic anhydrase II. The PDB code of the complex from where the protein
conformation was taken is underlined.
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of the combinations tried, Dock docking with PMF
scoring (Dock/PMF), FlexX/PMF, and Gold/Gold gave
the best screening performances for TK, with Gold/Gold
finding all 10 experimental hits in the top 10% of the
ranked list, while the other two combinations find 7 of
the 10 experimental positives in the top 10%. For the
second target ER, Gold docking with Dock scores

performed best. For both targets, the best hit rates were
obtained when using two or more scoring functions in
combination. In terms of how well the scoring functions
correlate with measured binding, only Gold docking
with gold scoring gave predicted binding energies with
some statistical significance (correlation coefficient of
0.51) when applied to TK. As in some of our cases, the

Table 4. Virtual Screening Efficacy for a Database Library of 10 037 Ligands, Including the 37 Ligands for the 11 Protein Targetsa

a Column 2 shows the percentage of molecules with equal or higher score compared with that of the cocrystal ligand in column 1. Blue
highlighting indicate those cases where the target ligand was in the top 2%. A single protein conformation was used for docking multiple
ligands in all cases except carbonic anhydrase II. The underlined PDB code indicates the crystal complex from which the protein
conformation was taken. b Poor discrimination of the cocrystal ligands appears to be associated with unaccounted water-mediated HBs
for 1ett (inclusion of one water molecule improves the ranking of this ligand to the top 0.8%; see Table 8), 1okl, 3cpa, 1phf, 1phg, and
6tmn. c The trypsin cocrystals not ranked in the top 2% of the binding energy list are all low-affinity ligands, and their calculated binding
energies may have been underestimated. Nonetheless, the correlation coefficient between experimental log Ki and calculated binding
energies for the trypsin complexes is 0.93 (see Table 7).
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authors in that work attribute the poor screening
efficacy and low binding energy correlation found for
the target TK in part to unaccounted water-mediated
interactions between ligands and protein.

A comparative study of the VLS performance of FlexX,
FRED, and Glide as docking engines in combination
with various scoring function for five protein targets
(cyclooxygenase-2, estrogen receptor, p38 MAP kinase,
gyrase B, R-thrombin, gelatinase A, and neuraminidase)
has recently been published.24 In that work, the shape
fitting docking method FRED performed better for cases
where binding interactions are mainly lipophilic, while
the incremental construction algorithm in FlexX worked
better for cases where few hydrogen bonds could be used
as anchor points. The particularly good performance of
Glide for the most polar targets in the group, neuramini-
dase and gelatinase A, was attributed by the authors
to the inclusion of repulsive electrostatic and van der
Waals interactions in the force field filtering of docked
configurations. The combination of docking/scoring meth-
ods FRED/ChemScore had the better overall perfor-
mance in terms of screening efficacy across all seven
targets. For neuraminidase, which is also in our target
list, although we used a different set of coordinates, the
FRED/ChemScore combination finds close to 20% (ac-
tual number not available in the paper) of the 51
experimental hits in the top 2% of the ranked lists.24

The best performance for neuraminidase though is
achieved with the Glide/ScreenScore combination, which
gives close to 80% of true hits in the top 2% of the
ranked 7980 compounds database. However, the Glide/
ScreenScore combination performed poorly for the other
targets studied in that work.24

We consider the performance of HierVLS in the
screening efficacy test to be extremely encouraging.

3.3. Efficiency in the Generation of Docked
Conformations. The conformational search performed
at level 0 of the HierVLS protocol is far from an
exhaustive search. Therefore, it is important to evaluate
how efficient that step is in finding conformations that
fall within a 2 Å CRMS deviation from the crystal-
lographic structure of the known ligands. A larger
number of correct binding mode conformations increases
the chances of choosing a conformation that is both
geometrically accurate and energetically favorable for
screening. We also want to ensure that good conforma-
tions are not lost in the hierarchical process.

Table 5 reports the number of good conformations
(i.e., having a CRMS deviation of 2 Å or less for heavy
atoms when compared to the experimentally determined
conformation) at each step of the HierVLS protocol.
Here, we see that the chances of having high binding
mode accuracy in the final best conformation increase
with the number of configurations within 2 Å of the
experimental crystals generated at level 0. This suggests
improvements in which better energy evaluation is
carried out in this stage.

Although the inclusion of crystallographic waters
benefits the particular cocrystal ligand from which the
waters were derived, they may interfere with the
binding of other ligands to the same protein. For
example, see the ret/1etr in Table 8. This suggests
improvements in which waters necessary for hydrogen

bonding to ligand and protein are placed during the
conformational search step of the protocol.

3.4. Correlation between Scores and Experimen-
tal Binding Affinity. For the highest efficiency in
database screening, it is important to have the correct
binding mode and a good correlation between the
calculated binding energies and the experimental bind-
ing constants (Ki). Accurate binding energies provide a
difficult test for a VLS procedure because we do not
allow relaxation of the full protein-ligand with solva-
tion (which is required for the highest accuracy). Among
our 11 protein targets, four cases have experimental Ki
data for three or more of the ligands considered here
and have been previously used in ligand screening
studies: carboxypeptidase A (car) (three cocrystals);
thermolysin (tmn) (three cocrystals); ε-thrombin (ret)
(three cocrystals); trypsin (trp) (seven cocrystals).

The calculated binding energies are compared to
experimental binding constants in Table 6 and Figure
1. The binding energies for cocrystal structures were
calculated using the multiple ligands/single protein
conformation restriction, as described in “Methods”. The
experimental binding constants for ret, trp, car, and tmn
were taken from Eldridge et al.27 That paper constructed
five classes of protein/ligand complexes that the authors
used as training sets to develop an empirical scoring
function. They included only complexes involving small
noncovalently bound ligands with known binding affin-
ity and experimental structures deposited in the Protein
Database (PDB). We grouped our targets into two
(serine proteases and metalloproteases) of the five
training set classes from Eldridge. Although other
complexes in our set had reported binding affinities and
belonged to one of the five classes in that paper, we only
used the complexes that could be grouped into a class
with at least six members.

The sets reported by Eldridge were also used in other
studies evaluating performance of knowledge-based
scoring functions.28,29 This allows us to compare our
HierVLS scoring function performance to those func-
tions. Muegge and Martin proposed and evaluated a
potential of mean force (PMF) score calculated using
protein-ligand atom-pair interaction potentials derived
from the observed distance distribution of specific atom-
type interactions found in the PDB. The performance
of the PMF scores for 77 cocrystals with known experi-
mental binding affinities was compared to two other
scoring functions, the empirical LUDI30,31 and the
statistical SMOG.32 Goehke et al. developed a scoring
function (“DrugScore”) based on structural information
for protein/ligand complexes from the Relibase.33 Drug-
Score includes distance-dependent atom pair and solvent-
accessible surface-dependent potentials.

The reported correlation coefficients between scores
and log Ki are shown in Table 7. The performance of
the various methods for the serine protease class is
comparable to that of HierVLS, all having significant
linear correlation between scores and log Ki. The cor-
relation coefficient between calculated HierVLS scores
and experimental binding constants for trypsin (trp) and
ε-thrombin (ret) (which are together in class “serine
proteases”) is 0.94 for cocrystal conformations scored
with the HierVLS scoring function and is 0.93 for the
conformations obtained by docking the cocrystal ligands
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using HierVLS. We consider these correlations as excel-
lent because (1) cocrystal and HierVLS predicted scores
were both calculated for multiple ligands using a single
protein conformation and (2) our scoring function is
based on first principles and not calibrated to fit
experimental values.

All the scoring functions in Table 7 (including Hi-
erVLS) seem to have trouble describing the binding
affinities for the metalloprotease complexes. The best
correlation for this class was obtained by the empirical
scoring function described by Eldridge et al.,27 but a
good correlation is expected because the complexes were
in the training set used to derive the equation.

The correlation coefficients R2 for linear fitting of
calculated versus experimental binding affinities define

the proportion of variance in common between two
variables. The value of R2 that is statistically significant
depends on the number of variable pairs and the
probability of correlation by chance for that number of
pairs. For the serine protease set (10 components), an
R2 higher than 0.55 can be considered significant, while
for the metalloproteases set (six components) R2 needs
to be higher than 0.73 to be significant.

The metalloprotease class has proteins with metals
playing a role in ligand recognition in the binding site.
Carboxypeptidase A (car) and thermolysin (tmn) are two
such targets in this test set. The correlation coefficient
for these systems is 0.50 for cocrystal configurations and
0.68 for the predicted HierVLS configurations. The low
correlation for cocrystal cases is probably because we

Table 5. Efficiency in Generating Docked Conformation at Each Level of the HierVLS Protocola

a The table shows at each step the number of cocrystal ligand configurations having (heavy atom) a CRMS deviation of 2 Å or less from
the experimental cocrystal. The total number of configurations considered in each step is shown in the first row. The CRMS deviation for
the final selected conformation is in the second column. Both water and no-water cases used a single protein conformation per target,
with the water molecules coming from the underlined structure. When present, the water molecules were kept fixed during docking but
were allowed to relax along with the ligand at level 1 (protein fixed minimization) of the HierVLS protocol. Highlighted cases indicate no
configuration generated at level 0 (black shade), final configuration within 2 Å CRMS (grey shade), and one configuration below 2 Å that
was subsequently lost (yellow shade). b This large rms is due to clashes between water 616 from the 1etr structure (the protein conformation
used) and the 1ets ligand configuration.
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used a fixed protein conformation to score different
ligands. In addition, the Dreiding FF used here was not
developed to describe interactions with metals. To
improve this performance, we plan to optimize the
Dreiding force field for describing the interaction of
protein-bound metals with small organic molecules.

The scoring functions in Table 7 were from knowledge-
based (PMF, SMOG, DrugScore; based on experimental
structural data), empirical (LUDI, Eldridge; based on
experimental binding data), or first principles (HierVLS;
based on theoretical description of atomic level interac-
tions). These comparisons show that the first-principles
scoring function of HierVLS performs comparably to the
other approaches. Since HierVLS is fast enough to be
used in screening large databases, is not limited by
requiring training sets of experimental data, and can
be improved systematically by improving the accuracy
of describing the fundamental interactions between
protein and ligands, we consider that HierVLS is very
promising.

3.5. Importance of Water-Mediated Hydrogen
Bonds. The vast majority of the known structures of
protein/ligand complexes have all the buried polar
hydrogen bond donors/acceptors satisfied by hydrogen
bonds.34 In many cases, water molecules present in the
binding site mediate hydrogen bonds between ligand
and protein. These water-mediated HBs stabilize bound
conformations that would be less favorable otherwise.
However, within the context of VLS it is difficult to
include the crystallographic water molecules needed to
form these HBs in the binding site. This is because any
particular water molecule important for one ligand may
be unimportant or detrimental for another ligand bound
to the same protein. Thus, protein/ligand conformations
that should be stabilized through HBs to water mol-
ecules in the binding site will lack that extra contribu-
tion to their energy, making it more likely that they will
score more poorly than ligands that do not depend on
such interactions.

The importance of such water-mediated hydrogen
bonds for correctly predicting binding mode and affinity
is shown in Table 8. There, we compare binding mode
and ranking with and without water molecules for 25
cocrystal ligands. Crystallographic waters found to
mediate hydrogen bonds between ligand and receptor

were included as part of the receptor whenever the
ligand or receptor atom involved in these HBs could not
make any HBs without this water. The PDB files where
the water-mediated HBs were found and the water
number are also in Table 8. The waters were kept fixed
along with the receptor for level 0 (configuration gen-
eration) but were allowed to move along with the ligands
at level 1 of the HierVLS procedure. Not all waters
included as part of the receptor were conserved across
the cocrystals of a particular receptor, indicating that
caution should be taken when evaluating the predicted
binding mode for cocrystal ligands other than the ones
from which the included waters were taken. For in-
stance, the water molecule added to ε-thrombin/1etr
improves the HierVLS score for 1etr and for 1ett but
clashes with the ligand in 1ets. Thus, the protein/water
configuration for 1etr cannot be used for 1ett.

For five cases that were not within 2 Å CRMS when
the docking was done without water, the accuracy of
the binding mode improves to less than 2 Å upon
inclusion of crystal waters. Two of these cases (cah/1okl
and tmn/6tmn) involve proteins that have a metal ion
interacting with the ligands, and three are sugars bound
to L-arabinose binding protein (ara/1abe, ara/1abf, ara/
5abp). To correctly predict the binding mode for carbonic
anhydrase II/1okl also required choosing an adequate
conformation of the target protein as discussed below.

Including the water molecules that mediate protein-
ligand hydrogen bonds in the database screening also
achieves much better efficacy. To assess this improve-
ment in binding affinity ranking, we docked and scored
all 10 036 decoy ligands against targets with added
cocrystal waters. We found that including the waters
promoted three cocrystal ligands (cah/1cil, cah/1cnx, and
tmn/5tln) to the top 2% of the decoy list. In addition,
including these waters consistently improved the score
of the ligands corresponding to the cocrystal from which
they were derived (marked in bold in Table 8). Level 0
sampling also benefited from adding these waters. For
penicillopepsin (pep), ε-thrombin (ret), and trypsin (trp),
including water did not change the binding mode and
affinity outcome, which were already good.

Similar results were found for predicting the binding
mode in the case of ligand dhbt (no structure or name
provided in the reference) virtually docked to thymidine

Table 6. Calculated Binding Scores Compared to Experimental Association Inhibition Constants (Ki)a

target PDB code exptl log Ki
27,44

score for crystal
conformationb

score for HierVLS
conformationb

CRMS (Å) for HierVLS conformation
to crystal conformation

trp 3ptb -4.74 -79.57 -57.04 0.76
1tng -2.94 -43.51 -28.50 0.48
1tni -1.70 -39.53 -38.49 1.68
1tnj -1.96 -38.75 -15.16 1.52
1tnk -1.49 -35.11 -18.13 1.05
1tnl -1.88 -15.11 -11.07 1.36
1pph -6.23 -102.67 -83.14 1.62

ret 1etr -7.41 -131.54 -73.02 0.52
1ets -8.53 -166.03 -90.56 1.46
1ett -6.19 -135.72 -53.72 1.07

car 1cbx -6.35 -229.70 -153.53 1.08
3cpa -3.89 -116.93 -36.19 1.2
6cpa -11.54 -268.06 -212.20 0.64

tmn 3tmn -5.91 -182.55 -135.08 1.32
5tln -6.37 -81.33 -57.89 1.62
6tmn -5.05 -49.24 -23.50 0.67

a Underlined is the PDB code of the complex from where the protein conformation was taken. b Scores for all crystal conformations, trp
HierVLS, and ret HierVLS are for no-water cases; HierVLS scores for car and tmn are from water cases.
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kinase using FlexX.14 The rms deviation from the crystal
structure was 3.65 Å without waters and went down to
0.70 Å when the active site was filled with waters during
docking.14 However, the effect in screening efficacy was
minimal (ranking down from 24 to 18 when filling the
site with waters) for that particular ligand. The inclu-
sion of crystallographic waters and use of different
protein conformation, on the other hand, was found to
improve considerably the correlation between binding
energies and scores.14

For the L-arabinose binding protein (ara) bound to
L-arabinose (1abe), D-fucose (1abf), and D-galactose
(5abp), including a single conserved water [310 (1abe)]
changes the binding mode prediction from none (without
water) to all (with water) ligands having a CRMS lower
than 2 Å. It has been suggested35 that the crystal-

lographic water molecules (309, 310, and 311) in these
structures contribute to the specificity of L-arabinose
binding protein toward those three ligands. The groups
common to the three sugars are positioned identically
in the site, and all three ligands form the same protein/
ligand HBs. However, the water-mediated HBs and the
positioning of the water molecules in the site differ in
each case, contributing to the observed differences in
specificity. Even though the predicted HierVLS confor-
mations without water are not within 2 Å from the
cocrystals, they still represent the affinity of the site
for sugars because all three cocrystal ligands rank in
the top 1% of the 10 037 list. The no-water HierVLS
conformations differ from the cocrystal ones by rotations
of the sugar around an axis perpendicular to the ring.
When ranking is performed with the inclusion of water

Figure 1. Comparison of predicted binding scores against experimental binding affinities for the experimentally determined
cocrystal conformation and the conformation predicted by HierVLS for (A) serine proteases (trypsin and ε-thrombin) and (B)
metalloproteinases (carboxypeptidase A and thermolysin). The A and B grouping and experimental values were based on Eldridge
et al., 1997. The cocrystal HierVLS scores were calculated for a single protein conformation per target (the same one used in the
HierVLS procedure), with the different ligands placed into the binding site by superposing the PDB files and minimizing the
ligand with fixed protein. Therefore, the HierVLS scores do not correspond exactly to scoring the cocrystal (PDB) conformation
except for the cases from where the protein conformation was taken. The scores reported in the literature are for the protein-
ligand configuration in the original PDB files. This difference should be taken into account when comparing the correlation
coefficients. Comparative scores were taken directly from published tables in Eldridge et al.27 in 1997 or estimated from published
graphics in Muegge and Martin28 in 1999 for the same cocrystals reported in the present work. The cocrystal used for the protein
conformation is underlined in the figures.
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310 (1abe), the binding affinities of 1abe and 5abp
increase while 1abf loses a bit of affinity but still ranks
in the top 2% of the decoy list.

The same effect of bound water can be seen for the
thermolysin/6tmn complex. In this case, the water-
mediated hydrogen bonds involving water molecules 5
and 362 in the cocrystal are believed to contribute to
specificity.36,37 If no water is included in the target
structure during HierVLS, the binding mode for 6tmn
is predicted with a CRMS of 7.8 Å. When the proper
water molecules are added to the target structure and
are allowed to optimize along with the ligand during
scoring, the binding mode accuracy for 6tmn increases
to 0.67 Å. In terms of binding affinity, the inclusion of
water improved the scores of all three thermolysin
cocrystal ligands and promoted 5tln to the top 2% of the
ranked list. However, 6tmn scored worse than 2% of the
decoy list even with the inclusion of waters, which
indicates that we are still missing important interac-
tions for this ligand.

3.6. Metals, Water Coordination, and Water
Displacement. Four of our 11 target proteins (cyto-
chrome P450cam (cyt), carbonic anhydrase II (cah),
carboxypeptidase A (car), and thermolysin (tmn)) have
metal groups that participate in ligand binding. The
structure of cytochrome P450cam with no ligand has the
heme ferric cation coordinated to a cysteine residue and
a water molecule in the binding site.38 Binding the
substrate displaces the coordinated water (as well as
other conserved water molecules present in the active
site) and induces a transition from a hexacoordinate
low-spin ferric state to a pentacoordinate high-spin
ferric state.38,39

Carboxypeptidase A (car), thermolysin (tmn), and
carbonic anhydrase II (cah) have Zn2+ in their active
sites. For carboxypeptidase and thermolysin without the
ligand, the Zn2+ is coordinated to two histidine groups,
one glutamate group, and one water molecule. Substrate
binding displaces the coordinated water from the active
site,36,40 and it has been suggested that further stabi-
lization of the complexes is achieved through water-
mediated hydrogen bonds.38 The native conformation of
thermolysin remains essentially unchanged upon bind-
ing numerous inhibitors.36 Of the three thermolysin

complexes studied here, 3tmn has a water molecule
coordinating the zinc (even with the ligand in place) and
6tmn has multiple water-mediated HBs. The experi-
mentally determined structures of carbonic anhydrase
II complexes show that some ligands (e.g., PDB codes
1cnx and 1cnw) form water-mediated hydrogen bonds
to the protein.

In all of these targets, binding of the ligand displaces
a metal-coordinated water molecule. There are three
reasonable options for predicting binding affinities in
such cases: (1) assume that the reference state for the
unbound protein has a free coordination site (no water
in the active site); (2) assume that the reference state
of the protein has a water molecule coordinated to the
metal and that binding of the ligand displaces the water
to a different position still in the active site; (3) assume
that the reference state of the protein has a water
molecule coordinated to the metal but that binding of
the ligand ejects the water from the active site.

For options 1 and 3, the reference state for the
unbound protein is the same for all ligands and there
is no possibility of stabilization of each complex by the
displaced water. Thus, these options lead to the same
ranking as that in a ligand list by affinity. However,
the values for the binding energies and hence their
correlation to experimental affinities when considered
among a set of unrelated targets depend on the choice
of the unbound protein reference state.

Option 3 is more computationally challenging, since
it is necessary to determine the best configuration for
the water molecule with the ligand in the binding site.
This coupled docking problem will lead to a different
configuration for the water with each ligand conforma-
tion. Consequently, including the displaced water in the
complex may change the outcome for both the binding
mode and the affinity ranking. In addition, we must
consider extra stabilization through water-mediated
HBs between the ligands and the binding site involving
other buried waters in the site. The stabilization arising
from including one water molecule in the binding site
may range up to 2 kcal/mol (the number of hydrogen
bonds made by a water buried in a protein may be up
to three, with each one stabilizing the cavity by 0.6 kcal/
mol).41 This explains why 5 out of 12 cocrystal ligands

Table 7. Correlation between Calculated and Observed Binding Affinities for Cocrystalsa

cocrystal ligand configurations predicted ligand configurations

serine proteases
(trp and ret)

metalloproteases
(tmn and car)

serine proteases
(trp and ret)

metalloproteases
(tmn and car)

scoring function no. cmplex R2 no. cmplex R2 no. cmplex R2 no. cmplex R2

MSC HierVLS 10b 0.95 6c 0.50 10b 0.93 6c 0.68
Muegge and Martin 16 0.87 15 0.58
(PMF)28 (0.86)d (0.57)d

SMOG28 16 0.76 15 0.58
LUDI28 16 0.76 15 0.41
Eldridge27 15 0.86 15 0.77

(0.94)d (0.76)d

DrugScore29 15 0.86 15 0.70
a The cocrystal HierVLS scores were calculated for a single protein conformation per target (the same one used in the HierVLS procedure),

with the different ligands placed into the binding site by superposing the PDB files and minimizing the ligand with fixed protein.
Consequently, the HierVLS scores do not correspond exactly to results from scoring the cocrystal (PDB) conformation except for the cases
from which the protein conformation was taken. The scores reported in the literature are for the protein-ligand configuration in the
original PDB files. This difference should be taken into account when comparing the correlation coefficients. We also report the correlation
coefficients for the predicted (docked using HierVLS) complexes. b Our set did not include structures with PDB codes 1bra, 1ppc, 1tmt,
1tnh, tmt1. c Our set did not include structures with PDB codes 1mnc, 1tlp, 1tmn, 2tmn, 4tln, 4tmn, 5tmn, 7cpa, 8cpa. d The number in
parentheses is the correlation coefficient for the same set of structures as in the MSC HierVLS. The scores used here were either taken
directly from tables (Eldridge’s case) or estimated from published graphics (Muegge and Martin’s case).
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of metal-bound targets ranked worse than 2% of the
decoy list, even after some of the water-mediated
hydrogen bonds found in the cocrystal structures and
the receptor bound conformation were included.

These results suggest improving HierVLS to include
the favorable interactions due to water-mediated cou-
pling of the ligand with the protein by always adding
to the ligand/protein binding cavity waters needed to

Table 8. Comparison of HierVLS Results with and without Inclusion of the Crystallographic Waters Found To Mediate
Target-Ligand Hydrogen Bondsa

a Except for cah with water, all the other cases used a single protein conformation (PDB code underlined) per target. The coordinates
for the water molecules were extracted from the same PDB file as the protein. Water molecules were kept fixed during docking but were
allowed to relax along with the ligand at level 1 (protein fixed minimization) of the HierVLS protocol. Yellow highlighting indicate CRMS
below 2 Å. Blue highlighting indicates cases where the target ligand was in the top 2%. b The case with no water used 1cil protein
conformation for all ligands, while the water cases had the ligands docked to their respective protein and water conformations. All the
other targets used a single protein conformation.
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saturate the hydrogen bond network. These waters
would have to be modified appropriately during ligand
conformational sampling.

Certainly the increased errors for ligand binding to
metalloproteins is caused by using a force field that was
never optimized for metals (Zn and Fe). We can improve
our description of the metalloprotein complexes by
optimizing the force field for such metals binding to
organic ligands.

3.7. Changes in the Protein Conformation In-
duced by the Ligand. The experimental structures of
carbonic anhydrase II complexed with three structurally
related inhibitors (1cnx, 1cnw, and 1cny)42 reveal that
the conformation of the native protein remains rather
unchanged upon binding. However, another set of three
experimentally determined carbonic anhydrase II com-
plexes40 show that in the binding of a specific inhibitor
(1cil), the side chain attached to the 4-amino group is
in a conformation that forces His-64 to occupy a non-
native position and causes the bound water to be absent.
This change in conformation was used to explain40 why
1cil binds more tightly than the other two structurally
related inhibitors also studied in that paper (PDB codes
1cin and 1cim). The structure of the 1okl complex43

shows that a conformational change of Leu-198 is
required to accommodate that ligand, compared to other
complexes of cah. These two structural features imply
that the conformation of this protein can change upon
binding and may be very specific for a particular ligand.

Without including any water molecules and using the
same protein conformation (1cil) for all three ligands,
HierVLS fails to predict the correct binding mode for
1okl. Using the proper target conformation for 1okl leads
to only a marginal improvement in the predicted binding
mode (CRMS error decreases from 3.73 to 2.72 Å).
However, including the water molecules that mediate
receptor-ligand hydrogen bonds in the crystal has a
stunning effect. The CRMS deviations to the cocrystal
conformations obtained using the same water molecules
but different target conformations for carbonic anhy-
drase II are shown in Table 9. Except for 1cil bound to
the 1cnx receptor, all the other binding modes were
correctly predicted just by adding cocrystal waters to
any of the receptor conformations. Of course, the best
overall performance in terms of binding mode prediction
and binding affinity ranking always comes from the case
were the ligand was bound to its proper receptor

conformation. This is consistent with a mechanism of
ligand binding in which the ligand first adopts the
proper position and then induces a conformational
change to improve affinity.

3.8. Predicting Binding Affinities for Low-Affin-
ity Ligands. The correlation coefficient between the
seven trypsin complexes with experimental log Ki and
the predicted binding energies is 0.93, indicating that
our procedure leads to accurate relative affinities. On
the other hand, five of the eight trypsin cocrystal ligands
led to 11% or more of the decoy molecules having
binding affinities ranking better than the correct ligands.
We found that the ligands with low experimental
affinity to the site (1tng, 1tni, 1tnj, 1tnk, 1tnl; Ki ranging
from -9.6 to -16.7 kJ/mol 27) were exactly the ones that
ranked poorly (11-52%) in the HierVLS scoring. This
suggests that the problem results from a poor descrip-
tion of the solvation for loosely packed ligands.

3.9. Timing. We timed each step of the HierVLS
protocol using an 866 MHz Pentium III processors
running Linux. These results are shown in Table 10.
Times are in seconds except for last column, which is
in minutes. The times reported are user plus system
times. For the level 0, filter, and level 1 steps, these
times are the average over all 10 037 ligands against
each target, while the AVGB times are reported for a
single protein/ligand case. Row “average” lists the
average times calculated over all 11 targets. The aver-
age run time for no-water cases was 4 min per ligand.
The run time for water cases ranged from 4.6 to 6.7 min
per ligand.

As can be seen in Table 10, the most time-consuming
step of the protocol is level 1, which consists of energy
minimization of 50 docked configurations of each ligand
with fixed protein coordinates. The time spent at level
1 greatly depends on the number of atoms of the target
protein, with bigger proteins requiring the largest
amount of CPU time. Run time at level 1 also depends
on the size and rigidity of the ligands and on the fitting
quality of the bound configurations. In our particular
case, the same ligand library was docked to each target,
and therefore, the differences in CPU time at level 1
come from protein size and binding site fitting. Large
or shallow binding sites that can physically accom-
modate most ligands in the database without very many
bad contacts will require, on average, fewer steps of
minimization (less CPU time) at level 1. Ligands that

Table 9. Effect of Protein Conformation on Binding Mode Prediction for Carbonic Anhydrase II (cah)a

a Each column corresponds to a different crystal structure of cah. The three cocrystal ligands were docked to each one of the protein
conformations using HierVLS. The best overall performance in terms of binding mode prediction and binding affinity ranking (in bold
font) consistently comes from the case where the ligand was bound to its proper receptor conformation. The binding mode accuracy is
below 1 Å in all three cases.
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do not quite fit in the site, however, will require the
maximum number of minimization steps (25 conjugate
gradient steps) at level 1, therefore increasing CPU time
compared to other targets of similar size.

3.10. Limitations. The main limitation in our current
implementation of the HierVLS protocol is computer
memory. For a library of 10 037 against one protein
target, we found that HierVLS requires 1 GB of memory.
This requirement comes from assigning sets of 10-100
ligands to individual processors, which is done at level
0 by using the database mode as implemented in
Dock4.0. We are addressing this issue by changing the
work load distribution to one ligand per processor with
new ligands being assigned to processors as they become
idle. The disk space that needs to be available in local
scratch disks is 30 GB per 100 ligands per 1 processor
combination.

3.11. Example Application. For an example of the
application of HierVLS, we used it to screen a 54764-
compound proprietary virtual library against the target
protein-tyrosine phosphatase 1B (ptp1b). Sixty-nine
compounds in this library are known positives, and 482
are known negatives. All the other compounds were
unknown cases. No experimental binding constants
were available for the 69 positives at the time this work
was done. To that virtual library we added six ptp1b
cocrystal ligands (PDB codes 1c83, 1c84, 1c85, 1c87,
1c88, and 1ecv). The top 250 compounds by binding
affinity included all six ptp1b cocrystal ligands added
to the library (ranks 1-5 and 9) plus three other
experimentally confirmed binders (ranks 6, 218, and
248). The best (top 1) non-cocrystal binder is an experi-
mentally confirmed positive. Forty-seven out of the 482
known negatives were found in our top 250 list. The
remaining 194 compounds in our top 250 list are still
experimental “unknowns” at this time. All six cocrystal
configurations were predicted with less than 1 Å ac-
curacy. We conclude that HierVLS is useful for selecting
leads for a particular target out of large combinatorial
databases.

4. Assessment of Performance
We conclude that the performance current HierVLS

protocol is sufficient for use in virtual ligand screening.
It predicts the correct binding mode (within 2 Å CRMS)

with 100% success. In addition, HierVLS successfully
selects the active ligands in the top 2% for 21 of the 37
cases out of a large database. HierVLS is based on a
generic all-atom force field to calculate the binding
energies. Thus, it should be applicable to a broad range
of biosystems, including proteins, DNA, glycosilated
systems, and lipids.

The failures in the current level of HierVLS result
for either metal-containing sites on the protein or water-
mediated ligand-protein interactions. We expect that
the metal-containing systems can be handled by extend-
ing the FF straightforwardly while water-mediated
interactions may be taken into account by saturating
the hydrogen bonds within the binding cavity during
conformational search. However, we believe that the
current HierVLS is already useful for many interesting
applications in screening ligands, particularly for pro-
teins that do not contain metals at the active site and
for cases that do not rely on water-mediated HBs for
optimal binding.

Structural features in the target receptor were found
to be very important for binding mode accuracy. Special
care should be taken with disulfide bridges and proto-
nated states of His residues. For proteins known to
change conformation upon binding of different ligands,
screening should be performed against multiple protein
conformation and/or allowing the protein to change
conformation as an additional last step of docking.

The current generation of HierVLS uses the program
Dock22 4.0 to generate docked conformations in level 0.
Although useful, the conformational sampling in Dock4.0
has some well-known limitations that apply to this
generation of HierVLS.

5. Suggested Improvements
The studies reported here suggest several improve-

ments in HierVLS that we are implementing. However,
they have not yet been applied to full scale tests.

Recent improvements in the coarse grain Docking
step of HierVLS are (1) energy scoring using the
Dreiding force field, (2) continuum solvent scoring based
on the analytical volume generalized Born (AVGB)
continuum solvation approach, (3) automatic selection
of the size of the space to be sampled in the coarse grain
docking step by using diversity saturation criteria

Table 10. HierVLS Timesa

time (s)

target
no.

atoms

grid
(per

protein)
level 0

(50 conf/lig)
filter

(50 conf/lig)
level 1

(5 conf/lig)

AVGB
typing

(1 conf/lig)

AVGB
complex

(1 conf/lig)

AVGB
ligand

(1 conf/lig)

AVGB
protein + H2O

(1 conf/lig)

time per
ligand

min/ligand

pep/H2O 4550 14.64 20.49 178.38 5.34 31.88 0.24 29.32 4.64
ret/H2O 4766 14.74 20.84 297.75 5.3 34.17 0.24 31.42 6.74
ara/H2O 4671 9.98 20.67 215.20 5.23 31.98 0.23 29.59 5.21
fab 2112 16.40 17.50 45.40
nad 5978 15.51 56.17 280.71
pep 4550 14.95 17.34 151.53
ret 4766 16.91 36.96 368.23
rib 1462 18.05 12.26 20.09
ara 4671 12.67 19.44 199.90
cah 4032 17.00 19.27 133.56 4.61 19.91 0.27 3.2
car 4791 16.87 19.90 198.39
cyt 6444 13.51 24.40 514.11
tmn 4700 14.91 17.11 166.48
trp 3231 12.93 12.86 70.56
average 180 15.43 23.02 195.36 4.61 19.91 0.27 4.3

a Reported times are from a single 866 MHz Pentium III processor running Linux.
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combined with enrichment of energetically favorable
orientation families, and (4) alternative strategies of
conformation sampling. We expect that these improve-
ments will greatly increase the efficiency of level 0,
increasing both binding mode accuracy and screening
efficacy while decreasing the average run time.

We are also implementing side chain optimization in
the last stage of HierVLS to account for changes in the
binding site conformation to accommodate the best
ligands. We intend to also include water-mediated
interactions.

To decrease the time spent in screening a VLS library,
it would be useful to prescreen the library using a
pharmacaphore model derived from known experimen-
tal complexes of a particular target. This prescreening
option is also being implemented and tested.

6. Conclusions

On the basis of the validation against known cocrystal
structures, the success in identifying the active ligands
from a database, and the application to the protein-
tyrosine phosphatase 1B (ptp1b), we believe that the
current generation of HierVLS is useful and reliable for
targets with known cocrystal structures and no metal
atoms in the binding site. The most problematical cases
would be the ones for which the protein conformation
changes considerably upon binding and/or the bound
conformation involves water-mediated hydrogen bonds.
We consider that a number of improvements are pos-
sible that could further improve the performance while
maintaining or decreasing the computational costs.
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